xref: /openbmc/linux/drivers/gpu/drm/vmwgfx/vmwgfx_kms.c (revision a01822e94ee53e8ebc9632fe2764048b81921254)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include <drm/drm_atomic.h>
29 #include <drm/drm_atomic_helper.h>
30 #include <drm/drm_damage_helper.h>
31 #include <drm/drm_fourcc.h>
32 #include <drm/drm_plane_helper.h>
33 #include <drm/drm_rect.h>
34 #include <drm/drm_sysfs.h>
35 #include <drm/drm_vblank.h>
36 
37 #include "vmwgfx_kms.h"
38 
39 /* Might need a hrtimer here? */
40 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
41 
42 void vmw_du_cleanup(struct vmw_display_unit *du)
43 {
44 	drm_plane_cleanup(&du->primary);
45 	drm_plane_cleanup(&du->cursor);
46 
47 	drm_connector_unregister(&du->connector);
48 	drm_crtc_cleanup(&du->crtc);
49 	drm_encoder_cleanup(&du->encoder);
50 	drm_connector_cleanup(&du->connector);
51 }
52 
53 /*
54  * Display Unit Cursor functions
55  */
56 
57 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
58 				   u32 *image, u32 width, u32 height,
59 				   u32 hotspotX, u32 hotspotY)
60 {
61 	struct {
62 		u32 cmd;
63 		SVGAFifoCmdDefineAlphaCursor cursor;
64 	} *cmd;
65 	u32 image_size = width * height * 4;
66 	u32 cmd_size = sizeof(*cmd) + image_size;
67 
68 	if (!image)
69 		return -EINVAL;
70 
71 	cmd = VMW_FIFO_RESERVE(dev_priv, cmd_size);
72 	if (unlikely(cmd == NULL))
73 		return -ENOMEM;
74 
75 	memset(cmd, 0, sizeof(*cmd));
76 
77 	memcpy(&cmd[1], image, image_size);
78 
79 	cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
80 	cmd->cursor.id = 0;
81 	cmd->cursor.width = width;
82 	cmd->cursor.height = height;
83 	cmd->cursor.hotspotX = hotspotX;
84 	cmd->cursor.hotspotY = hotspotY;
85 
86 	vmw_fifo_commit_flush(dev_priv, cmd_size);
87 
88 	return 0;
89 }
90 
91 static int vmw_cursor_update_bo(struct vmw_private *dev_priv,
92 				struct vmw_buffer_object *bo,
93 				u32 width, u32 height,
94 				u32 hotspotX, u32 hotspotY)
95 {
96 	struct ttm_bo_kmap_obj map;
97 	unsigned long kmap_offset;
98 	unsigned long kmap_num;
99 	void *virtual;
100 	bool dummy;
101 	int ret;
102 
103 	kmap_offset = 0;
104 	kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
105 
106 	ret = ttm_bo_reserve(&bo->base, true, false, NULL);
107 	if (unlikely(ret != 0)) {
108 		DRM_ERROR("reserve failed\n");
109 		return -EINVAL;
110 	}
111 
112 	ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map);
113 	if (unlikely(ret != 0))
114 		goto err_unreserve;
115 
116 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
117 	ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
118 				      hotspotX, hotspotY);
119 
120 	ttm_bo_kunmap(&map);
121 err_unreserve:
122 	ttm_bo_unreserve(&bo->base);
123 
124 	return ret;
125 }
126 
127 
128 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
129 				       bool show, int x, int y)
130 {
131 	u32 *fifo_mem = dev_priv->mmio_virt;
132 	uint32_t count;
133 
134 	spin_lock(&dev_priv->cursor_lock);
135 	vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
136 	vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
137 	vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
138 	count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
139 	vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
140 	spin_unlock(&dev_priv->cursor_lock);
141 }
142 
143 
144 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
145 			  struct ttm_object_file *tfile,
146 			  struct ttm_buffer_object *bo,
147 			  SVGA3dCmdHeader *header)
148 {
149 	struct ttm_bo_kmap_obj map;
150 	unsigned long kmap_offset;
151 	unsigned long kmap_num;
152 	SVGA3dCopyBox *box;
153 	unsigned box_count;
154 	void *virtual;
155 	bool dummy;
156 	struct vmw_dma_cmd {
157 		SVGA3dCmdHeader header;
158 		SVGA3dCmdSurfaceDMA dma;
159 	} *cmd;
160 	int i, ret;
161 
162 	cmd = container_of(header, struct vmw_dma_cmd, header);
163 
164 	/* No snooper installed */
165 	if (!srf->snooper.image)
166 		return;
167 
168 	if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
169 		DRM_ERROR("face and mipmap for cursors should never != 0\n");
170 		return;
171 	}
172 
173 	if (cmd->header.size < 64) {
174 		DRM_ERROR("at least one full copy box must be given\n");
175 		return;
176 	}
177 
178 	box = (SVGA3dCopyBox *)&cmd[1];
179 	box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
180 			sizeof(SVGA3dCopyBox);
181 
182 	if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
183 	    box->x != 0    || box->y != 0    || box->z != 0    ||
184 	    box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
185 	    box->d != 1    || box_count != 1) {
186 		/* TODO handle none page aligned offsets */
187 		/* TODO handle more dst & src != 0 */
188 		/* TODO handle more then one copy */
189 		DRM_ERROR("Cant snoop dma request for cursor!\n");
190 		DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
191 			  box->srcx, box->srcy, box->srcz,
192 			  box->x, box->y, box->z,
193 			  box->w, box->h, box->d, box_count,
194 			  cmd->dma.guest.ptr.offset);
195 		return;
196 	}
197 
198 	kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
199 	kmap_num = (64*64*4) >> PAGE_SHIFT;
200 
201 	ret = ttm_bo_reserve(bo, true, false, NULL);
202 	if (unlikely(ret != 0)) {
203 		DRM_ERROR("reserve failed\n");
204 		return;
205 	}
206 
207 	ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
208 	if (unlikely(ret != 0))
209 		goto err_unreserve;
210 
211 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
212 
213 	if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
214 		memcpy(srf->snooper.image, virtual, 64*64*4);
215 	} else {
216 		/* Image is unsigned pointer. */
217 		for (i = 0; i < box->h; i++)
218 			memcpy(srf->snooper.image + i * 64,
219 			       virtual + i * cmd->dma.guest.pitch,
220 			       box->w * 4);
221 	}
222 
223 	srf->snooper.age++;
224 
225 	ttm_bo_kunmap(&map);
226 err_unreserve:
227 	ttm_bo_unreserve(bo);
228 }
229 
230 /**
231  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
232  *
233  * @dev_priv: Pointer to the device private struct.
234  *
235  * Clears all legacy hotspots.
236  */
237 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
238 {
239 	struct drm_device *dev = dev_priv->dev;
240 	struct vmw_display_unit *du;
241 	struct drm_crtc *crtc;
242 
243 	drm_modeset_lock_all(dev);
244 	drm_for_each_crtc(crtc, dev) {
245 		du = vmw_crtc_to_du(crtc);
246 
247 		du->hotspot_x = 0;
248 		du->hotspot_y = 0;
249 	}
250 	drm_modeset_unlock_all(dev);
251 }
252 
253 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
254 {
255 	struct drm_device *dev = dev_priv->dev;
256 	struct vmw_display_unit *du;
257 	struct drm_crtc *crtc;
258 
259 	mutex_lock(&dev->mode_config.mutex);
260 
261 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
262 		du = vmw_crtc_to_du(crtc);
263 		if (!du->cursor_surface ||
264 		    du->cursor_age == du->cursor_surface->snooper.age)
265 			continue;
266 
267 		du->cursor_age = du->cursor_surface->snooper.age;
268 		vmw_cursor_update_image(dev_priv,
269 					du->cursor_surface->snooper.image,
270 					64, 64,
271 					du->hotspot_x + du->core_hotspot_x,
272 					du->hotspot_y + du->core_hotspot_y);
273 	}
274 
275 	mutex_unlock(&dev->mode_config.mutex);
276 }
277 
278 
279 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
280 {
281 	vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
282 
283 	drm_plane_cleanup(plane);
284 }
285 
286 
287 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
288 {
289 	drm_plane_cleanup(plane);
290 
291 	/* Planes are static in our case so we don't free it */
292 }
293 
294 
295 /**
296  * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
297  *
298  * @vps: plane state associated with the display surface
299  * @unreference: true if we also want to unreference the display.
300  */
301 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
302 			     bool unreference)
303 {
304 	if (vps->surf) {
305 		if (vps->pinned) {
306 			vmw_resource_unpin(&vps->surf->res);
307 			vps->pinned--;
308 		}
309 
310 		if (unreference) {
311 			if (vps->pinned)
312 				DRM_ERROR("Surface still pinned\n");
313 			vmw_surface_unreference(&vps->surf);
314 		}
315 	}
316 }
317 
318 
319 /**
320  * vmw_du_plane_cleanup_fb - Unpins the cursor
321  *
322  * @plane:  display plane
323  * @old_state: Contains the FB to clean up
324  *
325  * Unpins the framebuffer surface
326  *
327  * Returns 0 on success
328  */
329 void
330 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
331 			struct drm_plane_state *old_state)
332 {
333 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
334 
335 	vmw_du_plane_unpin_surf(vps, false);
336 }
337 
338 
339 /**
340  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
341  *
342  * @plane:  display plane
343  * @new_state: info on the new plane state, including the FB
344  *
345  * Returns 0 on success
346  */
347 int
348 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
349 			       struct drm_plane_state *new_state)
350 {
351 	struct drm_framebuffer *fb = new_state->fb;
352 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
353 
354 
355 	if (vps->surf)
356 		vmw_surface_unreference(&vps->surf);
357 
358 	if (vps->bo)
359 		vmw_bo_unreference(&vps->bo);
360 
361 	if (fb) {
362 		if (vmw_framebuffer_to_vfb(fb)->bo) {
363 			vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer;
364 			vmw_bo_reference(vps->bo);
365 		} else {
366 			vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
367 			vmw_surface_reference(vps->surf);
368 		}
369 	}
370 
371 	return 0;
372 }
373 
374 
375 void
376 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
377 				  struct drm_plane_state *old_state)
378 {
379 	struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
380 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
381 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
382 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
383 	s32 hotspot_x, hotspot_y;
384 	int ret = 0;
385 
386 
387 	hotspot_x = du->hotspot_x;
388 	hotspot_y = du->hotspot_y;
389 
390 	if (plane->state->fb) {
391 		hotspot_x += plane->state->fb->hot_x;
392 		hotspot_y += plane->state->fb->hot_y;
393 	}
394 
395 	du->cursor_surface = vps->surf;
396 	du->cursor_bo = vps->bo;
397 
398 	if (vps->surf) {
399 		du->cursor_age = du->cursor_surface->snooper.age;
400 
401 		ret = vmw_cursor_update_image(dev_priv,
402 					      vps->surf->snooper.image,
403 					      64, 64, hotspot_x,
404 					      hotspot_y);
405 	} else if (vps->bo) {
406 		ret = vmw_cursor_update_bo(dev_priv, vps->bo,
407 					   plane->state->crtc_w,
408 					   plane->state->crtc_h,
409 					   hotspot_x, hotspot_y);
410 	} else {
411 		vmw_cursor_update_position(dev_priv, false, 0, 0);
412 		return;
413 	}
414 
415 	if (!ret) {
416 		du->cursor_x = plane->state->crtc_x + du->set_gui_x;
417 		du->cursor_y = plane->state->crtc_y + du->set_gui_y;
418 
419 		vmw_cursor_update_position(dev_priv, true,
420 					   du->cursor_x + hotspot_x,
421 					   du->cursor_y + hotspot_y);
422 
423 		du->core_hotspot_x = hotspot_x - du->hotspot_x;
424 		du->core_hotspot_y = hotspot_y - du->hotspot_y;
425 	} else {
426 		DRM_ERROR("Failed to update cursor image\n");
427 	}
428 }
429 
430 
431 /**
432  * vmw_du_primary_plane_atomic_check - check if the new state is okay
433  *
434  * @plane: display plane
435  * @state: info on the new plane state, including the FB
436  *
437  * Check if the new state is settable given the current state.  Other
438  * than what the atomic helper checks, we care about crtc fitting
439  * the FB and maintaining one active framebuffer.
440  *
441  * Returns 0 on success
442  */
443 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
444 				      struct drm_plane_state *state)
445 {
446 	struct drm_crtc_state *crtc_state = NULL;
447 	struct drm_framebuffer *new_fb = state->fb;
448 	int ret;
449 
450 	if (state->crtc)
451 		crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc);
452 
453 	ret = drm_atomic_helper_check_plane_state(state, crtc_state,
454 						  DRM_PLANE_HELPER_NO_SCALING,
455 						  DRM_PLANE_HELPER_NO_SCALING,
456 						  false, true);
457 
458 	if (!ret && new_fb) {
459 		struct drm_crtc *crtc = state->crtc;
460 		struct vmw_connector_state *vcs;
461 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
462 
463 		vcs = vmw_connector_state_to_vcs(du->connector.state);
464 	}
465 
466 
467 	return ret;
468 }
469 
470 
471 /**
472  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
473  *
474  * @plane: cursor plane
475  * @state: info on the new plane state
476  *
477  * This is a chance to fail if the new cursor state does not fit
478  * our requirements.
479  *
480  * Returns 0 on success
481  */
482 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
483 				     struct drm_plane_state *new_state)
484 {
485 	int ret = 0;
486 	struct drm_crtc_state *crtc_state = NULL;
487 	struct vmw_surface *surface = NULL;
488 	struct drm_framebuffer *fb = new_state->fb;
489 
490 	if (new_state->crtc)
491 		crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
492 							   new_state->crtc);
493 
494 	ret = drm_atomic_helper_check_plane_state(new_state, crtc_state,
495 						  DRM_PLANE_HELPER_NO_SCALING,
496 						  DRM_PLANE_HELPER_NO_SCALING,
497 						  true, true);
498 	if (ret)
499 		return ret;
500 
501 	/* Turning off */
502 	if (!fb)
503 		return 0;
504 
505 	/* A lot of the code assumes this */
506 	if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
507 		DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
508 			  new_state->crtc_w, new_state->crtc_h);
509 		ret = -EINVAL;
510 	}
511 
512 	if (!vmw_framebuffer_to_vfb(fb)->bo)
513 		surface = vmw_framebuffer_to_vfbs(fb)->surface;
514 
515 	if (surface && !surface->snooper.image) {
516 		DRM_ERROR("surface not suitable for cursor\n");
517 		ret = -EINVAL;
518 	}
519 
520 	return ret;
521 }
522 
523 
524 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
525 			     struct drm_crtc_state *new_state)
526 {
527 	struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
528 	int connector_mask = drm_connector_mask(&du->connector);
529 	bool has_primary = new_state->plane_mask &
530 			   drm_plane_mask(crtc->primary);
531 
532 	/* We always want to have an active plane with an active CRTC */
533 	if (has_primary != new_state->enable)
534 		return -EINVAL;
535 
536 
537 	if (new_state->connector_mask != connector_mask &&
538 	    new_state->connector_mask != 0) {
539 		DRM_ERROR("Invalid connectors configuration\n");
540 		return -EINVAL;
541 	}
542 
543 	/*
544 	 * Our virtual device does not have a dot clock, so use the logical
545 	 * clock value as the dot clock.
546 	 */
547 	if (new_state->mode.crtc_clock == 0)
548 		new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
549 
550 	return 0;
551 }
552 
553 
554 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
555 			      struct drm_crtc_state *old_crtc_state)
556 {
557 }
558 
559 
560 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
561 			      struct drm_crtc_state *old_crtc_state)
562 {
563 	struct drm_pending_vblank_event *event = crtc->state->event;
564 
565 	if (event) {
566 		crtc->state->event = NULL;
567 
568 		spin_lock_irq(&crtc->dev->event_lock);
569 		drm_crtc_send_vblank_event(crtc, event);
570 		spin_unlock_irq(&crtc->dev->event_lock);
571 	}
572 }
573 
574 
575 /**
576  * vmw_du_crtc_duplicate_state - duplicate crtc state
577  * @crtc: DRM crtc
578  *
579  * Allocates and returns a copy of the crtc state (both common and
580  * vmw-specific) for the specified crtc.
581  *
582  * Returns: The newly allocated crtc state, or NULL on failure.
583  */
584 struct drm_crtc_state *
585 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
586 {
587 	struct drm_crtc_state *state;
588 	struct vmw_crtc_state *vcs;
589 
590 	if (WARN_ON(!crtc->state))
591 		return NULL;
592 
593 	vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
594 
595 	if (!vcs)
596 		return NULL;
597 
598 	state = &vcs->base;
599 
600 	__drm_atomic_helper_crtc_duplicate_state(crtc, state);
601 
602 	return state;
603 }
604 
605 
606 /**
607  * vmw_du_crtc_reset - creates a blank vmw crtc state
608  * @crtc: DRM crtc
609  *
610  * Resets the atomic state for @crtc by freeing the state pointer (which
611  * might be NULL, e.g. at driver load time) and allocating a new empty state
612  * object.
613  */
614 void vmw_du_crtc_reset(struct drm_crtc *crtc)
615 {
616 	struct vmw_crtc_state *vcs;
617 
618 
619 	if (crtc->state) {
620 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
621 
622 		kfree(vmw_crtc_state_to_vcs(crtc->state));
623 	}
624 
625 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
626 
627 	if (!vcs) {
628 		DRM_ERROR("Cannot allocate vmw_crtc_state\n");
629 		return;
630 	}
631 
632 	crtc->state = &vcs->base;
633 	crtc->state->crtc = crtc;
634 }
635 
636 
637 /**
638  * vmw_du_crtc_destroy_state - destroy crtc state
639  * @crtc: DRM crtc
640  * @state: state object to destroy
641  *
642  * Destroys the crtc state (both common and vmw-specific) for the
643  * specified plane.
644  */
645 void
646 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
647 			  struct drm_crtc_state *state)
648 {
649 	drm_atomic_helper_crtc_destroy_state(crtc, state);
650 }
651 
652 
653 /**
654  * vmw_du_plane_duplicate_state - duplicate plane state
655  * @plane: drm plane
656  *
657  * Allocates and returns a copy of the plane state (both common and
658  * vmw-specific) for the specified plane.
659  *
660  * Returns: The newly allocated plane state, or NULL on failure.
661  */
662 struct drm_plane_state *
663 vmw_du_plane_duplicate_state(struct drm_plane *plane)
664 {
665 	struct drm_plane_state *state;
666 	struct vmw_plane_state *vps;
667 
668 	vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
669 
670 	if (!vps)
671 		return NULL;
672 
673 	vps->pinned = 0;
674 	vps->cpp = 0;
675 
676 	/* Each ref counted resource needs to be acquired again */
677 	if (vps->surf)
678 		(void) vmw_surface_reference(vps->surf);
679 
680 	if (vps->bo)
681 		(void) vmw_bo_reference(vps->bo);
682 
683 	state = &vps->base;
684 
685 	__drm_atomic_helper_plane_duplicate_state(plane, state);
686 
687 	return state;
688 }
689 
690 
691 /**
692  * vmw_du_plane_reset - creates a blank vmw plane state
693  * @plane: drm plane
694  *
695  * Resets the atomic state for @plane by freeing the state pointer (which might
696  * be NULL, e.g. at driver load time) and allocating a new empty state object.
697  */
698 void vmw_du_plane_reset(struct drm_plane *plane)
699 {
700 	struct vmw_plane_state *vps;
701 
702 
703 	if (plane->state)
704 		vmw_du_plane_destroy_state(plane, plane->state);
705 
706 	vps = kzalloc(sizeof(*vps), GFP_KERNEL);
707 
708 	if (!vps) {
709 		DRM_ERROR("Cannot allocate vmw_plane_state\n");
710 		return;
711 	}
712 
713 	__drm_atomic_helper_plane_reset(plane, &vps->base);
714 }
715 
716 
717 /**
718  * vmw_du_plane_destroy_state - destroy plane state
719  * @plane: DRM plane
720  * @state: state object to destroy
721  *
722  * Destroys the plane state (both common and vmw-specific) for the
723  * specified plane.
724  */
725 void
726 vmw_du_plane_destroy_state(struct drm_plane *plane,
727 			   struct drm_plane_state *state)
728 {
729 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
730 
731 
732 	/* Should have been freed by cleanup_fb */
733 	if (vps->surf)
734 		vmw_surface_unreference(&vps->surf);
735 
736 	if (vps->bo)
737 		vmw_bo_unreference(&vps->bo);
738 
739 	drm_atomic_helper_plane_destroy_state(plane, state);
740 }
741 
742 
743 /**
744  * vmw_du_connector_duplicate_state - duplicate connector state
745  * @connector: DRM connector
746  *
747  * Allocates and returns a copy of the connector state (both common and
748  * vmw-specific) for the specified connector.
749  *
750  * Returns: The newly allocated connector state, or NULL on failure.
751  */
752 struct drm_connector_state *
753 vmw_du_connector_duplicate_state(struct drm_connector *connector)
754 {
755 	struct drm_connector_state *state;
756 	struct vmw_connector_state *vcs;
757 
758 	if (WARN_ON(!connector->state))
759 		return NULL;
760 
761 	vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
762 
763 	if (!vcs)
764 		return NULL;
765 
766 	state = &vcs->base;
767 
768 	__drm_atomic_helper_connector_duplicate_state(connector, state);
769 
770 	return state;
771 }
772 
773 
774 /**
775  * vmw_du_connector_reset - creates a blank vmw connector state
776  * @connector: DRM connector
777  *
778  * Resets the atomic state for @connector by freeing the state pointer (which
779  * might be NULL, e.g. at driver load time) and allocating a new empty state
780  * object.
781  */
782 void vmw_du_connector_reset(struct drm_connector *connector)
783 {
784 	struct vmw_connector_state *vcs;
785 
786 
787 	if (connector->state) {
788 		__drm_atomic_helper_connector_destroy_state(connector->state);
789 
790 		kfree(vmw_connector_state_to_vcs(connector->state));
791 	}
792 
793 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
794 
795 	if (!vcs) {
796 		DRM_ERROR("Cannot allocate vmw_connector_state\n");
797 		return;
798 	}
799 
800 	__drm_atomic_helper_connector_reset(connector, &vcs->base);
801 }
802 
803 
804 /**
805  * vmw_du_connector_destroy_state - destroy connector state
806  * @connector: DRM connector
807  * @state: state object to destroy
808  *
809  * Destroys the connector state (both common and vmw-specific) for the
810  * specified plane.
811  */
812 void
813 vmw_du_connector_destroy_state(struct drm_connector *connector,
814 			  struct drm_connector_state *state)
815 {
816 	drm_atomic_helper_connector_destroy_state(connector, state);
817 }
818 /*
819  * Generic framebuffer code
820  */
821 
822 /*
823  * Surface framebuffer code
824  */
825 
826 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
827 {
828 	struct vmw_framebuffer_surface *vfbs =
829 		vmw_framebuffer_to_vfbs(framebuffer);
830 
831 	drm_framebuffer_cleanup(framebuffer);
832 	vmw_surface_unreference(&vfbs->surface);
833 	if (vfbs->base.user_obj)
834 		ttm_base_object_unref(&vfbs->base.user_obj);
835 
836 	kfree(vfbs);
837 }
838 
839 /**
840  * vmw_kms_readback - Perform a readback from the screen system to
841  * a buffer-object backed framebuffer.
842  *
843  * @dev_priv: Pointer to the device private structure.
844  * @file_priv: Pointer to a struct drm_file identifying the caller.
845  * Must be set to NULL if @user_fence_rep is NULL.
846  * @vfb: Pointer to the buffer-object backed framebuffer.
847  * @user_fence_rep: User-space provided structure for fence information.
848  * Must be set to non-NULL if @file_priv is non-NULL.
849  * @vclips: Array of clip rects.
850  * @num_clips: Number of clip rects in @vclips.
851  *
852  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
853  * interrupted.
854  */
855 int vmw_kms_readback(struct vmw_private *dev_priv,
856 		     struct drm_file *file_priv,
857 		     struct vmw_framebuffer *vfb,
858 		     struct drm_vmw_fence_rep __user *user_fence_rep,
859 		     struct drm_vmw_rect *vclips,
860 		     uint32_t num_clips)
861 {
862 	switch (dev_priv->active_display_unit) {
863 	case vmw_du_screen_object:
864 		return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
865 					    user_fence_rep, vclips, num_clips,
866 					    NULL);
867 	case vmw_du_screen_target:
868 		return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
869 					user_fence_rep, NULL, vclips, num_clips,
870 					1, false, true, NULL);
871 	default:
872 		WARN_ONCE(true,
873 			  "Readback called with invalid display system.\n");
874 }
875 
876 	return -ENOSYS;
877 }
878 
879 
880 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
881 	.destroy = vmw_framebuffer_surface_destroy,
882 	.dirty = drm_atomic_helper_dirtyfb,
883 };
884 
885 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
886 					   struct vmw_surface *surface,
887 					   struct vmw_framebuffer **out,
888 					   const struct drm_mode_fb_cmd2
889 					   *mode_cmd,
890 					   bool is_bo_proxy)
891 
892 {
893 	struct drm_device *dev = dev_priv->dev;
894 	struct vmw_framebuffer_surface *vfbs;
895 	enum SVGA3dSurfaceFormat format;
896 	int ret;
897 	struct drm_format_name_buf format_name;
898 
899 	/* 3D is only supported on HWv8 and newer hosts */
900 	if (dev_priv->active_display_unit == vmw_du_legacy)
901 		return -ENOSYS;
902 
903 	/*
904 	 * Sanity checks.
905 	 */
906 
907 	/* Surface must be marked as a scanout. */
908 	if (unlikely(!surface->metadata.scanout))
909 		return -EINVAL;
910 
911 	if (unlikely(surface->metadata.mip_levels[0] != 1 ||
912 		     surface->metadata.num_sizes != 1 ||
913 		     surface->metadata.base_size.width < mode_cmd->width ||
914 		     surface->metadata.base_size.height < mode_cmd->height ||
915 		     surface->metadata.base_size.depth != 1)) {
916 		DRM_ERROR("Incompatible surface dimensions "
917 			  "for requested mode.\n");
918 		return -EINVAL;
919 	}
920 
921 	switch (mode_cmd->pixel_format) {
922 	case DRM_FORMAT_ARGB8888:
923 		format = SVGA3D_A8R8G8B8;
924 		break;
925 	case DRM_FORMAT_XRGB8888:
926 		format = SVGA3D_X8R8G8B8;
927 		break;
928 	case DRM_FORMAT_RGB565:
929 		format = SVGA3D_R5G6B5;
930 		break;
931 	case DRM_FORMAT_XRGB1555:
932 		format = SVGA3D_A1R5G5B5;
933 		break;
934 	default:
935 		DRM_ERROR("Invalid pixel format: %s\n",
936 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
937 		return -EINVAL;
938 	}
939 
940 	/*
941 	 * For DX, surface format validation is done when surface->scanout
942 	 * is set.
943 	 */
944 	if (!has_sm4_context(dev_priv) && format != surface->metadata.format) {
945 		DRM_ERROR("Invalid surface format for requested mode.\n");
946 		return -EINVAL;
947 	}
948 
949 	vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
950 	if (!vfbs) {
951 		ret = -ENOMEM;
952 		goto out_err1;
953 	}
954 
955 	drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
956 	vfbs->surface = vmw_surface_reference(surface);
957 	vfbs->base.user_handle = mode_cmd->handles[0];
958 	vfbs->is_bo_proxy = is_bo_proxy;
959 
960 	*out = &vfbs->base;
961 
962 	ret = drm_framebuffer_init(dev, &vfbs->base.base,
963 				   &vmw_framebuffer_surface_funcs);
964 	if (ret)
965 		goto out_err2;
966 
967 	return 0;
968 
969 out_err2:
970 	vmw_surface_unreference(&surface);
971 	kfree(vfbs);
972 out_err1:
973 	return ret;
974 }
975 
976 /*
977  * Buffer-object framebuffer code
978  */
979 
980 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer)
981 {
982 	struct vmw_framebuffer_bo *vfbd =
983 		vmw_framebuffer_to_vfbd(framebuffer);
984 
985 	drm_framebuffer_cleanup(framebuffer);
986 	vmw_bo_unreference(&vfbd->buffer);
987 	if (vfbd->base.user_obj)
988 		ttm_base_object_unref(&vfbd->base.user_obj);
989 
990 	kfree(vfbd);
991 }
992 
993 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer,
994 				    struct drm_file *file_priv,
995 				    unsigned int flags, unsigned int color,
996 				    struct drm_clip_rect *clips,
997 				    unsigned int num_clips)
998 {
999 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1000 	struct vmw_framebuffer_bo *vfbd =
1001 		vmw_framebuffer_to_vfbd(framebuffer);
1002 	struct drm_clip_rect norect;
1003 	int ret, increment = 1;
1004 
1005 	drm_modeset_lock_all(dev_priv->dev);
1006 
1007 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1008 	if (unlikely(ret != 0)) {
1009 		drm_modeset_unlock_all(dev_priv->dev);
1010 		return ret;
1011 	}
1012 
1013 	if (!num_clips) {
1014 		num_clips = 1;
1015 		clips = &norect;
1016 		norect.x1 = norect.y1 = 0;
1017 		norect.x2 = framebuffer->width;
1018 		norect.y2 = framebuffer->height;
1019 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1020 		num_clips /= 2;
1021 		increment = 2;
1022 	}
1023 
1024 	switch (dev_priv->active_display_unit) {
1025 	case vmw_du_legacy:
1026 		ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0,
1027 					      clips, num_clips, increment);
1028 		break;
1029 	default:
1030 		ret = -EINVAL;
1031 		WARN_ONCE(true, "Dirty called with invalid display system.\n");
1032 		break;
1033 	}
1034 
1035 	vmw_fifo_flush(dev_priv, false);
1036 	ttm_read_unlock(&dev_priv->reservation_sem);
1037 
1038 	drm_modeset_unlock_all(dev_priv->dev);
1039 
1040 	return ret;
1041 }
1042 
1043 static int vmw_framebuffer_bo_dirty_ext(struct drm_framebuffer *framebuffer,
1044 					struct drm_file *file_priv,
1045 					unsigned int flags, unsigned int color,
1046 					struct drm_clip_rect *clips,
1047 					unsigned int num_clips)
1048 {
1049 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1050 
1051 	if (dev_priv->active_display_unit == vmw_du_legacy)
1052 		return vmw_framebuffer_bo_dirty(framebuffer, file_priv, flags,
1053 						color, clips, num_clips);
1054 
1055 	return drm_atomic_helper_dirtyfb(framebuffer, file_priv, flags, color,
1056 					 clips, num_clips);
1057 }
1058 
1059 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = {
1060 	.destroy = vmw_framebuffer_bo_destroy,
1061 	.dirty = vmw_framebuffer_bo_dirty_ext,
1062 };
1063 
1064 /**
1065  * Pin the bofer in a location suitable for access by the
1066  * display system.
1067  */
1068 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1069 {
1070 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1071 	struct vmw_buffer_object *buf;
1072 	struct ttm_placement *placement;
1073 	int ret;
1074 
1075 	buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1076 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1077 
1078 	if (!buf)
1079 		return 0;
1080 
1081 	switch (dev_priv->active_display_unit) {
1082 	case vmw_du_legacy:
1083 		vmw_overlay_pause_all(dev_priv);
1084 		ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false);
1085 		vmw_overlay_resume_all(dev_priv);
1086 		break;
1087 	case vmw_du_screen_object:
1088 	case vmw_du_screen_target:
1089 		if (vfb->bo) {
1090 			if (dev_priv->capabilities & SVGA_CAP_3D) {
1091 				/*
1092 				 * Use surface DMA to get content to
1093 				 * sreen target surface.
1094 				 */
1095 				placement = &vmw_vram_gmr_placement;
1096 			} else {
1097 				/* Use CPU blit. */
1098 				placement = &vmw_sys_placement;
1099 			}
1100 		} else {
1101 			/* Use surface / image update */
1102 			placement = &vmw_mob_placement;
1103 		}
1104 
1105 		return vmw_bo_pin_in_placement(dev_priv, buf, placement, false);
1106 	default:
1107 		return -EINVAL;
1108 	}
1109 
1110 	return ret;
1111 }
1112 
1113 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1114 {
1115 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1116 	struct vmw_buffer_object *buf;
1117 
1118 	buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1119 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1120 
1121 	if (WARN_ON(!buf))
1122 		return 0;
1123 
1124 	return vmw_bo_unpin(dev_priv, buf, false);
1125 }
1126 
1127 /**
1128  * vmw_create_bo_proxy - create a proxy surface for the buffer object
1129  *
1130  * @dev: DRM device
1131  * @mode_cmd: parameters for the new surface
1132  * @bo_mob: MOB backing the buffer object
1133  * @srf_out: newly created surface
1134  *
1135  * When the content FB is a buffer object, we create a surface as a proxy to the
1136  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1137  * This is a more efficient approach
1138  *
1139  * RETURNS:
1140  * 0 on success, error code otherwise
1141  */
1142 static int vmw_create_bo_proxy(struct drm_device *dev,
1143 			       const struct drm_mode_fb_cmd2 *mode_cmd,
1144 			       struct vmw_buffer_object *bo_mob,
1145 			       struct vmw_surface **srf_out)
1146 {
1147 	struct vmw_surface_metadata metadata = {0};
1148 	uint32_t format;
1149 	struct vmw_resource *res;
1150 	unsigned int bytes_pp;
1151 	struct drm_format_name_buf format_name;
1152 	int ret;
1153 
1154 	switch (mode_cmd->pixel_format) {
1155 	case DRM_FORMAT_ARGB8888:
1156 	case DRM_FORMAT_XRGB8888:
1157 		format = SVGA3D_X8R8G8B8;
1158 		bytes_pp = 4;
1159 		break;
1160 
1161 	case DRM_FORMAT_RGB565:
1162 	case DRM_FORMAT_XRGB1555:
1163 		format = SVGA3D_R5G6B5;
1164 		bytes_pp = 2;
1165 		break;
1166 
1167 	case 8:
1168 		format = SVGA3D_P8;
1169 		bytes_pp = 1;
1170 		break;
1171 
1172 	default:
1173 		DRM_ERROR("Invalid framebuffer format %s\n",
1174 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1175 		return -EINVAL;
1176 	}
1177 
1178 	metadata.format = format;
1179 	metadata.mip_levels[0] = 1;
1180 	metadata.num_sizes = 1;
1181 	metadata.base_size.width = mode_cmd->pitches[0] / bytes_pp;
1182 	metadata.base_size.height =  mode_cmd->height;
1183 	metadata.base_size.depth = 1;
1184 	metadata.scanout = true;
1185 
1186 	ret = vmw_gb_surface_define(vmw_priv(dev), 0, &metadata, srf_out);
1187 	if (ret) {
1188 		DRM_ERROR("Failed to allocate proxy content buffer\n");
1189 		return ret;
1190 	}
1191 
1192 	res = &(*srf_out)->res;
1193 
1194 	/* Reserve and switch the backing mob. */
1195 	mutex_lock(&res->dev_priv->cmdbuf_mutex);
1196 	(void) vmw_resource_reserve(res, false, true);
1197 	vmw_bo_unreference(&res->backup);
1198 	res->backup = vmw_bo_reference(bo_mob);
1199 	res->backup_offset = 0;
1200 	vmw_resource_unreserve(res, false, false, false, NULL, 0);
1201 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1202 
1203 	return 0;
1204 }
1205 
1206 
1207 
1208 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv,
1209 				      struct vmw_buffer_object *bo,
1210 				      struct vmw_framebuffer **out,
1211 				      const struct drm_mode_fb_cmd2
1212 				      *mode_cmd)
1213 
1214 {
1215 	struct drm_device *dev = dev_priv->dev;
1216 	struct vmw_framebuffer_bo *vfbd;
1217 	unsigned int requested_size;
1218 	struct drm_format_name_buf format_name;
1219 	int ret;
1220 
1221 	requested_size = mode_cmd->height * mode_cmd->pitches[0];
1222 	if (unlikely(requested_size > bo->base.num_pages * PAGE_SIZE)) {
1223 		DRM_ERROR("Screen buffer object size is too small "
1224 			  "for requested mode.\n");
1225 		return -EINVAL;
1226 	}
1227 
1228 	/* Limited framebuffer color depth support for screen objects */
1229 	if (dev_priv->active_display_unit == vmw_du_screen_object) {
1230 		switch (mode_cmd->pixel_format) {
1231 		case DRM_FORMAT_XRGB8888:
1232 		case DRM_FORMAT_ARGB8888:
1233 			break;
1234 		case DRM_FORMAT_XRGB1555:
1235 		case DRM_FORMAT_RGB565:
1236 			break;
1237 		default:
1238 			DRM_ERROR("Invalid pixel format: %s\n",
1239 				  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1240 			return -EINVAL;
1241 		}
1242 	}
1243 
1244 	vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1245 	if (!vfbd) {
1246 		ret = -ENOMEM;
1247 		goto out_err1;
1248 	}
1249 
1250 	drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1251 	vfbd->base.bo = true;
1252 	vfbd->buffer = vmw_bo_reference(bo);
1253 	vfbd->base.user_handle = mode_cmd->handles[0];
1254 	*out = &vfbd->base;
1255 
1256 	ret = drm_framebuffer_init(dev, &vfbd->base.base,
1257 				   &vmw_framebuffer_bo_funcs);
1258 	if (ret)
1259 		goto out_err2;
1260 
1261 	return 0;
1262 
1263 out_err2:
1264 	vmw_bo_unreference(&bo);
1265 	kfree(vfbd);
1266 out_err1:
1267 	return ret;
1268 }
1269 
1270 
1271 /**
1272  * vmw_kms_srf_ok - check if a surface can be created
1273  *
1274  * @width: requested width
1275  * @height: requested height
1276  *
1277  * Surfaces need to be less than texture size
1278  */
1279 static bool
1280 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1281 {
1282 	if (width  > dev_priv->texture_max_width ||
1283 	    height > dev_priv->texture_max_height)
1284 		return false;
1285 
1286 	return true;
1287 }
1288 
1289 /**
1290  * vmw_kms_new_framebuffer - Create a new framebuffer.
1291  *
1292  * @dev_priv: Pointer to device private struct.
1293  * @bo: Pointer to buffer object to wrap the kms framebuffer around.
1294  * Either @bo or @surface must be NULL.
1295  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1296  * Either @bo or @surface must be NULL.
1297  * @only_2d: No presents will occur to this buffer object based framebuffer.
1298  * This helps the code to do some important optimizations.
1299  * @mode_cmd: Frame-buffer metadata.
1300  */
1301 struct vmw_framebuffer *
1302 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1303 			struct vmw_buffer_object *bo,
1304 			struct vmw_surface *surface,
1305 			bool only_2d,
1306 			const struct drm_mode_fb_cmd2 *mode_cmd)
1307 {
1308 	struct vmw_framebuffer *vfb = NULL;
1309 	bool is_bo_proxy = false;
1310 	int ret;
1311 
1312 	/*
1313 	 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1314 	 * therefore, wrap the buffer object in a surface so we can use the
1315 	 * SurfaceCopy command.
1316 	 */
1317 	if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1318 	    bo && only_2d &&
1319 	    mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1320 	    dev_priv->active_display_unit == vmw_du_screen_target) {
1321 		ret = vmw_create_bo_proxy(dev_priv->dev, mode_cmd,
1322 					  bo, &surface);
1323 		if (ret)
1324 			return ERR_PTR(ret);
1325 
1326 		is_bo_proxy = true;
1327 	}
1328 
1329 	/* Create the new framebuffer depending one what we have */
1330 	if (surface) {
1331 		ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1332 						      mode_cmd,
1333 						      is_bo_proxy);
1334 
1335 		/*
1336 		 * vmw_create_bo_proxy() adds a reference that is no longer
1337 		 * needed
1338 		 */
1339 		if (is_bo_proxy)
1340 			vmw_surface_unreference(&surface);
1341 	} else if (bo) {
1342 		ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb,
1343 						 mode_cmd);
1344 	} else {
1345 		BUG();
1346 	}
1347 
1348 	if (ret)
1349 		return ERR_PTR(ret);
1350 
1351 	vfb->pin = vmw_framebuffer_pin;
1352 	vfb->unpin = vmw_framebuffer_unpin;
1353 
1354 	return vfb;
1355 }
1356 
1357 /*
1358  * Generic Kernel modesetting functions
1359  */
1360 
1361 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1362 						 struct drm_file *file_priv,
1363 						 const struct drm_mode_fb_cmd2 *mode_cmd)
1364 {
1365 	struct vmw_private *dev_priv = vmw_priv(dev);
1366 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1367 	struct vmw_framebuffer *vfb = NULL;
1368 	struct vmw_surface *surface = NULL;
1369 	struct vmw_buffer_object *bo = NULL;
1370 	struct ttm_base_object *user_obj;
1371 	int ret;
1372 
1373 	/*
1374 	 * Take a reference on the user object of the resource
1375 	 * backing the kms fb. This ensures that user-space handle
1376 	 * lookups on that resource will always work as long as
1377 	 * it's registered with a kms framebuffer. This is important,
1378 	 * since vmw_execbuf_process identifies resources in the
1379 	 * command stream using user-space handles.
1380 	 */
1381 
1382 	user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1383 	if (unlikely(user_obj == NULL)) {
1384 		DRM_ERROR("Could not locate requested kms frame buffer.\n");
1385 		return ERR_PTR(-ENOENT);
1386 	}
1387 
1388 	/**
1389 	 * End conditioned code.
1390 	 */
1391 
1392 	/* returns either a bo or surface */
1393 	ret = vmw_user_lookup_handle(dev_priv, tfile,
1394 				     mode_cmd->handles[0],
1395 				     &surface, &bo);
1396 	if (ret)
1397 		goto err_out;
1398 
1399 
1400 	if (!bo &&
1401 	    !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1402 		DRM_ERROR("Surface size cannot exceed %dx%d",
1403 			dev_priv->texture_max_width,
1404 			dev_priv->texture_max_height);
1405 		goto err_out;
1406 	}
1407 
1408 
1409 	vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1410 				      !(dev_priv->capabilities & SVGA_CAP_3D),
1411 				      mode_cmd);
1412 	if (IS_ERR(vfb)) {
1413 		ret = PTR_ERR(vfb);
1414 		goto err_out;
1415  	}
1416 
1417 err_out:
1418 	/* vmw_user_lookup_handle takes one ref so does new_fb */
1419 	if (bo)
1420 		vmw_bo_unreference(&bo);
1421 	if (surface)
1422 		vmw_surface_unreference(&surface);
1423 
1424 	if (ret) {
1425 		DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1426 		ttm_base_object_unref(&user_obj);
1427 		return ERR_PTR(ret);
1428 	} else
1429 		vfb->user_obj = user_obj;
1430 
1431 	return &vfb->base;
1432 }
1433 
1434 /**
1435  * vmw_kms_check_display_memory - Validates display memory required for a
1436  * topology
1437  * @dev: DRM device
1438  * @num_rects: number of drm_rect in rects
1439  * @rects: array of drm_rect representing the topology to validate indexed by
1440  * crtc index.
1441  *
1442  * Returns:
1443  * 0 on success otherwise negative error code
1444  */
1445 static int vmw_kms_check_display_memory(struct drm_device *dev,
1446 					uint32_t num_rects,
1447 					struct drm_rect *rects)
1448 {
1449 	struct vmw_private *dev_priv = vmw_priv(dev);
1450 	struct drm_rect bounding_box = {0};
1451 	u64 total_pixels = 0, pixel_mem, bb_mem;
1452 	int i;
1453 
1454 	for (i = 0; i < num_rects; i++) {
1455 		/*
1456 		 * For STDU only individual screen (screen target) is limited by
1457 		 * SCREENTARGET_MAX_WIDTH/HEIGHT registers.
1458 		 */
1459 		if (dev_priv->active_display_unit == vmw_du_screen_target &&
1460 		    (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width ||
1461 		     drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) {
1462 			VMW_DEBUG_KMS("Screen size not supported.\n");
1463 			return -EINVAL;
1464 		}
1465 
1466 		/* Bounding box upper left is at (0,0). */
1467 		if (rects[i].x2 > bounding_box.x2)
1468 			bounding_box.x2 = rects[i].x2;
1469 
1470 		if (rects[i].y2 > bounding_box.y2)
1471 			bounding_box.y2 = rects[i].y2;
1472 
1473 		total_pixels += (u64) drm_rect_width(&rects[i]) *
1474 			(u64) drm_rect_height(&rects[i]);
1475 	}
1476 
1477 	/* Virtual svga device primary limits are always in 32-bpp. */
1478 	pixel_mem = total_pixels * 4;
1479 
1480 	/*
1481 	 * For HV10 and below prim_bb_mem is vram size. When
1482 	 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is
1483 	 * limit on primary bounding box
1484 	 */
1485 	if (pixel_mem > dev_priv->prim_bb_mem) {
1486 		VMW_DEBUG_KMS("Combined output size too large.\n");
1487 		return -EINVAL;
1488 	}
1489 
1490 	/* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */
1491 	if (dev_priv->active_display_unit != vmw_du_screen_target ||
1492 	    !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) {
1493 		bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4;
1494 
1495 		if (bb_mem > dev_priv->prim_bb_mem) {
1496 			VMW_DEBUG_KMS("Topology is beyond supported limits.\n");
1497 			return -EINVAL;
1498 		}
1499 	}
1500 
1501 	return 0;
1502 }
1503 
1504 /**
1505  * vmw_crtc_state_and_lock - Return new or current crtc state with locked
1506  * crtc mutex
1507  * @state: The atomic state pointer containing the new atomic state
1508  * @crtc: The crtc
1509  *
1510  * This function returns the new crtc state if it's part of the state update.
1511  * Otherwise returns the current crtc state. It also makes sure that the
1512  * crtc mutex is locked.
1513  *
1514  * Returns: A valid crtc state pointer or NULL. It may also return a
1515  * pointer error, in particular -EDEADLK if locking needs to be rerun.
1516  */
1517 static struct drm_crtc_state *
1518 vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc)
1519 {
1520 	struct drm_crtc_state *crtc_state;
1521 
1522 	crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
1523 	if (crtc_state) {
1524 		lockdep_assert_held(&crtc->mutex.mutex.base);
1525 	} else {
1526 		int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx);
1527 
1528 		if (ret != 0 && ret != -EALREADY)
1529 			return ERR_PTR(ret);
1530 
1531 		crtc_state = crtc->state;
1532 	}
1533 
1534 	return crtc_state;
1535 }
1536 
1537 /**
1538  * vmw_kms_check_implicit - Verify that all implicit display units scan out
1539  * from the same fb after the new state is committed.
1540  * @dev: The drm_device.
1541  * @state: The new state to be checked.
1542  *
1543  * Returns:
1544  *   Zero on success,
1545  *   -EINVAL on invalid state,
1546  *   -EDEADLK if modeset locking needs to be rerun.
1547  */
1548 static int vmw_kms_check_implicit(struct drm_device *dev,
1549 				  struct drm_atomic_state *state)
1550 {
1551 	struct drm_framebuffer *implicit_fb = NULL;
1552 	struct drm_crtc *crtc;
1553 	struct drm_crtc_state *crtc_state;
1554 	struct drm_plane_state *plane_state;
1555 
1556 	drm_for_each_crtc(crtc, dev) {
1557 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1558 
1559 		if (!du->is_implicit)
1560 			continue;
1561 
1562 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
1563 		if (IS_ERR(crtc_state))
1564 			return PTR_ERR(crtc_state);
1565 
1566 		if (!crtc_state || !crtc_state->enable)
1567 			continue;
1568 
1569 		/*
1570 		 * Can't move primary planes across crtcs, so this is OK.
1571 		 * It also means we don't need to take the plane mutex.
1572 		 */
1573 		plane_state = du->primary.state;
1574 		if (plane_state->crtc != crtc)
1575 			continue;
1576 
1577 		if (!implicit_fb)
1578 			implicit_fb = plane_state->fb;
1579 		else if (implicit_fb != plane_state->fb)
1580 			return -EINVAL;
1581 	}
1582 
1583 	return 0;
1584 }
1585 
1586 /**
1587  * vmw_kms_check_topology - Validates topology in drm_atomic_state
1588  * @dev: DRM device
1589  * @state: the driver state object
1590  *
1591  * Returns:
1592  * 0 on success otherwise negative error code
1593  */
1594 static int vmw_kms_check_topology(struct drm_device *dev,
1595 				  struct drm_atomic_state *state)
1596 {
1597 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
1598 	struct drm_rect *rects;
1599 	struct drm_crtc *crtc;
1600 	uint32_t i;
1601 	int ret = 0;
1602 
1603 	rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect),
1604 			GFP_KERNEL);
1605 	if (!rects)
1606 		return -ENOMEM;
1607 
1608 	drm_for_each_crtc(crtc, dev) {
1609 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1610 		struct drm_crtc_state *crtc_state;
1611 
1612 		i = drm_crtc_index(crtc);
1613 
1614 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
1615 		if (IS_ERR(crtc_state)) {
1616 			ret = PTR_ERR(crtc_state);
1617 			goto clean;
1618 		}
1619 
1620 		if (!crtc_state)
1621 			continue;
1622 
1623 		if (crtc_state->enable) {
1624 			rects[i].x1 = du->gui_x;
1625 			rects[i].y1 = du->gui_y;
1626 			rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay;
1627 			rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay;
1628 		} else {
1629 			rects[i].x1 = 0;
1630 			rects[i].y1 = 0;
1631 			rects[i].x2 = 0;
1632 			rects[i].y2 = 0;
1633 		}
1634 	}
1635 
1636 	/* Determine change to topology due to new atomic state */
1637 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
1638 				      new_crtc_state, i) {
1639 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1640 		struct drm_connector *connector;
1641 		struct drm_connector_state *conn_state;
1642 		struct vmw_connector_state *vmw_conn_state;
1643 
1644 		if (!du->pref_active && new_crtc_state->enable) {
1645 			VMW_DEBUG_KMS("Enabling a disabled display unit\n");
1646 			ret = -EINVAL;
1647 			goto clean;
1648 		}
1649 
1650 		/*
1651 		 * For vmwgfx each crtc has only one connector attached and it
1652 		 * is not changed so don't really need to check the
1653 		 * crtc->connector_mask and iterate over it.
1654 		 */
1655 		connector = &du->connector;
1656 		conn_state = drm_atomic_get_connector_state(state, connector);
1657 		if (IS_ERR(conn_state)) {
1658 			ret = PTR_ERR(conn_state);
1659 			goto clean;
1660 		}
1661 
1662 		vmw_conn_state = vmw_connector_state_to_vcs(conn_state);
1663 		vmw_conn_state->gui_x = du->gui_x;
1664 		vmw_conn_state->gui_y = du->gui_y;
1665 	}
1666 
1667 	ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc,
1668 					   rects);
1669 
1670 clean:
1671 	kfree(rects);
1672 	return ret;
1673 }
1674 
1675 /**
1676  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1677  *
1678  * @dev: DRM device
1679  * @state: the driver state object
1680  *
1681  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1682  * us to assign a value to mode->crtc_clock so that
1683  * drm_calc_timestamping_constants() won't throw an error message
1684  *
1685  * Returns:
1686  * Zero for success or -errno
1687  */
1688 static int
1689 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1690 			     struct drm_atomic_state *state)
1691 {
1692 	struct drm_crtc *crtc;
1693 	struct drm_crtc_state *crtc_state;
1694 	bool need_modeset = false;
1695 	int i, ret;
1696 
1697 	ret = drm_atomic_helper_check(dev, state);
1698 	if (ret)
1699 		return ret;
1700 
1701 	ret = vmw_kms_check_implicit(dev, state);
1702 	if (ret) {
1703 		VMW_DEBUG_KMS("Invalid implicit state\n");
1704 		return ret;
1705 	}
1706 
1707 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1708 		if (drm_atomic_crtc_needs_modeset(crtc_state))
1709 			need_modeset = true;
1710 	}
1711 
1712 	if (need_modeset)
1713 		return vmw_kms_check_topology(dev, state);
1714 
1715 	return ret;
1716 }
1717 
1718 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1719 	.fb_create = vmw_kms_fb_create,
1720 	.atomic_check = vmw_kms_atomic_check_modeset,
1721 	.atomic_commit = drm_atomic_helper_commit,
1722 };
1723 
1724 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1725 				   struct drm_file *file_priv,
1726 				   struct vmw_framebuffer *vfb,
1727 				   struct vmw_surface *surface,
1728 				   uint32_t sid,
1729 				   int32_t destX, int32_t destY,
1730 				   struct drm_vmw_rect *clips,
1731 				   uint32_t num_clips)
1732 {
1733 	return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1734 					    &surface->res, destX, destY,
1735 					    num_clips, 1, NULL, NULL);
1736 }
1737 
1738 
1739 int vmw_kms_present(struct vmw_private *dev_priv,
1740 		    struct drm_file *file_priv,
1741 		    struct vmw_framebuffer *vfb,
1742 		    struct vmw_surface *surface,
1743 		    uint32_t sid,
1744 		    int32_t destX, int32_t destY,
1745 		    struct drm_vmw_rect *clips,
1746 		    uint32_t num_clips)
1747 {
1748 	int ret;
1749 
1750 	switch (dev_priv->active_display_unit) {
1751 	case vmw_du_screen_target:
1752 		ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1753 						 &surface->res, destX, destY,
1754 						 num_clips, 1, NULL, NULL);
1755 		break;
1756 	case vmw_du_screen_object:
1757 		ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1758 					      sid, destX, destY, clips,
1759 					      num_clips);
1760 		break;
1761 	default:
1762 		WARN_ONCE(true,
1763 			  "Present called with invalid display system.\n");
1764 		ret = -ENOSYS;
1765 		break;
1766 	}
1767 	if (ret)
1768 		return ret;
1769 
1770 	vmw_fifo_flush(dev_priv, false);
1771 
1772 	return 0;
1773 }
1774 
1775 static void
1776 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1777 {
1778 	if (dev_priv->hotplug_mode_update_property)
1779 		return;
1780 
1781 	dev_priv->hotplug_mode_update_property =
1782 		drm_property_create_range(dev_priv->dev,
1783 					  DRM_MODE_PROP_IMMUTABLE,
1784 					  "hotplug_mode_update", 0, 1);
1785 
1786 	if (!dev_priv->hotplug_mode_update_property)
1787 		return;
1788 
1789 }
1790 
1791 int vmw_kms_init(struct vmw_private *dev_priv)
1792 {
1793 	struct drm_device *dev = dev_priv->dev;
1794 	int ret;
1795 
1796 	drm_mode_config_init(dev);
1797 	dev->mode_config.funcs = &vmw_kms_funcs;
1798 	dev->mode_config.min_width = 1;
1799 	dev->mode_config.min_height = 1;
1800 	dev->mode_config.max_width = dev_priv->texture_max_width;
1801 	dev->mode_config.max_height = dev_priv->texture_max_height;
1802 
1803 	drm_mode_create_suggested_offset_properties(dev);
1804 	vmw_kms_create_hotplug_mode_update_property(dev_priv);
1805 
1806 	ret = vmw_kms_stdu_init_display(dev_priv);
1807 	if (ret) {
1808 		ret = vmw_kms_sou_init_display(dev_priv);
1809 		if (ret) /* Fallback */
1810 			ret = vmw_kms_ldu_init_display(dev_priv);
1811 	}
1812 
1813 	return ret;
1814 }
1815 
1816 int vmw_kms_close(struct vmw_private *dev_priv)
1817 {
1818 	int ret = 0;
1819 
1820 	/*
1821 	 * Docs says we should take the lock before calling this function
1822 	 * but since it destroys encoders and our destructor calls
1823 	 * drm_encoder_cleanup which takes the lock we deadlock.
1824 	 */
1825 	drm_mode_config_cleanup(dev_priv->dev);
1826 	if (dev_priv->active_display_unit == vmw_du_legacy)
1827 		ret = vmw_kms_ldu_close_display(dev_priv);
1828 
1829 	return ret;
1830 }
1831 
1832 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1833 				struct drm_file *file_priv)
1834 {
1835 	struct drm_vmw_cursor_bypass_arg *arg = data;
1836 	struct vmw_display_unit *du;
1837 	struct drm_crtc *crtc;
1838 	int ret = 0;
1839 
1840 
1841 	mutex_lock(&dev->mode_config.mutex);
1842 	if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1843 
1844 		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1845 			du = vmw_crtc_to_du(crtc);
1846 			du->hotspot_x = arg->xhot;
1847 			du->hotspot_y = arg->yhot;
1848 		}
1849 
1850 		mutex_unlock(&dev->mode_config.mutex);
1851 		return 0;
1852 	}
1853 
1854 	crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
1855 	if (!crtc) {
1856 		ret = -ENOENT;
1857 		goto out;
1858 	}
1859 
1860 	du = vmw_crtc_to_du(crtc);
1861 
1862 	du->hotspot_x = arg->xhot;
1863 	du->hotspot_y = arg->yhot;
1864 
1865 out:
1866 	mutex_unlock(&dev->mode_config.mutex);
1867 
1868 	return ret;
1869 }
1870 
1871 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1872 			unsigned width, unsigned height, unsigned pitch,
1873 			unsigned bpp, unsigned depth)
1874 {
1875 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1876 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1877 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1878 		vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1879 			       SVGA_FIFO_PITCHLOCK);
1880 	vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1881 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1882 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1883 
1884 	if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1885 		DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1886 			  depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1887 		return -EINVAL;
1888 	}
1889 
1890 	return 0;
1891 }
1892 
1893 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1894 				uint32_t pitch,
1895 				uint32_t height)
1896 {
1897 	return ((u64) pitch * (u64) height) < (u64)
1898 		((dev_priv->active_display_unit == vmw_du_screen_target) ?
1899 		 dev_priv->prim_bb_mem : dev_priv->vram_size);
1900 }
1901 
1902 
1903 /**
1904  * Function called by DRM code called with vbl_lock held.
1905  */
1906 u32 vmw_get_vblank_counter(struct drm_crtc *crtc)
1907 {
1908 	return 0;
1909 }
1910 
1911 /**
1912  * Function called by DRM code called with vbl_lock held.
1913  */
1914 int vmw_enable_vblank(struct drm_crtc *crtc)
1915 {
1916 	return -EINVAL;
1917 }
1918 
1919 /**
1920  * Function called by DRM code called with vbl_lock held.
1921  */
1922 void vmw_disable_vblank(struct drm_crtc *crtc)
1923 {
1924 }
1925 
1926 /**
1927  * vmw_du_update_layout - Update the display unit with topology from resolution
1928  * plugin and generate DRM uevent
1929  * @dev_priv: device private
1930  * @num_rects: number of drm_rect in rects
1931  * @rects: toplogy to update
1932  */
1933 static int vmw_du_update_layout(struct vmw_private *dev_priv,
1934 				unsigned int num_rects, struct drm_rect *rects)
1935 {
1936 	struct drm_device *dev = dev_priv->dev;
1937 	struct vmw_display_unit *du;
1938 	struct drm_connector *con;
1939 	struct drm_connector_list_iter conn_iter;
1940 	struct drm_modeset_acquire_ctx ctx;
1941 	struct drm_crtc *crtc;
1942 	int ret;
1943 
1944 	/* Currently gui_x/y is protected with the crtc mutex */
1945 	mutex_lock(&dev->mode_config.mutex);
1946 	drm_modeset_acquire_init(&ctx, 0);
1947 retry:
1948 	drm_for_each_crtc(crtc, dev) {
1949 		ret = drm_modeset_lock(&crtc->mutex, &ctx);
1950 		if (ret < 0) {
1951 			if (ret == -EDEADLK) {
1952 				drm_modeset_backoff(&ctx);
1953 				goto retry;
1954       		}
1955 			goto out_fini;
1956 		}
1957 	}
1958 
1959 	drm_connector_list_iter_begin(dev, &conn_iter);
1960 	drm_for_each_connector_iter(con, &conn_iter) {
1961 		du = vmw_connector_to_du(con);
1962 		if (num_rects > du->unit) {
1963 			du->pref_width = drm_rect_width(&rects[du->unit]);
1964 			du->pref_height = drm_rect_height(&rects[du->unit]);
1965 			du->pref_active = true;
1966 			du->gui_x = rects[du->unit].x1;
1967 			du->gui_y = rects[du->unit].y1;
1968 		} else {
1969 			du->pref_width = 800;
1970 			du->pref_height = 600;
1971 			du->pref_active = false;
1972 			du->gui_x = 0;
1973 			du->gui_y = 0;
1974 		}
1975 	}
1976 	drm_connector_list_iter_end(&conn_iter);
1977 
1978 	list_for_each_entry(con, &dev->mode_config.connector_list, head) {
1979 		du = vmw_connector_to_du(con);
1980 		if (num_rects > du->unit) {
1981 			drm_object_property_set_value
1982 			  (&con->base, dev->mode_config.suggested_x_property,
1983 			   du->gui_x);
1984 			drm_object_property_set_value
1985 			  (&con->base, dev->mode_config.suggested_y_property,
1986 			   du->gui_y);
1987 		} else {
1988 			drm_object_property_set_value
1989 			  (&con->base, dev->mode_config.suggested_x_property,
1990 			   0);
1991 			drm_object_property_set_value
1992 			  (&con->base, dev->mode_config.suggested_y_property,
1993 			   0);
1994 		}
1995 		con->status = vmw_du_connector_detect(con, true);
1996 	}
1997 
1998 	drm_sysfs_hotplug_event(dev);
1999 out_fini:
2000 	drm_modeset_drop_locks(&ctx);
2001 	drm_modeset_acquire_fini(&ctx);
2002 	mutex_unlock(&dev->mode_config.mutex);
2003 
2004 	return 0;
2005 }
2006 
2007 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
2008 			  u16 *r, u16 *g, u16 *b,
2009 			  uint32_t size,
2010 			  struct drm_modeset_acquire_ctx *ctx)
2011 {
2012 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
2013 	int i;
2014 
2015 	for (i = 0; i < size; i++) {
2016 		DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
2017 			  r[i], g[i], b[i]);
2018 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
2019 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
2020 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
2021 	}
2022 
2023 	return 0;
2024 }
2025 
2026 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
2027 {
2028 	return 0;
2029 }
2030 
2031 enum drm_connector_status
2032 vmw_du_connector_detect(struct drm_connector *connector, bool force)
2033 {
2034 	uint32_t num_displays;
2035 	struct drm_device *dev = connector->dev;
2036 	struct vmw_private *dev_priv = vmw_priv(dev);
2037 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2038 
2039 	num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
2040 
2041 	return ((vmw_connector_to_du(connector)->unit < num_displays &&
2042 		 du->pref_active) ?
2043 		connector_status_connected : connector_status_disconnected);
2044 }
2045 
2046 static struct drm_display_mode vmw_kms_connector_builtin[] = {
2047 	/* 640x480@60Hz */
2048 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
2049 		   752, 800, 0, 480, 489, 492, 525, 0,
2050 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2051 	/* 800x600@60Hz */
2052 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
2053 		   968, 1056, 0, 600, 601, 605, 628, 0,
2054 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2055 	/* 1024x768@60Hz */
2056 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
2057 		   1184, 1344, 0, 768, 771, 777, 806, 0,
2058 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2059 	/* 1152x864@75Hz */
2060 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
2061 		   1344, 1600, 0, 864, 865, 868, 900, 0,
2062 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2063 	/* 1280x768@60Hz */
2064 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
2065 		   1472, 1664, 0, 768, 771, 778, 798, 0,
2066 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2067 	/* 1280x800@60Hz */
2068 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
2069 		   1480, 1680, 0, 800, 803, 809, 831, 0,
2070 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2071 	/* 1280x960@60Hz */
2072 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
2073 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
2074 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2075 	/* 1280x1024@60Hz */
2076 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
2077 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
2078 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2079 	/* 1360x768@60Hz */
2080 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2081 		   1536, 1792, 0, 768, 771, 777, 795, 0,
2082 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2083 	/* 1440x1050@60Hz */
2084 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2085 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2086 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2087 	/* 1440x900@60Hz */
2088 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2089 		   1672, 1904, 0, 900, 903, 909, 934, 0,
2090 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2091 	/* 1600x1200@60Hz */
2092 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2093 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2094 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2095 	/* 1680x1050@60Hz */
2096 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2097 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2098 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2099 	/* 1792x1344@60Hz */
2100 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2101 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2102 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2103 	/* 1853x1392@60Hz */
2104 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2105 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2106 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2107 	/* 1920x1200@60Hz */
2108 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2109 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2110 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2111 	/* 1920x1440@60Hz */
2112 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2113 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2114 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2115 	/* 2560x1600@60Hz */
2116 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2117 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2118 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2119 	/* Terminate */
2120 	{ DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2121 };
2122 
2123 /**
2124  * vmw_guess_mode_timing - Provide fake timings for a
2125  * 60Hz vrefresh mode.
2126  *
2127  * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2128  * members filled in.
2129  */
2130 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2131 {
2132 	mode->hsync_start = mode->hdisplay + 50;
2133 	mode->hsync_end = mode->hsync_start + 50;
2134 	mode->htotal = mode->hsync_end + 50;
2135 
2136 	mode->vsync_start = mode->vdisplay + 50;
2137 	mode->vsync_end = mode->vsync_start + 50;
2138 	mode->vtotal = mode->vsync_end + 50;
2139 
2140 	mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2141 	mode->vrefresh = drm_mode_vrefresh(mode);
2142 }
2143 
2144 
2145 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2146 				uint32_t max_width, uint32_t max_height)
2147 {
2148 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2149 	struct drm_device *dev = connector->dev;
2150 	struct vmw_private *dev_priv = vmw_priv(dev);
2151 	struct drm_display_mode *mode = NULL;
2152 	struct drm_display_mode *bmode;
2153 	struct drm_display_mode prefmode = { DRM_MODE("preferred",
2154 		DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2155 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2156 		DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2157 	};
2158 	int i;
2159 	u32 assumed_bpp = 4;
2160 
2161 	if (dev_priv->assume_16bpp)
2162 		assumed_bpp = 2;
2163 
2164 	max_width  = min(max_width,  dev_priv->texture_max_width);
2165 	max_height = min(max_height, dev_priv->texture_max_height);
2166 
2167 	/*
2168 	 * For STDU extra limit for a mode on SVGA_REG_SCREENTARGET_MAX_WIDTH/
2169 	 * HEIGHT registers.
2170 	 */
2171 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2172 		max_width  = min(max_width,  dev_priv->stdu_max_width);
2173 		max_height = min(max_height, dev_priv->stdu_max_height);
2174 	}
2175 
2176 	/* Add preferred mode */
2177 	mode = drm_mode_duplicate(dev, &prefmode);
2178 	if (!mode)
2179 		return 0;
2180 	mode->hdisplay = du->pref_width;
2181 	mode->vdisplay = du->pref_height;
2182 	vmw_guess_mode_timing(mode);
2183 
2184 	if (vmw_kms_validate_mode_vram(dev_priv,
2185 					mode->hdisplay * assumed_bpp,
2186 					mode->vdisplay)) {
2187 		drm_mode_probed_add(connector, mode);
2188 	} else {
2189 		drm_mode_destroy(dev, mode);
2190 		mode = NULL;
2191 	}
2192 
2193 	if (du->pref_mode) {
2194 		list_del_init(&du->pref_mode->head);
2195 		drm_mode_destroy(dev, du->pref_mode);
2196 	}
2197 
2198 	/* mode might be null here, this is intended */
2199 	du->pref_mode = mode;
2200 
2201 	for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2202 		bmode = &vmw_kms_connector_builtin[i];
2203 		if (bmode->hdisplay > max_width ||
2204 		    bmode->vdisplay > max_height)
2205 			continue;
2206 
2207 		if (!vmw_kms_validate_mode_vram(dev_priv,
2208 						bmode->hdisplay * assumed_bpp,
2209 						bmode->vdisplay))
2210 			continue;
2211 
2212 		mode = drm_mode_duplicate(dev, bmode);
2213 		if (!mode)
2214 			return 0;
2215 		mode->vrefresh = drm_mode_vrefresh(mode);
2216 
2217 		drm_mode_probed_add(connector, mode);
2218 	}
2219 
2220 	drm_connector_list_update(connector);
2221 	/* Move the prefered mode first, help apps pick the right mode. */
2222 	drm_mode_sort(&connector->modes);
2223 
2224 	return 1;
2225 }
2226 
2227 /**
2228  * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl
2229  * @dev: drm device for the ioctl
2230  * @data: data pointer for the ioctl
2231  * @file_priv: drm file for the ioctl call
2232  *
2233  * Update preferred topology of display unit as per ioctl request. The topology
2234  * is expressed as array of drm_vmw_rect.
2235  * e.g.
2236  * [0 0 640 480] [640 0 800 600] [0 480 640 480]
2237  *
2238  * NOTE:
2239  * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside
2240  * device limit on topology, x + w and y + h (lower right) cannot be greater
2241  * than INT_MAX. So topology beyond these limits will return with error.
2242  *
2243  * Returns:
2244  * Zero on success, negative errno on failure.
2245  */
2246 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2247 				struct drm_file *file_priv)
2248 {
2249 	struct vmw_private *dev_priv = vmw_priv(dev);
2250 	struct drm_mode_config *mode_config = &dev->mode_config;
2251 	struct drm_vmw_update_layout_arg *arg =
2252 		(struct drm_vmw_update_layout_arg *)data;
2253 	void __user *user_rects;
2254 	struct drm_vmw_rect *rects;
2255 	struct drm_rect *drm_rects;
2256 	unsigned rects_size;
2257 	int ret, i;
2258 
2259 	if (!arg->num_outputs) {
2260 		struct drm_rect def_rect = {0, 0, 800, 600};
2261 		VMW_DEBUG_KMS("Default layout x1 = %d y1 = %d x2 = %d y2 = %d\n",
2262 			      def_rect.x1, def_rect.y1,
2263 			      def_rect.x2, def_rect.y2);
2264 		vmw_du_update_layout(dev_priv, 1, &def_rect);
2265 		return 0;
2266 	}
2267 
2268 	rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2269 	rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2270 			GFP_KERNEL);
2271 	if (unlikely(!rects))
2272 		return -ENOMEM;
2273 
2274 	user_rects = (void __user *)(unsigned long)arg->rects;
2275 	ret = copy_from_user(rects, user_rects, rects_size);
2276 	if (unlikely(ret != 0)) {
2277 		DRM_ERROR("Failed to get rects.\n");
2278 		ret = -EFAULT;
2279 		goto out_free;
2280 	}
2281 
2282 	drm_rects = (struct drm_rect *)rects;
2283 
2284 	VMW_DEBUG_KMS("Layout count = %u\n", arg->num_outputs);
2285 	for (i = 0; i < arg->num_outputs; i++) {
2286 		struct drm_vmw_rect curr_rect;
2287 
2288 		/* Verify user-space for overflow as kernel use drm_rect */
2289 		if ((rects[i].x + rects[i].w > INT_MAX) ||
2290 		    (rects[i].y + rects[i].h > INT_MAX)) {
2291 			ret = -ERANGE;
2292 			goto out_free;
2293 		}
2294 
2295 		curr_rect = rects[i];
2296 		drm_rects[i].x1 = curr_rect.x;
2297 		drm_rects[i].y1 = curr_rect.y;
2298 		drm_rects[i].x2 = curr_rect.x + curr_rect.w;
2299 		drm_rects[i].y2 = curr_rect.y + curr_rect.h;
2300 
2301 		VMW_DEBUG_KMS("  x1 = %d y1 = %d x2 = %d y2 = %d\n",
2302 			      drm_rects[i].x1, drm_rects[i].y1,
2303 			      drm_rects[i].x2, drm_rects[i].y2);
2304 
2305 		/*
2306 		 * Currently this check is limiting the topology within
2307 		 * mode_config->max (which actually is max texture size
2308 		 * supported by virtual device). This limit is here to address
2309 		 * window managers that create a big framebuffer for whole
2310 		 * topology.
2311 		 */
2312 		if (drm_rects[i].x1 < 0 ||  drm_rects[i].y1 < 0 ||
2313 		    drm_rects[i].x2 > mode_config->max_width ||
2314 		    drm_rects[i].y2 > mode_config->max_height) {
2315 			VMW_DEBUG_KMS("Invalid layout %d %d %d %d\n",
2316 				      drm_rects[i].x1, drm_rects[i].y1,
2317 				      drm_rects[i].x2, drm_rects[i].y2);
2318 			ret = -EINVAL;
2319 			goto out_free;
2320 		}
2321 	}
2322 
2323 	ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects);
2324 
2325 	if (ret == 0)
2326 		vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects);
2327 
2328 out_free:
2329 	kfree(rects);
2330 	return ret;
2331 }
2332 
2333 /**
2334  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2335  * on a set of cliprects and a set of display units.
2336  *
2337  * @dev_priv: Pointer to a device private structure.
2338  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2339  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2340  * Cliprects are given in framebuffer coordinates.
2341  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2342  * be NULL. Cliprects are given in source coordinates.
2343  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2344  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2345  * @num_clips: Number of cliprects in the @clips or @vclips array.
2346  * @increment: Integer with which to increment the clip counter when looping.
2347  * Used to skip a predetermined number of clip rects.
2348  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2349  */
2350 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2351 			 struct vmw_framebuffer *framebuffer,
2352 			 const struct drm_clip_rect *clips,
2353 			 const struct drm_vmw_rect *vclips,
2354 			 s32 dest_x, s32 dest_y,
2355 			 int num_clips,
2356 			 int increment,
2357 			 struct vmw_kms_dirty *dirty)
2358 {
2359 	struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2360 	struct drm_crtc *crtc;
2361 	u32 num_units = 0;
2362 	u32 i, k;
2363 
2364 	dirty->dev_priv = dev_priv;
2365 
2366 	/* If crtc is passed, no need to iterate over other display units */
2367 	if (dirty->crtc) {
2368 		units[num_units++] = vmw_crtc_to_du(dirty->crtc);
2369 	} else {
2370 		list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list,
2371 				    head) {
2372 			struct drm_plane *plane = crtc->primary;
2373 
2374 			if (plane->state->fb == &framebuffer->base)
2375 				units[num_units++] = vmw_crtc_to_du(crtc);
2376 		}
2377 	}
2378 
2379 	for (k = 0; k < num_units; k++) {
2380 		struct vmw_display_unit *unit = units[k];
2381 		s32 crtc_x = unit->crtc.x;
2382 		s32 crtc_y = unit->crtc.y;
2383 		s32 crtc_width = unit->crtc.mode.hdisplay;
2384 		s32 crtc_height = unit->crtc.mode.vdisplay;
2385 		const struct drm_clip_rect *clips_ptr = clips;
2386 		const struct drm_vmw_rect *vclips_ptr = vclips;
2387 
2388 		dirty->unit = unit;
2389 		if (dirty->fifo_reserve_size > 0) {
2390 			dirty->cmd = VMW_FIFO_RESERVE(dev_priv,
2391 						      dirty->fifo_reserve_size);
2392 			if (!dirty->cmd)
2393 				return -ENOMEM;
2394 
2395 			memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2396 		}
2397 		dirty->num_hits = 0;
2398 		for (i = 0; i < num_clips; i++, clips_ptr += increment,
2399 		       vclips_ptr += increment) {
2400 			s32 clip_left;
2401 			s32 clip_top;
2402 
2403 			/*
2404 			 * Select clip array type. Note that integer type
2405 			 * in @clips is unsigned short, whereas in @vclips
2406 			 * it's 32-bit.
2407 			 */
2408 			if (clips) {
2409 				dirty->fb_x = (s32) clips_ptr->x1;
2410 				dirty->fb_y = (s32) clips_ptr->y1;
2411 				dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2412 					crtc_x;
2413 				dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2414 					crtc_y;
2415 			} else {
2416 				dirty->fb_x = vclips_ptr->x;
2417 				dirty->fb_y = vclips_ptr->y;
2418 				dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2419 					dest_x - crtc_x;
2420 				dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2421 					dest_y - crtc_y;
2422 			}
2423 
2424 			dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2425 			dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2426 
2427 			/* Skip this clip if it's outside the crtc region */
2428 			if (dirty->unit_x1 >= crtc_width ||
2429 			    dirty->unit_y1 >= crtc_height ||
2430 			    dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2431 				continue;
2432 
2433 			/* Clip right and bottom to crtc limits */
2434 			dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2435 					       crtc_width);
2436 			dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2437 					       crtc_height);
2438 
2439 			/* Clip left and top to crtc limits */
2440 			clip_left = min_t(s32, dirty->unit_x1, 0);
2441 			clip_top = min_t(s32, dirty->unit_y1, 0);
2442 			dirty->unit_x1 -= clip_left;
2443 			dirty->unit_y1 -= clip_top;
2444 			dirty->fb_x -= clip_left;
2445 			dirty->fb_y -= clip_top;
2446 
2447 			dirty->clip(dirty);
2448 		}
2449 
2450 		dirty->fifo_commit(dirty);
2451 	}
2452 
2453 	return 0;
2454 }
2455 
2456 /**
2457  * vmw_kms_helper_validation_finish - Helper for post KMS command submission
2458  * cleanup and fencing
2459  * @dev_priv: Pointer to the device-private struct
2460  * @file_priv: Pointer identifying the client when user-space fencing is used
2461  * @ctx: Pointer to the validation context
2462  * @out_fence: If non-NULL, returned refcounted fence-pointer
2463  * @user_fence_rep: If non-NULL, pointer to user-space address area
2464  * in which to copy user-space fence info
2465  */
2466 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv,
2467 				      struct drm_file *file_priv,
2468 				      struct vmw_validation_context *ctx,
2469 				      struct vmw_fence_obj **out_fence,
2470 				      struct drm_vmw_fence_rep __user *
2471 				      user_fence_rep)
2472 {
2473 	struct vmw_fence_obj *fence = NULL;
2474 	uint32_t handle = 0;
2475 	int ret = 0;
2476 
2477 	if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) ||
2478 	    out_fence)
2479 		ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2480 						 file_priv ? &handle : NULL);
2481 	vmw_validation_done(ctx, fence);
2482 	if (file_priv)
2483 		vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2484 					    ret, user_fence_rep, fence,
2485 					    handle, -1, NULL);
2486 	if (out_fence)
2487 		*out_fence = fence;
2488 	else
2489 		vmw_fence_obj_unreference(&fence);
2490 }
2491 
2492 /**
2493  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2494  * its backing MOB.
2495  *
2496  * @res: Pointer to the surface resource
2497  * @clips: Clip rects in framebuffer (surface) space.
2498  * @num_clips: Number of clips in @clips.
2499  * @increment: Integer with which to increment the clip counter when looping.
2500  * Used to skip a predetermined number of clip rects.
2501  *
2502  * This function makes sure the proxy surface is updated from its backing MOB
2503  * using the region given by @clips. The surface resource @res and its backing
2504  * MOB needs to be reserved and validated on call.
2505  */
2506 int vmw_kms_update_proxy(struct vmw_resource *res,
2507 			 const struct drm_clip_rect *clips,
2508 			 unsigned num_clips,
2509 			 int increment)
2510 {
2511 	struct vmw_private *dev_priv = res->dev_priv;
2512 	struct drm_vmw_size *size = &vmw_res_to_srf(res)->metadata.base_size;
2513 	struct {
2514 		SVGA3dCmdHeader header;
2515 		SVGA3dCmdUpdateGBImage body;
2516 	} *cmd;
2517 	SVGA3dBox *box;
2518 	size_t copy_size = 0;
2519 	int i;
2520 
2521 	if (!clips)
2522 		return 0;
2523 
2524 	cmd = VMW_FIFO_RESERVE(dev_priv, sizeof(*cmd) * num_clips);
2525 	if (!cmd)
2526 		return -ENOMEM;
2527 
2528 	for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2529 		box = &cmd->body.box;
2530 
2531 		cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2532 		cmd->header.size = sizeof(cmd->body);
2533 		cmd->body.image.sid = res->id;
2534 		cmd->body.image.face = 0;
2535 		cmd->body.image.mipmap = 0;
2536 
2537 		if (clips->x1 > size->width || clips->x2 > size->width ||
2538 		    clips->y1 > size->height || clips->y2 > size->height) {
2539 			DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2540 			return -EINVAL;
2541 		}
2542 
2543 		box->x = clips->x1;
2544 		box->y = clips->y1;
2545 		box->z = 0;
2546 		box->w = clips->x2 - clips->x1;
2547 		box->h = clips->y2 - clips->y1;
2548 		box->d = 1;
2549 
2550 		copy_size += sizeof(*cmd);
2551 	}
2552 
2553 	vmw_fifo_commit(dev_priv, copy_size);
2554 
2555 	return 0;
2556 }
2557 
2558 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2559 			    unsigned unit,
2560 			    u32 max_width,
2561 			    u32 max_height,
2562 			    struct drm_connector **p_con,
2563 			    struct drm_crtc **p_crtc,
2564 			    struct drm_display_mode **p_mode)
2565 {
2566 	struct drm_connector *con;
2567 	struct vmw_display_unit *du;
2568 	struct drm_display_mode *mode;
2569 	int i = 0;
2570 	int ret = 0;
2571 
2572 	mutex_lock(&dev_priv->dev->mode_config.mutex);
2573 	list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2574 			    head) {
2575 		if (i == unit)
2576 			break;
2577 
2578 		++i;
2579 	}
2580 
2581 	if (i != unit) {
2582 		DRM_ERROR("Could not find initial display unit.\n");
2583 		ret = -EINVAL;
2584 		goto out_unlock;
2585 	}
2586 
2587 	if (list_empty(&con->modes))
2588 		(void) vmw_du_connector_fill_modes(con, max_width, max_height);
2589 
2590 	if (list_empty(&con->modes)) {
2591 		DRM_ERROR("Could not find initial display mode.\n");
2592 		ret = -EINVAL;
2593 		goto out_unlock;
2594 	}
2595 
2596 	du = vmw_connector_to_du(con);
2597 	*p_con = con;
2598 	*p_crtc = &du->crtc;
2599 
2600 	list_for_each_entry(mode, &con->modes, head) {
2601 		if (mode->type & DRM_MODE_TYPE_PREFERRED)
2602 			break;
2603 	}
2604 
2605 	if (mode->type & DRM_MODE_TYPE_PREFERRED)
2606 		*p_mode = mode;
2607 	else {
2608 		WARN_ONCE(true, "Could not find initial preferred mode.\n");
2609 		*p_mode = list_first_entry(&con->modes,
2610 					   struct drm_display_mode,
2611 					   head);
2612 	}
2613 
2614  out_unlock:
2615 	mutex_unlock(&dev_priv->dev->mode_config.mutex);
2616 
2617 	return ret;
2618 }
2619 
2620 /**
2621  * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2622  * property.
2623  *
2624  * @dev_priv: Pointer to a device private struct.
2625  *
2626  * Sets up the implicit placement property unless it's already set up.
2627  */
2628 void
2629 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv)
2630 {
2631 	if (dev_priv->implicit_placement_property)
2632 		return;
2633 
2634 	dev_priv->implicit_placement_property =
2635 		drm_property_create_range(dev_priv->dev,
2636 					  DRM_MODE_PROP_IMMUTABLE,
2637 					  "implicit_placement", 0, 1);
2638 }
2639 
2640 /**
2641  * vmw_kms_suspend - Save modesetting state and turn modesetting off.
2642  *
2643  * @dev: Pointer to the drm device
2644  * Return: 0 on success. Negative error code on failure.
2645  */
2646 int vmw_kms_suspend(struct drm_device *dev)
2647 {
2648 	struct vmw_private *dev_priv = vmw_priv(dev);
2649 
2650 	dev_priv->suspend_state = drm_atomic_helper_suspend(dev);
2651 	if (IS_ERR(dev_priv->suspend_state)) {
2652 		int ret = PTR_ERR(dev_priv->suspend_state);
2653 
2654 		DRM_ERROR("Failed kms suspend: %d\n", ret);
2655 		dev_priv->suspend_state = NULL;
2656 
2657 		return ret;
2658 	}
2659 
2660 	return 0;
2661 }
2662 
2663 
2664 /**
2665  * vmw_kms_resume - Re-enable modesetting and restore state
2666  *
2667  * @dev: Pointer to the drm device
2668  * Return: 0 on success. Negative error code on failure.
2669  *
2670  * State is resumed from a previous vmw_kms_suspend(). It's illegal
2671  * to call this function without a previous vmw_kms_suspend().
2672  */
2673 int vmw_kms_resume(struct drm_device *dev)
2674 {
2675 	struct vmw_private *dev_priv = vmw_priv(dev);
2676 	int ret;
2677 
2678 	if (WARN_ON(!dev_priv->suspend_state))
2679 		return 0;
2680 
2681 	ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state);
2682 	dev_priv->suspend_state = NULL;
2683 
2684 	return ret;
2685 }
2686 
2687 /**
2688  * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost
2689  *
2690  * @dev: Pointer to the drm device
2691  */
2692 void vmw_kms_lost_device(struct drm_device *dev)
2693 {
2694 	drm_atomic_helper_shutdown(dev);
2695 }
2696 
2697 /**
2698  * vmw_du_helper_plane_update - Helper to do plane update on a display unit.
2699  * @update: The closure structure.
2700  *
2701  * Call this helper after setting callbacks in &vmw_du_update_plane to do plane
2702  * update on display unit.
2703  *
2704  * Return: 0 on success or a negative error code on failure.
2705  */
2706 int vmw_du_helper_plane_update(struct vmw_du_update_plane *update)
2707 {
2708 	struct drm_plane_state *state = update->plane->state;
2709 	struct drm_plane_state *old_state = update->old_state;
2710 	struct drm_atomic_helper_damage_iter iter;
2711 	struct drm_rect clip;
2712 	struct drm_rect bb;
2713 	DECLARE_VAL_CONTEXT(val_ctx, NULL, 0);
2714 	uint32_t reserved_size = 0;
2715 	uint32_t submit_size = 0;
2716 	uint32_t curr_size = 0;
2717 	uint32_t num_hits = 0;
2718 	void *cmd_start;
2719 	char *cmd_next;
2720 	int ret;
2721 
2722 	/*
2723 	 * Iterate in advance to check if really need plane update and find the
2724 	 * number of clips that actually are in plane src for fifo allocation.
2725 	 */
2726 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
2727 	drm_atomic_for_each_plane_damage(&iter, &clip)
2728 		num_hits++;
2729 
2730 	if (num_hits == 0)
2731 		return 0;
2732 
2733 	if (update->vfb->bo) {
2734 		struct vmw_framebuffer_bo *vfbbo =
2735 			container_of(update->vfb, typeof(*vfbbo), base);
2736 
2737 		ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer, false,
2738 					    update->cpu_blit);
2739 	} else {
2740 		struct vmw_framebuffer_surface *vfbs =
2741 			container_of(update->vfb, typeof(*vfbs), base);
2742 
2743 		ret = vmw_validation_add_resource(&val_ctx, &vfbs->surface->res,
2744 						  0, VMW_RES_DIRTY_NONE, NULL,
2745 						  NULL);
2746 	}
2747 
2748 	if (ret)
2749 		return ret;
2750 
2751 	ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr);
2752 	if (ret)
2753 		goto out_unref;
2754 
2755 	reserved_size = update->calc_fifo_size(update, num_hits);
2756 	cmd_start = VMW_FIFO_RESERVE(update->dev_priv, reserved_size);
2757 	if (!cmd_start) {
2758 		ret = -ENOMEM;
2759 		goto out_revert;
2760 	}
2761 
2762 	cmd_next = cmd_start;
2763 
2764 	if (update->post_prepare) {
2765 		curr_size = update->post_prepare(update, cmd_next);
2766 		cmd_next += curr_size;
2767 		submit_size += curr_size;
2768 	}
2769 
2770 	if (update->pre_clip) {
2771 		curr_size = update->pre_clip(update, cmd_next, num_hits);
2772 		cmd_next += curr_size;
2773 		submit_size += curr_size;
2774 	}
2775 
2776 	bb.x1 = INT_MAX;
2777 	bb.y1 = INT_MAX;
2778 	bb.x2 = INT_MIN;
2779 	bb.y2 = INT_MIN;
2780 
2781 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
2782 	drm_atomic_for_each_plane_damage(&iter, &clip) {
2783 		uint32_t fb_x = clip.x1;
2784 		uint32_t fb_y = clip.y1;
2785 
2786 		vmw_du_translate_to_crtc(state, &clip);
2787 		if (update->clip) {
2788 			curr_size = update->clip(update, cmd_next, &clip, fb_x,
2789 						 fb_y);
2790 			cmd_next += curr_size;
2791 			submit_size += curr_size;
2792 		}
2793 		bb.x1 = min_t(int, bb.x1, clip.x1);
2794 		bb.y1 = min_t(int, bb.y1, clip.y1);
2795 		bb.x2 = max_t(int, bb.x2, clip.x2);
2796 		bb.y2 = max_t(int, bb.y2, clip.y2);
2797 	}
2798 
2799 	curr_size = update->post_clip(update, cmd_next, &bb);
2800 	submit_size += curr_size;
2801 
2802 	if (reserved_size < submit_size)
2803 		submit_size = 0;
2804 
2805 	vmw_fifo_commit(update->dev_priv, submit_size);
2806 
2807 	vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx,
2808 					 update->out_fence, NULL);
2809 	return ret;
2810 
2811 out_revert:
2812 	vmw_validation_revert(&val_ctx);
2813 
2814 out_unref:
2815 	vmw_validation_unref_lists(&val_ctx);
2816 	return ret;
2817 }
2818