1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_kms.h"
29 #include <drm/drm_plane_helper.h>
30 #include <drm/drm_atomic.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_rect.h>
33 #include <drm/drm_damage_helper.h>
34 
35 /* Might need a hrtimer here? */
36 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
37 
38 void vmw_du_cleanup(struct vmw_display_unit *du)
39 {
40 	drm_plane_cleanup(&du->primary);
41 	drm_plane_cleanup(&du->cursor);
42 
43 	drm_connector_unregister(&du->connector);
44 	drm_crtc_cleanup(&du->crtc);
45 	drm_encoder_cleanup(&du->encoder);
46 	drm_connector_cleanup(&du->connector);
47 }
48 
49 /*
50  * Display Unit Cursor functions
51  */
52 
53 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
54 				   u32 *image, u32 width, u32 height,
55 				   u32 hotspotX, u32 hotspotY)
56 {
57 	struct {
58 		u32 cmd;
59 		SVGAFifoCmdDefineAlphaCursor cursor;
60 	} *cmd;
61 	u32 image_size = width * height * 4;
62 	u32 cmd_size = sizeof(*cmd) + image_size;
63 
64 	if (!image)
65 		return -EINVAL;
66 
67 	cmd = vmw_fifo_reserve(dev_priv, cmd_size);
68 	if (unlikely(cmd == NULL)) {
69 		DRM_ERROR("Fifo reserve failed.\n");
70 		return -ENOMEM;
71 	}
72 
73 	memset(cmd, 0, sizeof(*cmd));
74 
75 	memcpy(&cmd[1], image, image_size);
76 
77 	cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
78 	cmd->cursor.id = 0;
79 	cmd->cursor.width = width;
80 	cmd->cursor.height = height;
81 	cmd->cursor.hotspotX = hotspotX;
82 	cmd->cursor.hotspotY = hotspotY;
83 
84 	vmw_fifo_commit_flush(dev_priv, cmd_size);
85 
86 	return 0;
87 }
88 
89 static int vmw_cursor_update_bo(struct vmw_private *dev_priv,
90 				struct vmw_buffer_object *bo,
91 				u32 width, u32 height,
92 				u32 hotspotX, u32 hotspotY)
93 {
94 	struct ttm_bo_kmap_obj map;
95 	unsigned long kmap_offset;
96 	unsigned long kmap_num;
97 	void *virtual;
98 	bool dummy;
99 	int ret;
100 
101 	kmap_offset = 0;
102 	kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
103 
104 	ret = ttm_bo_reserve(&bo->base, true, false, NULL);
105 	if (unlikely(ret != 0)) {
106 		DRM_ERROR("reserve failed\n");
107 		return -EINVAL;
108 	}
109 
110 	ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map);
111 	if (unlikely(ret != 0))
112 		goto err_unreserve;
113 
114 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
115 	ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
116 				      hotspotX, hotspotY);
117 
118 	ttm_bo_kunmap(&map);
119 err_unreserve:
120 	ttm_bo_unreserve(&bo->base);
121 
122 	return ret;
123 }
124 
125 
126 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
127 				       bool show, int x, int y)
128 {
129 	u32 *fifo_mem = dev_priv->mmio_virt;
130 	uint32_t count;
131 
132 	spin_lock(&dev_priv->cursor_lock);
133 	vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
134 	vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
135 	vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
136 	count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
137 	vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
138 	spin_unlock(&dev_priv->cursor_lock);
139 }
140 
141 
142 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
143 			  struct ttm_object_file *tfile,
144 			  struct ttm_buffer_object *bo,
145 			  SVGA3dCmdHeader *header)
146 {
147 	struct ttm_bo_kmap_obj map;
148 	unsigned long kmap_offset;
149 	unsigned long kmap_num;
150 	SVGA3dCopyBox *box;
151 	unsigned box_count;
152 	void *virtual;
153 	bool dummy;
154 	struct vmw_dma_cmd {
155 		SVGA3dCmdHeader header;
156 		SVGA3dCmdSurfaceDMA dma;
157 	} *cmd;
158 	int i, ret;
159 
160 	cmd = container_of(header, struct vmw_dma_cmd, header);
161 
162 	/* No snooper installed */
163 	if (!srf->snooper.image)
164 		return;
165 
166 	if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
167 		DRM_ERROR("face and mipmap for cursors should never != 0\n");
168 		return;
169 	}
170 
171 	if (cmd->header.size < 64) {
172 		DRM_ERROR("at least one full copy box must be given\n");
173 		return;
174 	}
175 
176 	box = (SVGA3dCopyBox *)&cmd[1];
177 	box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
178 			sizeof(SVGA3dCopyBox);
179 
180 	if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
181 	    box->x != 0    || box->y != 0    || box->z != 0    ||
182 	    box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
183 	    box->d != 1    || box_count != 1) {
184 		/* TODO handle none page aligned offsets */
185 		/* TODO handle more dst & src != 0 */
186 		/* TODO handle more then one copy */
187 		DRM_ERROR("Cant snoop dma request for cursor!\n");
188 		DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
189 			  box->srcx, box->srcy, box->srcz,
190 			  box->x, box->y, box->z,
191 			  box->w, box->h, box->d, box_count,
192 			  cmd->dma.guest.ptr.offset);
193 		return;
194 	}
195 
196 	kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
197 	kmap_num = (64*64*4) >> PAGE_SHIFT;
198 
199 	ret = ttm_bo_reserve(bo, true, false, NULL);
200 	if (unlikely(ret != 0)) {
201 		DRM_ERROR("reserve failed\n");
202 		return;
203 	}
204 
205 	ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
206 	if (unlikely(ret != 0))
207 		goto err_unreserve;
208 
209 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
210 
211 	if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
212 		memcpy(srf->snooper.image, virtual, 64*64*4);
213 	} else {
214 		/* Image is unsigned pointer. */
215 		for (i = 0; i < box->h; i++)
216 			memcpy(srf->snooper.image + i * 64,
217 			       virtual + i * cmd->dma.guest.pitch,
218 			       box->w * 4);
219 	}
220 
221 	srf->snooper.age++;
222 
223 	ttm_bo_kunmap(&map);
224 err_unreserve:
225 	ttm_bo_unreserve(bo);
226 }
227 
228 /**
229  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
230  *
231  * @dev_priv: Pointer to the device private struct.
232  *
233  * Clears all legacy hotspots.
234  */
235 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
236 {
237 	struct drm_device *dev = dev_priv->dev;
238 	struct vmw_display_unit *du;
239 	struct drm_crtc *crtc;
240 
241 	drm_modeset_lock_all(dev);
242 	drm_for_each_crtc(crtc, dev) {
243 		du = vmw_crtc_to_du(crtc);
244 
245 		du->hotspot_x = 0;
246 		du->hotspot_y = 0;
247 	}
248 	drm_modeset_unlock_all(dev);
249 }
250 
251 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
252 {
253 	struct drm_device *dev = dev_priv->dev;
254 	struct vmw_display_unit *du;
255 	struct drm_crtc *crtc;
256 
257 	mutex_lock(&dev->mode_config.mutex);
258 
259 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
260 		du = vmw_crtc_to_du(crtc);
261 		if (!du->cursor_surface ||
262 		    du->cursor_age == du->cursor_surface->snooper.age)
263 			continue;
264 
265 		du->cursor_age = du->cursor_surface->snooper.age;
266 		vmw_cursor_update_image(dev_priv,
267 					du->cursor_surface->snooper.image,
268 					64, 64,
269 					du->hotspot_x + du->core_hotspot_x,
270 					du->hotspot_y + du->core_hotspot_y);
271 	}
272 
273 	mutex_unlock(&dev->mode_config.mutex);
274 }
275 
276 
277 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
278 {
279 	vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
280 
281 	drm_plane_cleanup(plane);
282 }
283 
284 
285 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
286 {
287 	drm_plane_cleanup(plane);
288 
289 	/* Planes are static in our case so we don't free it */
290 }
291 
292 
293 /**
294  * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
295  *
296  * @vps: plane state associated with the display surface
297  * @unreference: true if we also want to unreference the display.
298  */
299 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
300 			     bool unreference)
301 {
302 	if (vps->surf) {
303 		if (vps->pinned) {
304 			vmw_resource_unpin(&vps->surf->res);
305 			vps->pinned--;
306 		}
307 
308 		if (unreference) {
309 			if (vps->pinned)
310 				DRM_ERROR("Surface still pinned\n");
311 			vmw_surface_unreference(&vps->surf);
312 		}
313 	}
314 }
315 
316 
317 /**
318  * vmw_du_plane_cleanup_fb - Unpins the cursor
319  *
320  * @plane:  display plane
321  * @old_state: Contains the FB to clean up
322  *
323  * Unpins the framebuffer surface
324  *
325  * Returns 0 on success
326  */
327 void
328 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
329 			struct drm_plane_state *old_state)
330 {
331 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
332 
333 	vmw_du_plane_unpin_surf(vps, false);
334 }
335 
336 
337 /**
338  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
339  *
340  * @plane:  display plane
341  * @new_state: info on the new plane state, including the FB
342  *
343  * Returns 0 on success
344  */
345 int
346 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
347 			       struct drm_plane_state *new_state)
348 {
349 	struct drm_framebuffer *fb = new_state->fb;
350 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
351 
352 
353 	if (vps->surf)
354 		vmw_surface_unreference(&vps->surf);
355 
356 	if (vps->bo)
357 		vmw_bo_unreference(&vps->bo);
358 
359 	if (fb) {
360 		if (vmw_framebuffer_to_vfb(fb)->bo) {
361 			vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer;
362 			vmw_bo_reference(vps->bo);
363 		} else {
364 			vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
365 			vmw_surface_reference(vps->surf);
366 		}
367 	}
368 
369 	return 0;
370 }
371 
372 
373 void
374 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
375 				  struct drm_plane_state *old_state)
376 {
377 	struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
378 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
379 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
380 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
381 	s32 hotspot_x, hotspot_y;
382 	int ret = 0;
383 
384 
385 	hotspot_x = du->hotspot_x;
386 	hotspot_y = du->hotspot_y;
387 
388 	if (plane->state->fb) {
389 		hotspot_x += plane->state->fb->hot_x;
390 		hotspot_y += plane->state->fb->hot_y;
391 	}
392 
393 	du->cursor_surface = vps->surf;
394 	du->cursor_bo = vps->bo;
395 
396 	if (vps->surf) {
397 		du->cursor_age = du->cursor_surface->snooper.age;
398 
399 		ret = vmw_cursor_update_image(dev_priv,
400 					      vps->surf->snooper.image,
401 					      64, 64, hotspot_x,
402 					      hotspot_y);
403 	} else if (vps->bo) {
404 		ret = vmw_cursor_update_bo(dev_priv, vps->bo,
405 					   plane->state->crtc_w,
406 					   plane->state->crtc_h,
407 					   hotspot_x, hotspot_y);
408 	} else {
409 		vmw_cursor_update_position(dev_priv, false, 0, 0);
410 		return;
411 	}
412 
413 	if (!ret) {
414 		du->cursor_x = plane->state->crtc_x + du->set_gui_x;
415 		du->cursor_y = plane->state->crtc_y + du->set_gui_y;
416 
417 		vmw_cursor_update_position(dev_priv, true,
418 					   du->cursor_x + hotspot_x,
419 					   du->cursor_y + hotspot_y);
420 
421 		du->core_hotspot_x = hotspot_x - du->hotspot_x;
422 		du->core_hotspot_y = hotspot_y - du->hotspot_y;
423 	} else {
424 		DRM_ERROR("Failed to update cursor image\n");
425 	}
426 }
427 
428 
429 /**
430  * vmw_du_primary_plane_atomic_check - check if the new state is okay
431  *
432  * @plane: display plane
433  * @state: info on the new plane state, including the FB
434  *
435  * Check if the new state is settable given the current state.  Other
436  * than what the atomic helper checks, we care about crtc fitting
437  * the FB and maintaining one active framebuffer.
438  *
439  * Returns 0 on success
440  */
441 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
442 				      struct drm_plane_state *state)
443 {
444 	struct drm_crtc_state *crtc_state = NULL;
445 	struct drm_framebuffer *new_fb = state->fb;
446 	int ret;
447 
448 	if (state->crtc)
449 		crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc);
450 
451 	ret = drm_atomic_helper_check_plane_state(state, crtc_state,
452 						  DRM_PLANE_HELPER_NO_SCALING,
453 						  DRM_PLANE_HELPER_NO_SCALING,
454 						  false, true);
455 
456 	if (!ret && new_fb) {
457 		struct drm_crtc *crtc = state->crtc;
458 		struct vmw_connector_state *vcs;
459 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
460 
461 		vcs = vmw_connector_state_to_vcs(du->connector.state);
462 	}
463 
464 
465 	return ret;
466 }
467 
468 
469 /**
470  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
471  *
472  * @plane: cursor plane
473  * @state: info on the new plane state
474  *
475  * This is a chance to fail if the new cursor state does not fit
476  * our requirements.
477  *
478  * Returns 0 on success
479  */
480 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
481 				     struct drm_plane_state *new_state)
482 {
483 	int ret = 0;
484 	struct drm_crtc_state *crtc_state = NULL;
485 	struct vmw_surface *surface = NULL;
486 	struct drm_framebuffer *fb = new_state->fb;
487 
488 	if (new_state->crtc)
489 		crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
490 							   new_state->crtc);
491 
492 	ret = drm_atomic_helper_check_plane_state(new_state, crtc_state,
493 						  DRM_PLANE_HELPER_NO_SCALING,
494 						  DRM_PLANE_HELPER_NO_SCALING,
495 						  true, true);
496 	if (ret)
497 		return ret;
498 
499 	/* Turning off */
500 	if (!fb)
501 		return 0;
502 
503 	/* A lot of the code assumes this */
504 	if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
505 		DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
506 			  new_state->crtc_w, new_state->crtc_h);
507 		ret = -EINVAL;
508 	}
509 
510 	if (!vmw_framebuffer_to_vfb(fb)->bo)
511 		surface = vmw_framebuffer_to_vfbs(fb)->surface;
512 
513 	if (surface && !surface->snooper.image) {
514 		DRM_ERROR("surface not suitable for cursor\n");
515 		ret = -EINVAL;
516 	}
517 
518 	return ret;
519 }
520 
521 
522 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
523 			     struct drm_crtc_state *new_state)
524 {
525 	struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
526 	int connector_mask = drm_connector_mask(&du->connector);
527 	bool has_primary = new_state->plane_mask &
528 			   drm_plane_mask(crtc->primary);
529 
530 	/* We always want to have an active plane with an active CRTC */
531 	if (has_primary != new_state->enable)
532 		return -EINVAL;
533 
534 
535 	if (new_state->connector_mask != connector_mask &&
536 	    new_state->connector_mask != 0) {
537 		DRM_ERROR("Invalid connectors configuration\n");
538 		return -EINVAL;
539 	}
540 
541 	/*
542 	 * Our virtual device does not have a dot clock, so use the logical
543 	 * clock value as the dot clock.
544 	 */
545 	if (new_state->mode.crtc_clock == 0)
546 		new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
547 
548 	return 0;
549 }
550 
551 
552 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
553 			      struct drm_crtc_state *old_crtc_state)
554 {
555 }
556 
557 
558 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
559 			      struct drm_crtc_state *old_crtc_state)
560 {
561 	struct drm_pending_vblank_event *event = crtc->state->event;
562 
563 	if (event) {
564 		crtc->state->event = NULL;
565 
566 		spin_lock_irq(&crtc->dev->event_lock);
567 		drm_crtc_send_vblank_event(crtc, event);
568 		spin_unlock_irq(&crtc->dev->event_lock);
569 	}
570 }
571 
572 
573 /**
574  * vmw_du_crtc_duplicate_state - duplicate crtc state
575  * @crtc: DRM crtc
576  *
577  * Allocates and returns a copy of the crtc state (both common and
578  * vmw-specific) for the specified crtc.
579  *
580  * Returns: The newly allocated crtc state, or NULL on failure.
581  */
582 struct drm_crtc_state *
583 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
584 {
585 	struct drm_crtc_state *state;
586 	struct vmw_crtc_state *vcs;
587 
588 	if (WARN_ON(!crtc->state))
589 		return NULL;
590 
591 	vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
592 
593 	if (!vcs)
594 		return NULL;
595 
596 	state = &vcs->base;
597 
598 	__drm_atomic_helper_crtc_duplicate_state(crtc, state);
599 
600 	return state;
601 }
602 
603 
604 /**
605  * vmw_du_crtc_reset - creates a blank vmw crtc state
606  * @crtc: DRM crtc
607  *
608  * Resets the atomic state for @crtc by freeing the state pointer (which
609  * might be NULL, e.g. at driver load time) and allocating a new empty state
610  * object.
611  */
612 void vmw_du_crtc_reset(struct drm_crtc *crtc)
613 {
614 	struct vmw_crtc_state *vcs;
615 
616 
617 	if (crtc->state) {
618 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
619 
620 		kfree(vmw_crtc_state_to_vcs(crtc->state));
621 	}
622 
623 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
624 
625 	if (!vcs) {
626 		DRM_ERROR("Cannot allocate vmw_crtc_state\n");
627 		return;
628 	}
629 
630 	crtc->state = &vcs->base;
631 	crtc->state->crtc = crtc;
632 }
633 
634 
635 /**
636  * vmw_du_crtc_destroy_state - destroy crtc state
637  * @crtc: DRM crtc
638  * @state: state object to destroy
639  *
640  * Destroys the crtc state (both common and vmw-specific) for the
641  * specified plane.
642  */
643 void
644 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
645 			  struct drm_crtc_state *state)
646 {
647 	drm_atomic_helper_crtc_destroy_state(crtc, state);
648 }
649 
650 
651 /**
652  * vmw_du_plane_duplicate_state - duplicate plane state
653  * @plane: drm plane
654  *
655  * Allocates and returns a copy of the plane state (both common and
656  * vmw-specific) for the specified plane.
657  *
658  * Returns: The newly allocated plane state, or NULL on failure.
659  */
660 struct drm_plane_state *
661 vmw_du_plane_duplicate_state(struct drm_plane *plane)
662 {
663 	struct drm_plane_state *state;
664 	struct vmw_plane_state *vps;
665 
666 	vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
667 
668 	if (!vps)
669 		return NULL;
670 
671 	vps->pinned = 0;
672 	vps->cpp = 0;
673 
674 	/* Each ref counted resource needs to be acquired again */
675 	if (vps->surf)
676 		(void) vmw_surface_reference(vps->surf);
677 
678 	if (vps->bo)
679 		(void) vmw_bo_reference(vps->bo);
680 
681 	state = &vps->base;
682 
683 	__drm_atomic_helper_plane_duplicate_state(plane, state);
684 
685 	return state;
686 }
687 
688 
689 /**
690  * vmw_du_plane_reset - creates a blank vmw plane state
691  * @plane: drm plane
692  *
693  * Resets the atomic state for @plane by freeing the state pointer (which might
694  * be NULL, e.g. at driver load time) and allocating a new empty state object.
695  */
696 void vmw_du_plane_reset(struct drm_plane *plane)
697 {
698 	struct vmw_plane_state *vps;
699 
700 
701 	if (plane->state)
702 		vmw_du_plane_destroy_state(plane, plane->state);
703 
704 	vps = kzalloc(sizeof(*vps), GFP_KERNEL);
705 
706 	if (!vps) {
707 		DRM_ERROR("Cannot allocate vmw_plane_state\n");
708 		return;
709 	}
710 
711 	__drm_atomic_helper_plane_reset(plane, &vps->base);
712 }
713 
714 
715 /**
716  * vmw_du_plane_destroy_state - destroy plane state
717  * @plane: DRM plane
718  * @state: state object to destroy
719  *
720  * Destroys the plane state (both common and vmw-specific) for the
721  * specified plane.
722  */
723 void
724 vmw_du_plane_destroy_state(struct drm_plane *plane,
725 			   struct drm_plane_state *state)
726 {
727 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
728 
729 
730 	/* Should have been freed by cleanup_fb */
731 	if (vps->surf)
732 		vmw_surface_unreference(&vps->surf);
733 
734 	if (vps->bo)
735 		vmw_bo_unreference(&vps->bo);
736 
737 	drm_atomic_helper_plane_destroy_state(plane, state);
738 }
739 
740 
741 /**
742  * vmw_du_connector_duplicate_state - duplicate connector state
743  * @connector: DRM connector
744  *
745  * Allocates and returns a copy of the connector state (both common and
746  * vmw-specific) for the specified connector.
747  *
748  * Returns: The newly allocated connector state, or NULL on failure.
749  */
750 struct drm_connector_state *
751 vmw_du_connector_duplicate_state(struct drm_connector *connector)
752 {
753 	struct drm_connector_state *state;
754 	struct vmw_connector_state *vcs;
755 
756 	if (WARN_ON(!connector->state))
757 		return NULL;
758 
759 	vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
760 
761 	if (!vcs)
762 		return NULL;
763 
764 	state = &vcs->base;
765 
766 	__drm_atomic_helper_connector_duplicate_state(connector, state);
767 
768 	return state;
769 }
770 
771 
772 /**
773  * vmw_du_connector_reset - creates a blank vmw connector state
774  * @connector: DRM connector
775  *
776  * Resets the atomic state for @connector by freeing the state pointer (which
777  * might be NULL, e.g. at driver load time) and allocating a new empty state
778  * object.
779  */
780 void vmw_du_connector_reset(struct drm_connector *connector)
781 {
782 	struct vmw_connector_state *vcs;
783 
784 
785 	if (connector->state) {
786 		__drm_atomic_helper_connector_destroy_state(connector->state);
787 
788 		kfree(vmw_connector_state_to_vcs(connector->state));
789 	}
790 
791 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
792 
793 	if (!vcs) {
794 		DRM_ERROR("Cannot allocate vmw_connector_state\n");
795 		return;
796 	}
797 
798 	__drm_atomic_helper_connector_reset(connector, &vcs->base);
799 }
800 
801 
802 /**
803  * vmw_du_connector_destroy_state - destroy connector state
804  * @connector: DRM connector
805  * @state: state object to destroy
806  *
807  * Destroys the connector state (both common and vmw-specific) for the
808  * specified plane.
809  */
810 void
811 vmw_du_connector_destroy_state(struct drm_connector *connector,
812 			  struct drm_connector_state *state)
813 {
814 	drm_atomic_helper_connector_destroy_state(connector, state);
815 }
816 /*
817  * Generic framebuffer code
818  */
819 
820 /*
821  * Surface framebuffer code
822  */
823 
824 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
825 {
826 	struct vmw_framebuffer_surface *vfbs =
827 		vmw_framebuffer_to_vfbs(framebuffer);
828 
829 	drm_framebuffer_cleanup(framebuffer);
830 	vmw_surface_unreference(&vfbs->surface);
831 	if (vfbs->base.user_obj)
832 		ttm_base_object_unref(&vfbs->base.user_obj);
833 
834 	kfree(vfbs);
835 }
836 
837 /**
838  * vmw_kms_readback - Perform a readback from the screen system to
839  * a buffer-object backed framebuffer.
840  *
841  * @dev_priv: Pointer to the device private structure.
842  * @file_priv: Pointer to a struct drm_file identifying the caller.
843  * Must be set to NULL if @user_fence_rep is NULL.
844  * @vfb: Pointer to the buffer-object backed framebuffer.
845  * @user_fence_rep: User-space provided structure for fence information.
846  * Must be set to non-NULL if @file_priv is non-NULL.
847  * @vclips: Array of clip rects.
848  * @num_clips: Number of clip rects in @vclips.
849  *
850  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
851  * interrupted.
852  */
853 int vmw_kms_readback(struct vmw_private *dev_priv,
854 		     struct drm_file *file_priv,
855 		     struct vmw_framebuffer *vfb,
856 		     struct drm_vmw_fence_rep __user *user_fence_rep,
857 		     struct drm_vmw_rect *vclips,
858 		     uint32_t num_clips)
859 {
860 	switch (dev_priv->active_display_unit) {
861 	case vmw_du_screen_object:
862 		return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
863 					    user_fence_rep, vclips, num_clips,
864 					    NULL);
865 	case vmw_du_screen_target:
866 		return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
867 					user_fence_rep, NULL, vclips, num_clips,
868 					1, false, true, NULL);
869 	default:
870 		WARN_ONCE(true,
871 			  "Readback called with invalid display system.\n");
872 }
873 
874 	return -ENOSYS;
875 }
876 
877 
878 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
879 	.destroy = vmw_framebuffer_surface_destroy,
880 	.dirty = drm_atomic_helper_dirtyfb,
881 };
882 
883 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
884 					   struct vmw_surface *surface,
885 					   struct vmw_framebuffer **out,
886 					   const struct drm_mode_fb_cmd2
887 					   *mode_cmd,
888 					   bool is_bo_proxy)
889 
890 {
891 	struct drm_device *dev = dev_priv->dev;
892 	struct vmw_framebuffer_surface *vfbs;
893 	enum SVGA3dSurfaceFormat format;
894 	int ret;
895 	struct drm_format_name_buf format_name;
896 
897 	/* 3D is only supported on HWv8 and newer hosts */
898 	if (dev_priv->active_display_unit == vmw_du_legacy)
899 		return -ENOSYS;
900 
901 	/*
902 	 * Sanity checks.
903 	 */
904 
905 	/* Surface must be marked as a scanout. */
906 	if (unlikely(!surface->scanout))
907 		return -EINVAL;
908 
909 	if (unlikely(surface->mip_levels[0] != 1 ||
910 		     surface->num_sizes != 1 ||
911 		     surface->base_size.width < mode_cmd->width ||
912 		     surface->base_size.height < mode_cmd->height ||
913 		     surface->base_size.depth != 1)) {
914 		DRM_ERROR("Incompatible surface dimensions "
915 			  "for requested mode.\n");
916 		return -EINVAL;
917 	}
918 
919 	switch (mode_cmd->pixel_format) {
920 	case DRM_FORMAT_ARGB8888:
921 		format = SVGA3D_A8R8G8B8;
922 		break;
923 	case DRM_FORMAT_XRGB8888:
924 		format = SVGA3D_X8R8G8B8;
925 		break;
926 	case DRM_FORMAT_RGB565:
927 		format = SVGA3D_R5G6B5;
928 		break;
929 	case DRM_FORMAT_XRGB1555:
930 		format = SVGA3D_A1R5G5B5;
931 		break;
932 	default:
933 		DRM_ERROR("Invalid pixel format: %s\n",
934 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
935 		return -EINVAL;
936 	}
937 
938 	/*
939 	 * For DX, surface format validation is done when surface->scanout
940 	 * is set.
941 	 */
942 	if (!dev_priv->has_dx && format != surface->format) {
943 		DRM_ERROR("Invalid surface format for requested mode.\n");
944 		return -EINVAL;
945 	}
946 
947 	vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
948 	if (!vfbs) {
949 		ret = -ENOMEM;
950 		goto out_err1;
951 	}
952 
953 	drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
954 	vfbs->surface = vmw_surface_reference(surface);
955 	vfbs->base.user_handle = mode_cmd->handles[0];
956 	vfbs->is_bo_proxy = is_bo_proxy;
957 
958 	*out = &vfbs->base;
959 
960 	ret = drm_framebuffer_init(dev, &vfbs->base.base,
961 				   &vmw_framebuffer_surface_funcs);
962 	if (ret)
963 		goto out_err2;
964 
965 	return 0;
966 
967 out_err2:
968 	vmw_surface_unreference(&surface);
969 	kfree(vfbs);
970 out_err1:
971 	return ret;
972 }
973 
974 /*
975  * Buffer-object framebuffer code
976  */
977 
978 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer)
979 {
980 	struct vmw_framebuffer_bo *vfbd =
981 		vmw_framebuffer_to_vfbd(framebuffer);
982 
983 	drm_framebuffer_cleanup(framebuffer);
984 	vmw_bo_unreference(&vfbd->buffer);
985 	if (vfbd->base.user_obj)
986 		ttm_base_object_unref(&vfbd->base.user_obj);
987 
988 	kfree(vfbd);
989 }
990 
991 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer,
992 				    struct drm_file *file_priv,
993 				    unsigned int flags, unsigned int color,
994 				    struct drm_clip_rect *clips,
995 				    unsigned int num_clips)
996 {
997 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
998 	struct vmw_framebuffer_bo *vfbd =
999 		vmw_framebuffer_to_vfbd(framebuffer);
1000 	struct drm_clip_rect norect;
1001 	int ret, increment = 1;
1002 
1003 	drm_modeset_lock_all(dev_priv->dev);
1004 
1005 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1006 	if (unlikely(ret != 0)) {
1007 		drm_modeset_unlock_all(dev_priv->dev);
1008 		return ret;
1009 	}
1010 
1011 	if (!num_clips) {
1012 		num_clips = 1;
1013 		clips = &norect;
1014 		norect.x1 = norect.y1 = 0;
1015 		norect.x2 = framebuffer->width;
1016 		norect.y2 = framebuffer->height;
1017 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1018 		num_clips /= 2;
1019 		increment = 2;
1020 	}
1021 
1022 	switch (dev_priv->active_display_unit) {
1023 	case vmw_du_legacy:
1024 		ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0,
1025 					      clips, num_clips, increment);
1026 		break;
1027 	default:
1028 		ret = -EINVAL;
1029 		WARN_ONCE(true, "Dirty called with invalid display system.\n");
1030 		break;
1031 	}
1032 
1033 	vmw_fifo_flush(dev_priv, false);
1034 	ttm_read_unlock(&dev_priv->reservation_sem);
1035 
1036 	drm_modeset_unlock_all(dev_priv->dev);
1037 
1038 	return ret;
1039 }
1040 
1041 static int vmw_framebuffer_bo_dirty_ext(struct drm_framebuffer *framebuffer,
1042 					struct drm_file *file_priv,
1043 					unsigned int flags, unsigned int color,
1044 					struct drm_clip_rect *clips,
1045 					unsigned int num_clips)
1046 {
1047 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1048 
1049 	if (dev_priv->active_display_unit == vmw_du_legacy)
1050 		return vmw_framebuffer_bo_dirty(framebuffer, file_priv, flags,
1051 						color, clips, num_clips);
1052 
1053 	return drm_atomic_helper_dirtyfb(framebuffer, file_priv, flags, color,
1054 					 clips, num_clips);
1055 }
1056 
1057 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = {
1058 	.destroy = vmw_framebuffer_bo_destroy,
1059 	.dirty = vmw_framebuffer_bo_dirty_ext,
1060 };
1061 
1062 /**
1063  * Pin the bofer in a location suitable for access by the
1064  * display system.
1065  */
1066 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1067 {
1068 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1069 	struct vmw_buffer_object *buf;
1070 	struct ttm_placement *placement;
1071 	int ret;
1072 
1073 	buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1074 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1075 
1076 	if (!buf)
1077 		return 0;
1078 
1079 	switch (dev_priv->active_display_unit) {
1080 	case vmw_du_legacy:
1081 		vmw_overlay_pause_all(dev_priv);
1082 		ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false);
1083 		vmw_overlay_resume_all(dev_priv);
1084 		break;
1085 	case vmw_du_screen_object:
1086 	case vmw_du_screen_target:
1087 		if (vfb->bo) {
1088 			if (dev_priv->capabilities & SVGA_CAP_3D) {
1089 				/*
1090 				 * Use surface DMA to get content to
1091 				 * sreen target surface.
1092 				 */
1093 				placement = &vmw_vram_gmr_placement;
1094 			} else {
1095 				/* Use CPU blit. */
1096 				placement = &vmw_sys_placement;
1097 			}
1098 		} else {
1099 			/* Use surface / image update */
1100 			placement = &vmw_mob_placement;
1101 		}
1102 
1103 		return vmw_bo_pin_in_placement(dev_priv, buf, placement, false);
1104 	default:
1105 		return -EINVAL;
1106 	}
1107 
1108 	return ret;
1109 }
1110 
1111 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1112 {
1113 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1114 	struct vmw_buffer_object *buf;
1115 
1116 	buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1117 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1118 
1119 	if (WARN_ON(!buf))
1120 		return 0;
1121 
1122 	return vmw_bo_unpin(dev_priv, buf, false);
1123 }
1124 
1125 /**
1126  * vmw_create_bo_proxy - create a proxy surface for the buffer object
1127  *
1128  * @dev: DRM device
1129  * @mode_cmd: parameters for the new surface
1130  * @bo_mob: MOB backing the buffer object
1131  * @srf_out: newly created surface
1132  *
1133  * When the content FB is a buffer object, we create a surface as a proxy to the
1134  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1135  * This is a more efficient approach
1136  *
1137  * RETURNS:
1138  * 0 on success, error code otherwise
1139  */
1140 static int vmw_create_bo_proxy(struct drm_device *dev,
1141 			       const struct drm_mode_fb_cmd2 *mode_cmd,
1142 			       struct vmw_buffer_object *bo_mob,
1143 			       struct vmw_surface **srf_out)
1144 {
1145 	uint32_t format;
1146 	struct drm_vmw_size content_base_size = {0};
1147 	struct vmw_resource *res;
1148 	unsigned int bytes_pp;
1149 	struct drm_format_name_buf format_name;
1150 	int ret;
1151 
1152 	switch (mode_cmd->pixel_format) {
1153 	case DRM_FORMAT_ARGB8888:
1154 	case DRM_FORMAT_XRGB8888:
1155 		format = SVGA3D_X8R8G8B8;
1156 		bytes_pp = 4;
1157 		break;
1158 
1159 	case DRM_FORMAT_RGB565:
1160 	case DRM_FORMAT_XRGB1555:
1161 		format = SVGA3D_R5G6B5;
1162 		bytes_pp = 2;
1163 		break;
1164 
1165 	case 8:
1166 		format = SVGA3D_P8;
1167 		bytes_pp = 1;
1168 		break;
1169 
1170 	default:
1171 		DRM_ERROR("Invalid framebuffer format %s\n",
1172 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1173 		return -EINVAL;
1174 	}
1175 
1176 	content_base_size.width  = mode_cmd->pitches[0] / bytes_pp;
1177 	content_base_size.height = mode_cmd->height;
1178 	content_base_size.depth  = 1;
1179 
1180 	ret = vmw_surface_gb_priv_define(dev,
1181 					 0, /* kernel visible only */
1182 					 0, /* flags */
1183 					 format,
1184 					 true, /* can be a scanout buffer */
1185 					 1, /* num of mip levels */
1186 					 0,
1187 					 0,
1188 					 content_base_size,
1189 					 SVGA3D_MS_PATTERN_NONE,
1190 					 SVGA3D_MS_QUALITY_NONE,
1191 					 srf_out);
1192 	if (ret) {
1193 		DRM_ERROR("Failed to allocate proxy content buffer\n");
1194 		return ret;
1195 	}
1196 
1197 	res = &(*srf_out)->res;
1198 
1199 	/* Reserve and switch the backing mob. */
1200 	mutex_lock(&res->dev_priv->cmdbuf_mutex);
1201 	(void) vmw_resource_reserve(res, false, true);
1202 	vmw_bo_unreference(&res->backup);
1203 	res->backup = vmw_bo_reference(bo_mob);
1204 	res->backup_offset = 0;
1205 	vmw_resource_unreserve(res, false, NULL, 0);
1206 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1207 
1208 	return 0;
1209 }
1210 
1211 
1212 
1213 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv,
1214 				      struct vmw_buffer_object *bo,
1215 				      struct vmw_framebuffer **out,
1216 				      const struct drm_mode_fb_cmd2
1217 				      *mode_cmd)
1218 
1219 {
1220 	struct drm_device *dev = dev_priv->dev;
1221 	struct vmw_framebuffer_bo *vfbd;
1222 	unsigned int requested_size;
1223 	struct drm_format_name_buf format_name;
1224 	int ret;
1225 
1226 	requested_size = mode_cmd->height * mode_cmd->pitches[0];
1227 	if (unlikely(requested_size > bo->base.num_pages * PAGE_SIZE)) {
1228 		DRM_ERROR("Screen buffer object size is too small "
1229 			  "for requested mode.\n");
1230 		return -EINVAL;
1231 	}
1232 
1233 	/* Limited framebuffer color depth support for screen objects */
1234 	if (dev_priv->active_display_unit == vmw_du_screen_object) {
1235 		switch (mode_cmd->pixel_format) {
1236 		case DRM_FORMAT_XRGB8888:
1237 		case DRM_FORMAT_ARGB8888:
1238 			break;
1239 		case DRM_FORMAT_XRGB1555:
1240 		case DRM_FORMAT_RGB565:
1241 			break;
1242 		default:
1243 			DRM_ERROR("Invalid pixel format: %s\n",
1244 				  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1245 			return -EINVAL;
1246 		}
1247 	}
1248 
1249 	vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1250 	if (!vfbd) {
1251 		ret = -ENOMEM;
1252 		goto out_err1;
1253 	}
1254 
1255 	drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1256 	vfbd->base.bo = true;
1257 	vfbd->buffer = vmw_bo_reference(bo);
1258 	vfbd->base.user_handle = mode_cmd->handles[0];
1259 	*out = &vfbd->base;
1260 
1261 	ret = drm_framebuffer_init(dev, &vfbd->base.base,
1262 				   &vmw_framebuffer_bo_funcs);
1263 	if (ret)
1264 		goto out_err2;
1265 
1266 	return 0;
1267 
1268 out_err2:
1269 	vmw_bo_unreference(&bo);
1270 	kfree(vfbd);
1271 out_err1:
1272 	return ret;
1273 }
1274 
1275 
1276 /**
1277  * vmw_kms_srf_ok - check if a surface can be created
1278  *
1279  * @width: requested width
1280  * @height: requested height
1281  *
1282  * Surfaces need to be less than texture size
1283  */
1284 static bool
1285 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1286 {
1287 	if (width  > dev_priv->texture_max_width ||
1288 	    height > dev_priv->texture_max_height)
1289 		return false;
1290 
1291 	return true;
1292 }
1293 
1294 /**
1295  * vmw_kms_new_framebuffer - Create a new framebuffer.
1296  *
1297  * @dev_priv: Pointer to device private struct.
1298  * @bo: Pointer to buffer object to wrap the kms framebuffer around.
1299  * Either @bo or @surface must be NULL.
1300  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1301  * Either @bo or @surface must be NULL.
1302  * @only_2d: No presents will occur to this buffer object based framebuffer.
1303  * This helps the code to do some important optimizations.
1304  * @mode_cmd: Frame-buffer metadata.
1305  */
1306 struct vmw_framebuffer *
1307 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1308 			struct vmw_buffer_object *bo,
1309 			struct vmw_surface *surface,
1310 			bool only_2d,
1311 			const struct drm_mode_fb_cmd2 *mode_cmd)
1312 {
1313 	struct vmw_framebuffer *vfb = NULL;
1314 	bool is_bo_proxy = false;
1315 	int ret;
1316 
1317 	/*
1318 	 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1319 	 * therefore, wrap the buffer object in a surface so we can use the
1320 	 * SurfaceCopy command.
1321 	 */
1322 	if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1323 	    bo && only_2d &&
1324 	    mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1325 	    dev_priv->active_display_unit == vmw_du_screen_target) {
1326 		ret = vmw_create_bo_proxy(dev_priv->dev, mode_cmd,
1327 					  bo, &surface);
1328 		if (ret)
1329 			return ERR_PTR(ret);
1330 
1331 		is_bo_proxy = true;
1332 	}
1333 
1334 	/* Create the new framebuffer depending one what we have */
1335 	if (surface) {
1336 		ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1337 						      mode_cmd,
1338 						      is_bo_proxy);
1339 
1340 		/*
1341 		 * vmw_create_bo_proxy() adds a reference that is no longer
1342 		 * needed
1343 		 */
1344 		if (is_bo_proxy)
1345 			vmw_surface_unreference(&surface);
1346 	} else if (bo) {
1347 		ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb,
1348 						 mode_cmd);
1349 	} else {
1350 		BUG();
1351 	}
1352 
1353 	if (ret)
1354 		return ERR_PTR(ret);
1355 
1356 	vfb->pin = vmw_framebuffer_pin;
1357 	vfb->unpin = vmw_framebuffer_unpin;
1358 
1359 	return vfb;
1360 }
1361 
1362 /*
1363  * Generic Kernel modesetting functions
1364  */
1365 
1366 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1367 						 struct drm_file *file_priv,
1368 						 const struct drm_mode_fb_cmd2 *mode_cmd)
1369 {
1370 	struct vmw_private *dev_priv = vmw_priv(dev);
1371 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1372 	struct vmw_framebuffer *vfb = NULL;
1373 	struct vmw_surface *surface = NULL;
1374 	struct vmw_buffer_object *bo = NULL;
1375 	struct ttm_base_object *user_obj;
1376 	int ret;
1377 
1378 	/*
1379 	 * Take a reference on the user object of the resource
1380 	 * backing the kms fb. This ensures that user-space handle
1381 	 * lookups on that resource will always work as long as
1382 	 * it's registered with a kms framebuffer. This is important,
1383 	 * since vmw_execbuf_process identifies resources in the
1384 	 * command stream using user-space handles.
1385 	 */
1386 
1387 	user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1388 	if (unlikely(user_obj == NULL)) {
1389 		DRM_ERROR("Could not locate requested kms frame buffer.\n");
1390 		return ERR_PTR(-ENOENT);
1391 	}
1392 
1393 	/**
1394 	 * End conditioned code.
1395 	 */
1396 
1397 	/* returns either a bo or surface */
1398 	ret = vmw_user_lookup_handle(dev_priv, tfile,
1399 				     mode_cmd->handles[0],
1400 				     &surface, &bo);
1401 	if (ret)
1402 		goto err_out;
1403 
1404 
1405 	if (!bo &&
1406 	    !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1407 		DRM_ERROR("Surface size cannot exceed %dx%d",
1408 			dev_priv->texture_max_width,
1409 			dev_priv->texture_max_height);
1410 		goto err_out;
1411 	}
1412 
1413 
1414 	vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1415 				      !(dev_priv->capabilities & SVGA_CAP_3D),
1416 				      mode_cmd);
1417 	if (IS_ERR(vfb)) {
1418 		ret = PTR_ERR(vfb);
1419 		goto err_out;
1420  	}
1421 
1422 err_out:
1423 	/* vmw_user_lookup_handle takes one ref so does new_fb */
1424 	if (bo)
1425 		vmw_bo_unreference(&bo);
1426 	if (surface)
1427 		vmw_surface_unreference(&surface);
1428 
1429 	if (ret) {
1430 		DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1431 		ttm_base_object_unref(&user_obj);
1432 		return ERR_PTR(ret);
1433 	} else
1434 		vfb->user_obj = user_obj;
1435 
1436 	return &vfb->base;
1437 }
1438 
1439 /**
1440  * vmw_kms_check_display_memory - Validates display memory required for a
1441  * topology
1442  * @dev: DRM device
1443  * @num_rects: number of drm_rect in rects
1444  * @rects: array of drm_rect representing the topology to validate indexed by
1445  * crtc index.
1446  *
1447  * Returns:
1448  * 0 on success otherwise negative error code
1449  */
1450 static int vmw_kms_check_display_memory(struct drm_device *dev,
1451 					uint32_t num_rects,
1452 					struct drm_rect *rects)
1453 {
1454 	struct vmw_private *dev_priv = vmw_priv(dev);
1455 	struct drm_rect bounding_box = {0};
1456 	u64 total_pixels = 0, pixel_mem, bb_mem;
1457 	int i;
1458 
1459 	for (i = 0; i < num_rects; i++) {
1460 		/*
1461 		 * For STDU only individual screen (screen target) is limited by
1462 		 * SCREENTARGET_MAX_WIDTH/HEIGHT registers.
1463 		 */
1464 		if (dev_priv->active_display_unit == vmw_du_screen_target &&
1465 		    (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width ||
1466 		     drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) {
1467 			DRM_ERROR("Screen size not supported.\n");
1468 			return -EINVAL;
1469 		}
1470 
1471 		/* Bounding box upper left is at (0,0). */
1472 		if (rects[i].x2 > bounding_box.x2)
1473 			bounding_box.x2 = rects[i].x2;
1474 
1475 		if (rects[i].y2 > bounding_box.y2)
1476 			bounding_box.y2 = rects[i].y2;
1477 
1478 		total_pixels += (u64) drm_rect_width(&rects[i]) *
1479 			(u64) drm_rect_height(&rects[i]);
1480 	}
1481 
1482 	/* Virtual svga device primary limits are always in 32-bpp. */
1483 	pixel_mem = total_pixels * 4;
1484 
1485 	/*
1486 	 * For HV10 and below prim_bb_mem is vram size. When
1487 	 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is
1488 	 * limit on primary bounding box
1489 	 */
1490 	if (pixel_mem > dev_priv->prim_bb_mem) {
1491 		DRM_ERROR("Combined output size too large.\n");
1492 		return -EINVAL;
1493 	}
1494 
1495 	/* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */
1496 	if (dev_priv->active_display_unit != vmw_du_screen_target ||
1497 	    !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) {
1498 		bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4;
1499 
1500 		if (bb_mem > dev_priv->prim_bb_mem) {
1501 			DRM_ERROR("Topology is beyond supported limits.\n");
1502 			return -EINVAL;
1503 		}
1504 	}
1505 
1506 	return 0;
1507 }
1508 
1509 /**
1510  * vmw_crtc_state_and_lock - Return new or current crtc state with locked
1511  * crtc mutex
1512  * @state: The atomic state pointer containing the new atomic state
1513  * @crtc: The crtc
1514  *
1515  * This function returns the new crtc state if it's part of the state update.
1516  * Otherwise returns the current crtc state. It also makes sure that the
1517  * crtc mutex is locked.
1518  *
1519  * Returns: A valid crtc state pointer or NULL. It may also return a
1520  * pointer error, in particular -EDEADLK if locking needs to be rerun.
1521  */
1522 static struct drm_crtc_state *
1523 vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc)
1524 {
1525 	struct drm_crtc_state *crtc_state;
1526 
1527 	crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
1528 	if (crtc_state) {
1529 		lockdep_assert_held(&crtc->mutex.mutex.base);
1530 	} else {
1531 		int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx);
1532 
1533 		if (ret != 0 && ret != -EALREADY)
1534 			return ERR_PTR(ret);
1535 
1536 		crtc_state = crtc->state;
1537 	}
1538 
1539 	return crtc_state;
1540 }
1541 
1542 /**
1543  * vmw_kms_check_implicit - Verify that all implicit display units scan out
1544  * from the same fb after the new state is committed.
1545  * @dev: The drm_device.
1546  * @state: The new state to be checked.
1547  *
1548  * Returns:
1549  *   Zero on success,
1550  *   -EINVAL on invalid state,
1551  *   -EDEADLK if modeset locking needs to be rerun.
1552  */
1553 static int vmw_kms_check_implicit(struct drm_device *dev,
1554 				  struct drm_atomic_state *state)
1555 {
1556 	struct drm_framebuffer *implicit_fb = NULL;
1557 	struct drm_crtc *crtc;
1558 	struct drm_crtc_state *crtc_state;
1559 	struct drm_plane_state *plane_state;
1560 
1561 	drm_for_each_crtc(crtc, dev) {
1562 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1563 
1564 		if (!du->is_implicit)
1565 			continue;
1566 
1567 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
1568 		if (IS_ERR(crtc_state))
1569 			return PTR_ERR(crtc_state);
1570 
1571 		if (!crtc_state || !crtc_state->enable)
1572 			continue;
1573 
1574 		/*
1575 		 * Can't move primary planes across crtcs, so this is OK.
1576 		 * It also means we don't need to take the plane mutex.
1577 		 */
1578 		plane_state = du->primary.state;
1579 		if (plane_state->crtc != crtc)
1580 			continue;
1581 
1582 		if (!implicit_fb)
1583 			implicit_fb = plane_state->fb;
1584 		else if (implicit_fb != plane_state->fb)
1585 			return -EINVAL;
1586 	}
1587 
1588 	return 0;
1589 }
1590 
1591 /**
1592  * vmw_kms_check_topology - Validates topology in drm_atomic_state
1593  * @dev: DRM device
1594  * @state: the driver state object
1595  *
1596  * Returns:
1597  * 0 on success otherwise negative error code
1598  */
1599 static int vmw_kms_check_topology(struct drm_device *dev,
1600 				  struct drm_atomic_state *state)
1601 {
1602 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
1603 	struct drm_rect *rects;
1604 	struct drm_crtc *crtc;
1605 	uint32_t i;
1606 	int ret = 0;
1607 
1608 	rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect),
1609 			GFP_KERNEL);
1610 	if (!rects)
1611 		return -ENOMEM;
1612 
1613 	drm_for_each_crtc(crtc, dev) {
1614 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1615 		struct drm_crtc_state *crtc_state;
1616 
1617 		i = drm_crtc_index(crtc);
1618 
1619 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
1620 		if (IS_ERR(crtc_state)) {
1621 			ret = PTR_ERR(crtc_state);
1622 			goto clean;
1623 		}
1624 
1625 		if (!crtc_state)
1626 			continue;
1627 
1628 		if (crtc_state->enable) {
1629 			rects[i].x1 = du->gui_x;
1630 			rects[i].y1 = du->gui_y;
1631 			rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay;
1632 			rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay;
1633 		} else {
1634 			rects[i].x1 = 0;
1635 			rects[i].y1 = 0;
1636 			rects[i].x2 = 0;
1637 			rects[i].y2 = 0;
1638 		}
1639 	}
1640 
1641 	/* Determine change to topology due to new atomic state */
1642 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
1643 				      new_crtc_state, i) {
1644 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1645 		struct drm_connector *connector;
1646 		struct drm_connector_state *conn_state;
1647 		struct vmw_connector_state *vmw_conn_state;
1648 
1649 		if (!du->pref_active) {
1650 			ret = -EINVAL;
1651 			goto clean;
1652 		}
1653 
1654 		/*
1655 		 * For vmwgfx each crtc has only one connector attached and it
1656 		 * is not changed so don't really need to check the
1657 		 * crtc->connector_mask and iterate over it.
1658 		 */
1659 		connector = &du->connector;
1660 		conn_state = drm_atomic_get_connector_state(state, connector);
1661 		if (IS_ERR(conn_state)) {
1662 			ret = PTR_ERR(conn_state);
1663 			goto clean;
1664 		}
1665 
1666 		vmw_conn_state = vmw_connector_state_to_vcs(conn_state);
1667 		vmw_conn_state->gui_x = du->gui_x;
1668 		vmw_conn_state->gui_y = du->gui_y;
1669 	}
1670 
1671 	ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc,
1672 					   rects);
1673 
1674 clean:
1675 	kfree(rects);
1676 	return ret;
1677 }
1678 
1679 /**
1680  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1681  *
1682  * @dev: DRM device
1683  * @state: the driver state object
1684  *
1685  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1686  * us to assign a value to mode->crtc_clock so that
1687  * drm_calc_timestamping_constants() won't throw an error message
1688  *
1689  * Returns:
1690  * Zero for success or -errno
1691  */
1692 static int
1693 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1694 			     struct drm_atomic_state *state)
1695 {
1696 	struct drm_crtc *crtc;
1697 	struct drm_crtc_state *crtc_state;
1698 	bool need_modeset = false;
1699 	int i, ret;
1700 
1701 	ret = drm_atomic_helper_check(dev, state);
1702 	if (ret)
1703 		return ret;
1704 
1705 	ret = vmw_kms_check_implicit(dev, state);
1706 	if (ret)
1707 		return ret;
1708 
1709 	if (!state->allow_modeset)
1710 		return ret;
1711 
1712 	/*
1713 	 * Legacy path do not set allow_modeset properly like
1714 	 * @drm_atomic_helper_update_plane, This will result in unnecessary call
1715 	 * to vmw_kms_check_topology. So extra set of check.
1716 	 */
1717 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1718 		if (drm_atomic_crtc_needs_modeset(crtc_state))
1719 			need_modeset = true;
1720 	}
1721 
1722 	if (need_modeset)
1723 		return vmw_kms_check_topology(dev, state);
1724 
1725 	return ret;
1726 }
1727 
1728 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1729 	.fb_create = vmw_kms_fb_create,
1730 	.atomic_check = vmw_kms_atomic_check_modeset,
1731 	.atomic_commit = drm_atomic_helper_commit,
1732 };
1733 
1734 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1735 				   struct drm_file *file_priv,
1736 				   struct vmw_framebuffer *vfb,
1737 				   struct vmw_surface *surface,
1738 				   uint32_t sid,
1739 				   int32_t destX, int32_t destY,
1740 				   struct drm_vmw_rect *clips,
1741 				   uint32_t num_clips)
1742 {
1743 	return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1744 					    &surface->res, destX, destY,
1745 					    num_clips, 1, NULL, NULL);
1746 }
1747 
1748 
1749 int vmw_kms_present(struct vmw_private *dev_priv,
1750 		    struct drm_file *file_priv,
1751 		    struct vmw_framebuffer *vfb,
1752 		    struct vmw_surface *surface,
1753 		    uint32_t sid,
1754 		    int32_t destX, int32_t destY,
1755 		    struct drm_vmw_rect *clips,
1756 		    uint32_t num_clips)
1757 {
1758 	int ret;
1759 
1760 	switch (dev_priv->active_display_unit) {
1761 	case vmw_du_screen_target:
1762 		ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1763 						 &surface->res, destX, destY,
1764 						 num_clips, 1, NULL, NULL);
1765 		break;
1766 	case vmw_du_screen_object:
1767 		ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1768 					      sid, destX, destY, clips,
1769 					      num_clips);
1770 		break;
1771 	default:
1772 		WARN_ONCE(true,
1773 			  "Present called with invalid display system.\n");
1774 		ret = -ENOSYS;
1775 		break;
1776 	}
1777 	if (ret)
1778 		return ret;
1779 
1780 	vmw_fifo_flush(dev_priv, false);
1781 
1782 	return 0;
1783 }
1784 
1785 static void
1786 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1787 {
1788 	if (dev_priv->hotplug_mode_update_property)
1789 		return;
1790 
1791 	dev_priv->hotplug_mode_update_property =
1792 		drm_property_create_range(dev_priv->dev,
1793 					  DRM_MODE_PROP_IMMUTABLE,
1794 					  "hotplug_mode_update", 0, 1);
1795 
1796 	if (!dev_priv->hotplug_mode_update_property)
1797 		return;
1798 
1799 }
1800 
1801 int vmw_kms_init(struct vmw_private *dev_priv)
1802 {
1803 	struct drm_device *dev = dev_priv->dev;
1804 	int ret;
1805 
1806 	drm_mode_config_init(dev);
1807 	dev->mode_config.funcs = &vmw_kms_funcs;
1808 	dev->mode_config.min_width = 1;
1809 	dev->mode_config.min_height = 1;
1810 	dev->mode_config.max_width = dev_priv->texture_max_width;
1811 	dev->mode_config.max_height = dev_priv->texture_max_height;
1812 
1813 	drm_mode_create_suggested_offset_properties(dev);
1814 	vmw_kms_create_hotplug_mode_update_property(dev_priv);
1815 
1816 	ret = vmw_kms_stdu_init_display(dev_priv);
1817 	if (ret) {
1818 		ret = vmw_kms_sou_init_display(dev_priv);
1819 		if (ret) /* Fallback */
1820 			ret = vmw_kms_ldu_init_display(dev_priv);
1821 	}
1822 
1823 	return ret;
1824 }
1825 
1826 int vmw_kms_close(struct vmw_private *dev_priv)
1827 {
1828 	int ret = 0;
1829 
1830 	/*
1831 	 * Docs says we should take the lock before calling this function
1832 	 * but since it destroys encoders and our destructor calls
1833 	 * drm_encoder_cleanup which takes the lock we deadlock.
1834 	 */
1835 	drm_mode_config_cleanup(dev_priv->dev);
1836 	if (dev_priv->active_display_unit == vmw_du_legacy)
1837 		ret = vmw_kms_ldu_close_display(dev_priv);
1838 
1839 	return ret;
1840 }
1841 
1842 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1843 				struct drm_file *file_priv)
1844 {
1845 	struct drm_vmw_cursor_bypass_arg *arg = data;
1846 	struct vmw_display_unit *du;
1847 	struct drm_crtc *crtc;
1848 	int ret = 0;
1849 
1850 
1851 	mutex_lock(&dev->mode_config.mutex);
1852 	if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1853 
1854 		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1855 			du = vmw_crtc_to_du(crtc);
1856 			du->hotspot_x = arg->xhot;
1857 			du->hotspot_y = arg->yhot;
1858 		}
1859 
1860 		mutex_unlock(&dev->mode_config.mutex);
1861 		return 0;
1862 	}
1863 
1864 	crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
1865 	if (!crtc) {
1866 		ret = -ENOENT;
1867 		goto out;
1868 	}
1869 
1870 	du = vmw_crtc_to_du(crtc);
1871 
1872 	du->hotspot_x = arg->xhot;
1873 	du->hotspot_y = arg->yhot;
1874 
1875 out:
1876 	mutex_unlock(&dev->mode_config.mutex);
1877 
1878 	return ret;
1879 }
1880 
1881 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1882 			unsigned width, unsigned height, unsigned pitch,
1883 			unsigned bpp, unsigned depth)
1884 {
1885 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1886 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1887 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1888 		vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1889 			       SVGA_FIFO_PITCHLOCK);
1890 	vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1891 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1892 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1893 
1894 	if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1895 		DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1896 			  depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1897 		return -EINVAL;
1898 	}
1899 
1900 	return 0;
1901 }
1902 
1903 int vmw_kms_save_vga(struct vmw_private *vmw_priv)
1904 {
1905 	struct vmw_vga_topology_state *save;
1906 	uint32_t i;
1907 
1908 	vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH);
1909 	vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT);
1910 	vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL);
1911 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1912 		vmw_priv->vga_pitchlock =
1913 		  vmw_read(vmw_priv, SVGA_REG_PITCHLOCK);
1914 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1915 		vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt +
1916 							SVGA_FIFO_PITCHLOCK);
1917 
1918 	if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1919 		return 0;
1920 
1921 	vmw_priv->num_displays = vmw_read(vmw_priv,
1922 					  SVGA_REG_NUM_GUEST_DISPLAYS);
1923 
1924 	if (vmw_priv->num_displays == 0)
1925 		vmw_priv->num_displays = 1;
1926 
1927 	for (i = 0; i < vmw_priv->num_displays; ++i) {
1928 		save = &vmw_priv->vga_save[i];
1929 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1930 		save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY);
1931 		save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X);
1932 		save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y);
1933 		save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH);
1934 		save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT);
1935 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1936 		if (i == 0 && vmw_priv->num_displays == 1 &&
1937 		    save->width == 0 && save->height == 0) {
1938 
1939 			/*
1940 			 * It should be fairly safe to assume that these
1941 			 * values are uninitialized.
1942 			 */
1943 
1944 			save->width = vmw_priv->vga_width - save->pos_x;
1945 			save->height = vmw_priv->vga_height - save->pos_y;
1946 		}
1947 	}
1948 
1949 	return 0;
1950 }
1951 
1952 int vmw_kms_restore_vga(struct vmw_private *vmw_priv)
1953 {
1954 	struct vmw_vga_topology_state *save;
1955 	uint32_t i;
1956 
1957 	vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width);
1958 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height);
1959 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp);
1960 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1961 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK,
1962 			  vmw_priv->vga_pitchlock);
1963 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1964 		vmw_mmio_write(vmw_priv->vga_pitchlock,
1965 			       vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK);
1966 
1967 	if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1968 		return 0;
1969 
1970 	for (i = 0; i < vmw_priv->num_displays; ++i) {
1971 		save = &vmw_priv->vga_save[i];
1972 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1973 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary);
1974 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x);
1975 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y);
1976 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width);
1977 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height);
1978 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1979 	}
1980 
1981 	return 0;
1982 }
1983 
1984 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1985 				uint32_t pitch,
1986 				uint32_t height)
1987 {
1988 	return ((u64) pitch * (u64) height) < (u64)
1989 		((dev_priv->active_display_unit == vmw_du_screen_target) ?
1990 		 dev_priv->prim_bb_mem : dev_priv->vram_size);
1991 }
1992 
1993 
1994 /**
1995  * Function called by DRM code called with vbl_lock held.
1996  */
1997 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
1998 {
1999 	return 0;
2000 }
2001 
2002 /**
2003  * Function called by DRM code called with vbl_lock held.
2004  */
2005 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe)
2006 {
2007 	return -EINVAL;
2008 }
2009 
2010 /**
2011  * Function called by DRM code called with vbl_lock held.
2012  */
2013 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe)
2014 {
2015 }
2016 
2017 /**
2018  * vmw_du_update_layout - Update the display unit with topology from resolution
2019  * plugin and generate DRM uevent
2020  * @dev_priv: device private
2021  * @num_rects: number of drm_rect in rects
2022  * @rects: toplogy to update
2023  */
2024 static int vmw_du_update_layout(struct vmw_private *dev_priv,
2025 				unsigned int num_rects, struct drm_rect *rects)
2026 {
2027 	struct drm_device *dev = dev_priv->dev;
2028 	struct vmw_display_unit *du;
2029 	struct drm_connector *con;
2030 	struct drm_connector_list_iter conn_iter;
2031 	struct drm_modeset_acquire_ctx ctx;
2032 	struct drm_crtc *crtc;
2033 	int ret;
2034 
2035 	/* Currently gui_x/y is protected with the crtc mutex */
2036 	mutex_lock(&dev->mode_config.mutex);
2037 	drm_modeset_acquire_init(&ctx, 0);
2038 retry:
2039 	drm_for_each_crtc(crtc, dev) {
2040 		ret = drm_modeset_lock(&crtc->mutex, &ctx);
2041 		if (ret < 0) {
2042 			if (ret == -EDEADLK) {
2043 				drm_modeset_backoff(&ctx);
2044 				goto retry;
2045       		}
2046 			goto out_fini;
2047 		}
2048 	}
2049 
2050 	drm_connector_list_iter_begin(dev, &conn_iter);
2051 	drm_for_each_connector_iter(con, &conn_iter) {
2052 		du = vmw_connector_to_du(con);
2053 		if (num_rects > du->unit) {
2054 			du->pref_width = drm_rect_width(&rects[du->unit]);
2055 			du->pref_height = drm_rect_height(&rects[du->unit]);
2056 			du->pref_active = true;
2057 			du->gui_x = rects[du->unit].x1;
2058 			du->gui_y = rects[du->unit].y1;
2059 		} else {
2060 			du->pref_width = 800;
2061 			du->pref_height = 600;
2062 			du->pref_active = false;
2063 			du->gui_x = 0;
2064 			du->gui_y = 0;
2065 		}
2066 	}
2067 	drm_connector_list_iter_end(&conn_iter);
2068 
2069 	list_for_each_entry(con, &dev->mode_config.connector_list, head) {
2070 		du = vmw_connector_to_du(con);
2071 		if (num_rects > du->unit) {
2072 			drm_object_property_set_value
2073 			  (&con->base, dev->mode_config.suggested_x_property,
2074 			   du->gui_x);
2075 			drm_object_property_set_value
2076 			  (&con->base, dev->mode_config.suggested_y_property,
2077 			   du->gui_y);
2078 		} else {
2079 			drm_object_property_set_value
2080 			  (&con->base, dev->mode_config.suggested_x_property,
2081 			   0);
2082 			drm_object_property_set_value
2083 			  (&con->base, dev->mode_config.suggested_y_property,
2084 			   0);
2085 		}
2086 		con->status = vmw_du_connector_detect(con, true);
2087 	}
2088 
2089 	drm_sysfs_hotplug_event(dev);
2090 out_fini:
2091 	drm_modeset_drop_locks(&ctx);
2092 	drm_modeset_acquire_fini(&ctx);
2093 	mutex_unlock(&dev->mode_config.mutex);
2094 
2095 	return 0;
2096 }
2097 
2098 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
2099 			  u16 *r, u16 *g, u16 *b,
2100 			  uint32_t size,
2101 			  struct drm_modeset_acquire_ctx *ctx)
2102 {
2103 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
2104 	int i;
2105 
2106 	for (i = 0; i < size; i++) {
2107 		DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
2108 			  r[i], g[i], b[i]);
2109 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
2110 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
2111 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
2112 	}
2113 
2114 	return 0;
2115 }
2116 
2117 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
2118 {
2119 	return 0;
2120 }
2121 
2122 enum drm_connector_status
2123 vmw_du_connector_detect(struct drm_connector *connector, bool force)
2124 {
2125 	uint32_t num_displays;
2126 	struct drm_device *dev = connector->dev;
2127 	struct vmw_private *dev_priv = vmw_priv(dev);
2128 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2129 
2130 	num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
2131 
2132 	return ((vmw_connector_to_du(connector)->unit < num_displays &&
2133 		 du->pref_active) ?
2134 		connector_status_connected : connector_status_disconnected);
2135 }
2136 
2137 static struct drm_display_mode vmw_kms_connector_builtin[] = {
2138 	/* 640x480@60Hz */
2139 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
2140 		   752, 800, 0, 480, 489, 492, 525, 0,
2141 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2142 	/* 800x600@60Hz */
2143 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
2144 		   968, 1056, 0, 600, 601, 605, 628, 0,
2145 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2146 	/* 1024x768@60Hz */
2147 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
2148 		   1184, 1344, 0, 768, 771, 777, 806, 0,
2149 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2150 	/* 1152x864@75Hz */
2151 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
2152 		   1344, 1600, 0, 864, 865, 868, 900, 0,
2153 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2154 	/* 1280x768@60Hz */
2155 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
2156 		   1472, 1664, 0, 768, 771, 778, 798, 0,
2157 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2158 	/* 1280x800@60Hz */
2159 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
2160 		   1480, 1680, 0, 800, 803, 809, 831, 0,
2161 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2162 	/* 1280x960@60Hz */
2163 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
2164 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
2165 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2166 	/* 1280x1024@60Hz */
2167 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
2168 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
2169 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2170 	/* 1360x768@60Hz */
2171 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2172 		   1536, 1792, 0, 768, 771, 777, 795, 0,
2173 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2174 	/* 1440x1050@60Hz */
2175 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2176 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2177 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2178 	/* 1440x900@60Hz */
2179 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2180 		   1672, 1904, 0, 900, 903, 909, 934, 0,
2181 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2182 	/* 1600x1200@60Hz */
2183 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2184 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2185 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2186 	/* 1680x1050@60Hz */
2187 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2188 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2189 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2190 	/* 1792x1344@60Hz */
2191 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2192 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2193 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2194 	/* 1853x1392@60Hz */
2195 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2196 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2197 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2198 	/* 1920x1200@60Hz */
2199 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2200 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2201 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2202 	/* 1920x1440@60Hz */
2203 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2204 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2205 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2206 	/* 2560x1600@60Hz */
2207 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2208 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2209 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2210 	/* Terminate */
2211 	{ DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2212 };
2213 
2214 /**
2215  * vmw_guess_mode_timing - Provide fake timings for a
2216  * 60Hz vrefresh mode.
2217  *
2218  * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2219  * members filled in.
2220  */
2221 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2222 {
2223 	mode->hsync_start = mode->hdisplay + 50;
2224 	mode->hsync_end = mode->hsync_start + 50;
2225 	mode->htotal = mode->hsync_end + 50;
2226 
2227 	mode->vsync_start = mode->vdisplay + 50;
2228 	mode->vsync_end = mode->vsync_start + 50;
2229 	mode->vtotal = mode->vsync_end + 50;
2230 
2231 	mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2232 	mode->vrefresh = drm_mode_vrefresh(mode);
2233 }
2234 
2235 
2236 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2237 				uint32_t max_width, uint32_t max_height)
2238 {
2239 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2240 	struct drm_device *dev = connector->dev;
2241 	struct vmw_private *dev_priv = vmw_priv(dev);
2242 	struct drm_display_mode *mode = NULL;
2243 	struct drm_display_mode *bmode;
2244 	struct drm_display_mode prefmode = { DRM_MODE("preferred",
2245 		DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2246 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2247 		DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2248 	};
2249 	int i;
2250 	u32 assumed_bpp = 4;
2251 
2252 	if (dev_priv->assume_16bpp)
2253 		assumed_bpp = 2;
2254 
2255 	max_width  = min(max_width,  dev_priv->texture_max_width);
2256 	max_height = min(max_height, dev_priv->texture_max_height);
2257 
2258 	/*
2259 	 * For STDU extra limit for a mode on SVGA_REG_SCREENTARGET_MAX_WIDTH/
2260 	 * HEIGHT registers.
2261 	 */
2262 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2263 		max_width  = min(max_width,  dev_priv->stdu_max_width);
2264 		max_height = min(max_height, dev_priv->stdu_max_height);
2265 	}
2266 
2267 	/* Add preferred mode */
2268 	mode = drm_mode_duplicate(dev, &prefmode);
2269 	if (!mode)
2270 		return 0;
2271 	mode->hdisplay = du->pref_width;
2272 	mode->vdisplay = du->pref_height;
2273 	vmw_guess_mode_timing(mode);
2274 
2275 	if (vmw_kms_validate_mode_vram(dev_priv,
2276 					mode->hdisplay * assumed_bpp,
2277 					mode->vdisplay)) {
2278 		drm_mode_probed_add(connector, mode);
2279 	} else {
2280 		drm_mode_destroy(dev, mode);
2281 		mode = NULL;
2282 	}
2283 
2284 	if (du->pref_mode) {
2285 		list_del_init(&du->pref_mode->head);
2286 		drm_mode_destroy(dev, du->pref_mode);
2287 	}
2288 
2289 	/* mode might be null here, this is intended */
2290 	du->pref_mode = mode;
2291 
2292 	for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2293 		bmode = &vmw_kms_connector_builtin[i];
2294 		if (bmode->hdisplay > max_width ||
2295 		    bmode->vdisplay > max_height)
2296 			continue;
2297 
2298 		if (!vmw_kms_validate_mode_vram(dev_priv,
2299 						bmode->hdisplay * assumed_bpp,
2300 						bmode->vdisplay))
2301 			continue;
2302 
2303 		mode = drm_mode_duplicate(dev, bmode);
2304 		if (!mode)
2305 			return 0;
2306 		mode->vrefresh = drm_mode_vrefresh(mode);
2307 
2308 		drm_mode_probed_add(connector, mode);
2309 	}
2310 
2311 	drm_connector_list_update(connector);
2312 	/* Move the prefered mode first, help apps pick the right mode. */
2313 	drm_mode_sort(&connector->modes);
2314 
2315 	return 1;
2316 }
2317 
2318 /**
2319  * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl
2320  * @dev: drm device for the ioctl
2321  * @data: data pointer for the ioctl
2322  * @file_priv: drm file for the ioctl call
2323  *
2324  * Update preferred topology of display unit as per ioctl request. The topology
2325  * is expressed as array of drm_vmw_rect.
2326  * e.g.
2327  * [0 0 640 480] [640 0 800 600] [0 480 640 480]
2328  *
2329  * NOTE:
2330  * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside
2331  * device limit on topology, x + w and y + h (lower right) cannot be greater
2332  * than INT_MAX. So topology beyond these limits will return with error.
2333  *
2334  * Returns:
2335  * Zero on success, negative errno on failure.
2336  */
2337 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2338 				struct drm_file *file_priv)
2339 {
2340 	struct vmw_private *dev_priv = vmw_priv(dev);
2341 	struct drm_mode_config *mode_config = &dev->mode_config;
2342 	struct drm_vmw_update_layout_arg *arg =
2343 		(struct drm_vmw_update_layout_arg *)data;
2344 	void __user *user_rects;
2345 	struct drm_vmw_rect *rects;
2346 	struct drm_rect *drm_rects;
2347 	unsigned rects_size;
2348 	int ret, i;
2349 
2350 	if (!arg->num_outputs) {
2351 		struct drm_rect def_rect = {0, 0, 800, 600};
2352 		vmw_du_update_layout(dev_priv, 1, &def_rect);
2353 		return 0;
2354 	}
2355 
2356 	rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2357 	rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2358 			GFP_KERNEL);
2359 	if (unlikely(!rects))
2360 		return -ENOMEM;
2361 
2362 	user_rects = (void __user *)(unsigned long)arg->rects;
2363 	ret = copy_from_user(rects, user_rects, rects_size);
2364 	if (unlikely(ret != 0)) {
2365 		DRM_ERROR("Failed to get rects.\n");
2366 		ret = -EFAULT;
2367 		goto out_free;
2368 	}
2369 
2370 	drm_rects = (struct drm_rect *)rects;
2371 
2372 	for (i = 0; i < arg->num_outputs; i++) {
2373 		struct drm_vmw_rect curr_rect;
2374 
2375 		/* Verify user-space for overflow as kernel use drm_rect */
2376 		if ((rects[i].x + rects[i].w > INT_MAX) ||
2377 		    (rects[i].y + rects[i].h > INT_MAX)) {
2378 			ret = -ERANGE;
2379 			goto out_free;
2380 		}
2381 
2382 		curr_rect = rects[i];
2383 		drm_rects[i].x1 = curr_rect.x;
2384 		drm_rects[i].y1 = curr_rect.y;
2385 		drm_rects[i].x2 = curr_rect.x + curr_rect.w;
2386 		drm_rects[i].y2 = curr_rect.y + curr_rect.h;
2387 
2388 		/*
2389 		 * Currently this check is limiting the topology within
2390 		 * mode_config->max (which actually is max texture size
2391 		 * supported by virtual device). This limit is here to address
2392 		 * window managers that create a big framebuffer for whole
2393 		 * topology.
2394 		 */
2395 		if (drm_rects[i].x1 < 0 ||  drm_rects[i].y1 < 0 ||
2396 		    drm_rects[i].x2 > mode_config->max_width ||
2397 		    drm_rects[i].y2 > mode_config->max_height) {
2398 			DRM_ERROR("Invalid GUI layout.\n");
2399 			ret = -EINVAL;
2400 			goto out_free;
2401 		}
2402 	}
2403 
2404 	ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects);
2405 
2406 	if (ret == 0)
2407 		vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects);
2408 
2409 out_free:
2410 	kfree(rects);
2411 	return ret;
2412 }
2413 
2414 /**
2415  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2416  * on a set of cliprects and a set of display units.
2417  *
2418  * @dev_priv: Pointer to a device private structure.
2419  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2420  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2421  * Cliprects are given in framebuffer coordinates.
2422  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2423  * be NULL. Cliprects are given in source coordinates.
2424  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2425  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2426  * @num_clips: Number of cliprects in the @clips or @vclips array.
2427  * @increment: Integer with which to increment the clip counter when looping.
2428  * Used to skip a predetermined number of clip rects.
2429  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2430  */
2431 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2432 			 struct vmw_framebuffer *framebuffer,
2433 			 const struct drm_clip_rect *clips,
2434 			 const struct drm_vmw_rect *vclips,
2435 			 s32 dest_x, s32 dest_y,
2436 			 int num_clips,
2437 			 int increment,
2438 			 struct vmw_kms_dirty *dirty)
2439 {
2440 	struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2441 	struct drm_crtc *crtc;
2442 	u32 num_units = 0;
2443 	u32 i, k;
2444 
2445 	dirty->dev_priv = dev_priv;
2446 
2447 	/* If crtc is passed, no need to iterate over other display units */
2448 	if (dirty->crtc) {
2449 		units[num_units++] = vmw_crtc_to_du(dirty->crtc);
2450 	} else {
2451 		list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list,
2452 				    head) {
2453 			struct drm_plane *plane = crtc->primary;
2454 
2455 			if (plane->state->fb == &framebuffer->base)
2456 				units[num_units++] = vmw_crtc_to_du(crtc);
2457 		}
2458 	}
2459 
2460 	for (k = 0; k < num_units; k++) {
2461 		struct vmw_display_unit *unit = units[k];
2462 		s32 crtc_x = unit->crtc.x;
2463 		s32 crtc_y = unit->crtc.y;
2464 		s32 crtc_width = unit->crtc.mode.hdisplay;
2465 		s32 crtc_height = unit->crtc.mode.vdisplay;
2466 		const struct drm_clip_rect *clips_ptr = clips;
2467 		const struct drm_vmw_rect *vclips_ptr = vclips;
2468 
2469 		dirty->unit = unit;
2470 		if (dirty->fifo_reserve_size > 0) {
2471 			dirty->cmd = vmw_fifo_reserve(dev_priv,
2472 						      dirty->fifo_reserve_size);
2473 			if (!dirty->cmd) {
2474 				DRM_ERROR("Couldn't reserve fifo space "
2475 					  "for dirty blits.\n");
2476 				return -ENOMEM;
2477 			}
2478 			memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2479 		}
2480 		dirty->num_hits = 0;
2481 		for (i = 0; i < num_clips; i++, clips_ptr += increment,
2482 		       vclips_ptr += increment) {
2483 			s32 clip_left;
2484 			s32 clip_top;
2485 
2486 			/*
2487 			 * Select clip array type. Note that integer type
2488 			 * in @clips is unsigned short, whereas in @vclips
2489 			 * it's 32-bit.
2490 			 */
2491 			if (clips) {
2492 				dirty->fb_x = (s32) clips_ptr->x1;
2493 				dirty->fb_y = (s32) clips_ptr->y1;
2494 				dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2495 					crtc_x;
2496 				dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2497 					crtc_y;
2498 			} else {
2499 				dirty->fb_x = vclips_ptr->x;
2500 				dirty->fb_y = vclips_ptr->y;
2501 				dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2502 					dest_x - crtc_x;
2503 				dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2504 					dest_y - crtc_y;
2505 			}
2506 
2507 			dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2508 			dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2509 
2510 			/* Skip this clip if it's outside the crtc region */
2511 			if (dirty->unit_x1 >= crtc_width ||
2512 			    dirty->unit_y1 >= crtc_height ||
2513 			    dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2514 				continue;
2515 
2516 			/* Clip right and bottom to crtc limits */
2517 			dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2518 					       crtc_width);
2519 			dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2520 					       crtc_height);
2521 
2522 			/* Clip left and top to crtc limits */
2523 			clip_left = min_t(s32, dirty->unit_x1, 0);
2524 			clip_top = min_t(s32, dirty->unit_y1, 0);
2525 			dirty->unit_x1 -= clip_left;
2526 			dirty->unit_y1 -= clip_top;
2527 			dirty->fb_x -= clip_left;
2528 			dirty->fb_y -= clip_top;
2529 
2530 			dirty->clip(dirty);
2531 		}
2532 
2533 		dirty->fifo_commit(dirty);
2534 	}
2535 
2536 	return 0;
2537 }
2538 
2539 /**
2540  * vmw_kms_helper_validation_finish - Helper for post KMS command submission
2541  * cleanup and fencing
2542  * @dev_priv: Pointer to the device-private struct
2543  * @file_priv: Pointer identifying the client when user-space fencing is used
2544  * @ctx: Pointer to the validation context
2545  * @out_fence: If non-NULL, returned refcounted fence-pointer
2546  * @user_fence_rep: If non-NULL, pointer to user-space address area
2547  * in which to copy user-space fence info
2548  */
2549 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv,
2550 				      struct drm_file *file_priv,
2551 				      struct vmw_validation_context *ctx,
2552 				      struct vmw_fence_obj **out_fence,
2553 				      struct drm_vmw_fence_rep __user *
2554 				      user_fence_rep)
2555 {
2556 	struct vmw_fence_obj *fence = NULL;
2557 	uint32_t handle;
2558 	int ret;
2559 
2560 	if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) ||
2561 	    out_fence)
2562 		ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2563 						 file_priv ? &handle : NULL);
2564 	vmw_validation_done(ctx, fence);
2565 	if (file_priv)
2566 		vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2567 					    ret, user_fence_rep, fence,
2568 					    handle, -1, NULL);
2569 	if (out_fence)
2570 		*out_fence = fence;
2571 	else
2572 		vmw_fence_obj_unreference(&fence);
2573 }
2574 
2575 /**
2576  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2577  * its backing MOB.
2578  *
2579  * @res: Pointer to the surface resource
2580  * @clips: Clip rects in framebuffer (surface) space.
2581  * @num_clips: Number of clips in @clips.
2582  * @increment: Integer with which to increment the clip counter when looping.
2583  * Used to skip a predetermined number of clip rects.
2584  *
2585  * This function makes sure the proxy surface is updated from its backing MOB
2586  * using the region given by @clips. The surface resource @res and its backing
2587  * MOB needs to be reserved and validated on call.
2588  */
2589 int vmw_kms_update_proxy(struct vmw_resource *res,
2590 			 const struct drm_clip_rect *clips,
2591 			 unsigned num_clips,
2592 			 int increment)
2593 {
2594 	struct vmw_private *dev_priv = res->dev_priv;
2595 	struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size;
2596 	struct {
2597 		SVGA3dCmdHeader header;
2598 		SVGA3dCmdUpdateGBImage body;
2599 	} *cmd;
2600 	SVGA3dBox *box;
2601 	size_t copy_size = 0;
2602 	int i;
2603 
2604 	if (!clips)
2605 		return 0;
2606 
2607 	cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips);
2608 	if (!cmd) {
2609 		DRM_ERROR("Couldn't reserve fifo space for proxy surface "
2610 			  "update.\n");
2611 		return -ENOMEM;
2612 	}
2613 
2614 	for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2615 		box = &cmd->body.box;
2616 
2617 		cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2618 		cmd->header.size = sizeof(cmd->body);
2619 		cmd->body.image.sid = res->id;
2620 		cmd->body.image.face = 0;
2621 		cmd->body.image.mipmap = 0;
2622 
2623 		if (clips->x1 > size->width || clips->x2 > size->width ||
2624 		    clips->y1 > size->height || clips->y2 > size->height) {
2625 			DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2626 			return -EINVAL;
2627 		}
2628 
2629 		box->x = clips->x1;
2630 		box->y = clips->y1;
2631 		box->z = 0;
2632 		box->w = clips->x2 - clips->x1;
2633 		box->h = clips->y2 - clips->y1;
2634 		box->d = 1;
2635 
2636 		copy_size += sizeof(*cmd);
2637 	}
2638 
2639 	vmw_fifo_commit(dev_priv, copy_size);
2640 
2641 	return 0;
2642 }
2643 
2644 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2645 			    unsigned unit,
2646 			    u32 max_width,
2647 			    u32 max_height,
2648 			    struct drm_connector **p_con,
2649 			    struct drm_crtc **p_crtc,
2650 			    struct drm_display_mode **p_mode)
2651 {
2652 	struct drm_connector *con;
2653 	struct vmw_display_unit *du;
2654 	struct drm_display_mode *mode;
2655 	int i = 0;
2656 	int ret = 0;
2657 
2658 	mutex_lock(&dev_priv->dev->mode_config.mutex);
2659 	list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2660 			    head) {
2661 		if (i == unit)
2662 			break;
2663 
2664 		++i;
2665 	}
2666 
2667 	if (i != unit) {
2668 		DRM_ERROR("Could not find initial display unit.\n");
2669 		ret = -EINVAL;
2670 		goto out_unlock;
2671 	}
2672 
2673 	if (list_empty(&con->modes))
2674 		(void) vmw_du_connector_fill_modes(con, max_width, max_height);
2675 
2676 	if (list_empty(&con->modes)) {
2677 		DRM_ERROR("Could not find initial display mode.\n");
2678 		ret = -EINVAL;
2679 		goto out_unlock;
2680 	}
2681 
2682 	du = vmw_connector_to_du(con);
2683 	*p_con = con;
2684 	*p_crtc = &du->crtc;
2685 
2686 	list_for_each_entry(mode, &con->modes, head) {
2687 		if (mode->type & DRM_MODE_TYPE_PREFERRED)
2688 			break;
2689 	}
2690 
2691 	if (mode->type & DRM_MODE_TYPE_PREFERRED)
2692 		*p_mode = mode;
2693 	else {
2694 		WARN_ONCE(true, "Could not find initial preferred mode.\n");
2695 		*p_mode = list_first_entry(&con->modes,
2696 					   struct drm_display_mode,
2697 					   head);
2698 	}
2699 
2700  out_unlock:
2701 	mutex_unlock(&dev_priv->dev->mode_config.mutex);
2702 
2703 	return ret;
2704 }
2705 
2706 /**
2707  * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2708  * property.
2709  *
2710  * @dev_priv: Pointer to a device private struct.
2711  *
2712  * Sets up the implicit placement property unless it's already set up.
2713  */
2714 void
2715 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv)
2716 {
2717 	if (dev_priv->implicit_placement_property)
2718 		return;
2719 
2720 	dev_priv->implicit_placement_property =
2721 		drm_property_create_range(dev_priv->dev,
2722 					  DRM_MODE_PROP_IMMUTABLE,
2723 					  "implicit_placement", 0, 1);
2724 }
2725 
2726 /**
2727  * vmw_kms_suspend - Save modesetting state and turn modesetting off.
2728  *
2729  * @dev: Pointer to the drm device
2730  * Return: 0 on success. Negative error code on failure.
2731  */
2732 int vmw_kms_suspend(struct drm_device *dev)
2733 {
2734 	struct vmw_private *dev_priv = vmw_priv(dev);
2735 
2736 	dev_priv->suspend_state = drm_atomic_helper_suspend(dev);
2737 	if (IS_ERR(dev_priv->suspend_state)) {
2738 		int ret = PTR_ERR(dev_priv->suspend_state);
2739 
2740 		DRM_ERROR("Failed kms suspend: %d\n", ret);
2741 		dev_priv->suspend_state = NULL;
2742 
2743 		return ret;
2744 	}
2745 
2746 	return 0;
2747 }
2748 
2749 
2750 /**
2751  * vmw_kms_resume - Re-enable modesetting and restore state
2752  *
2753  * @dev: Pointer to the drm device
2754  * Return: 0 on success. Negative error code on failure.
2755  *
2756  * State is resumed from a previous vmw_kms_suspend(). It's illegal
2757  * to call this function without a previous vmw_kms_suspend().
2758  */
2759 int vmw_kms_resume(struct drm_device *dev)
2760 {
2761 	struct vmw_private *dev_priv = vmw_priv(dev);
2762 	int ret;
2763 
2764 	if (WARN_ON(!dev_priv->suspend_state))
2765 		return 0;
2766 
2767 	ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state);
2768 	dev_priv->suspend_state = NULL;
2769 
2770 	return ret;
2771 }
2772 
2773 /**
2774  * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost
2775  *
2776  * @dev: Pointer to the drm device
2777  */
2778 void vmw_kms_lost_device(struct drm_device *dev)
2779 {
2780 	drm_atomic_helper_shutdown(dev);
2781 }
2782 
2783 /**
2784  * vmw_du_helper_plane_update - Helper to do plane update on a display unit.
2785  * @update: The closure structure.
2786  *
2787  * Call this helper after setting callbacks in &vmw_du_update_plane to do plane
2788  * update on display unit.
2789  *
2790  * Return: 0 on success or a negative error code on failure.
2791  */
2792 int vmw_du_helper_plane_update(struct vmw_du_update_plane *update)
2793 {
2794 	struct drm_plane_state *state = update->plane->state;
2795 	struct drm_plane_state *old_state = update->old_state;
2796 	struct drm_atomic_helper_damage_iter iter;
2797 	struct drm_rect clip;
2798 	struct drm_rect bb;
2799 	DECLARE_VAL_CONTEXT(val_ctx, NULL, 0);
2800 	uint32_t reserved_size = 0;
2801 	uint32_t submit_size = 0;
2802 	uint32_t curr_size = 0;
2803 	uint32_t num_hits = 0;
2804 	void *cmd_start;
2805 	char *cmd_next;
2806 	int ret;
2807 
2808 	/*
2809 	 * Iterate in advance to check if really need plane update and find the
2810 	 * number of clips that actually are in plane src for fifo allocation.
2811 	 */
2812 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
2813 	drm_atomic_for_each_plane_damage(&iter, &clip)
2814 		num_hits++;
2815 
2816 	if (num_hits == 0)
2817 		return 0;
2818 
2819 	if (update->vfb->bo) {
2820 		struct vmw_framebuffer_bo *vfbbo =
2821 			container_of(update->vfb, typeof(*vfbbo), base);
2822 
2823 		ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer, false,
2824 					    update->cpu_blit);
2825 	} else {
2826 		struct vmw_framebuffer_surface *vfbs =
2827 			container_of(update->vfb, typeof(*vfbs), base);
2828 
2829 		ret = vmw_validation_add_resource(&val_ctx, &vfbs->surface->res,
2830 						  0, NULL, NULL);
2831 	}
2832 
2833 	if (ret)
2834 		return ret;
2835 
2836 	ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr);
2837 	if (ret)
2838 		goto out_unref;
2839 
2840 	reserved_size = update->calc_fifo_size(update, num_hits);
2841 	cmd_start = vmw_fifo_reserve(update->dev_priv, reserved_size);
2842 	if (!cmd_start) {
2843 		ret = -ENOMEM;
2844 		goto out_revert;
2845 	}
2846 
2847 	cmd_next = cmd_start;
2848 
2849 	if (update->post_prepare) {
2850 		curr_size = update->post_prepare(update, cmd_next);
2851 		cmd_next += curr_size;
2852 		submit_size += curr_size;
2853 	}
2854 
2855 	if (update->pre_clip) {
2856 		curr_size = update->pre_clip(update, cmd_next, num_hits);
2857 		cmd_next += curr_size;
2858 		submit_size += curr_size;
2859 	}
2860 
2861 	bb.x1 = INT_MAX;
2862 	bb.y1 = INT_MAX;
2863 	bb.x2 = INT_MIN;
2864 	bb.y2 = INT_MIN;
2865 
2866 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
2867 	drm_atomic_for_each_plane_damage(&iter, &clip) {
2868 		uint32_t fb_x = clip.x1;
2869 		uint32_t fb_y = clip.y1;
2870 
2871 		vmw_du_translate_to_crtc(state, &clip);
2872 		if (update->clip) {
2873 			curr_size = update->clip(update, cmd_next, &clip, fb_x,
2874 						 fb_y);
2875 			cmd_next += curr_size;
2876 			submit_size += curr_size;
2877 		}
2878 		bb.x1 = min_t(int, bb.x1, clip.x1);
2879 		bb.y1 = min_t(int, bb.y1, clip.y1);
2880 		bb.x2 = max_t(int, bb.x2, clip.x2);
2881 		bb.y2 = max_t(int, bb.y2, clip.y2);
2882 	}
2883 
2884 	curr_size = update->post_clip(update, cmd_next, &bb);
2885 	submit_size += curr_size;
2886 
2887 	if (reserved_size < submit_size)
2888 		submit_size = 0;
2889 
2890 	vmw_fifo_commit(update->dev_priv, submit_size);
2891 
2892 	vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx,
2893 					 update->out_fence, NULL);
2894 	return ret;
2895 
2896 out_revert:
2897 	vmw_validation_revert(&val_ctx);
2898 
2899 out_unref:
2900 	vmw_validation_unref_lists(&val_ctx);
2901 	return ret;
2902 }
2903