1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include <drm/drm_atomic.h>
29 #include <drm/drm_atomic_helper.h>
30 #include <drm/drm_damage_helper.h>
31 #include <drm/drm_fourcc.h>
32 #include <drm/drm_plane_helper.h>
33 #include <drm/drm_rect.h>
34 #include <drm/drm_sysfs.h>
35 #include <drm/drm_vblank.h>
36 
37 #include "vmwgfx_kms.h"
38 
39 void vmw_du_cleanup(struct vmw_display_unit *du)
40 {
41 	struct vmw_private *dev_priv = vmw_priv(du->primary.dev);
42 	drm_plane_cleanup(&du->primary);
43 	if (vmw_cmd_supported(dev_priv))
44 		drm_plane_cleanup(&du->cursor);
45 
46 	drm_connector_unregister(&du->connector);
47 	drm_crtc_cleanup(&du->crtc);
48 	drm_encoder_cleanup(&du->encoder);
49 	drm_connector_cleanup(&du->connector);
50 }
51 
52 /*
53  * Display Unit Cursor functions
54  */
55 
56 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
57 				   u32 *image, u32 width, u32 height,
58 				   u32 hotspotX, u32 hotspotY)
59 {
60 	struct {
61 		u32 cmd;
62 		SVGAFifoCmdDefineAlphaCursor cursor;
63 	} *cmd;
64 	u32 image_size = width * height * 4;
65 	u32 cmd_size = sizeof(*cmd) + image_size;
66 
67 	if (!image)
68 		return -EINVAL;
69 
70 	cmd = VMW_CMD_RESERVE(dev_priv, cmd_size);
71 	if (unlikely(cmd == NULL))
72 		return -ENOMEM;
73 
74 	memset(cmd, 0, sizeof(*cmd));
75 
76 	memcpy(&cmd[1], image, image_size);
77 
78 	cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
79 	cmd->cursor.id = 0;
80 	cmd->cursor.width = width;
81 	cmd->cursor.height = height;
82 	cmd->cursor.hotspotX = hotspotX;
83 	cmd->cursor.hotspotY = hotspotY;
84 
85 	vmw_cmd_commit_flush(dev_priv, cmd_size);
86 
87 	return 0;
88 }
89 
90 static int vmw_cursor_update_bo(struct vmw_private *dev_priv,
91 				struct vmw_buffer_object *bo,
92 				u32 width, u32 height,
93 				u32 hotspotX, u32 hotspotY)
94 {
95 	struct ttm_bo_kmap_obj map;
96 	unsigned long kmap_offset;
97 	unsigned long kmap_num;
98 	void *virtual;
99 	bool dummy;
100 	int ret;
101 
102 	kmap_offset = 0;
103 	kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
104 
105 	ret = ttm_bo_reserve(&bo->base, true, false, NULL);
106 	if (unlikely(ret != 0)) {
107 		DRM_ERROR("reserve failed\n");
108 		return -EINVAL;
109 	}
110 
111 	ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map);
112 	if (unlikely(ret != 0))
113 		goto err_unreserve;
114 
115 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
116 	ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
117 				      hotspotX, hotspotY);
118 
119 	ttm_bo_kunmap(&map);
120 err_unreserve:
121 	ttm_bo_unreserve(&bo->base);
122 
123 	return ret;
124 }
125 
126 
127 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
128 				       bool show, int x, int y)
129 {
130 	uint32_t count;
131 
132 	spin_lock(&dev_priv->cursor_lock);
133 	if (vmw_is_cursor_bypass3_enabled(dev_priv)) {
134 		vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_ON, show ? 1 : 0);
135 		vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_X, x);
136 		vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_Y, y);
137 		count = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_CURSOR_COUNT);
138 		vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_COUNT, ++count);
139 	} else {
140 		vmw_write(dev_priv, SVGA_REG_CURSOR_X, x);
141 		vmw_write(dev_priv, SVGA_REG_CURSOR_Y, y);
142 		vmw_write(dev_priv, SVGA_REG_CURSOR_ON, show ? 1 : 0);
143 	}
144 	spin_unlock(&dev_priv->cursor_lock);
145 }
146 
147 
148 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
149 			  struct ttm_object_file *tfile,
150 			  struct ttm_buffer_object *bo,
151 			  SVGA3dCmdHeader *header)
152 {
153 	struct ttm_bo_kmap_obj map;
154 	unsigned long kmap_offset;
155 	unsigned long kmap_num;
156 	SVGA3dCopyBox *box;
157 	unsigned box_count;
158 	void *virtual;
159 	bool dummy;
160 	struct vmw_dma_cmd {
161 		SVGA3dCmdHeader header;
162 		SVGA3dCmdSurfaceDMA dma;
163 	} *cmd;
164 	int i, ret;
165 
166 	cmd = container_of(header, struct vmw_dma_cmd, header);
167 
168 	/* No snooper installed */
169 	if (!srf->snooper.image)
170 		return;
171 
172 	if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
173 		DRM_ERROR("face and mipmap for cursors should never != 0\n");
174 		return;
175 	}
176 
177 	if (cmd->header.size < 64) {
178 		DRM_ERROR("at least one full copy box must be given\n");
179 		return;
180 	}
181 
182 	box = (SVGA3dCopyBox *)&cmd[1];
183 	box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
184 			sizeof(SVGA3dCopyBox);
185 
186 	if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
187 	    box->x != 0    || box->y != 0    || box->z != 0    ||
188 	    box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
189 	    box->d != 1    || box_count != 1) {
190 		/* TODO handle none page aligned offsets */
191 		/* TODO handle more dst & src != 0 */
192 		/* TODO handle more then one copy */
193 		DRM_ERROR("Can't snoop dma request for cursor!\n");
194 		DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
195 			  box->srcx, box->srcy, box->srcz,
196 			  box->x, box->y, box->z,
197 			  box->w, box->h, box->d, box_count,
198 			  cmd->dma.guest.ptr.offset);
199 		return;
200 	}
201 
202 	kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
203 	kmap_num = (64*64*4) >> PAGE_SHIFT;
204 
205 	ret = ttm_bo_reserve(bo, true, false, NULL);
206 	if (unlikely(ret != 0)) {
207 		DRM_ERROR("reserve failed\n");
208 		return;
209 	}
210 
211 	ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
212 	if (unlikely(ret != 0))
213 		goto err_unreserve;
214 
215 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
216 
217 	if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
218 		memcpy(srf->snooper.image, virtual, 64*64*4);
219 	} else {
220 		/* Image is unsigned pointer. */
221 		for (i = 0; i < box->h; i++)
222 			memcpy(srf->snooper.image + i * 64,
223 			       virtual + i * cmd->dma.guest.pitch,
224 			       box->w * 4);
225 	}
226 
227 	srf->snooper.age++;
228 
229 	ttm_bo_kunmap(&map);
230 err_unreserve:
231 	ttm_bo_unreserve(bo);
232 }
233 
234 /**
235  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
236  *
237  * @dev_priv: Pointer to the device private struct.
238  *
239  * Clears all legacy hotspots.
240  */
241 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
242 {
243 	struct drm_device *dev = &dev_priv->drm;
244 	struct vmw_display_unit *du;
245 	struct drm_crtc *crtc;
246 
247 	drm_modeset_lock_all(dev);
248 	drm_for_each_crtc(crtc, dev) {
249 		du = vmw_crtc_to_du(crtc);
250 
251 		du->hotspot_x = 0;
252 		du->hotspot_y = 0;
253 	}
254 	drm_modeset_unlock_all(dev);
255 }
256 
257 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
258 {
259 	struct drm_device *dev = &dev_priv->drm;
260 	struct vmw_display_unit *du;
261 	struct drm_crtc *crtc;
262 
263 	mutex_lock(&dev->mode_config.mutex);
264 
265 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
266 		du = vmw_crtc_to_du(crtc);
267 		if (!du->cursor_surface ||
268 		    du->cursor_age == du->cursor_surface->snooper.age)
269 			continue;
270 
271 		du->cursor_age = du->cursor_surface->snooper.age;
272 		vmw_cursor_update_image(dev_priv,
273 					du->cursor_surface->snooper.image,
274 					64, 64,
275 					du->hotspot_x + du->core_hotspot_x,
276 					du->hotspot_y + du->core_hotspot_y);
277 	}
278 
279 	mutex_unlock(&dev->mode_config.mutex);
280 }
281 
282 
283 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
284 {
285 	vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
286 
287 	drm_plane_cleanup(plane);
288 }
289 
290 
291 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
292 {
293 	drm_plane_cleanup(plane);
294 
295 	/* Planes are static in our case so we don't free it */
296 }
297 
298 
299 /**
300  * vmw_du_plane_unpin_surf - unpins resource associated with a framebuffer surface
301  *
302  * @vps: plane state associated with the display surface
303  * @unreference: true if we also want to unreference the display.
304  */
305 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
306 			     bool unreference)
307 {
308 	if (vps->surf) {
309 		if (vps->pinned) {
310 			vmw_resource_unpin(&vps->surf->res);
311 			vps->pinned--;
312 		}
313 
314 		if (unreference) {
315 			if (vps->pinned)
316 				DRM_ERROR("Surface still pinned\n");
317 			vmw_surface_unreference(&vps->surf);
318 		}
319 	}
320 }
321 
322 
323 /**
324  * vmw_du_plane_cleanup_fb - Unpins the cursor
325  *
326  * @plane:  display plane
327  * @old_state: Contains the FB to clean up
328  *
329  * Unpins the framebuffer surface
330  *
331  * Returns 0 on success
332  */
333 void
334 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
335 			struct drm_plane_state *old_state)
336 {
337 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
338 
339 	vmw_du_plane_unpin_surf(vps, false);
340 }
341 
342 
343 /**
344  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
345  *
346  * @plane:  display plane
347  * @new_state: info on the new plane state, including the FB
348  *
349  * Returns 0 on success
350  */
351 int
352 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
353 			       struct drm_plane_state *new_state)
354 {
355 	struct drm_framebuffer *fb = new_state->fb;
356 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
357 
358 
359 	if (vps->surf)
360 		vmw_surface_unreference(&vps->surf);
361 
362 	if (vps->bo)
363 		vmw_bo_unreference(&vps->bo);
364 
365 	if (fb) {
366 		if (vmw_framebuffer_to_vfb(fb)->bo) {
367 			vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer;
368 			vmw_bo_reference(vps->bo);
369 		} else {
370 			vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
371 			vmw_surface_reference(vps->surf);
372 		}
373 	}
374 
375 	return 0;
376 }
377 
378 
379 void
380 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
381 				  struct drm_atomic_state *state)
382 {
383 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
384 									   plane);
385 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
386 									   plane);
387 	struct drm_crtc *crtc = new_state->crtc ?: old_state->crtc;
388 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
389 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
390 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
391 	s32 hotspot_x, hotspot_y;
392 	int ret = 0;
393 
394 
395 	hotspot_x = du->hotspot_x;
396 	hotspot_y = du->hotspot_y;
397 
398 	if (new_state->fb) {
399 		hotspot_x += new_state->fb->hot_x;
400 		hotspot_y += new_state->fb->hot_y;
401 	}
402 
403 	du->cursor_surface = vps->surf;
404 	du->cursor_bo = vps->bo;
405 
406 	if (vps->surf) {
407 		du->cursor_age = du->cursor_surface->snooper.age;
408 
409 		ret = vmw_cursor_update_image(dev_priv,
410 					      vps->surf->snooper.image,
411 					      64, 64, hotspot_x,
412 					      hotspot_y);
413 	} else if (vps->bo) {
414 		ret = vmw_cursor_update_bo(dev_priv, vps->bo,
415 					   new_state->crtc_w,
416 					   new_state->crtc_h,
417 					   hotspot_x, hotspot_y);
418 	} else {
419 		vmw_cursor_update_position(dev_priv, false, 0, 0);
420 		return;
421 	}
422 
423 	if (!ret) {
424 		du->cursor_x = new_state->crtc_x + du->set_gui_x;
425 		du->cursor_y = new_state->crtc_y + du->set_gui_y;
426 
427 		vmw_cursor_update_position(dev_priv, true,
428 					   du->cursor_x + hotspot_x,
429 					   du->cursor_y + hotspot_y);
430 
431 		du->core_hotspot_x = hotspot_x - du->hotspot_x;
432 		du->core_hotspot_y = hotspot_y - du->hotspot_y;
433 	} else {
434 		DRM_ERROR("Failed to update cursor image\n");
435 	}
436 }
437 
438 
439 /**
440  * vmw_du_primary_plane_atomic_check - check if the new state is okay
441  *
442  * @plane: display plane
443  * @state: info on the new plane state, including the FB
444  *
445  * Check if the new state is settable given the current state.  Other
446  * than what the atomic helper checks, we care about crtc fitting
447  * the FB and maintaining one active framebuffer.
448  *
449  * Returns 0 on success
450  */
451 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
452 				      struct drm_atomic_state *state)
453 {
454 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
455 									   plane);
456 	struct drm_crtc_state *crtc_state = NULL;
457 	struct drm_framebuffer *new_fb = new_state->fb;
458 	int ret;
459 
460 	if (new_state->crtc)
461 		crtc_state = drm_atomic_get_new_crtc_state(state,
462 							   new_state->crtc);
463 
464 	ret = drm_atomic_helper_check_plane_state(new_state, crtc_state,
465 						  DRM_PLANE_HELPER_NO_SCALING,
466 						  DRM_PLANE_HELPER_NO_SCALING,
467 						  false, true);
468 
469 	if (!ret && new_fb) {
470 		struct drm_crtc *crtc = new_state->crtc;
471 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
472 
473 		vmw_connector_state_to_vcs(du->connector.state);
474 	}
475 
476 
477 	return ret;
478 }
479 
480 
481 /**
482  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
483  *
484  * @plane: cursor plane
485  * @state: info on the new plane state
486  *
487  * This is a chance to fail if the new cursor state does not fit
488  * our requirements.
489  *
490  * Returns 0 on success
491  */
492 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
493 				     struct drm_atomic_state *state)
494 {
495 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
496 									   plane);
497 	int ret = 0;
498 	struct drm_crtc_state *crtc_state = NULL;
499 	struct vmw_surface *surface = NULL;
500 	struct drm_framebuffer *fb = new_state->fb;
501 
502 	if (new_state->crtc)
503 		crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
504 							   new_state->crtc);
505 
506 	ret = drm_atomic_helper_check_plane_state(new_state, crtc_state,
507 						  DRM_PLANE_HELPER_NO_SCALING,
508 						  DRM_PLANE_HELPER_NO_SCALING,
509 						  true, true);
510 	if (ret)
511 		return ret;
512 
513 	/* Turning off */
514 	if (!fb)
515 		return 0;
516 
517 	/* A lot of the code assumes this */
518 	if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
519 		DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
520 			  new_state->crtc_w, new_state->crtc_h);
521 		ret = -EINVAL;
522 	}
523 
524 	if (!vmw_framebuffer_to_vfb(fb)->bo)
525 		surface = vmw_framebuffer_to_vfbs(fb)->surface;
526 
527 	if (surface && !surface->snooper.image) {
528 		DRM_ERROR("surface not suitable for cursor\n");
529 		ret = -EINVAL;
530 	}
531 
532 	return ret;
533 }
534 
535 
536 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
537 			     struct drm_atomic_state *state)
538 {
539 	struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
540 									 crtc);
541 	struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
542 	int connector_mask = drm_connector_mask(&du->connector);
543 	bool has_primary = new_state->plane_mask &
544 			   drm_plane_mask(crtc->primary);
545 
546 	/* We always want to have an active plane with an active CRTC */
547 	if (has_primary != new_state->enable)
548 		return -EINVAL;
549 
550 
551 	if (new_state->connector_mask != connector_mask &&
552 	    new_state->connector_mask != 0) {
553 		DRM_ERROR("Invalid connectors configuration\n");
554 		return -EINVAL;
555 	}
556 
557 	/*
558 	 * Our virtual device does not have a dot clock, so use the logical
559 	 * clock value as the dot clock.
560 	 */
561 	if (new_state->mode.crtc_clock == 0)
562 		new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
563 
564 	return 0;
565 }
566 
567 
568 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
569 			      struct drm_atomic_state *state)
570 {
571 }
572 
573 
574 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
575 			      struct drm_atomic_state *state)
576 {
577 	struct drm_pending_vblank_event *event = crtc->state->event;
578 
579 	if (event) {
580 		crtc->state->event = NULL;
581 
582 		spin_lock_irq(&crtc->dev->event_lock);
583 		drm_crtc_send_vblank_event(crtc, event);
584 		spin_unlock_irq(&crtc->dev->event_lock);
585 	}
586 }
587 
588 
589 /**
590  * vmw_du_crtc_duplicate_state - duplicate crtc state
591  * @crtc: DRM crtc
592  *
593  * Allocates and returns a copy of the crtc state (both common and
594  * vmw-specific) for the specified crtc.
595  *
596  * Returns: The newly allocated crtc state, or NULL on failure.
597  */
598 struct drm_crtc_state *
599 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
600 {
601 	struct drm_crtc_state *state;
602 	struct vmw_crtc_state *vcs;
603 
604 	if (WARN_ON(!crtc->state))
605 		return NULL;
606 
607 	vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
608 
609 	if (!vcs)
610 		return NULL;
611 
612 	state = &vcs->base;
613 
614 	__drm_atomic_helper_crtc_duplicate_state(crtc, state);
615 
616 	return state;
617 }
618 
619 
620 /**
621  * vmw_du_crtc_reset - creates a blank vmw crtc state
622  * @crtc: DRM crtc
623  *
624  * Resets the atomic state for @crtc by freeing the state pointer (which
625  * might be NULL, e.g. at driver load time) and allocating a new empty state
626  * object.
627  */
628 void vmw_du_crtc_reset(struct drm_crtc *crtc)
629 {
630 	struct vmw_crtc_state *vcs;
631 
632 
633 	if (crtc->state) {
634 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
635 
636 		kfree(vmw_crtc_state_to_vcs(crtc->state));
637 	}
638 
639 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
640 
641 	if (!vcs) {
642 		DRM_ERROR("Cannot allocate vmw_crtc_state\n");
643 		return;
644 	}
645 
646 	__drm_atomic_helper_crtc_reset(crtc, &vcs->base);
647 }
648 
649 
650 /**
651  * vmw_du_crtc_destroy_state - destroy crtc state
652  * @crtc: DRM crtc
653  * @state: state object to destroy
654  *
655  * Destroys the crtc state (both common and vmw-specific) for the
656  * specified plane.
657  */
658 void
659 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
660 			  struct drm_crtc_state *state)
661 {
662 	drm_atomic_helper_crtc_destroy_state(crtc, state);
663 }
664 
665 
666 /**
667  * vmw_du_plane_duplicate_state - duplicate plane state
668  * @plane: drm plane
669  *
670  * Allocates and returns a copy of the plane state (both common and
671  * vmw-specific) for the specified plane.
672  *
673  * Returns: The newly allocated plane state, or NULL on failure.
674  */
675 struct drm_plane_state *
676 vmw_du_plane_duplicate_state(struct drm_plane *plane)
677 {
678 	struct drm_plane_state *state;
679 	struct vmw_plane_state *vps;
680 
681 	vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
682 
683 	if (!vps)
684 		return NULL;
685 
686 	vps->pinned = 0;
687 	vps->cpp = 0;
688 
689 	/* Each ref counted resource needs to be acquired again */
690 	if (vps->surf)
691 		(void) vmw_surface_reference(vps->surf);
692 
693 	if (vps->bo)
694 		(void) vmw_bo_reference(vps->bo);
695 
696 	state = &vps->base;
697 
698 	__drm_atomic_helper_plane_duplicate_state(plane, state);
699 
700 	return state;
701 }
702 
703 
704 /**
705  * vmw_du_plane_reset - creates a blank vmw plane state
706  * @plane: drm plane
707  *
708  * Resets the atomic state for @plane by freeing the state pointer (which might
709  * be NULL, e.g. at driver load time) and allocating a new empty state object.
710  */
711 void vmw_du_plane_reset(struct drm_plane *plane)
712 {
713 	struct vmw_plane_state *vps;
714 
715 
716 	if (plane->state)
717 		vmw_du_plane_destroy_state(plane, plane->state);
718 
719 	vps = kzalloc(sizeof(*vps), GFP_KERNEL);
720 
721 	if (!vps) {
722 		DRM_ERROR("Cannot allocate vmw_plane_state\n");
723 		return;
724 	}
725 
726 	__drm_atomic_helper_plane_reset(plane, &vps->base);
727 }
728 
729 
730 /**
731  * vmw_du_plane_destroy_state - destroy plane state
732  * @plane: DRM plane
733  * @state: state object to destroy
734  *
735  * Destroys the plane state (both common and vmw-specific) for the
736  * specified plane.
737  */
738 void
739 vmw_du_plane_destroy_state(struct drm_plane *plane,
740 			   struct drm_plane_state *state)
741 {
742 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
743 
744 
745 	/* Should have been freed by cleanup_fb */
746 	if (vps->surf)
747 		vmw_surface_unreference(&vps->surf);
748 
749 	if (vps->bo)
750 		vmw_bo_unreference(&vps->bo);
751 
752 	drm_atomic_helper_plane_destroy_state(plane, state);
753 }
754 
755 
756 /**
757  * vmw_du_connector_duplicate_state - duplicate connector state
758  * @connector: DRM connector
759  *
760  * Allocates and returns a copy of the connector state (both common and
761  * vmw-specific) for the specified connector.
762  *
763  * Returns: The newly allocated connector state, or NULL on failure.
764  */
765 struct drm_connector_state *
766 vmw_du_connector_duplicate_state(struct drm_connector *connector)
767 {
768 	struct drm_connector_state *state;
769 	struct vmw_connector_state *vcs;
770 
771 	if (WARN_ON(!connector->state))
772 		return NULL;
773 
774 	vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
775 
776 	if (!vcs)
777 		return NULL;
778 
779 	state = &vcs->base;
780 
781 	__drm_atomic_helper_connector_duplicate_state(connector, state);
782 
783 	return state;
784 }
785 
786 
787 /**
788  * vmw_du_connector_reset - creates a blank vmw connector state
789  * @connector: DRM connector
790  *
791  * Resets the atomic state for @connector by freeing the state pointer (which
792  * might be NULL, e.g. at driver load time) and allocating a new empty state
793  * object.
794  */
795 void vmw_du_connector_reset(struct drm_connector *connector)
796 {
797 	struct vmw_connector_state *vcs;
798 
799 
800 	if (connector->state) {
801 		__drm_atomic_helper_connector_destroy_state(connector->state);
802 
803 		kfree(vmw_connector_state_to_vcs(connector->state));
804 	}
805 
806 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
807 
808 	if (!vcs) {
809 		DRM_ERROR("Cannot allocate vmw_connector_state\n");
810 		return;
811 	}
812 
813 	__drm_atomic_helper_connector_reset(connector, &vcs->base);
814 }
815 
816 
817 /**
818  * vmw_du_connector_destroy_state - destroy connector state
819  * @connector: DRM connector
820  * @state: state object to destroy
821  *
822  * Destroys the connector state (both common and vmw-specific) for the
823  * specified plane.
824  */
825 void
826 vmw_du_connector_destroy_state(struct drm_connector *connector,
827 			  struct drm_connector_state *state)
828 {
829 	drm_atomic_helper_connector_destroy_state(connector, state);
830 }
831 /*
832  * Generic framebuffer code
833  */
834 
835 /*
836  * Surface framebuffer code
837  */
838 
839 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
840 {
841 	struct vmw_framebuffer_surface *vfbs =
842 		vmw_framebuffer_to_vfbs(framebuffer);
843 
844 	drm_framebuffer_cleanup(framebuffer);
845 	vmw_surface_unreference(&vfbs->surface);
846 	if (vfbs->base.user_obj)
847 		ttm_base_object_unref(&vfbs->base.user_obj);
848 
849 	kfree(vfbs);
850 }
851 
852 /**
853  * vmw_kms_readback - Perform a readback from the screen system to
854  * a buffer-object backed framebuffer.
855  *
856  * @dev_priv: Pointer to the device private structure.
857  * @file_priv: Pointer to a struct drm_file identifying the caller.
858  * Must be set to NULL if @user_fence_rep is NULL.
859  * @vfb: Pointer to the buffer-object backed framebuffer.
860  * @user_fence_rep: User-space provided structure for fence information.
861  * Must be set to non-NULL if @file_priv is non-NULL.
862  * @vclips: Array of clip rects.
863  * @num_clips: Number of clip rects in @vclips.
864  *
865  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
866  * interrupted.
867  */
868 int vmw_kms_readback(struct vmw_private *dev_priv,
869 		     struct drm_file *file_priv,
870 		     struct vmw_framebuffer *vfb,
871 		     struct drm_vmw_fence_rep __user *user_fence_rep,
872 		     struct drm_vmw_rect *vclips,
873 		     uint32_t num_clips)
874 {
875 	switch (dev_priv->active_display_unit) {
876 	case vmw_du_screen_object:
877 		return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
878 					    user_fence_rep, vclips, num_clips,
879 					    NULL);
880 	case vmw_du_screen_target:
881 		return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
882 					user_fence_rep, NULL, vclips, num_clips,
883 					1, false, true, NULL);
884 	default:
885 		WARN_ONCE(true,
886 			  "Readback called with invalid display system.\n");
887 }
888 
889 	return -ENOSYS;
890 }
891 
892 
893 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
894 	.destroy = vmw_framebuffer_surface_destroy,
895 	.dirty = drm_atomic_helper_dirtyfb,
896 };
897 
898 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
899 					   struct vmw_surface *surface,
900 					   struct vmw_framebuffer **out,
901 					   const struct drm_mode_fb_cmd2
902 					   *mode_cmd,
903 					   bool is_bo_proxy)
904 
905 {
906 	struct drm_device *dev = &dev_priv->drm;
907 	struct vmw_framebuffer_surface *vfbs;
908 	enum SVGA3dSurfaceFormat format;
909 	int ret;
910 
911 	/* 3D is only supported on HWv8 and newer hosts */
912 	if (dev_priv->active_display_unit == vmw_du_legacy)
913 		return -ENOSYS;
914 
915 	/*
916 	 * Sanity checks.
917 	 */
918 
919 	/* Surface must be marked as a scanout. */
920 	if (unlikely(!surface->metadata.scanout))
921 		return -EINVAL;
922 
923 	if (unlikely(surface->metadata.mip_levels[0] != 1 ||
924 		     surface->metadata.num_sizes != 1 ||
925 		     surface->metadata.base_size.width < mode_cmd->width ||
926 		     surface->metadata.base_size.height < mode_cmd->height ||
927 		     surface->metadata.base_size.depth != 1)) {
928 		DRM_ERROR("Incompatible surface dimensions "
929 			  "for requested mode.\n");
930 		return -EINVAL;
931 	}
932 
933 	switch (mode_cmd->pixel_format) {
934 	case DRM_FORMAT_ARGB8888:
935 		format = SVGA3D_A8R8G8B8;
936 		break;
937 	case DRM_FORMAT_XRGB8888:
938 		format = SVGA3D_X8R8G8B8;
939 		break;
940 	case DRM_FORMAT_RGB565:
941 		format = SVGA3D_R5G6B5;
942 		break;
943 	case DRM_FORMAT_XRGB1555:
944 		format = SVGA3D_A1R5G5B5;
945 		break;
946 	default:
947 		DRM_ERROR("Invalid pixel format: %p4cc\n",
948 			  &mode_cmd->pixel_format);
949 		return -EINVAL;
950 	}
951 
952 	/*
953 	 * For DX, surface format validation is done when surface->scanout
954 	 * is set.
955 	 */
956 	if (!has_sm4_context(dev_priv) && format != surface->metadata.format) {
957 		DRM_ERROR("Invalid surface format for requested mode.\n");
958 		return -EINVAL;
959 	}
960 
961 	vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
962 	if (!vfbs) {
963 		ret = -ENOMEM;
964 		goto out_err1;
965 	}
966 
967 	drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
968 	vfbs->surface = vmw_surface_reference(surface);
969 	vfbs->base.user_handle = mode_cmd->handles[0];
970 	vfbs->is_bo_proxy = is_bo_proxy;
971 
972 	*out = &vfbs->base;
973 
974 	ret = drm_framebuffer_init(dev, &vfbs->base.base,
975 				   &vmw_framebuffer_surface_funcs);
976 	if (ret)
977 		goto out_err2;
978 
979 	return 0;
980 
981 out_err2:
982 	vmw_surface_unreference(&surface);
983 	kfree(vfbs);
984 out_err1:
985 	return ret;
986 }
987 
988 /*
989  * Buffer-object framebuffer code
990  */
991 
992 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer)
993 {
994 	struct vmw_framebuffer_bo *vfbd =
995 		vmw_framebuffer_to_vfbd(framebuffer);
996 
997 	drm_framebuffer_cleanup(framebuffer);
998 	vmw_bo_unreference(&vfbd->buffer);
999 	if (vfbd->base.user_obj)
1000 		ttm_base_object_unref(&vfbd->base.user_obj);
1001 
1002 	kfree(vfbd);
1003 }
1004 
1005 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer,
1006 				    struct drm_file *file_priv,
1007 				    unsigned int flags, unsigned int color,
1008 				    struct drm_clip_rect *clips,
1009 				    unsigned int num_clips)
1010 {
1011 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1012 	struct vmw_framebuffer_bo *vfbd =
1013 		vmw_framebuffer_to_vfbd(framebuffer);
1014 	struct drm_clip_rect norect;
1015 	int ret, increment = 1;
1016 
1017 	drm_modeset_lock_all(&dev_priv->drm);
1018 
1019 	if (!num_clips) {
1020 		num_clips = 1;
1021 		clips = &norect;
1022 		norect.x1 = norect.y1 = 0;
1023 		norect.x2 = framebuffer->width;
1024 		norect.y2 = framebuffer->height;
1025 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1026 		num_clips /= 2;
1027 		increment = 2;
1028 	}
1029 
1030 	switch (dev_priv->active_display_unit) {
1031 	case vmw_du_legacy:
1032 		ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0,
1033 					      clips, num_clips, increment);
1034 		break;
1035 	default:
1036 		ret = -EINVAL;
1037 		WARN_ONCE(true, "Dirty called with invalid display system.\n");
1038 		break;
1039 	}
1040 
1041 	vmw_cmd_flush(dev_priv, false);
1042 
1043 	drm_modeset_unlock_all(&dev_priv->drm);
1044 
1045 	return ret;
1046 }
1047 
1048 static int vmw_framebuffer_bo_dirty_ext(struct drm_framebuffer *framebuffer,
1049 					struct drm_file *file_priv,
1050 					unsigned int flags, unsigned int color,
1051 					struct drm_clip_rect *clips,
1052 					unsigned int num_clips)
1053 {
1054 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1055 
1056 	if (dev_priv->active_display_unit == vmw_du_legacy &&
1057 	    vmw_cmd_supported(dev_priv))
1058 		return vmw_framebuffer_bo_dirty(framebuffer, file_priv, flags,
1059 						color, clips, num_clips);
1060 
1061 	return drm_atomic_helper_dirtyfb(framebuffer, file_priv, flags, color,
1062 					 clips, num_clips);
1063 }
1064 
1065 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = {
1066 	.destroy = vmw_framebuffer_bo_destroy,
1067 	.dirty = vmw_framebuffer_bo_dirty_ext,
1068 };
1069 
1070 /*
1071  * Pin the bofer in a location suitable for access by the
1072  * display system.
1073  */
1074 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1075 {
1076 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1077 	struct vmw_buffer_object *buf;
1078 	struct ttm_placement *placement;
1079 	int ret;
1080 
1081 	buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1082 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1083 
1084 	if (!buf)
1085 		return 0;
1086 
1087 	switch (dev_priv->active_display_unit) {
1088 	case vmw_du_legacy:
1089 		vmw_overlay_pause_all(dev_priv);
1090 		ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false);
1091 		vmw_overlay_resume_all(dev_priv);
1092 		break;
1093 	case vmw_du_screen_object:
1094 	case vmw_du_screen_target:
1095 		if (vfb->bo) {
1096 			if (dev_priv->capabilities & SVGA_CAP_3D) {
1097 				/*
1098 				 * Use surface DMA to get content to
1099 				 * sreen target surface.
1100 				 */
1101 				placement = &vmw_vram_gmr_placement;
1102 			} else {
1103 				/* Use CPU blit. */
1104 				placement = &vmw_sys_placement;
1105 			}
1106 		} else {
1107 			/* Use surface / image update */
1108 			placement = &vmw_mob_placement;
1109 		}
1110 
1111 		return vmw_bo_pin_in_placement(dev_priv, buf, placement, false);
1112 	default:
1113 		return -EINVAL;
1114 	}
1115 
1116 	return ret;
1117 }
1118 
1119 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1120 {
1121 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1122 	struct vmw_buffer_object *buf;
1123 
1124 	buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1125 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1126 
1127 	if (WARN_ON(!buf))
1128 		return 0;
1129 
1130 	return vmw_bo_unpin(dev_priv, buf, false);
1131 }
1132 
1133 /**
1134  * vmw_create_bo_proxy - create a proxy surface for the buffer object
1135  *
1136  * @dev: DRM device
1137  * @mode_cmd: parameters for the new surface
1138  * @bo_mob: MOB backing the buffer object
1139  * @srf_out: newly created surface
1140  *
1141  * When the content FB is a buffer object, we create a surface as a proxy to the
1142  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1143  * This is a more efficient approach
1144  *
1145  * RETURNS:
1146  * 0 on success, error code otherwise
1147  */
1148 static int vmw_create_bo_proxy(struct drm_device *dev,
1149 			       const struct drm_mode_fb_cmd2 *mode_cmd,
1150 			       struct vmw_buffer_object *bo_mob,
1151 			       struct vmw_surface **srf_out)
1152 {
1153 	struct vmw_surface_metadata metadata = {0};
1154 	uint32_t format;
1155 	struct vmw_resource *res;
1156 	unsigned int bytes_pp;
1157 	int ret;
1158 
1159 	switch (mode_cmd->pixel_format) {
1160 	case DRM_FORMAT_ARGB8888:
1161 	case DRM_FORMAT_XRGB8888:
1162 		format = SVGA3D_X8R8G8B8;
1163 		bytes_pp = 4;
1164 		break;
1165 
1166 	case DRM_FORMAT_RGB565:
1167 	case DRM_FORMAT_XRGB1555:
1168 		format = SVGA3D_R5G6B5;
1169 		bytes_pp = 2;
1170 		break;
1171 
1172 	case 8:
1173 		format = SVGA3D_P8;
1174 		bytes_pp = 1;
1175 		break;
1176 
1177 	default:
1178 		DRM_ERROR("Invalid framebuffer format %p4cc\n",
1179 			  &mode_cmd->pixel_format);
1180 		return -EINVAL;
1181 	}
1182 
1183 	metadata.format = format;
1184 	metadata.mip_levels[0] = 1;
1185 	metadata.num_sizes = 1;
1186 	metadata.base_size.width = mode_cmd->pitches[0] / bytes_pp;
1187 	metadata.base_size.height =  mode_cmd->height;
1188 	metadata.base_size.depth = 1;
1189 	metadata.scanout = true;
1190 
1191 	ret = vmw_gb_surface_define(vmw_priv(dev), 0, &metadata, srf_out);
1192 	if (ret) {
1193 		DRM_ERROR("Failed to allocate proxy content buffer\n");
1194 		return ret;
1195 	}
1196 
1197 	res = &(*srf_out)->res;
1198 
1199 	/* Reserve and switch the backing mob. */
1200 	mutex_lock(&res->dev_priv->cmdbuf_mutex);
1201 	(void) vmw_resource_reserve(res, false, true);
1202 	vmw_bo_unreference(&res->backup);
1203 	res->backup = vmw_bo_reference(bo_mob);
1204 	res->backup_offset = 0;
1205 	vmw_resource_unreserve(res, false, false, false, NULL, 0);
1206 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1207 
1208 	return 0;
1209 }
1210 
1211 
1212 
1213 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv,
1214 				      struct vmw_buffer_object *bo,
1215 				      struct vmw_framebuffer **out,
1216 				      const struct drm_mode_fb_cmd2
1217 				      *mode_cmd)
1218 
1219 {
1220 	struct drm_device *dev = &dev_priv->drm;
1221 	struct vmw_framebuffer_bo *vfbd;
1222 	unsigned int requested_size;
1223 	int ret;
1224 
1225 	requested_size = mode_cmd->height * mode_cmd->pitches[0];
1226 	if (unlikely(requested_size > bo->base.base.size)) {
1227 		DRM_ERROR("Screen buffer object size is too small "
1228 			  "for requested mode.\n");
1229 		return -EINVAL;
1230 	}
1231 
1232 	/* Limited framebuffer color depth support for screen objects */
1233 	if (dev_priv->active_display_unit == vmw_du_screen_object) {
1234 		switch (mode_cmd->pixel_format) {
1235 		case DRM_FORMAT_XRGB8888:
1236 		case DRM_FORMAT_ARGB8888:
1237 			break;
1238 		case DRM_FORMAT_XRGB1555:
1239 		case DRM_FORMAT_RGB565:
1240 			break;
1241 		default:
1242 			DRM_ERROR("Invalid pixel format: %p4cc\n",
1243 				  &mode_cmd->pixel_format);
1244 			return -EINVAL;
1245 		}
1246 	}
1247 
1248 	vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1249 	if (!vfbd) {
1250 		ret = -ENOMEM;
1251 		goto out_err1;
1252 	}
1253 
1254 	drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1255 	vfbd->base.bo = true;
1256 	vfbd->buffer = vmw_bo_reference(bo);
1257 	vfbd->base.user_handle = mode_cmd->handles[0];
1258 	*out = &vfbd->base;
1259 
1260 	ret = drm_framebuffer_init(dev, &vfbd->base.base,
1261 				   &vmw_framebuffer_bo_funcs);
1262 	if (ret)
1263 		goto out_err2;
1264 
1265 	return 0;
1266 
1267 out_err2:
1268 	vmw_bo_unreference(&bo);
1269 	kfree(vfbd);
1270 out_err1:
1271 	return ret;
1272 }
1273 
1274 
1275 /**
1276  * vmw_kms_srf_ok - check if a surface can be created
1277  *
1278  * @dev_priv: Pointer to device private struct.
1279  * @width: requested width
1280  * @height: requested height
1281  *
1282  * Surfaces need to be less than texture size
1283  */
1284 static bool
1285 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1286 {
1287 	if (width  > dev_priv->texture_max_width ||
1288 	    height > dev_priv->texture_max_height)
1289 		return false;
1290 
1291 	return true;
1292 }
1293 
1294 /**
1295  * vmw_kms_new_framebuffer - Create a new framebuffer.
1296  *
1297  * @dev_priv: Pointer to device private struct.
1298  * @bo: Pointer to buffer object to wrap the kms framebuffer around.
1299  * Either @bo or @surface must be NULL.
1300  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1301  * Either @bo or @surface must be NULL.
1302  * @only_2d: No presents will occur to this buffer object based framebuffer.
1303  * This helps the code to do some important optimizations.
1304  * @mode_cmd: Frame-buffer metadata.
1305  */
1306 struct vmw_framebuffer *
1307 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1308 			struct vmw_buffer_object *bo,
1309 			struct vmw_surface *surface,
1310 			bool only_2d,
1311 			const struct drm_mode_fb_cmd2 *mode_cmd)
1312 {
1313 	struct vmw_framebuffer *vfb = NULL;
1314 	bool is_bo_proxy = false;
1315 	int ret;
1316 
1317 	/*
1318 	 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1319 	 * therefore, wrap the buffer object in a surface so we can use the
1320 	 * SurfaceCopy command.
1321 	 */
1322 	if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1323 	    bo && only_2d &&
1324 	    mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1325 	    dev_priv->active_display_unit == vmw_du_screen_target) {
1326 		ret = vmw_create_bo_proxy(&dev_priv->drm, mode_cmd,
1327 					  bo, &surface);
1328 		if (ret)
1329 			return ERR_PTR(ret);
1330 
1331 		is_bo_proxy = true;
1332 	}
1333 
1334 	/* Create the new framebuffer depending one what we have */
1335 	if (surface) {
1336 		ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1337 						      mode_cmd,
1338 						      is_bo_proxy);
1339 
1340 		/*
1341 		 * vmw_create_bo_proxy() adds a reference that is no longer
1342 		 * needed
1343 		 */
1344 		if (is_bo_proxy)
1345 			vmw_surface_unreference(&surface);
1346 	} else if (bo) {
1347 		ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb,
1348 						 mode_cmd);
1349 	} else {
1350 		BUG();
1351 	}
1352 
1353 	if (ret)
1354 		return ERR_PTR(ret);
1355 
1356 	vfb->pin = vmw_framebuffer_pin;
1357 	vfb->unpin = vmw_framebuffer_unpin;
1358 
1359 	return vfb;
1360 }
1361 
1362 /*
1363  * Generic Kernel modesetting functions
1364  */
1365 
1366 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1367 						 struct drm_file *file_priv,
1368 						 const struct drm_mode_fb_cmd2 *mode_cmd)
1369 {
1370 	struct vmw_private *dev_priv = vmw_priv(dev);
1371 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1372 	struct vmw_framebuffer *vfb = NULL;
1373 	struct vmw_surface *surface = NULL;
1374 	struct vmw_buffer_object *bo = NULL;
1375 	struct ttm_base_object *user_obj;
1376 	int ret;
1377 
1378 	/*
1379 	 * Take a reference on the user object of the resource
1380 	 * backing the kms fb. This ensures that user-space handle
1381 	 * lookups on that resource will always work as long as
1382 	 * it's registered with a kms framebuffer. This is important,
1383 	 * since vmw_execbuf_process identifies resources in the
1384 	 * command stream using user-space handles.
1385 	 */
1386 
1387 	user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1388 	if (unlikely(user_obj == NULL)) {
1389 		DRM_ERROR("Could not locate requested kms frame buffer.\n");
1390 		return ERR_PTR(-ENOENT);
1391 	}
1392 
1393 	/**
1394 	 * End conditioned code.
1395 	 */
1396 
1397 	/* returns either a bo or surface */
1398 	ret = vmw_user_lookup_handle(dev_priv, tfile,
1399 				     mode_cmd->handles[0],
1400 				     &surface, &bo);
1401 	if (ret)
1402 		goto err_out;
1403 
1404 
1405 	if (!bo &&
1406 	    !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1407 		DRM_ERROR("Surface size cannot exceed %dx%d",
1408 			dev_priv->texture_max_width,
1409 			dev_priv->texture_max_height);
1410 		goto err_out;
1411 	}
1412 
1413 
1414 	vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1415 				      !(dev_priv->capabilities & SVGA_CAP_3D),
1416 				      mode_cmd);
1417 	if (IS_ERR(vfb)) {
1418 		ret = PTR_ERR(vfb);
1419 		goto err_out;
1420  	}
1421 
1422 err_out:
1423 	/* vmw_user_lookup_handle takes one ref so does new_fb */
1424 	if (bo)
1425 		vmw_bo_unreference(&bo);
1426 	if (surface)
1427 		vmw_surface_unreference(&surface);
1428 
1429 	if (ret) {
1430 		DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1431 		ttm_base_object_unref(&user_obj);
1432 		return ERR_PTR(ret);
1433 	} else
1434 		vfb->user_obj = user_obj;
1435 
1436 	return &vfb->base;
1437 }
1438 
1439 /**
1440  * vmw_kms_check_display_memory - Validates display memory required for a
1441  * topology
1442  * @dev: DRM device
1443  * @num_rects: number of drm_rect in rects
1444  * @rects: array of drm_rect representing the topology to validate indexed by
1445  * crtc index.
1446  *
1447  * Returns:
1448  * 0 on success otherwise negative error code
1449  */
1450 static int vmw_kms_check_display_memory(struct drm_device *dev,
1451 					uint32_t num_rects,
1452 					struct drm_rect *rects)
1453 {
1454 	struct vmw_private *dev_priv = vmw_priv(dev);
1455 	struct drm_rect bounding_box = {0};
1456 	u64 total_pixels = 0, pixel_mem, bb_mem;
1457 	int i;
1458 
1459 	for (i = 0; i < num_rects; i++) {
1460 		/*
1461 		 * For STDU only individual screen (screen target) is limited by
1462 		 * SCREENTARGET_MAX_WIDTH/HEIGHT registers.
1463 		 */
1464 		if (dev_priv->active_display_unit == vmw_du_screen_target &&
1465 		    (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width ||
1466 		     drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) {
1467 			VMW_DEBUG_KMS("Screen size not supported.\n");
1468 			return -EINVAL;
1469 		}
1470 
1471 		/* Bounding box upper left is at (0,0). */
1472 		if (rects[i].x2 > bounding_box.x2)
1473 			bounding_box.x2 = rects[i].x2;
1474 
1475 		if (rects[i].y2 > bounding_box.y2)
1476 			bounding_box.y2 = rects[i].y2;
1477 
1478 		total_pixels += (u64) drm_rect_width(&rects[i]) *
1479 			(u64) drm_rect_height(&rects[i]);
1480 	}
1481 
1482 	/* Virtual svga device primary limits are always in 32-bpp. */
1483 	pixel_mem = total_pixels * 4;
1484 
1485 	/*
1486 	 * For HV10 and below prim_bb_mem is vram size. When
1487 	 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is
1488 	 * limit on primary bounding box
1489 	 */
1490 	if (pixel_mem > dev_priv->prim_bb_mem) {
1491 		VMW_DEBUG_KMS("Combined output size too large.\n");
1492 		return -EINVAL;
1493 	}
1494 
1495 	/* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */
1496 	if (dev_priv->active_display_unit != vmw_du_screen_target ||
1497 	    !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) {
1498 		bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4;
1499 
1500 		if (bb_mem > dev_priv->prim_bb_mem) {
1501 			VMW_DEBUG_KMS("Topology is beyond supported limits.\n");
1502 			return -EINVAL;
1503 		}
1504 	}
1505 
1506 	return 0;
1507 }
1508 
1509 /**
1510  * vmw_crtc_state_and_lock - Return new or current crtc state with locked
1511  * crtc mutex
1512  * @state: The atomic state pointer containing the new atomic state
1513  * @crtc: The crtc
1514  *
1515  * This function returns the new crtc state if it's part of the state update.
1516  * Otherwise returns the current crtc state. It also makes sure that the
1517  * crtc mutex is locked.
1518  *
1519  * Returns: A valid crtc state pointer or NULL. It may also return a
1520  * pointer error, in particular -EDEADLK if locking needs to be rerun.
1521  */
1522 static struct drm_crtc_state *
1523 vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc)
1524 {
1525 	struct drm_crtc_state *crtc_state;
1526 
1527 	crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
1528 	if (crtc_state) {
1529 		lockdep_assert_held(&crtc->mutex.mutex.base);
1530 	} else {
1531 		int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx);
1532 
1533 		if (ret != 0 && ret != -EALREADY)
1534 			return ERR_PTR(ret);
1535 
1536 		crtc_state = crtc->state;
1537 	}
1538 
1539 	return crtc_state;
1540 }
1541 
1542 /**
1543  * vmw_kms_check_implicit - Verify that all implicit display units scan out
1544  * from the same fb after the new state is committed.
1545  * @dev: The drm_device.
1546  * @state: The new state to be checked.
1547  *
1548  * Returns:
1549  *   Zero on success,
1550  *   -EINVAL on invalid state,
1551  *   -EDEADLK if modeset locking needs to be rerun.
1552  */
1553 static int vmw_kms_check_implicit(struct drm_device *dev,
1554 				  struct drm_atomic_state *state)
1555 {
1556 	struct drm_framebuffer *implicit_fb = NULL;
1557 	struct drm_crtc *crtc;
1558 	struct drm_crtc_state *crtc_state;
1559 	struct drm_plane_state *plane_state;
1560 
1561 	drm_for_each_crtc(crtc, dev) {
1562 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1563 
1564 		if (!du->is_implicit)
1565 			continue;
1566 
1567 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
1568 		if (IS_ERR(crtc_state))
1569 			return PTR_ERR(crtc_state);
1570 
1571 		if (!crtc_state || !crtc_state->enable)
1572 			continue;
1573 
1574 		/*
1575 		 * Can't move primary planes across crtcs, so this is OK.
1576 		 * It also means we don't need to take the plane mutex.
1577 		 */
1578 		plane_state = du->primary.state;
1579 		if (plane_state->crtc != crtc)
1580 			continue;
1581 
1582 		if (!implicit_fb)
1583 			implicit_fb = plane_state->fb;
1584 		else if (implicit_fb != plane_state->fb)
1585 			return -EINVAL;
1586 	}
1587 
1588 	return 0;
1589 }
1590 
1591 /**
1592  * vmw_kms_check_topology - Validates topology in drm_atomic_state
1593  * @dev: DRM device
1594  * @state: the driver state object
1595  *
1596  * Returns:
1597  * 0 on success otherwise negative error code
1598  */
1599 static int vmw_kms_check_topology(struct drm_device *dev,
1600 				  struct drm_atomic_state *state)
1601 {
1602 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
1603 	struct drm_rect *rects;
1604 	struct drm_crtc *crtc;
1605 	uint32_t i;
1606 	int ret = 0;
1607 
1608 	rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect),
1609 			GFP_KERNEL);
1610 	if (!rects)
1611 		return -ENOMEM;
1612 
1613 	drm_for_each_crtc(crtc, dev) {
1614 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1615 		struct drm_crtc_state *crtc_state;
1616 
1617 		i = drm_crtc_index(crtc);
1618 
1619 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
1620 		if (IS_ERR(crtc_state)) {
1621 			ret = PTR_ERR(crtc_state);
1622 			goto clean;
1623 		}
1624 
1625 		if (!crtc_state)
1626 			continue;
1627 
1628 		if (crtc_state->enable) {
1629 			rects[i].x1 = du->gui_x;
1630 			rects[i].y1 = du->gui_y;
1631 			rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay;
1632 			rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay;
1633 		} else {
1634 			rects[i].x1 = 0;
1635 			rects[i].y1 = 0;
1636 			rects[i].x2 = 0;
1637 			rects[i].y2 = 0;
1638 		}
1639 	}
1640 
1641 	/* Determine change to topology due to new atomic state */
1642 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
1643 				      new_crtc_state, i) {
1644 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1645 		struct drm_connector *connector;
1646 		struct drm_connector_state *conn_state;
1647 		struct vmw_connector_state *vmw_conn_state;
1648 
1649 		if (!du->pref_active && new_crtc_state->enable) {
1650 			VMW_DEBUG_KMS("Enabling a disabled display unit\n");
1651 			ret = -EINVAL;
1652 			goto clean;
1653 		}
1654 
1655 		/*
1656 		 * For vmwgfx each crtc has only one connector attached and it
1657 		 * is not changed so don't really need to check the
1658 		 * crtc->connector_mask and iterate over it.
1659 		 */
1660 		connector = &du->connector;
1661 		conn_state = drm_atomic_get_connector_state(state, connector);
1662 		if (IS_ERR(conn_state)) {
1663 			ret = PTR_ERR(conn_state);
1664 			goto clean;
1665 		}
1666 
1667 		vmw_conn_state = vmw_connector_state_to_vcs(conn_state);
1668 		vmw_conn_state->gui_x = du->gui_x;
1669 		vmw_conn_state->gui_y = du->gui_y;
1670 	}
1671 
1672 	ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc,
1673 					   rects);
1674 
1675 clean:
1676 	kfree(rects);
1677 	return ret;
1678 }
1679 
1680 /**
1681  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1682  *
1683  * @dev: DRM device
1684  * @state: the driver state object
1685  *
1686  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1687  * us to assign a value to mode->crtc_clock so that
1688  * drm_calc_timestamping_constants() won't throw an error message
1689  *
1690  * Returns:
1691  * Zero for success or -errno
1692  */
1693 static int
1694 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1695 			     struct drm_atomic_state *state)
1696 {
1697 	struct drm_crtc *crtc;
1698 	struct drm_crtc_state *crtc_state;
1699 	bool need_modeset = false;
1700 	int i, ret;
1701 
1702 	ret = drm_atomic_helper_check(dev, state);
1703 	if (ret)
1704 		return ret;
1705 
1706 	ret = vmw_kms_check_implicit(dev, state);
1707 	if (ret) {
1708 		VMW_DEBUG_KMS("Invalid implicit state\n");
1709 		return ret;
1710 	}
1711 
1712 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1713 		if (drm_atomic_crtc_needs_modeset(crtc_state))
1714 			need_modeset = true;
1715 	}
1716 
1717 	if (need_modeset)
1718 		return vmw_kms_check_topology(dev, state);
1719 
1720 	return ret;
1721 }
1722 
1723 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1724 	.fb_create = vmw_kms_fb_create,
1725 	.atomic_check = vmw_kms_atomic_check_modeset,
1726 	.atomic_commit = drm_atomic_helper_commit,
1727 };
1728 
1729 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1730 				   struct drm_file *file_priv,
1731 				   struct vmw_framebuffer *vfb,
1732 				   struct vmw_surface *surface,
1733 				   uint32_t sid,
1734 				   int32_t destX, int32_t destY,
1735 				   struct drm_vmw_rect *clips,
1736 				   uint32_t num_clips)
1737 {
1738 	return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1739 					    &surface->res, destX, destY,
1740 					    num_clips, 1, NULL, NULL);
1741 }
1742 
1743 
1744 int vmw_kms_present(struct vmw_private *dev_priv,
1745 		    struct drm_file *file_priv,
1746 		    struct vmw_framebuffer *vfb,
1747 		    struct vmw_surface *surface,
1748 		    uint32_t sid,
1749 		    int32_t destX, int32_t destY,
1750 		    struct drm_vmw_rect *clips,
1751 		    uint32_t num_clips)
1752 {
1753 	int ret;
1754 
1755 	switch (dev_priv->active_display_unit) {
1756 	case vmw_du_screen_target:
1757 		ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1758 						 &surface->res, destX, destY,
1759 						 num_clips, 1, NULL, NULL);
1760 		break;
1761 	case vmw_du_screen_object:
1762 		ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1763 					      sid, destX, destY, clips,
1764 					      num_clips);
1765 		break;
1766 	default:
1767 		WARN_ONCE(true,
1768 			  "Present called with invalid display system.\n");
1769 		ret = -ENOSYS;
1770 		break;
1771 	}
1772 	if (ret)
1773 		return ret;
1774 
1775 	vmw_cmd_flush(dev_priv, false);
1776 
1777 	return 0;
1778 }
1779 
1780 static void
1781 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1782 {
1783 	if (dev_priv->hotplug_mode_update_property)
1784 		return;
1785 
1786 	dev_priv->hotplug_mode_update_property =
1787 		drm_property_create_range(&dev_priv->drm,
1788 					  DRM_MODE_PROP_IMMUTABLE,
1789 					  "hotplug_mode_update", 0, 1);
1790 }
1791 
1792 int vmw_kms_init(struct vmw_private *dev_priv)
1793 {
1794 	struct drm_device *dev = &dev_priv->drm;
1795 	int ret;
1796 
1797 	drm_mode_config_init(dev);
1798 	dev->mode_config.funcs = &vmw_kms_funcs;
1799 	dev->mode_config.min_width = 1;
1800 	dev->mode_config.min_height = 1;
1801 	dev->mode_config.max_width = dev_priv->texture_max_width;
1802 	dev->mode_config.max_height = dev_priv->texture_max_height;
1803 
1804 	drm_mode_create_suggested_offset_properties(dev);
1805 	vmw_kms_create_hotplug_mode_update_property(dev_priv);
1806 
1807 	ret = vmw_kms_stdu_init_display(dev_priv);
1808 	if (ret) {
1809 		ret = vmw_kms_sou_init_display(dev_priv);
1810 		if (ret) /* Fallback */
1811 			ret = vmw_kms_ldu_init_display(dev_priv);
1812 	}
1813 
1814 	return ret;
1815 }
1816 
1817 int vmw_kms_close(struct vmw_private *dev_priv)
1818 {
1819 	int ret = 0;
1820 
1821 	/*
1822 	 * Docs says we should take the lock before calling this function
1823 	 * but since it destroys encoders and our destructor calls
1824 	 * drm_encoder_cleanup which takes the lock we deadlock.
1825 	 */
1826 	drm_mode_config_cleanup(&dev_priv->drm);
1827 	if (dev_priv->active_display_unit == vmw_du_legacy)
1828 		ret = vmw_kms_ldu_close_display(dev_priv);
1829 
1830 	return ret;
1831 }
1832 
1833 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1834 				struct drm_file *file_priv)
1835 {
1836 	struct drm_vmw_cursor_bypass_arg *arg = data;
1837 	struct vmw_display_unit *du;
1838 	struct drm_crtc *crtc;
1839 	int ret = 0;
1840 
1841 
1842 	mutex_lock(&dev->mode_config.mutex);
1843 	if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1844 
1845 		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1846 			du = vmw_crtc_to_du(crtc);
1847 			du->hotspot_x = arg->xhot;
1848 			du->hotspot_y = arg->yhot;
1849 		}
1850 
1851 		mutex_unlock(&dev->mode_config.mutex);
1852 		return 0;
1853 	}
1854 
1855 	crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
1856 	if (!crtc) {
1857 		ret = -ENOENT;
1858 		goto out;
1859 	}
1860 
1861 	du = vmw_crtc_to_du(crtc);
1862 
1863 	du->hotspot_x = arg->xhot;
1864 	du->hotspot_y = arg->yhot;
1865 
1866 out:
1867 	mutex_unlock(&dev->mode_config.mutex);
1868 
1869 	return ret;
1870 }
1871 
1872 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1873 			unsigned width, unsigned height, unsigned pitch,
1874 			unsigned bpp, unsigned depth)
1875 {
1876 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1877 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1878 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1879 		vmw_fifo_mem_write(vmw_priv, SVGA_FIFO_PITCHLOCK, pitch);
1880 	vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1881 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1882 	if ((vmw_priv->capabilities & SVGA_CAP_8BIT_EMULATION) != 0)
1883 		vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1884 
1885 	if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1886 		DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1887 			  depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1888 		return -EINVAL;
1889 	}
1890 
1891 	return 0;
1892 }
1893 
1894 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1895 				uint32_t pitch,
1896 				uint32_t height)
1897 {
1898 	return ((u64) pitch * (u64) height) < (u64)
1899 		((dev_priv->active_display_unit == vmw_du_screen_target) ?
1900 		 dev_priv->prim_bb_mem : dev_priv->vram_size);
1901 }
1902 
1903 
1904 /*
1905  * Function called by DRM code called with vbl_lock held.
1906  */
1907 u32 vmw_get_vblank_counter(struct drm_crtc *crtc)
1908 {
1909 	return 0;
1910 }
1911 
1912 /*
1913  * Function called by DRM code called with vbl_lock held.
1914  */
1915 int vmw_enable_vblank(struct drm_crtc *crtc)
1916 {
1917 	return -EINVAL;
1918 }
1919 
1920 /*
1921  * Function called by DRM code called with vbl_lock held.
1922  */
1923 void vmw_disable_vblank(struct drm_crtc *crtc)
1924 {
1925 }
1926 
1927 /**
1928  * vmw_du_update_layout - Update the display unit with topology from resolution
1929  * plugin and generate DRM uevent
1930  * @dev_priv: device private
1931  * @num_rects: number of drm_rect in rects
1932  * @rects: toplogy to update
1933  */
1934 static int vmw_du_update_layout(struct vmw_private *dev_priv,
1935 				unsigned int num_rects, struct drm_rect *rects)
1936 {
1937 	struct drm_device *dev = &dev_priv->drm;
1938 	struct vmw_display_unit *du;
1939 	struct drm_connector *con;
1940 	struct drm_connector_list_iter conn_iter;
1941 	struct drm_modeset_acquire_ctx ctx;
1942 	struct drm_crtc *crtc;
1943 	int ret;
1944 
1945 	/* Currently gui_x/y is protected with the crtc mutex */
1946 	mutex_lock(&dev->mode_config.mutex);
1947 	drm_modeset_acquire_init(&ctx, 0);
1948 retry:
1949 	drm_for_each_crtc(crtc, dev) {
1950 		ret = drm_modeset_lock(&crtc->mutex, &ctx);
1951 		if (ret < 0) {
1952 			if (ret == -EDEADLK) {
1953 				drm_modeset_backoff(&ctx);
1954 				goto retry;
1955       		}
1956 			goto out_fini;
1957 		}
1958 	}
1959 
1960 	drm_connector_list_iter_begin(dev, &conn_iter);
1961 	drm_for_each_connector_iter(con, &conn_iter) {
1962 		du = vmw_connector_to_du(con);
1963 		if (num_rects > du->unit) {
1964 			du->pref_width = drm_rect_width(&rects[du->unit]);
1965 			du->pref_height = drm_rect_height(&rects[du->unit]);
1966 			du->pref_active = true;
1967 			du->gui_x = rects[du->unit].x1;
1968 			du->gui_y = rects[du->unit].y1;
1969 		} else {
1970 			du->pref_width = 800;
1971 			du->pref_height = 600;
1972 			du->pref_active = false;
1973 			du->gui_x = 0;
1974 			du->gui_y = 0;
1975 		}
1976 	}
1977 	drm_connector_list_iter_end(&conn_iter);
1978 
1979 	list_for_each_entry(con, &dev->mode_config.connector_list, head) {
1980 		du = vmw_connector_to_du(con);
1981 		if (num_rects > du->unit) {
1982 			drm_object_property_set_value
1983 			  (&con->base, dev->mode_config.suggested_x_property,
1984 			   du->gui_x);
1985 			drm_object_property_set_value
1986 			  (&con->base, dev->mode_config.suggested_y_property,
1987 			   du->gui_y);
1988 		} else {
1989 			drm_object_property_set_value
1990 			  (&con->base, dev->mode_config.suggested_x_property,
1991 			   0);
1992 			drm_object_property_set_value
1993 			  (&con->base, dev->mode_config.suggested_y_property,
1994 			   0);
1995 		}
1996 		con->status = vmw_du_connector_detect(con, true);
1997 	}
1998 
1999 	drm_sysfs_hotplug_event(dev);
2000 out_fini:
2001 	drm_modeset_drop_locks(&ctx);
2002 	drm_modeset_acquire_fini(&ctx);
2003 	mutex_unlock(&dev->mode_config.mutex);
2004 
2005 	return 0;
2006 }
2007 
2008 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
2009 			  u16 *r, u16 *g, u16 *b,
2010 			  uint32_t size,
2011 			  struct drm_modeset_acquire_ctx *ctx)
2012 {
2013 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
2014 	int i;
2015 
2016 	for (i = 0; i < size; i++) {
2017 		DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
2018 			  r[i], g[i], b[i]);
2019 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
2020 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
2021 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
2022 	}
2023 
2024 	return 0;
2025 }
2026 
2027 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
2028 {
2029 	return 0;
2030 }
2031 
2032 enum drm_connector_status
2033 vmw_du_connector_detect(struct drm_connector *connector, bool force)
2034 {
2035 	uint32_t num_displays;
2036 	struct drm_device *dev = connector->dev;
2037 	struct vmw_private *dev_priv = vmw_priv(dev);
2038 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2039 
2040 	num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
2041 
2042 	return ((vmw_connector_to_du(connector)->unit < num_displays &&
2043 		 du->pref_active) ?
2044 		connector_status_connected : connector_status_disconnected);
2045 }
2046 
2047 static struct drm_display_mode vmw_kms_connector_builtin[] = {
2048 	/* 640x480@60Hz */
2049 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
2050 		   752, 800, 0, 480, 489, 492, 525, 0,
2051 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2052 	/* 800x600@60Hz */
2053 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
2054 		   968, 1056, 0, 600, 601, 605, 628, 0,
2055 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2056 	/* 1024x768@60Hz */
2057 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
2058 		   1184, 1344, 0, 768, 771, 777, 806, 0,
2059 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2060 	/* 1152x864@75Hz */
2061 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
2062 		   1344, 1600, 0, 864, 865, 868, 900, 0,
2063 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2064 	/* 1280x720@60Hz */
2065 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74500, 1280, 1344,
2066 		   1472, 1664, 0, 720, 723, 728, 748, 0,
2067 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2068 	/* 1280x768@60Hz */
2069 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
2070 		   1472, 1664, 0, 768, 771, 778, 798, 0,
2071 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2072 	/* 1280x800@60Hz */
2073 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
2074 		   1480, 1680, 0, 800, 803, 809, 831, 0,
2075 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2076 	/* 1280x960@60Hz */
2077 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
2078 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
2079 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2080 	/* 1280x1024@60Hz */
2081 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
2082 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
2083 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2084 	/* 1360x768@60Hz */
2085 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2086 		   1536, 1792, 0, 768, 771, 777, 795, 0,
2087 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2088 	/* 1440x1050@60Hz */
2089 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2090 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2091 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2092 	/* 1440x900@60Hz */
2093 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2094 		   1672, 1904, 0, 900, 903, 909, 934, 0,
2095 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2096 	/* 1600x1200@60Hz */
2097 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2098 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2099 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2100 	/* 1680x1050@60Hz */
2101 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2102 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2103 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2104 	/* 1792x1344@60Hz */
2105 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2106 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2107 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2108 	/* 1853x1392@60Hz */
2109 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2110 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2111 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2112 	/* 1920x1080@60Hz */
2113 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 173000, 1920, 2048,
2114 		   2248, 2576, 0, 1080, 1083, 1088, 1120, 0,
2115 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2116 	/* 1920x1200@60Hz */
2117 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2118 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2119 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2120 	/* 1920x1440@60Hz */
2121 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2122 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2123 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2124 	/* 2560x1440@60Hz */
2125 	{ DRM_MODE("2560x1440", DRM_MODE_TYPE_DRIVER, 241500, 2560, 2608,
2126 		   2640, 2720, 0, 1440, 1443, 1448, 1481, 0,
2127 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2128 	/* 2560x1600@60Hz */
2129 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2130 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2131 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2132 	/* 2880x1800@60Hz */
2133 	{ DRM_MODE("2880x1800", DRM_MODE_TYPE_DRIVER, 337500, 2880, 2928,
2134 		   2960, 3040, 0, 1800, 1803, 1809, 1852, 0,
2135 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2136 	/* 3840x2160@60Hz */
2137 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 533000, 3840, 3888,
2138 		   3920, 4000, 0, 2160, 2163, 2168, 2222, 0,
2139 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2140 	/* 3840x2400@60Hz */
2141 	{ DRM_MODE("3840x2400", DRM_MODE_TYPE_DRIVER, 592250, 3840, 3888,
2142 		   3920, 4000, 0, 2400, 2403, 2409, 2469, 0,
2143 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2144 	/* Terminate */
2145 	{ DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2146 };
2147 
2148 /**
2149  * vmw_guess_mode_timing - Provide fake timings for a
2150  * 60Hz vrefresh mode.
2151  *
2152  * @mode: Pointer to a struct drm_display_mode with hdisplay and vdisplay
2153  * members filled in.
2154  */
2155 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2156 {
2157 	mode->hsync_start = mode->hdisplay + 50;
2158 	mode->hsync_end = mode->hsync_start + 50;
2159 	mode->htotal = mode->hsync_end + 50;
2160 
2161 	mode->vsync_start = mode->vdisplay + 50;
2162 	mode->vsync_end = mode->vsync_start + 50;
2163 	mode->vtotal = mode->vsync_end + 50;
2164 
2165 	mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2166 }
2167 
2168 
2169 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2170 				uint32_t max_width, uint32_t max_height)
2171 {
2172 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2173 	struct drm_device *dev = connector->dev;
2174 	struct vmw_private *dev_priv = vmw_priv(dev);
2175 	struct drm_display_mode *mode = NULL;
2176 	struct drm_display_mode *bmode;
2177 	struct drm_display_mode prefmode = { DRM_MODE("preferred",
2178 		DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2179 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2180 		DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2181 	};
2182 	int i;
2183 	u32 assumed_bpp = 4;
2184 
2185 	if (dev_priv->assume_16bpp)
2186 		assumed_bpp = 2;
2187 
2188 	max_width  = min(max_width,  dev_priv->texture_max_width);
2189 	max_height = min(max_height, dev_priv->texture_max_height);
2190 
2191 	/*
2192 	 * For STDU extra limit for a mode on SVGA_REG_SCREENTARGET_MAX_WIDTH/
2193 	 * HEIGHT registers.
2194 	 */
2195 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2196 		max_width  = min(max_width,  dev_priv->stdu_max_width);
2197 		max_height = min(max_height, dev_priv->stdu_max_height);
2198 	}
2199 
2200 	/* Add preferred mode */
2201 	mode = drm_mode_duplicate(dev, &prefmode);
2202 	if (!mode)
2203 		return 0;
2204 	mode->hdisplay = du->pref_width;
2205 	mode->vdisplay = du->pref_height;
2206 	vmw_guess_mode_timing(mode);
2207 	drm_mode_set_name(mode);
2208 
2209 	if (vmw_kms_validate_mode_vram(dev_priv,
2210 					mode->hdisplay * assumed_bpp,
2211 					mode->vdisplay)) {
2212 		drm_mode_probed_add(connector, mode);
2213 	} else {
2214 		drm_mode_destroy(dev, mode);
2215 		mode = NULL;
2216 	}
2217 
2218 	if (du->pref_mode) {
2219 		list_del_init(&du->pref_mode->head);
2220 		drm_mode_destroy(dev, du->pref_mode);
2221 	}
2222 
2223 	/* mode might be null here, this is intended */
2224 	du->pref_mode = mode;
2225 
2226 	for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2227 		bmode = &vmw_kms_connector_builtin[i];
2228 		if (bmode->hdisplay > max_width ||
2229 		    bmode->vdisplay > max_height)
2230 			continue;
2231 
2232 		if (!vmw_kms_validate_mode_vram(dev_priv,
2233 						bmode->hdisplay * assumed_bpp,
2234 						bmode->vdisplay))
2235 			continue;
2236 
2237 		mode = drm_mode_duplicate(dev, bmode);
2238 		if (!mode)
2239 			return 0;
2240 
2241 		drm_mode_probed_add(connector, mode);
2242 	}
2243 
2244 	drm_connector_list_update(connector);
2245 	/* Move the prefered mode first, help apps pick the right mode. */
2246 	drm_mode_sort(&connector->modes);
2247 
2248 	return 1;
2249 }
2250 
2251 /**
2252  * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl
2253  * @dev: drm device for the ioctl
2254  * @data: data pointer for the ioctl
2255  * @file_priv: drm file for the ioctl call
2256  *
2257  * Update preferred topology of display unit as per ioctl request. The topology
2258  * is expressed as array of drm_vmw_rect.
2259  * e.g.
2260  * [0 0 640 480] [640 0 800 600] [0 480 640 480]
2261  *
2262  * NOTE:
2263  * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside
2264  * device limit on topology, x + w and y + h (lower right) cannot be greater
2265  * than INT_MAX. So topology beyond these limits will return with error.
2266  *
2267  * Returns:
2268  * Zero on success, negative errno on failure.
2269  */
2270 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2271 				struct drm_file *file_priv)
2272 {
2273 	struct vmw_private *dev_priv = vmw_priv(dev);
2274 	struct drm_mode_config *mode_config = &dev->mode_config;
2275 	struct drm_vmw_update_layout_arg *arg =
2276 		(struct drm_vmw_update_layout_arg *)data;
2277 	void __user *user_rects;
2278 	struct drm_vmw_rect *rects;
2279 	struct drm_rect *drm_rects;
2280 	unsigned rects_size;
2281 	int ret, i;
2282 
2283 	if (!arg->num_outputs) {
2284 		struct drm_rect def_rect = {0, 0, 800, 600};
2285 		VMW_DEBUG_KMS("Default layout x1 = %d y1 = %d x2 = %d y2 = %d\n",
2286 			      def_rect.x1, def_rect.y1,
2287 			      def_rect.x2, def_rect.y2);
2288 		vmw_du_update_layout(dev_priv, 1, &def_rect);
2289 		return 0;
2290 	}
2291 
2292 	rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2293 	rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2294 			GFP_KERNEL);
2295 	if (unlikely(!rects))
2296 		return -ENOMEM;
2297 
2298 	user_rects = (void __user *)(unsigned long)arg->rects;
2299 	ret = copy_from_user(rects, user_rects, rects_size);
2300 	if (unlikely(ret != 0)) {
2301 		DRM_ERROR("Failed to get rects.\n");
2302 		ret = -EFAULT;
2303 		goto out_free;
2304 	}
2305 
2306 	drm_rects = (struct drm_rect *)rects;
2307 
2308 	VMW_DEBUG_KMS("Layout count = %u\n", arg->num_outputs);
2309 	for (i = 0; i < arg->num_outputs; i++) {
2310 		struct drm_vmw_rect curr_rect;
2311 
2312 		/* Verify user-space for overflow as kernel use drm_rect */
2313 		if ((rects[i].x + rects[i].w > INT_MAX) ||
2314 		    (rects[i].y + rects[i].h > INT_MAX)) {
2315 			ret = -ERANGE;
2316 			goto out_free;
2317 		}
2318 
2319 		curr_rect = rects[i];
2320 		drm_rects[i].x1 = curr_rect.x;
2321 		drm_rects[i].y1 = curr_rect.y;
2322 		drm_rects[i].x2 = curr_rect.x + curr_rect.w;
2323 		drm_rects[i].y2 = curr_rect.y + curr_rect.h;
2324 
2325 		VMW_DEBUG_KMS("  x1 = %d y1 = %d x2 = %d y2 = %d\n",
2326 			      drm_rects[i].x1, drm_rects[i].y1,
2327 			      drm_rects[i].x2, drm_rects[i].y2);
2328 
2329 		/*
2330 		 * Currently this check is limiting the topology within
2331 		 * mode_config->max (which actually is max texture size
2332 		 * supported by virtual device). This limit is here to address
2333 		 * window managers that create a big framebuffer for whole
2334 		 * topology.
2335 		 */
2336 		if (drm_rects[i].x1 < 0 ||  drm_rects[i].y1 < 0 ||
2337 		    drm_rects[i].x2 > mode_config->max_width ||
2338 		    drm_rects[i].y2 > mode_config->max_height) {
2339 			VMW_DEBUG_KMS("Invalid layout %d %d %d %d\n",
2340 				      drm_rects[i].x1, drm_rects[i].y1,
2341 				      drm_rects[i].x2, drm_rects[i].y2);
2342 			ret = -EINVAL;
2343 			goto out_free;
2344 		}
2345 	}
2346 
2347 	ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects);
2348 
2349 	if (ret == 0)
2350 		vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects);
2351 
2352 out_free:
2353 	kfree(rects);
2354 	return ret;
2355 }
2356 
2357 /**
2358  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2359  * on a set of cliprects and a set of display units.
2360  *
2361  * @dev_priv: Pointer to a device private structure.
2362  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2363  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2364  * Cliprects are given in framebuffer coordinates.
2365  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2366  * be NULL. Cliprects are given in source coordinates.
2367  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2368  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2369  * @num_clips: Number of cliprects in the @clips or @vclips array.
2370  * @increment: Integer with which to increment the clip counter when looping.
2371  * Used to skip a predetermined number of clip rects.
2372  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2373  */
2374 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2375 			 struct vmw_framebuffer *framebuffer,
2376 			 const struct drm_clip_rect *clips,
2377 			 const struct drm_vmw_rect *vclips,
2378 			 s32 dest_x, s32 dest_y,
2379 			 int num_clips,
2380 			 int increment,
2381 			 struct vmw_kms_dirty *dirty)
2382 {
2383 	struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2384 	struct drm_crtc *crtc;
2385 	u32 num_units = 0;
2386 	u32 i, k;
2387 
2388 	dirty->dev_priv = dev_priv;
2389 
2390 	/* If crtc is passed, no need to iterate over other display units */
2391 	if (dirty->crtc) {
2392 		units[num_units++] = vmw_crtc_to_du(dirty->crtc);
2393 	} else {
2394 		list_for_each_entry(crtc, &dev_priv->drm.mode_config.crtc_list,
2395 				    head) {
2396 			struct drm_plane *plane = crtc->primary;
2397 
2398 			if (plane->state->fb == &framebuffer->base)
2399 				units[num_units++] = vmw_crtc_to_du(crtc);
2400 		}
2401 	}
2402 
2403 	for (k = 0; k < num_units; k++) {
2404 		struct vmw_display_unit *unit = units[k];
2405 		s32 crtc_x = unit->crtc.x;
2406 		s32 crtc_y = unit->crtc.y;
2407 		s32 crtc_width = unit->crtc.mode.hdisplay;
2408 		s32 crtc_height = unit->crtc.mode.vdisplay;
2409 		const struct drm_clip_rect *clips_ptr = clips;
2410 		const struct drm_vmw_rect *vclips_ptr = vclips;
2411 
2412 		dirty->unit = unit;
2413 		if (dirty->fifo_reserve_size > 0) {
2414 			dirty->cmd = VMW_CMD_RESERVE(dev_priv,
2415 						      dirty->fifo_reserve_size);
2416 			if (!dirty->cmd)
2417 				return -ENOMEM;
2418 
2419 			memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2420 		}
2421 		dirty->num_hits = 0;
2422 		for (i = 0; i < num_clips; i++, clips_ptr += increment,
2423 		       vclips_ptr += increment) {
2424 			s32 clip_left;
2425 			s32 clip_top;
2426 
2427 			/*
2428 			 * Select clip array type. Note that integer type
2429 			 * in @clips is unsigned short, whereas in @vclips
2430 			 * it's 32-bit.
2431 			 */
2432 			if (clips) {
2433 				dirty->fb_x = (s32) clips_ptr->x1;
2434 				dirty->fb_y = (s32) clips_ptr->y1;
2435 				dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2436 					crtc_x;
2437 				dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2438 					crtc_y;
2439 			} else {
2440 				dirty->fb_x = vclips_ptr->x;
2441 				dirty->fb_y = vclips_ptr->y;
2442 				dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2443 					dest_x - crtc_x;
2444 				dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2445 					dest_y - crtc_y;
2446 			}
2447 
2448 			dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2449 			dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2450 
2451 			/* Skip this clip if it's outside the crtc region */
2452 			if (dirty->unit_x1 >= crtc_width ||
2453 			    dirty->unit_y1 >= crtc_height ||
2454 			    dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2455 				continue;
2456 
2457 			/* Clip right and bottom to crtc limits */
2458 			dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2459 					       crtc_width);
2460 			dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2461 					       crtc_height);
2462 
2463 			/* Clip left and top to crtc limits */
2464 			clip_left = min_t(s32, dirty->unit_x1, 0);
2465 			clip_top = min_t(s32, dirty->unit_y1, 0);
2466 			dirty->unit_x1 -= clip_left;
2467 			dirty->unit_y1 -= clip_top;
2468 			dirty->fb_x -= clip_left;
2469 			dirty->fb_y -= clip_top;
2470 
2471 			dirty->clip(dirty);
2472 		}
2473 
2474 		dirty->fifo_commit(dirty);
2475 	}
2476 
2477 	return 0;
2478 }
2479 
2480 /**
2481  * vmw_kms_helper_validation_finish - Helper for post KMS command submission
2482  * cleanup and fencing
2483  * @dev_priv: Pointer to the device-private struct
2484  * @file_priv: Pointer identifying the client when user-space fencing is used
2485  * @ctx: Pointer to the validation context
2486  * @out_fence: If non-NULL, returned refcounted fence-pointer
2487  * @user_fence_rep: If non-NULL, pointer to user-space address area
2488  * in which to copy user-space fence info
2489  */
2490 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv,
2491 				      struct drm_file *file_priv,
2492 				      struct vmw_validation_context *ctx,
2493 				      struct vmw_fence_obj **out_fence,
2494 				      struct drm_vmw_fence_rep __user *
2495 				      user_fence_rep)
2496 {
2497 	struct vmw_fence_obj *fence = NULL;
2498 	uint32_t handle = 0;
2499 	int ret = 0;
2500 
2501 	if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) ||
2502 	    out_fence)
2503 		ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2504 						 file_priv ? &handle : NULL);
2505 	vmw_validation_done(ctx, fence);
2506 	if (file_priv)
2507 		vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2508 					    ret, user_fence_rep, fence,
2509 					    handle, -1, NULL);
2510 	if (out_fence)
2511 		*out_fence = fence;
2512 	else
2513 		vmw_fence_obj_unreference(&fence);
2514 }
2515 
2516 /**
2517  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2518  * its backing MOB.
2519  *
2520  * @res: Pointer to the surface resource
2521  * @clips: Clip rects in framebuffer (surface) space.
2522  * @num_clips: Number of clips in @clips.
2523  * @increment: Integer with which to increment the clip counter when looping.
2524  * Used to skip a predetermined number of clip rects.
2525  *
2526  * This function makes sure the proxy surface is updated from its backing MOB
2527  * using the region given by @clips. The surface resource @res and its backing
2528  * MOB needs to be reserved and validated on call.
2529  */
2530 int vmw_kms_update_proxy(struct vmw_resource *res,
2531 			 const struct drm_clip_rect *clips,
2532 			 unsigned num_clips,
2533 			 int increment)
2534 {
2535 	struct vmw_private *dev_priv = res->dev_priv;
2536 	struct drm_vmw_size *size = &vmw_res_to_srf(res)->metadata.base_size;
2537 	struct {
2538 		SVGA3dCmdHeader header;
2539 		SVGA3dCmdUpdateGBImage body;
2540 	} *cmd;
2541 	SVGA3dBox *box;
2542 	size_t copy_size = 0;
2543 	int i;
2544 
2545 	if (!clips)
2546 		return 0;
2547 
2548 	cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd) * num_clips);
2549 	if (!cmd)
2550 		return -ENOMEM;
2551 
2552 	for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2553 		box = &cmd->body.box;
2554 
2555 		cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2556 		cmd->header.size = sizeof(cmd->body);
2557 		cmd->body.image.sid = res->id;
2558 		cmd->body.image.face = 0;
2559 		cmd->body.image.mipmap = 0;
2560 
2561 		if (clips->x1 > size->width || clips->x2 > size->width ||
2562 		    clips->y1 > size->height || clips->y2 > size->height) {
2563 			DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2564 			return -EINVAL;
2565 		}
2566 
2567 		box->x = clips->x1;
2568 		box->y = clips->y1;
2569 		box->z = 0;
2570 		box->w = clips->x2 - clips->x1;
2571 		box->h = clips->y2 - clips->y1;
2572 		box->d = 1;
2573 
2574 		copy_size += sizeof(*cmd);
2575 	}
2576 
2577 	vmw_cmd_commit(dev_priv, copy_size);
2578 
2579 	return 0;
2580 }
2581 
2582 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2583 			    unsigned unit,
2584 			    u32 max_width,
2585 			    u32 max_height,
2586 			    struct drm_connector **p_con,
2587 			    struct drm_crtc **p_crtc,
2588 			    struct drm_display_mode **p_mode)
2589 {
2590 	struct drm_connector *con;
2591 	struct vmw_display_unit *du;
2592 	struct drm_display_mode *mode;
2593 	int i = 0;
2594 	int ret = 0;
2595 
2596 	mutex_lock(&dev_priv->drm.mode_config.mutex);
2597 	list_for_each_entry(con, &dev_priv->drm.mode_config.connector_list,
2598 			    head) {
2599 		if (i == unit)
2600 			break;
2601 
2602 		++i;
2603 	}
2604 
2605 	if (&con->head == &dev_priv->drm.mode_config.connector_list) {
2606 		DRM_ERROR("Could not find initial display unit.\n");
2607 		ret = -EINVAL;
2608 		goto out_unlock;
2609 	}
2610 
2611 	if (list_empty(&con->modes))
2612 		(void) vmw_du_connector_fill_modes(con, max_width, max_height);
2613 
2614 	if (list_empty(&con->modes)) {
2615 		DRM_ERROR("Could not find initial display mode.\n");
2616 		ret = -EINVAL;
2617 		goto out_unlock;
2618 	}
2619 
2620 	du = vmw_connector_to_du(con);
2621 	*p_con = con;
2622 	*p_crtc = &du->crtc;
2623 
2624 	list_for_each_entry(mode, &con->modes, head) {
2625 		if (mode->type & DRM_MODE_TYPE_PREFERRED)
2626 			break;
2627 	}
2628 
2629 	if (&mode->head == &con->modes) {
2630 		WARN_ONCE(true, "Could not find initial preferred mode.\n");
2631 		*p_mode = list_first_entry(&con->modes,
2632 					   struct drm_display_mode,
2633 					   head);
2634 	} else {
2635 		*p_mode = mode;
2636 	}
2637 
2638  out_unlock:
2639 	mutex_unlock(&dev_priv->drm.mode_config.mutex);
2640 
2641 	return ret;
2642 }
2643 
2644 /**
2645  * vmw_kms_create_implicit_placement_property - Set up the implicit placement
2646  * property.
2647  *
2648  * @dev_priv: Pointer to a device private struct.
2649  *
2650  * Sets up the implicit placement property unless it's already set up.
2651  */
2652 void
2653 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv)
2654 {
2655 	if (dev_priv->implicit_placement_property)
2656 		return;
2657 
2658 	dev_priv->implicit_placement_property =
2659 		drm_property_create_range(&dev_priv->drm,
2660 					  DRM_MODE_PROP_IMMUTABLE,
2661 					  "implicit_placement", 0, 1);
2662 }
2663 
2664 /**
2665  * vmw_kms_suspend - Save modesetting state and turn modesetting off.
2666  *
2667  * @dev: Pointer to the drm device
2668  * Return: 0 on success. Negative error code on failure.
2669  */
2670 int vmw_kms_suspend(struct drm_device *dev)
2671 {
2672 	struct vmw_private *dev_priv = vmw_priv(dev);
2673 
2674 	dev_priv->suspend_state = drm_atomic_helper_suspend(dev);
2675 	if (IS_ERR(dev_priv->suspend_state)) {
2676 		int ret = PTR_ERR(dev_priv->suspend_state);
2677 
2678 		DRM_ERROR("Failed kms suspend: %d\n", ret);
2679 		dev_priv->suspend_state = NULL;
2680 
2681 		return ret;
2682 	}
2683 
2684 	return 0;
2685 }
2686 
2687 
2688 /**
2689  * vmw_kms_resume - Re-enable modesetting and restore state
2690  *
2691  * @dev: Pointer to the drm device
2692  * Return: 0 on success. Negative error code on failure.
2693  *
2694  * State is resumed from a previous vmw_kms_suspend(). It's illegal
2695  * to call this function without a previous vmw_kms_suspend().
2696  */
2697 int vmw_kms_resume(struct drm_device *dev)
2698 {
2699 	struct vmw_private *dev_priv = vmw_priv(dev);
2700 	int ret;
2701 
2702 	if (WARN_ON(!dev_priv->suspend_state))
2703 		return 0;
2704 
2705 	ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state);
2706 	dev_priv->suspend_state = NULL;
2707 
2708 	return ret;
2709 }
2710 
2711 /**
2712  * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost
2713  *
2714  * @dev: Pointer to the drm device
2715  */
2716 void vmw_kms_lost_device(struct drm_device *dev)
2717 {
2718 	drm_atomic_helper_shutdown(dev);
2719 }
2720 
2721 /**
2722  * vmw_du_helper_plane_update - Helper to do plane update on a display unit.
2723  * @update: The closure structure.
2724  *
2725  * Call this helper after setting callbacks in &vmw_du_update_plane to do plane
2726  * update on display unit.
2727  *
2728  * Return: 0 on success or a negative error code on failure.
2729  */
2730 int vmw_du_helper_plane_update(struct vmw_du_update_plane *update)
2731 {
2732 	struct drm_plane_state *state = update->plane->state;
2733 	struct drm_plane_state *old_state = update->old_state;
2734 	struct drm_atomic_helper_damage_iter iter;
2735 	struct drm_rect clip;
2736 	struct drm_rect bb;
2737 	DECLARE_VAL_CONTEXT(val_ctx, NULL, 0);
2738 	uint32_t reserved_size = 0;
2739 	uint32_t submit_size = 0;
2740 	uint32_t curr_size = 0;
2741 	uint32_t num_hits = 0;
2742 	void *cmd_start;
2743 	char *cmd_next;
2744 	int ret;
2745 
2746 	/*
2747 	 * Iterate in advance to check if really need plane update and find the
2748 	 * number of clips that actually are in plane src for fifo allocation.
2749 	 */
2750 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
2751 	drm_atomic_for_each_plane_damage(&iter, &clip)
2752 		num_hits++;
2753 
2754 	if (num_hits == 0)
2755 		return 0;
2756 
2757 	if (update->vfb->bo) {
2758 		struct vmw_framebuffer_bo *vfbbo =
2759 			container_of(update->vfb, typeof(*vfbbo), base);
2760 
2761 		ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer, false,
2762 					    update->cpu_blit);
2763 	} else {
2764 		struct vmw_framebuffer_surface *vfbs =
2765 			container_of(update->vfb, typeof(*vfbs), base);
2766 
2767 		ret = vmw_validation_add_resource(&val_ctx, &vfbs->surface->res,
2768 						  0, VMW_RES_DIRTY_NONE, NULL,
2769 						  NULL);
2770 	}
2771 
2772 	if (ret)
2773 		return ret;
2774 
2775 	ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr);
2776 	if (ret)
2777 		goto out_unref;
2778 
2779 	reserved_size = update->calc_fifo_size(update, num_hits);
2780 	cmd_start = VMW_CMD_RESERVE(update->dev_priv, reserved_size);
2781 	if (!cmd_start) {
2782 		ret = -ENOMEM;
2783 		goto out_revert;
2784 	}
2785 
2786 	cmd_next = cmd_start;
2787 
2788 	if (update->post_prepare) {
2789 		curr_size = update->post_prepare(update, cmd_next);
2790 		cmd_next += curr_size;
2791 		submit_size += curr_size;
2792 	}
2793 
2794 	if (update->pre_clip) {
2795 		curr_size = update->pre_clip(update, cmd_next, num_hits);
2796 		cmd_next += curr_size;
2797 		submit_size += curr_size;
2798 	}
2799 
2800 	bb.x1 = INT_MAX;
2801 	bb.y1 = INT_MAX;
2802 	bb.x2 = INT_MIN;
2803 	bb.y2 = INT_MIN;
2804 
2805 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
2806 	drm_atomic_for_each_plane_damage(&iter, &clip) {
2807 		uint32_t fb_x = clip.x1;
2808 		uint32_t fb_y = clip.y1;
2809 
2810 		vmw_du_translate_to_crtc(state, &clip);
2811 		if (update->clip) {
2812 			curr_size = update->clip(update, cmd_next, &clip, fb_x,
2813 						 fb_y);
2814 			cmd_next += curr_size;
2815 			submit_size += curr_size;
2816 		}
2817 		bb.x1 = min_t(int, bb.x1, clip.x1);
2818 		bb.y1 = min_t(int, bb.y1, clip.y1);
2819 		bb.x2 = max_t(int, bb.x2, clip.x2);
2820 		bb.y2 = max_t(int, bb.y2, clip.y2);
2821 	}
2822 
2823 	curr_size = update->post_clip(update, cmd_next, &bb);
2824 	submit_size += curr_size;
2825 
2826 	if (reserved_size < submit_size)
2827 		submit_size = 0;
2828 
2829 	vmw_cmd_commit(update->dev_priv, submit_size);
2830 
2831 	vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx,
2832 					 update->out_fence, NULL);
2833 	return ret;
2834 
2835 out_revert:
2836 	vmw_validation_revert(&val_ctx);
2837 
2838 out_unref:
2839 	vmw_validation_unref_lists(&val_ctx);
2840 	return ret;
2841 }
2842