1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /************************************************************************** 3 * 4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include <drm/drm_atomic.h> 29 #include <drm/drm_atomic_helper.h> 30 #include <drm/drm_damage_helper.h> 31 #include <drm/drm_fourcc.h> 32 #include <drm/drm_plane_helper.h> 33 #include <drm/drm_rect.h> 34 #include <drm/drm_sysfs.h> 35 #include <drm/drm_vblank.h> 36 37 #include "vmwgfx_kms.h" 38 39 void vmw_du_cleanup(struct vmw_display_unit *du) 40 { 41 struct vmw_private *dev_priv = vmw_priv(du->primary.dev); 42 drm_plane_cleanup(&du->primary); 43 if (vmw_cmd_supported(dev_priv)) 44 drm_plane_cleanup(&du->cursor); 45 46 drm_connector_unregister(&du->connector); 47 drm_crtc_cleanup(&du->crtc); 48 drm_encoder_cleanup(&du->encoder); 49 drm_connector_cleanup(&du->connector); 50 } 51 52 /* 53 * Display Unit Cursor functions 54 */ 55 56 static int vmw_cursor_update_image(struct vmw_private *dev_priv, 57 u32 *image, u32 width, u32 height, 58 u32 hotspotX, u32 hotspotY) 59 { 60 struct { 61 u32 cmd; 62 SVGAFifoCmdDefineAlphaCursor cursor; 63 } *cmd; 64 u32 image_size = width * height * 4; 65 u32 cmd_size = sizeof(*cmd) + image_size; 66 67 if (!image) 68 return -EINVAL; 69 70 cmd = VMW_CMD_RESERVE(dev_priv, cmd_size); 71 if (unlikely(cmd == NULL)) 72 return -ENOMEM; 73 74 memset(cmd, 0, sizeof(*cmd)); 75 76 memcpy(&cmd[1], image, image_size); 77 78 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR; 79 cmd->cursor.id = 0; 80 cmd->cursor.width = width; 81 cmd->cursor.height = height; 82 cmd->cursor.hotspotX = hotspotX; 83 cmd->cursor.hotspotY = hotspotY; 84 85 vmw_cmd_commit_flush(dev_priv, cmd_size); 86 87 return 0; 88 } 89 90 static int vmw_cursor_update_bo(struct vmw_private *dev_priv, 91 struct vmw_buffer_object *bo, 92 u32 width, u32 height, 93 u32 hotspotX, u32 hotspotY) 94 { 95 struct ttm_bo_kmap_obj map; 96 unsigned long kmap_offset; 97 unsigned long kmap_num; 98 void *virtual; 99 bool dummy; 100 int ret; 101 102 kmap_offset = 0; 103 kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT; 104 105 ret = ttm_bo_reserve(&bo->base, true, false, NULL); 106 if (unlikely(ret != 0)) { 107 DRM_ERROR("reserve failed\n"); 108 return -EINVAL; 109 } 110 111 ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map); 112 if (unlikely(ret != 0)) 113 goto err_unreserve; 114 115 virtual = ttm_kmap_obj_virtual(&map, &dummy); 116 ret = vmw_cursor_update_image(dev_priv, virtual, width, height, 117 hotspotX, hotspotY); 118 119 ttm_bo_kunmap(&map); 120 err_unreserve: 121 ttm_bo_unreserve(&bo->base); 122 123 return ret; 124 } 125 126 127 static void vmw_cursor_update_position(struct vmw_private *dev_priv, 128 bool show, int x, int y) 129 { 130 uint32_t count; 131 132 spin_lock(&dev_priv->cursor_lock); 133 if (vmw_is_cursor_bypass3_enabled(dev_priv)) { 134 vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_ON, show ? 1 : 0); 135 vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_X, x); 136 vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_Y, y); 137 count = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_CURSOR_COUNT); 138 vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_COUNT, ++count); 139 } else { 140 vmw_write(dev_priv, SVGA_REG_CURSOR_X, x); 141 vmw_write(dev_priv, SVGA_REG_CURSOR_Y, y); 142 vmw_write(dev_priv, SVGA_REG_CURSOR_ON, show ? 1 : 0); 143 } 144 spin_unlock(&dev_priv->cursor_lock); 145 } 146 147 148 void vmw_kms_cursor_snoop(struct vmw_surface *srf, 149 struct ttm_object_file *tfile, 150 struct ttm_buffer_object *bo, 151 SVGA3dCmdHeader *header) 152 { 153 struct ttm_bo_kmap_obj map; 154 unsigned long kmap_offset; 155 unsigned long kmap_num; 156 SVGA3dCopyBox *box; 157 unsigned box_count; 158 void *virtual; 159 bool dummy; 160 struct vmw_dma_cmd { 161 SVGA3dCmdHeader header; 162 SVGA3dCmdSurfaceDMA dma; 163 } *cmd; 164 int i, ret; 165 166 cmd = container_of(header, struct vmw_dma_cmd, header); 167 168 /* No snooper installed */ 169 if (!srf->snooper.image) 170 return; 171 172 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) { 173 DRM_ERROR("face and mipmap for cursors should never != 0\n"); 174 return; 175 } 176 177 if (cmd->header.size < 64) { 178 DRM_ERROR("at least one full copy box must be given\n"); 179 return; 180 } 181 182 box = (SVGA3dCopyBox *)&cmd[1]; 183 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) / 184 sizeof(SVGA3dCopyBox); 185 186 if (cmd->dma.guest.ptr.offset % PAGE_SIZE || 187 box->x != 0 || box->y != 0 || box->z != 0 || 188 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 || 189 box->d != 1 || box_count != 1) { 190 /* TODO handle none page aligned offsets */ 191 /* TODO handle more dst & src != 0 */ 192 /* TODO handle more then one copy */ 193 DRM_ERROR("Can't snoop dma request for cursor!\n"); 194 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n", 195 box->srcx, box->srcy, box->srcz, 196 box->x, box->y, box->z, 197 box->w, box->h, box->d, box_count, 198 cmd->dma.guest.ptr.offset); 199 return; 200 } 201 202 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT; 203 kmap_num = (64*64*4) >> PAGE_SHIFT; 204 205 ret = ttm_bo_reserve(bo, true, false, NULL); 206 if (unlikely(ret != 0)) { 207 DRM_ERROR("reserve failed\n"); 208 return; 209 } 210 211 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map); 212 if (unlikely(ret != 0)) 213 goto err_unreserve; 214 215 virtual = ttm_kmap_obj_virtual(&map, &dummy); 216 217 if (box->w == 64 && cmd->dma.guest.pitch == 64*4) { 218 memcpy(srf->snooper.image, virtual, 64*64*4); 219 } else { 220 /* Image is unsigned pointer. */ 221 for (i = 0; i < box->h; i++) 222 memcpy(srf->snooper.image + i * 64, 223 virtual + i * cmd->dma.guest.pitch, 224 box->w * 4); 225 } 226 227 srf->snooper.age++; 228 229 ttm_bo_kunmap(&map); 230 err_unreserve: 231 ttm_bo_unreserve(bo); 232 } 233 234 /** 235 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots 236 * 237 * @dev_priv: Pointer to the device private struct. 238 * 239 * Clears all legacy hotspots. 240 */ 241 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv) 242 { 243 struct drm_device *dev = &dev_priv->drm; 244 struct vmw_display_unit *du; 245 struct drm_crtc *crtc; 246 247 drm_modeset_lock_all(dev); 248 drm_for_each_crtc(crtc, dev) { 249 du = vmw_crtc_to_du(crtc); 250 251 du->hotspot_x = 0; 252 du->hotspot_y = 0; 253 } 254 drm_modeset_unlock_all(dev); 255 } 256 257 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv) 258 { 259 struct drm_device *dev = &dev_priv->drm; 260 struct vmw_display_unit *du; 261 struct drm_crtc *crtc; 262 263 mutex_lock(&dev->mode_config.mutex); 264 265 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 266 du = vmw_crtc_to_du(crtc); 267 if (!du->cursor_surface || 268 du->cursor_age == du->cursor_surface->snooper.age) 269 continue; 270 271 du->cursor_age = du->cursor_surface->snooper.age; 272 vmw_cursor_update_image(dev_priv, 273 du->cursor_surface->snooper.image, 274 64, 64, 275 du->hotspot_x + du->core_hotspot_x, 276 du->hotspot_y + du->core_hotspot_y); 277 } 278 279 mutex_unlock(&dev->mode_config.mutex); 280 } 281 282 283 void vmw_du_cursor_plane_destroy(struct drm_plane *plane) 284 { 285 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0); 286 287 drm_plane_cleanup(plane); 288 } 289 290 291 void vmw_du_primary_plane_destroy(struct drm_plane *plane) 292 { 293 drm_plane_cleanup(plane); 294 295 /* Planes are static in our case so we don't free it */ 296 } 297 298 299 /** 300 * vmw_du_plane_unpin_surf - unpins resource associated with a framebuffer surface 301 * 302 * @vps: plane state associated with the display surface 303 * @unreference: true if we also want to unreference the display. 304 */ 305 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps, 306 bool unreference) 307 { 308 if (vps->surf) { 309 if (vps->pinned) { 310 vmw_resource_unpin(&vps->surf->res); 311 vps->pinned--; 312 } 313 314 if (unreference) { 315 if (vps->pinned) 316 DRM_ERROR("Surface still pinned\n"); 317 vmw_surface_unreference(&vps->surf); 318 } 319 } 320 } 321 322 323 /** 324 * vmw_du_plane_cleanup_fb - Unpins the cursor 325 * 326 * @plane: display plane 327 * @old_state: Contains the FB to clean up 328 * 329 * Unpins the framebuffer surface 330 * 331 * Returns 0 on success 332 */ 333 void 334 vmw_du_plane_cleanup_fb(struct drm_plane *plane, 335 struct drm_plane_state *old_state) 336 { 337 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); 338 339 vmw_du_plane_unpin_surf(vps, false); 340 } 341 342 343 /** 344 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it 345 * 346 * @plane: display plane 347 * @new_state: info on the new plane state, including the FB 348 * 349 * Returns 0 on success 350 */ 351 int 352 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane, 353 struct drm_plane_state *new_state) 354 { 355 struct drm_framebuffer *fb = new_state->fb; 356 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); 357 358 359 if (vps->surf) 360 vmw_surface_unreference(&vps->surf); 361 362 if (vps->bo) 363 vmw_bo_unreference(&vps->bo); 364 365 if (fb) { 366 if (vmw_framebuffer_to_vfb(fb)->bo) { 367 vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer; 368 vmw_bo_reference(vps->bo); 369 } else { 370 vps->surf = vmw_framebuffer_to_vfbs(fb)->surface; 371 vmw_surface_reference(vps->surf); 372 } 373 } 374 375 return 0; 376 } 377 378 379 void 380 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane, 381 struct drm_atomic_state *state) 382 { 383 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 384 plane); 385 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, 386 plane); 387 struct drm_crtc *crtc = new_state->crtc ?: old_state->crtc; 388 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 389 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 390 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); 391 s32 hotspot_x, hotspot_y; 392 int ret = 0; 393 394 395 hotspot_x = du->hotspot_x; 396 hotspot_y = du->hotspot_y; 397 398 if (new_state->fb) { 399 hotspot_x += new_state->fb->hot_x; 400 hotspot_y += new_state->fb->hot_y; 401 } 402 403 du->cursor_surface = vps->surf; 404 du->cursor_bo = vps->bo; 405 406 if (vps->surf) { 407 du->cursor_age = du->cursor_surface->snooper.age; 408 409 ret = vmw_cursor_update_image(dev_priv, 410 vps->surf->snooper.image, 411 64, 64, hotspot_x, 412 hotspot_y); 413 } else if (vps->bo) { 414 ret = vmw_cursor_update_bo(dev_priv, vps->bo, 415 new_state->crtc_w, 416 new_state->crtc_h, 417 hotspot_x, hotspot_y); 418 } else { 419 vmw_cursor_update_position(dev_priv, false, 0, 0); 420 return; 421 } 422 423 if (!ret) { 424 du->cursor_x = new_state->crtc_x + du->set_gui_x; 425 du->cursor_y = new_state->crtc_y + du->set_gui_y; 426 427 vmw_cursor_update_position(dev_priv, true, 428 du->cursor_x + hotspot_x, 429 du->cursor_y + hotspot_y); 430 431 du->core_hotspot_x = hotspot_x - du->hotspot_x; 432 du->core_hotspot_y = hotspot_y - du->hotspot_y; 433 } else { 434 DRM_ERROR("Failed to update cursor image\n"); 435 } 436 } 437 438 439 /** 440 * vmw_du_primary_plane_atomic_check - check if the new state is okay 441 * 442 * @plane: display plane 443 * @state: info on the new plane state, including the FB 444 * 445 * Check if the new state is settable given the current state. Other 446 * than what the atomic helper checks, we care about crtc fitting 447 * the FB and maintaining one active framebuffer. 448 * 449 * Returns 0 on success 450 */ 451 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane, 452 struct drm_atomic_state *state) 453 { 454 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 455 plane); 456 struct drm_crtc_state *crtc_state = NULL; 457 struct drm_framebuffer *new_fb = new_state->fb; 458 int ret; 459 460 if (new_state->crtc) 461 crtc_state = drm_atomic_get_new_crtc_state(state, 462 new_state->crtc); 463 464 ret = drm_atomic_helper_check_plane_state(new_state, crtc_state, 465 DRM_PLANE_HELPER_NO_SCALING, 466 DRM_PLANE_HELPER_NO_SCALING, 467 false, true); 468 469 if (!ret && new_fb) { 470 struct drm_crtc *crtc = new_state->crtc; 471 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 472 473 vmw_connector_state_to_vcs(du->connector.state); 474 } 475 476 477 return ret; 478 } 479 480 481 /** 482 * vmw_du_cursor_plane_atomic_check - check if the new state is okay 483 * 484 * @plane: cursor plane 485 * @state: info on the new plane state 486 * 487 * This is a chance to fail if the new cursor state does not fit 488 * our requirements. 489 * 490 * Returns 0 on success 491 */ 492 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane, 493 struct drm_atomic_state *state) 494 { 495 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 496 plane); 497 int ret = 0; 498 struct drm_crtc_state *crtc_state = NULL; 499 struct vmw_surface *surface = NULL; 500 struct drm_framebuffer *fb = new_state->fb; 501 502 if (new_state->crtc) 503 crtc_state = drm_atomic_get_new_crtc_state(new_state->state, 504 new_state->crtc); 505 506 ret = drm_atomic_helper_check_plane_state(new_state, crtc_state, 507 DRM_PLANE_HELPER_NO_SCALING, 508 DRM_PLANE_HELPER_NO_SCALING, 509 true, true); 510 if (ret) 511 return ret; 512 513 /* Turning off */ 514 if (!fb) 515 return 0; 516 517 /* A lot of the code assumes this */ 518 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) { 519 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n", 520 new_state->crtc_w, new_state->crtc_h); 521 ret = -EINVAL; 522 } 523 524 if (!vmw_framebuffer_to_vfb(fb)->bo) 525 surface = vmw_framebuffer_to_vfbs(fb)->surface; 526 527 if (surface && !surface->snooper.image) { 528 DRM_ERROR("surface not suitable for cursor\n"); 529 ret = -EINVAL; 530 } 531 532 return ret; 533 } 534 535 536 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc, 537 struct drm_atomic_state *state) 538 { 539 struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state, 540 crtc); 541 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc); 542 int connector_mask = drm_connector_mask(&du->connector); 543 bool has_primary = new_state->plane_mask & 544 drm_plane_mask(crtc->primary); 545 546 /* We always want to have an active plane with an active CRTC */ 547 if (has_primary != new_state->enable) 548 return -EINVAL; 549 550 551 if (new_state->connector_mask != connector_mask && 552 new_state->connector_mask != 0) { 553 DRM_ERROR("Invalid connectors configuration\n"); 554 return -EINVAL; 555 } 556 557 /* 558 * Our virtual device does not have a dot clock, so use the logical 559 * clock value as the dot clock. 560 */ 561 if (new_state->mode.crtc_clock == 0) 562 new_state->adjusted_mode.crtc_clock = new_state->mode.clock; 563 564 return 0; 565 } 566 567 568 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc, 569 struct drm_atomic_state *state) 570 { 571 } 572 573 574 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc, 575 struct drm_atomic_state *state) 576 { 577 struct drm_pending_vblank_event *event = crtc->state->event; 578 579 if (event) { 580 crtc->state->event = NULL; 581 582 spin_lock_irq(&crtc->dev->event_lock); 583 drm_crtc_send_vblank_event(crtc, event); 584 spin_unlock_irq(&crtc->dev->event_lock); 585 } 586 } 587 588 589 /** 590 * vmw_du_crtc_duplicate_state - duplicate crtc state 591 * @crtc: DRM crtc 592 * 593 * Allocates and returns a copy of the crtc state (both common and 594 * vmw-specific) for the specified crtc. 595 * 596 * Returns: The newly allocated crtc state, or NULL on failure. 597 */ 598 struct drm_crtc_state * 599 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc) 600 { 601 struct drm_crtc_state *state; 602 struct vmw_crtc_state *vcs; 603 604 if (WARN_ON(!crtc->state)) 605 return NULL; 606 607 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL); 608 609 if (!vcs) 610 return NULL; 611 612 state = &vcs->base; 613 614 __drm_atomic_helper_crtc_duplicate_state(crtc, state); 615 616 return state; 617 } 618 619 620 /** 621 * vmw_du_crtc_reset - creates a blank vmw crtc state 622 * @crtc: DRM crtc 623 * 624 * Resets the atomic state for @crtc by freeing the state pointer (which 625 * might be NULL, e.g. at driver load time) and allocating a new empty state 626 * object. 627 */ 628 void vmw_du_crtc_reset(struct drm_crtc *crtc) 629 { 630 struct vmw_crtc_state *vcs; 631 632 633 if (crtc->state) { 634 __drm_atomic_helper_crtc_destroy_state(crtc->state); 635 636 kfree(vmw_crtc_state_to_vcs(crtc->state)); 637 } 638 639 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 640 641 if (!vcs) { 642 DRM_ERROR("Cannot allocate vmw_crtc_state\n"); 643 return; 644 } 645 646 __drm_atomic_helper_crtc_reset(crtc, &vcs->base); 647 } 648 649 650 /** 651 * vmw_du_crtc_destroy_state - destroy crtc state 652 * @crtc: DRM crtc 653 * @state: state object to destroy 654 * 655 * Destroys the crtc state (both common and vmw-specific) for the 656 * specified plane. 657 */ 658 void 659 vmw_du_crtc_destroy_state(struct drm_crtc *crtc, 660 struct drm_crtc_state *state) 661 { 662 drm_atomic_helper_crtc_destroy_state(crtc, state); 663 } 664 665 666 /** 667 * vmw_du_plane_duplicate_state - duplicate plane state 668 * @plane: drm plane 669 * 670 * Allocates and returns a copy of the plane state (both common and 671 * vmw-specific) for the specified plane. 672 * 673 * Returns: The newly allocated plane state, or NULL on failure. 674 */ 675 struct drm_plane_state * 676 vmw_du_plane_duplicate_state(struct drm_plane *plane) 677 { 678 struct drm_plane_state *state; 679 struct vmw_plane_state *vps; 680 681 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL); 682 683 if (!vps) 684 return NULL; 685 686 vps->pinned = 0; 687 vps->cpp = 0; 688 689 /* Each ref counted resource needs to be acquired again */ 690 if (vps->surf) 691 (void) vmw_surface_reference(vps->surf); 692 693 if (vps->bo) 694 (void) vmw_bo_reference(vps->bo); 695 696 state = &vps->base; 697 698 __drm_atomic_helper_plane_duplicate_state(plane, state); 699 700 return state; 701 } 702 703 704 /** 705 * vmw_du_plane_reset - creates a blank vmw plane state 706 * @plane: drm plane 707 * 708 * Resets the atomic state for @plane by freeing the state pointer (which might 709 * be NULL, e.g. at driver load time) and allocating a new empty state object. 710 */ 711 void vmw_du_plane_reset(struct drm_plane *plane) 712 { 713 struct vmw_plane_state *vps; 714 715 716 if (plane->state) 717 vmw_du_plane_destroy_state(plane, plane->state); 718 719 vps = kzalloc(sizeof(*vps), GFP_KERNEL); 720 721 if (!vps) { 722 DRM_ERROR("Cannot allocate vmw_plane_state\n"); 723 return; 724 } 725 726 __drm_atomic_helper_plane_reset(plane, &vps->base); 727 } 728 729 730 /** 731 * vmw_du_plane_destroy_state - destroy plane state 732 * @plane: DRM plane 733 * @state: state object to destroy 734 * 735 * Destroys the plane state (both common and vmw-specific) for the 736 * specified plane. 737 */ 738 void 739 vmw_du_plane_destroy_state(struct drm_plane *plane, 740 struct drm_plane_state *state) 741 { 742 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state); 743 744 745 /* Should have been freed by cleanup_fb */ 746 if (vps->surf) 747 vmw_surface_unreference(&vps->surf); 748 749 if (vps->bo) 750 vmw_bo_unreference(&vps->bo); 751 752 drm_atomic_helper_plane_destroy_state(plane, state); 753 } 754 755 756 /** 757 * vmw_du_connector_duplicate_state - duplicate connector state 758 * @connector: DRM connector 759 * 760 * Allocates and returns a copy of the connector state (both common and 761 * vmw-specific) for the specified connector. 762 * 763 * Returns: The newly allocated connector state, or NULL on failure. 764 */ 765 struct drm_connector_state * 766 vmw_du_connector_duplicate_state(struct drm_connector *connector) 767 { 768 struct drm_connector_state *state; 769 struct vmw_connector_state *vcs; 770 771 if (WARN_ON(!connector->state)) 772 return NULL; 773 774 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL); 775 776 if (!vcs) 777 return NULL; 778 779 state = &vcs->base; 780 781 __drm_atomic_helper_connector_duplicate_state(connector, state); 782 783 return state; 784 } 785 786 787 /** 788 * vmw_du_connector_reset - creates a blank vmw connector state 789 * @connector: DRM connector 790 * 791 * Resets the atomic state for @connector by freeing the state pointer (which 792 * might be NULL, e.g. at driver load time) and allocating a new empty state 793 * object. 794 */ 795 void vmw_du_connector_reset(struct drm_connector *connector) 796 { 797 struct vmw_connector_state *vcs; 798 799 800 if (connector->state) { 801 __drm_atomic_helper_connector_destroy_state(connector->state); 802 803 kfree(vmw_connector_state_to_vcs(connector->state)); 804 } 805 806 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 807 808 if (!vcs) { 809 DRM_ERROR("Cannot allocate vmw_connector_state\n"); 810 return; 811 } 812 813 __drm_atomic_helper_connector_reset(connector, &vcs->base); 814 } 815 816 817 /** 818 * vmw_du_connector_destroy_state - destroy connector state 819 * @connector: DRM connector 820 * @state: state object to destroy 821 * 822 * Destroys the connector state (both common and vmw-specific) for the 823 * specified plane. 824 */ 825 void 826 vmw_du_connector_destroy_state(struct drm_connector *connector, 827 struct drm_connector_state *state) 828 { 829 drm_atomic_helper_connector_destroy_state(connector, state); 830 } 831 /* 832 * Generic framebuffer code 833 */ 834 835 /* 836 * Surface framebuffer code 837 */ 838 839 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer) 840 { 841 struct vmw_framebuffer_surface *vfbs = 842 vmw_framebuffer_to_vfbs(framebuffer); 843 844 drm_framebuffer_cleanup(framebuffer); 845 vmw_surface_unreference(&vfbs->surface); 846 if (vfbs->base.user_obj) 847 ttm_base_object_unref(&vfbs->base.user_obj); 848 849 kfree(vfbs); 850 } 851 852 /** 853 * vmw_kms_readback - Perform a readback from the screen system to 854 * a buffer-object backed framebuffer. 855 * 856 * @dev_priv: Pointer to the device private structure. 857 * @file_priv: Pointer to a struct drm_file identifying the caller. 858 * Must be set to NULL if @user_fence_rep is NULL. 859 * @vfb: Pointer to the buffer-object backed framebuffer. 860 * @user_fence_rep: User-space provided structure for fence information. 861 * Must be set to non-NULL if @file_priv is non-NULL. 862 * @vclips: Array of clip rects. 863 * @num_clips: Number of clip rects in @vclips. 864 * 865 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 866 * interrupted. 867 */ 868 int vmw_kms_readback(struct vmw_private *dev_priv, 869 struct drm_file *file_priv, 870 struct vmw_framebuffer *vfb, 871 struct drm_vmw_fence_rep __user *user_fence_rep, 872 struct drm_vmw_rect *vclips, 873 uint32_t num_clips) 874 { 875 switch (dev_priv->active_display_unit) { 876 case vmw_du_screen_object: 877 return vmw_kms_sou_readback(dev_priv, file_priv, vfb, 878 user_fence_rep, vclips, num_clips, 879 NULL); 880 case vmw_du_screen_target: 881 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb, 882 user_fence_rep, NULL, vclips, num_clips, 883 1, false, true, NULL); 884 default: 885 WARN_ONCE(true, 886 "Readback called with invalid display system.\n"); 887 } 888 889 return -ENOSYS; 890 } 891 892 893 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = { 894 .destroy = vmw_framebuffer_surface_destroy, 895 .dirty = drm_atomic_helper_dirtyfb, 896 }; 897 898 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv, 899 struct vmw_surface *surface, 900 struct vmw_framebuffer **out, 901 const struct drm_mode_fb_cmd2 902 *mode_cmd, 903 bool is_bo_proxy) 904 905 { 906 struct drm_device *dev = &dev_priv->drm; 907 struct vmw_framebuffer_surface *vfbs; 908 enum SVGA3dSurfaceFormat format; 909 int ret; 910 911 /* 3D is only supported on HWv8 and newer hosts */ 912 if (dev_priv->active_display_unit == vmw_du_legacy) 913 return -ENOSYS; 914 915 /* 916 * Sanity checks. 917 */ 918 919 /* Surface must be marked as a scanout. */ 920 if (unlikely(!surface->metadata.scanout)) 921 return -EINVAL; 922 923 if (unlikely(surface->metadata.mip_levels[0] != 1 || 924 surface->metadata.num_sizes != 1 || 925 surface->metadata.base_size.width < mode_cmd->width || 926 surface->metadata.base_size.height < mode_cmd->height || 927 surface->metadata.base_size.depth != 1)) { 928 DRM_ERROR("Incompatible surface dimensions " 929 "for requested mode.\n"); 930 return -EINVAL; 931 } 932 933 switch (mode_cmd->pixel_format) { 934 case DRM_FORMAT_ARGB8888: 935 format = SVGA3D_A8R8G8B8; 936 break; 937 case DRM_FORMAT_XRGB8888: 938 format = SVGA3D_X8R8G8B8; 939 break; 940 case DRM_FORMAT_RGB565: 941 format = SVGA3D_R5G6B5; 942 break; 943 case DRM_FORMAT_XRGB1555: 944 format = SVGA3D_A1R5G5B5; 945 break; 946 default: 947 DRM_ERROR("Invalid pixel format: %p4cc\n", 948 &mode_cmd->pixel_format); 949 return -EINVAL; 950 } 951 952 /* 953 * For DX, surface format validation is done when surface->scanout 954 * is set. 955 */ 956 if (!has_sm4_context(dev_priv) && format != surface->metadata.format) { 957 DRM_ERROR("Invalid surface format for requested mode.\n"); 958 return -EINVAL; 959 } 960 961 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL); 962 if (!vfbs) { 963 ret = -ENOMEM; 964 goto out_err1; 965 } 966 967 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd); 968 vfbs->surface = vmw_surface_reference(surface); 969 vfbs->base.user_handle = mode_cmd->handles[0]; 970 vfbs->is_bo_proxy = is_bo_proxy; 971 972 *out = &vfbs->base; 973 974 ret = drm_framebuffer_init(dev, &vfbs->base.base, 975 &vmw_framebuffer_surface_funcs); 976 if (ret) 977 goto out_err2; 978 979 return 0; 980 981 out_err2: 982 vmw_surface_unreference(&surface); 983 kfree(vfbs); 984 out_err1: 985 return ret; 986 } 987 988 /* 989 * Buffer-object framebuffer code 990 */ 991 992 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer) 993 { 994 struct vmw_framebuffer_bo *vfbd = 995 vmw_framebuffer_to_vfbd(framebuffer); 996 997 drm_framebuffer_cleanup(framebuffer); 998 vmw_bo_unreference(&vfbd->buffer); 999 if (vfbd->base.user_obj) 1000 ttm_base_object_unref(&vfbd->base.user_obj); 1001 1002 kfree(vfbd); 1003 } 1004 1005 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer, 1006 struct drm_file *file_priv, 1007 unsigned int flags, unsigned int color, 1008 struct drm_clip_rect *clips, 1009 unsigned int num_clips) 1010 { 1011 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 1012 struct vmw_framebuffer_bo *vfbd = 1013 vmw_framebuffer_to_vfbd(framebuffer); 1014 struct drm_clip_rect norect; 1015 int ret, increment = 1; 1016 1017 drm_modeset_lock_all(&dev_priv->drm); 1018 1019 if (!num_clips) { 1020 num_clips = 1; 1021 clips = &norect; 1022 norect.x1 = norect.y1 = 0; 1023 norect.x2 = framebuffer->width; 1024 norect.y2 = framebuffer->height; 1025 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 1026 num_clips /= 2; 1027 increment = 2; 1028 } 1029 1030 switch (dev_priv->active_display_unit) { 1031 case vmw_du_legacy: 1032 ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0, 1033 clips, num_clips, increment); 1034 break; 1035 default: 1036 ret = -EINVAL; 1037 WARN_ONCE(true, "Dirty called with invalid display system.\n"); 1038 break; 1039 } 1040 1041 vmw_cmd_flush(dev_priv, false); 1042 1043 drm_modeset_unlock_all(&dev_priv->drm); 1044 1045 return ret; 1046 } 1047 1048 static int vmw_framebuffer_bo_dirty_ext(struct drm_framebuffer *framebuffer, 1049 struct drm_file *file_priv, 1050 unsigned int flags, unsigned int color, 1051 struct drm_clip_rect *clips, 1052 unsigned int num_clips) 1053 { 1054 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 1055 1056 if (dev_priv->active_display_unit == vmw_du_legacy && 1057 vmw_cmd_supported(dev_priv)) 1058 return vmw_framebuffer_bo_dirty(framebuffer, file_priv, flags, 1059 color, clips, num_clips); 1060 1061 return drm_atomic_helper_dirtyfb(framebuffer, file_priv, flags, color, 1062 clips, num_clips); 1063 } 1064 1065 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = { 1066 .destroy = vmw_framebuffer_bo_destroy, 1067 .dirty = vmw_framebuffer_bo_dirty_ext, 1068 }; 1069 1070 /* 1071 * Pin the bofer in a location suitable for access by the 1072 * display system. 1073 */ 1074 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb) 1075 { 1076 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1077 struct vmw_buffer_object *buf; 1078 struct ttm_placement *placement; 1079 int ret; 1080 1081 buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1082 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1083 1084 if (!buf) 1085 return 0; 1086 1087 switch (dev_priv->active_display_unit) { 1088 case vmw_du_legacy: 1089 vmw_overlay_pause_all(dev_priv); 1090 ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false); 1091 vmw_overlay_resume_all(dev_priv); 1092 break; 1093 case vmw_du_screen_object: 1094 case vmw_du_screen_target: 1095 if (vfb->bo) { 1096 if (dev_priv->capabilities & SVGA_CAP_3D) { 1097 /* 1098 * Use surface DMA to get content to 1099 * sreen target surface. 1100 */ 1101 placement = &vmw_vram_gmr_placement; 1102 } else { 1103 /* Use CPU blit. */ 1104 placement = &vmw_sys_placement; 1105 } 1106 } else { 1107 /* Use surface / image update */ 1108 placement = &vmw_mob_placement; 1109 } 1110 1111 return vmw_bo_pin_in_placement(dev_priv, buf, placement, false); 1112 default: 1113 return -EINVAL; 1114 } 1115 1116 return ret; 1117 } 1118 1119 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb) 1120 { 1121 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1122 struct vmw_buffer_object *buf; 1123 1124 buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1125 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1126 1127 if (WARN_ON(!buf)) 1128 return 0; 1129 1130 return vmw_bo_unpin(dev_priv, buf, false); 1131 } 1132 1133 /** 1134 * vmw_create_bo_proxy - create a proxy surface for the buffer object 1135 * 1136 * @dev: DRM device 1137 * @mode_cmd: parameters for the new surface 1138 * @bo_mob: MOB backing the buffer object 1139 * @srf_out: newly created surface 1140 * 1141 * When the content FB is a buffer object, we create a surface as a proxy to the 1142 * same buffer. This way we can do a surface copy rather than a surface DMA. 1143 * This is a more efficient approach 1144 * 1145 * RETURNS: 1146 * 0 on success, error code otherwise 1147 */ 1148 static int vmw_create_bo_proxy(struct drm_device *dev, 1149 const struct drm_mode_fb_cmd2 *mode_cmd, 1150 struct vmw_buffer_object *bo_mob, 1151 struct vmw_surface **srf_out) 1152 { 1153 struct vmw_surface_metadata metadata = {0}; 1154 uint32_t format; 1155 struct vmw_resource *res; 1156 unsigned int bytes_pp; 1157 int ret; 1158 1159 switch (mode_cmd->pixel_format) { 1160 case DRM_FORMAT_ARGB8888: 1161 case DRM_FORMAT_XRGB8888: 1162 format = SVGA3D_X8R8G8B8; 1163 bytes_pp = 4; 1164 break; 1165 1166 case DRM_FORMAT_RGB565: 1167 case DRM_FORMAT_XRGB1555: 1168 format = SVGA3D_R5G6B5; 1169 bytes_pp = 2; 1170 break; 1171 1172 case 8: 1173 format = SVGA3D_P8; 1174 bytes_pp = 1; 1175 break; 1176 1177 default: 1178 DRM_ERROR("Invalid framebuffer format %p4cc\n", 1179 &mode_cmd->pixel_format); 1180 return -EINVAL; 1181 } 1182 1183 metadata.format = format; 1184 metadata.mip_levels[0] = 1; 1185 metadata.num_sizes = 1; 1186 metadata.base_size.width = mode_cmd->pitches[0] / bytes_pp; 1187 metadata.base_size.height = mode_cmd->height; 1188 metadata.base_size.depth = 1; 1189 metadata.scanout = true; 1190 1191 ret = vmw_gb_surface_define(vmw_priv(dev), 0, &metadata, srf_out); 1192 if (ret) { 1193 DRM_ERROR("Failed to allocate proxy content buffer\n"); 1194 return ret; 1195 } 1196 1197 res = &(*srf_out)->res; 1198 1199 /* Reserve and switch the backing mob. */ 1200 mutex_lock(&res->dev_priv->cmdbuf_mutex); 1201 (void) vmw_resource_reserve(res, false, true); 1202 vmw_bo_unreference(&res->backup); 1203 res->backup = vmw_bo_reference(bo_mob); 1204 res->backup_offset = 0; 1205 vmw_resource_unreserve(res, false, false, false, NULL, 0); 1206 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 1207 1208 return 0; 1209 } 1210 1211 1212 1213 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv, 1214 struct vmw_buffer_object *bo, 1215 struct vmw_framebuffer **out, 1216 const struct drm_mode_fb_cmd2 1217 *mode_cmd) 1218 1219 { 1220 struct drm_device *dev = &dev_priv->drm; 1221 struct vmw_framebuffer_bo *vfbd; 1222 unsigned int requested_size; 1223 int ret; 1224 1225 requested_size = mode_cmd->height * mode_cmd->pitches[0]; 1226 if (unlikely(requested_size > bo->base.base.size)) { 1227 DRM_ERROR("Screen buffer object size is too small " 1228 "for requested mode.\n"); 1229 return -EINVAL; 1230 } 1231 1232 /* Limited framebuffer color depth support for screen objects */ 1233 if (dev_priv->active_display_unit == vmw_du_screen_object) { 1234 switch (mode_cmd->pixel_format) { 1235 case DRM_FORMAT_XRGB8888: 1236 case DRM_FORMAT_ARGB8888: 1237 break; 1238 case DRM_FORMAT_XRGB1555: 1239 case DRM_FORMAT_RGB565: 1240 break; 1241 default: 1242 DRM_ERROR("Invalid pixel format: %p4cc\n", 1243 &mode_cmd->pixel_format); 1244 return -EINVAL; 1245 } 1246 } 1247 1248 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL); 1249 if (!vfbd) { 1250 ret = -ENOMEM; 1251 goto out_err1; 1252 } 1253 1254 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd); 1255 vfbd->base.bo = true; 1256 vfbd->buffer = vmw_bo_reference(bo); 1257 vfbd->base.user_handle = mode_cmd->handles[0]; 1258 *out = &vfbd->base; 1259 1260 ret = drm_framebuffer_init(dev, &vfbd->base.base, 1261 &vmw_framebuffer_bo_funcs); 1262 if (ret) 1263 goto out_err2; 1264 1265 return 0; 1266 1267 out_err2: 1268 vmw_bo_unreference(&bo); 1269 kfree(vfbd); 1270 out_err1: 1271 return ret; 1272 } 1273 1274 1275 /** 1276 * vmw_kms_srf_ok - check if a surface can be created 1277 * 1278 * @dev_priv: Pointer to device private struct. 1279 * @width: requested width 1280 * @height: requested height 1281 * 1282 * Surfaces need to be less than texture size 1283 */ 1284 static bool 1285 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height) 1286 { 1287 if (width > dev_priv->texture_max_width || 1288 height > dev_priv->texture_max_height) 1289 return false; 1290 1291 return true; 1292 } 1293 1294 /** 1295 * vmw_kms_new_framebuffer - Create a new framebuffer. 1296 * 1297 * @dev_priv: Pointer to device private struct. 1298 * @bo: Pointer to buffer object to wrap the kms framebuffer around. 1299 * Either @bo or @surface must be NULL. 1300 * @surface: Pointer to a surface to wrap the kms framebuffer around. 1301 * Either @bo or @surface must be NULL. 1302 * @only_2d: No presents will occur to this buffer object based framebuffer. 1303 * This helps the code to do some important optimizations. 1304 * @mode_cmd: Frame-buffer metadata. 1305 */ 1306 struct vmw_framebuffer * 1307 vmw_kms_new_framebuffer(struct vmw_private *dev_priv, 1308 struct vmw_buffer_object *bo, 1309 struct vmw_surface *surface, 1310 bool only_2d, 1311 const struct drm_mode_fb_cmd2 *mode_cmd) 1312 { 1313 struct vmw_framebuffer *vfb = NULL; 1314 bool is_bo_proxy = false; 1315 int ret; 1316 1317 /* 1318 * We cannot use the SurfaceDMA command in an non-accelerated VM, 1319 * therefore, wrap the buffer object in a surface so we can use the 1320 * SurfaceCopy command. 1321 */ 1322 if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) && 1323 bo && only_2d && 1324 mode_cmd->width > 64 && /* Don't create a proxy for cursor */ 1325 dev_priv->active_display_unit == vmw_du_screen_target) { 1326 ret = vmw_create_bo_proxy(&dev_priv->drm, mode_cmd, 1327 bo, &surface); 1328 if (ret) 1329 return ERR_PTR(ret); 1330 1331 is_bo_proxy = true; 1332 } 1333 1334 /* Create the new framebuffer depending one what we have */ 1335 if (surface) { 1336 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb, 1337 mode_cmd, 1338 is_bo_proxy); 1339 1340 /* 1341 * vmw_create_bo_proxy() adds a reference that is no longer 1342 * needed 1343 */ 1344 if (is_bo_proxy) 1345 vmw_surface_unreference(&surface); 1346 } else if (bo) { 1347 ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb, 1348 mode_cmd); 1349 } else { 1350 BUG(); 1351 } 1352 1353 if (ret) 1354 return ERR_PTR(ret); 1355 1356 vfb->pin = vmw_framebuffer_pin; 1357 vfb->unpin = vmw_framebuffer_unpin; 1358 1359 return vfb; 1360 } 1361 1362 /* 1363 * Generic Kernel modesetting functions 1364 */ 1365 1366 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev, 1367 struct drm_file *file_priv, 1368 const struct drm_mode_fb_cmd2 *mode_cmd) 1369 { 1370 struct vmw_private *dev_priv = vmw_priv(dev); 1371 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 1372 struct vmw_framebuffer *vfb = NULL; 1373 struct vmw_surface *surface = NULL; 1374 struct vmw_buffer_object *bo = NULL; 1375 struct ttm_base_object *user_obj; 1376 int ret; 1377 1378 /* 1379 * Take a reference on the user object of the resource 1380 * backing the kms fb. This ensures that user-space handle 1381 * lookups on that resource will always work as long as 1382 * it's registered with a kms framebuffer. This is important, 1383 * since vmw_execbuf_process identifies resources in the 1384 * command stream using user-space handles. 1385 */ 1386 1387 user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]); 1388 if (unlikely(user_obj == NULL)) { 1389 DRM_ERROR("Could not locate requested kms frame buffer.\n"); 1390 return ERR_PTR(-ENOENT); 1391 } 1392 1393 /** 1394 * End conditioned code. 1395 */ 1396 1397 /* returns either a bo or surface */ 1398 ret = vmw_user_lookup_handle(dev_priv, tfile, 1399 mode_cmd->handles[0], 1400 &surface, &bo); 1401 if (ret) 1402 goto err_out; 1403 1404 1405 if (!bo && 1406 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) { 1407 DRM_ERROR("Surface size cannot exceed %dx%d", 1408 dev_priv->texture_max_width, 1409 dev_priv->texture_max_height); 1410 goto err_out; 1411 } 1412 1413 1414 vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface, 1415 !(dev_priv->capabilities & SVGA_CAP_3D), 1416 mode_cmd); 1417 if (IS_ERR(vfb)) { 1418 ret = PTR_ERR(vfb); 1419 goto err_out; 1420 } 1421 1422 err_out: 1423 /* vmw_user_lookup_handle takes one ref so does new_fb */ 1424 if (bo) 1425 vmw_bo_unreference(&bo); 1426 if (surface) 1427 vmw_surface_unreference(&surface); 1428 1429 if (ret) { 1430 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret); 1431 ttm_base_object_unref(&user_obj); 1432 return ERR_PTR(ret); 1433 } else 1434 vfb->user_obj = user_obj; 1435 1436 return &vfb->base; 1437 } 1438 1439 /** 1440 * vmw_kms_check_display_memory - Validates display memory required for a 1441 * topology 1442 * @dev: DRM device 1443 * @num_rects: number of drm_rect in rects 1444 * @rects: array of drm_rect representing the topology to validate indexed by 1445 * crtc index. 1446 * 1447 * Returns: 1448 * 0 on success otherwise negative error code 1449 */ 1450 static int vmw_kms_check_display_memory(struct drm_device *dev, 1451 uint32_t num_rects, 1452 struct drm_rect *rects) 1453 { 1454 struct vmw_private *dev_priv = vmw_priv(dev); 1455 struct drm_rect bounding_box = {0}; 1456 u64 total_pixels = 0, pixel_mem, bb_mem; 1457 int i; 1458 1459 for (i = 0; i < num_rects; i++) { 1460 /* 1461 * For STDU only individual screen (screen target) is limited by 1462 * SCREENTARGET_MAX_WIDTH/HEIGHT registers. 1463 */ 1464 if (dev_priv->active_display_unit == vmw_du_screen_target && 1465 (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width || 1466 drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) { 1467 VMW_DEBUG_KMS("Screen size not supported.\n"); 1468 return -EINVAL; 1469 } 1470 1471 /* Bounding box upper left is at (0,0). */ 1472 if (rects[i].x2 > bounding_box.x2) 1473 bounding_box.x2 = rects[i].x2; 1474 1475 if (rects[i].y2 > bounding_box.y2) 1476 bounding_box.y2 = rects[i].y2; 1477 1478 total_pixels += (u64) drm_rect_width(&rects[i]) * 1479 (u64) drm_rect_height(&rects[i]); 1480 } 1481 1482 /* Virtual svga device primary limits are always in 32-bpp. */ 1483 pixel_mem = total_pixels * 4; 1484 1485 /* 1486 * For HV10 and below prim_bb_mem is vram size. When 1487 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is 1488 * limit on primary bounding box 1489 */ 1490 if (pixel_mem > dev_priv->prim_bb_mem) { 1491 VMW_DEBUG_KMS("Combined output size too large.\n"); 1492 return -EINVAL; 1493 } 1494 1495 /* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */ 1496 if (dev_priv->active_display_unit != vmw_du_screen_target || 1497 !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) { 1498 bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4; 1499 1500 if (bb_mem > dev_priv->prim_bb_mem) { 1501 VMW_DEBUG_KMS("Topology is beyond supported limits.\n"); 1502 return -EINVAL; 1503 } 1504 } 1505 1506 return 0; 1507 } 1508 1509 /** 1510 * vmw_crtc_state_and_lock - Return new or current crtc state with locked 1511 * crtc mutex 1512 * @state: The atomic state pointer containing the new atomic state 1513 * @crtc: The crtc 1514 * 1515 * This function returns the new crtc state if it's part of the state update. 1516 * Otherwise returns the current crtc state. It also makes sure that the 1517 * crtc mutex is locked. 1518 * 1519 * Returns: A valid crtc state pointer or NULL. It may also return a 1520 * pointer error, in particular -EDEADLK if locking needs to be rerun. 1521 */ 1522 static struct drm_crtc_state * 1523 vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc) 1524 { 1525 struct drm_crtc_state *crtc_state; 1526 1527 crtc_state = drm_atomic_get_new_crtc_state(state, crtc); 1528 if (crtc_state) { 1529 lockdep_assert_held(&crtc->mutex.mutex.base); 1530 } else { 1531 int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx); 1532 1533 if (ret != 0 && ret != -EALREADY) 1534 return ERR_PTR(ret); 1535 1536 crtc_state = crtc->state; 1537 } 1538 1539 return crtc_state; 1540 } 1541 1542 /** 1543 * vmw_kms_check_implicit - Verify that all implicit display units scan out 1544 * from the same fb after the new state is committed. 1545 * @dev: The drm_device. 1546 * @state: The new state to be checked. 1547 * 1548 * Returns: 1549 * Zero on success, 1550 * -EINVAL on invalid state, 1551 * -EDEADLK if modeset locking needs to be rerun. 1552 */ 1553 static int vmw_kms_check_implicit(struct drm_device *dev, 1554 struct drm_atomic_state *state) 1555 { 1556 struct drm_framebuffer *implicit_fb = NULL; 1557 struct drm_crtc *crtc; 1558 struct drm_crtc_state *crtc_state; 1559 struct drm_plane_state *plane_state; 1560 1561 drm_for_each_crtc(crtc, dev) { 1562 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1563 1564 if (!du->is_implicit) 1565 continue; 1566 1567 crtc_state = vmw_crtc_state_and_lock(state, crtc); 1568 if (IS_ERR(crtc_state)) 1569 return PTR_ERR(crtc_state); 1570 1571 if (!crtc_state || !crtc_state->enable) 1572 continue; 1573 1574 /* 1575 * Can't move primary planes across crtcs, so this is OK. 1576 * It also means we don't need to take the plane mutex. 1577 */ 1578 plane_state = du->primary.state; 1579 if (plane_state->crtc != crtc) 1580 continue; 1581 1582 if (!implicit_fb) 1583 implicit_fb = plane_state->fb; 1584 else if (implicit_fb != plane_state->fb) 1585 return -EINVAL; 1586 } 1587 1588 return 0; 1589 } 1590 1591 /** 1592 * vmw_kms_check_topology - Validates topology in drm_atomic_state 1593 * @dev: DRM device 1594 * @state: the driver state object 1595 * 1596 * Returns: 1597 * 0 on success otherwise negative error code 1598 */ 1599 static int vmw_kms_check_topology(struct drm_device *dev, 1600 struct drm_atomic_state *state) 1601 { 1602 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 1603 struct drm_rect *rects; 1604 struct drm_crtc *crtc; 1605 uint32_t i; 1606 int ret = 0; 1607 1608 rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect), 1609 GFP_KERNEL); 1610 if (!rects) 1611 return -ENOMEM; 1612 1613 drm_for_each_crtc(crtc, dev) { 1614 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1615 struct drm_crtc_state *crtc_state; 1616 1617 i = drm_crtc_index(crtc); 1618 1619 crtc_state = vmw_crtc_state_and_lock(state, crtc); 1620 if (IS_ERR(crtc_state)) { 1621 ret = PTR_ERR(crtc_state); 1622 goto clean; 1623 } 1624 1625 if (!crtc_state) 1626 continue; 1627 1628 if (crtc_state->enable) { 1629 rects[i].x1 = du->gui_x; 1630 rects[i].y1 = du->gui_y; 1631 rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay; 1632 rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay; 1633 } else { 1634 rects[i].x1 = 0; 1635 rects[i].y1 = 0; 1636 rects[i].x2 = 0; 1637 rects[i].y2 = 0; 1638 } 1639 } 1640 1641 /* Determine change to topology due to new atomic state */ 1642 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, 1643 new_crtc_state, i) { 1644 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1645 struct drm_connector *connector; 1646 struct drm_connector_state *conn_state; 1647 struct vmw_connector_state *vmw_conn_state; 1648 1649 if (!du->pref_active && new_crtc_state->enable) { 1650 VMW_DEBUG_KMS("Enabling a disabled display unit\n"); 1651 ret = -EINVAL; 1652 goto clean; 1653 } 1654 1655 /* 1656 * For vmwgfx each crtc has only one connector attached and it 1657 * is not changed so don't really need to check the 1658 * crtc->connector_mask and iterate over it. 1659 */ 1660 connector = &du->connector; 1661 conn_state = drm_atomic_get_connector_state(state, connector); 1662 if (IS_ERR(conn_state)) { 1663 ret = PTR_ERR(conn_state); 1664 goto clean; 1665 } 1666 1667 vmw_conn_state = vmw_connector_state_to_vcs(conn_state); 1668 vmw_conn_state->gui_x = du->gui_x; 1669 vmw_conn_state->gui_y = du->gui_y; 1670 } 1671 1672 ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc, 1673 rects); 1674 1675 clean: 1676 kfree(rects); 1677 return ret; 1678 } 1679 1680 /** 1681 * vmw_kms_atomic_check_modeset- validate state object for modeset changes 1682 * 1683 * @dev: DRM device 1684 * @state: the driver state object 1685 * 1686 * This is a simple wrapper around drm_atomic_helper_check_modeset() for 1687 * us to assign a value to mode->crtc_clock so that 1688 * drm_calc_timestamping_constants() won't throw an error message 1689 * 1690 * Returns: 1691 * Zero for success or -errno 1692 */ 1693 static int 1694 vmw_kms_atomic_check_modeset(struct drm_device *dev, 1695 struct drm_atomic_state *state) 1696 { 1697 struct drm_crtc *crtc; 1698 struct drm_crtc_state *crtc_state; 1699 bool need_modeset = false; 1700 int i, ret; 1701 1702 ret = drm_atomic_helper_check(dev, state); 1703 if (ret) 1704 return ret; 1705 1706 ret = vmw_kms_check_implicit(dev, state); 1707 if (ret) { 1708 VMW_DEBUG_KMS("Invalid implicit state\n"); 1709 return ret; 1710 } 1711 1712 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 1713 if (drm_atomic_crtc_needs_modeset(crtc_state)) 1714 need_modeset = true; 1715 } 1716 1717 if (need_modeset) 1718 return vmw_kms_check_topology(dev, state); 1719 1720 return ret; 1721 } 1722 1723 static const struct drm_mode_config_funcs vmw_kms_funcs = { 1724 .fb_create = vmw_kms_fb_create, 1725 .atomic_check = vmw_kms_atomic_check_modeset, 1726 .atomic_commit = drm_atomic_helper_commit, 1727 }; 1728 1729 static int vmw_kms_generic_present(struct vmw_private *dev_priv, 1730 struct drm_file *file_priv, 1731 struct vmw_framebuffer *vfb, 1732 struct vmw_surface *surface, 1733 uint32_t sid, 1734 int32_t destX, int32_t destY, 1735 struct drm_vmw_rect *clips, 1736 uint32_t num_clips) 1737 { 1738 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips, 1739 &surface->res, destX, destY, 1740 num_clips, 1, NULL, NULL); 1741 } 1742 1743 1744 int vmw_kms_present(struct vmw_private *dev_priv, 1745 struct drm_file *file_priv, 1746 struct vmw_framebuffer *vfb, 1747 struct vmw_surface *surface, 1748 uint32_t sid, 1749 int32_t destX, int32_t destY, 1750 struct drm_vmw_rect *clips, 1751 uint32_t num_clips) 1752 { 1753 int ret; 1754 1755 switch (dev_priv->active_display_unit) { 1756 case vmw_du_screen_target: 1757 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips, 1758 &surface->res, destX, destY, 1759 num_clips, 1, NULL, NULL); 1760 break; 1761 case vmw_du_screen_object: 1762 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface, 1763 sid, destX, destY, clips, 1764 num_clips); 1765 break; 1766 default: 1767 WARN_ONCE(true, 1768 "Present called with invalid display system.\n"); 1769 ret = -ENOSYS; 1770 break; 1771 } 1772 if (ret) 1773 return ret; 1774 1775 vmw_cmd_flush(dev_priv, false); 1776 1777 return 0; 1778 } 1779 1780 static void 1781 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv) 1782 { 1783 if (dev_priv->hotplug_mode_update_property) 1784 return; 1785 1786 dev_priv->hotplug_mode_update_property = 1787 drm_property_create_range(&dev_priv->drm, 1788 DRM_MODE_PROP_IMMUTABLE, 1789 "hotplug_mode_update", 0, 1); 1790 } 1791 1792 int vmw_kms_init(struct vmw_private *dev_priv) 1793 { 1794 struct drm_device *dev = &dev_priv->drm; 1795 int ret; 1796 1797 drm_mode_config_init(dev); 1798 dev->mode_config.funcs = &vmw_kms_funcs; 1799 dev->mode_config.min_width = 1; 1800 dev->mode_config.min_height = 1; 1801 dev->mode_config.max_width = dev_priv->texture_max_width; 1802 dev->mode_config.max_height = dev_priv->texture_max_height; 1803 1804 drm_mode_create_suggested_offset_properties(dev); 1805 vmw_kms_create_hotplug_mode_update_property(dev_priv); 1806 1807 ret = vmw_kms_stdu_init_display(dev_priv); 1808 if (ret) { 1809 ret = vmw_kms_sou_init_display(dev_priv); 1810 if (ret) /* Fallback */ 1811 ret = vmw_kms_ldu_init_display(dev_priv); 1812 } 1813 1814 return ret; 1815 } 1816 1817 int vmw_kms_close(struct vmw_private *dev_priv) 1818 { 1819 int ret = 0; 1820 1821 /* 1822 * Docs says we should take the lock before calling this function 1823 * but since it destroys encoders and our destructor calls 1824 * drm_encoder_cleanup which takes the lock we deadlock. 1825 */ 1826 drm_mode_config_cleanup(&dev_priv->drm); 1827 if (dev_priv->active_display_unit == vmw_du_legacy) 1828 ret = vmw_kms_ldu_close_display(dev_priv); 1829 1830 return ret; 1831 } 1832 1833 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data, 1834 struct drm_file *file_priv) 1835 { 1836 struct drm_vmw_cursor_bypass_arg *arg = data; 1837 struct vmw_display_unit *du; 1838 struct drm_crtc *crtc; 1839 int ret = 0; 1840 1841 1842 mutex_lock(&dev->mode_config.mutex); 1843 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) { 1844 1845 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 1846 du = vmw_crtc_to_du(crtc); 1847 du->hotspot_x = arg->xhot; 1848 du->hotspot_y = arg->yhot; 1849 } 1850 1851 mutex_unlock(&dev->mode_config.mutex); 1852 return 0; 1853 } 1854 1855 crtc = drm_crtc_find(dev, file_priv, arg->crtc_id); 1856 if (!crtc) { 1857 ret = -ENOENT; 1858 goto out; 1859 } 1860 1861 du = vmw_crtc_to_du(crtc); 1862 1863 du->hotspot_x = arg->xhot; 1864 du->hotspot_y = arg->yhot; 1865 1866 out: 1867 mutex_unlock(&dev->mode_config.mutex); 1868 1869 return ret; 1870 } 1871 1872 int vmw_kms_write_svga(struct vmw_private *vmw_priv, 1873 unsigned width, unsigned height, unsigned pitch, 1874 unsigned bpp, unsigned depth) 1875 { 1876 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1877 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch); 1878 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1879 vmw_fifo_mem_write(vmw_priv, SVGA_FIFO_PITCHLOCK, pitch); 1880 vmw_write(vmw_priv, SVGA_REG_WIDTH, width); 1881 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height); 1882 if ((vmw_priv->capabilities & SVGA_CAP_8BIT_EMULATION) != 0) 1883 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp); 1884 1885 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) { 1886 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n", 1887 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH)); 1888 return -EINVAL; 1889 } 1890 1891 return 0; 1892 } 1893 1894 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv, 1895 uint32_t pitch, 1896 uint32_t height) 1897 { 1898 return ((u64) pitch * (u64) height) < (u64) 1899 ((dev_priv->active_display_unit == vmw_du_screen_target) ? 1900 dev_priv->prim_bb_mem : dev_priv->vram_size); 1901 } 1902 1903 1904 /* 1905 * Function called by DRM code called with vbl_lock held. 1906 */ 1907 u32 vmw_get_vblank_counter(struct drm_crtc *crtc) 1908 { 1909 return 0; 1910 } 1911 1912 /* 1913 * Function called by DRM code called with vbl_lock held. 1914 */ 1915 int vmw_enable_vblank(struct drm_crtc *crtc) 1916 { 1917 return -EINVAL; 1918 } 1919 1920 /* 1921 * Function called by DRM code called with vbl_lock held. 1922 */ 1923 void vmw_disable_vblank(struct drm_crtc *crtc) 1924 { 1925 } 1926 1927 /** 1928 * vmw_du_update_layout - Update the display unit with topology from resolution 1929 * plugin and generate DRM uevent 1930 * @dev_priv: device private 1931 * @num_rects: number of drm_rect in rects 1932 * @rects: toplogy to update 1933 */ 1934 static int vmw_du_update_layout(struct vmw_private *dev_priv, 1935 unsigned int num_rects, struct drm_rect *rects) 1936 { 1937 struct drm_device *dev = &dev_priv->drm; 1938 struct vmw_display_unit *du; 1939 struct drm_connector *con; 1940 struct drm_connector_list_iter conn_iter; 1941 struct drm_modeset_acquire_ctx ctx; 1942 struct drm_crtc *crtc; 1943 int ret; 1944 1945 /* Currently gui_x/y is protected with the crtc mutex */ 1946 mutex_lock(&dev->mode_config.mutex); 1947 drm_modeset_acquire_init(&ctx, 0); 1948 retry: 1949 drm_for_each_crtc(crtc, dev) { 1950 ret = drm_modeset_lock(&crtc->mutex, &ctx); 1951 if (ret < 0) { 1952 if (ret == -EDEADLK) { 1953 drm_modeset_backoff(&ctx); 1954 goto retry; 1955 } 1956 goto out_fini; 1957 } 1958 } 1959 1960 drm_connector_list_iter_begin(dev, &conn_iter); 1961 drm_for_each_connector_iter(con, &conn_iter) { 1962 du = vmw_connector_to_du(con); 1963 if (num_rects > du->unit) { 1964 du->pref_width = drm_rect_width(&rects[du->unit]); 1965 du->pref_height = drm_rect_height(&rects[du->unit]); 1966 du->pref_active = true; 1967 du->gui_x = rects[du->unit].x1; 1968 du->gui_y = rects[du->unit].y1; 1969 } else { 1970 du->pref_width = 800; 1971 du->pref_height = 600; 1972 du->pref_active = false; 1973 du->gui_x = 0; 1974 du->gui_y = 0; 1975 } 1976 } 1977 drm_connector_list_iter_end(&conn_iter); 1978 1979 list_for_each_entry(con, &dev->mode_config.connector_list, head) { 1980 du = vmw_connector_to_du(con); 1981 if (num_rects > du->unit) { 1982 drm_object_property_set_value 1983 (&con->base, dev->mode_config.suggested_x_property, 1984 du->gui_x); 1985 drm_object_property_set_value 1986 (&con->base, dev->mode_config.suggested_y_property, 1987 du->gui_y); 1988 } else { 1989 drm_object_property_set_value 1990 (&con->base, dev->mode_config.suggested_x_property, 1991 0); 1992 drm_object_property_set_value 1993 (&con->base, dev->mode_config.suggested_y_property, 1994 0); 1995 } 1996 con->status = vmw_du_connector_detect(con, true); 1997 } 1998 1999 drm_sysfs_hotplug_event(dev); 2000 out_fini: 2001 drm_modeset_drop_locks(&ctx); 2002 drm_modeset_acquire_fini(&ctx); 2003 mutex_unlock(&dev->mode_config.mutex); 2004 2005 return 0; 2006 } 2007 2008 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc, 2009 u16 *r, u16 *g, u16 *b, 2010 uint32_t size, 2011 struct drm_modeset_acquire_ctx *ctx) 2012 { 2013 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 2014 int i; 2015 2016 for (i = 0; i < size; i++) { 2017 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i, 2018 r[i], g[i], b[i]); 2019 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8); 2020 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8); 2021 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8); 2022 } 2023 2024 return 0; 2025 } 2026 2027 int vmw_du_connector_dpms(struct drm_connector *connector, int mode) 2028 { 2029 return 0; 2030 } 2031 2032 enum drm_connector_status 2033 vmw_du_connector_detect(struct drm_connector *connector, bool force) 2034 { 2035 uint32_t num_displays; 2036 struct drm_device *dev = connector->dev; 2037 struct vmw_private *dev_priv = vmw_priv(dev); 2038 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2039 2040 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS); 2041 2042 return ((vmw_connector_to_du(connector)->unit < num_displays && 2043 du->pref_active) ? 2044 connector_status_connected : connector_status_disconnected); 2045 } 2046 2047 static struct drm_display_mode vmw_kms_connector_builtin[] = { 2048 /* 640x480@60Hz */ 2049 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 2050 752, 800, 0, 480, 489, 492, 525, 0, 2051 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2052 /* 800x600@60Hz */ 2053 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 2054 968, 1056, 0, 600, 601, 605, 628, 0, 2055 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2056 /* 1024x768@60Hz */ 2057 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 2058 1184, 1344, 0, 768, 771, 777, 806, 0, 2059 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2060 /* 1152x864@75Hz */ 2061 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 2062 1344, 1600, 0, 864, 865, 868, 900, 0, 2063 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2064 /* 1280x720@60Hz */ 2065 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74500, 1280, 1344, 2066 1472, 1664, 0, 720, 723, 728, 748, 0, 2067 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2068 /* 1280x768@60Hz */ 2069 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 2070 1472, 1664, 0, 768, 771, 778, 798, 0, 2071 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2072 /* 1280x800@60Hz */ 2073 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 2074 1480, 1680, 0, 800, 803, 809, 831, 0, 2075 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2076 /* 1280x960@60Hz */ 2077 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 2078 1488, 1800, 0, 960, 961, 964, 1000, 0, 2079 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2080 /* 1280x1024@60Hz */ 2081 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 2082 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 2083 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2084 /* 1360x768@60Hz */ 2085 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 2086 1536, 1792, 0, 768, 771, 777, 795, 0, 2087 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2088 /* 1440x1050@60Hz */ 2089 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 2090 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, 2091 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2092 /* 1440x900@60Hz */ 2093 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 2094 1672, 1904, 0, 900, 903, 909, 934, 0, 2095 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2096 /* 1600x1200@60Hz */ 2097 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 2098 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 2099 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2100 /* 1680x1050@60Hz */ 2101 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 2102 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, 2103 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2104 /* 1792x1344@60Hz */ 2105 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 2106 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, 2107 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2108 /* 1853x1392@60Hz */ 2109 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 2110 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, 2111 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2112 /* 1920x1080@60Hz */ 2113 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 173000, 1920, 2048, 2114 2248, 2576, 0, 1080, 1083, 1088, 1120, 0, 2115 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2116 /* 1920x1200@60Hz */ 2117 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 2118 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, 2119 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2120 /* 1920x1440@60Hz */ 2121 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 2122 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, 2123 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2124 /* 2560x1440@60Hz */ 2125 { DRM_MODE("2560x1440", DRM_MODE_TYPE_DRIVER, 241500, 2560, 2608, 2126 2640, 2720, 0, 1440, 1443, 1448, 1481, 0, 2127 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2128 /* 2560x1600@60Hz */ 2129 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 2130 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, 2131 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2132 /* 2880x1800@60Hz */ 2133 { DRM_MODE("2880x1800", DRM_MODE_TYPE_DRIVER, 337500, 2880, 2928, 2134 2960, 3040, 0, 1800, 1803, 1809, 1852, 0, 2135 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2136 /* 3840x2160@60Hz */ 2137 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 533000, 3840, 3888, 2138 3920, 4000, 0, 2160, 2163, 2168, 2222, 0, 2139 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2140 /* 3840x2400@60Hz */ 2141 { DRM_MODE("3840x2400", DRM_MODE_TYPE_DRIVER, 592250, 3840, 3888, 2142 3920, 4000, 0, 2400, 2403, 2409, 2469, 0, 2143 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2144 /* Terminate */ 2145 { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) }, 2146 }; 2147 2148 /** 2149 * vmw_guess_mode_timing - Provide fake timings for a 2150 * 60Hz vrefresh mode. 2151 * 2152 * @mode: Pointer to a struct drm_display_mode with hdisplay and vdisplay 2153 * members filled in. 2154 */ 2155 void vmw_guess_mode_timing(struct drm_display_mode *mode) 2156 { 2157 mode->hsync_start = mode->hdisplay + 50; 2158 mode->hsync_end = mode->hsync_start + 50; 2159 mode->htotal = mode->hsync_end + 50; 2160 2161 mode->vsync_start = mode->vdisplay + 50; 2162 mode->vsync_end = mode->vsync_start + 50; 2163 mode->vtotal = mode->vsync_end + 50; 2164 2165 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6; 2166 } 2167 2168 2169 int vmw_du_connector_fill_modes(struct drm_connector *connector, 2170 uint32_t max_width, uint32_t max_height) 2171 { 2172 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2173 struct drm_device *dev = connector->dev; 2174 struct vmw_private *dev_priv = vmw_priv(dev); 2175 struct drm_display_mode *mode = NULL; 2176 struct drm_display_mode *bmode; 2177 struct drm_display_mode prefmode = { DRM_MODE("preferred", 2178 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED, 2179 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2180 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) 2181 }; 2182 int i; 2183 u32 assumed_bpp = 4; 2184 2185 if (dev_priv->assume_16bpp) 2186 assumed_bpp = 2; 2187 2188 max_width = min(max_width, dev_priv->texture_max_width); 2189 max_height = min(max_height, dev_priv->texture_max_height); 2190 2191 /* 2192 * For STDU extra limit for a mode on SVGA_REG_SCREENTARGET_MAX_WIDTH/ 2193 * HEIGHT registers. 2194 */ 2195 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2196 max_width = min(max_width, dev_priv->stdu_max_width); 2197 max_height = min(max_height, dev_priv->stdu_max_height); 2198 } 2199 2200 /* Add preferred mode */ 2201 mode = drm_mode_duplicate(dev, &prefmode); 2202 if (!mode) 2203 return 0; 2204 mode->hdisplay = du->pref_width; 2205 mode->vdisplay = du->pref_height; 2206 vmw_guess_mode_timing(mode); 2207 drm_mode_set_name(mode); 2208 2209 if (vmw_kms_validate_mode_vram(dev_priv, 2210 mode->hdisplay * assumed_bpp, 2211 mode->vdisplay)) { 2212 drm_mode_probed_add(connector, mode); 2213 } else { 2214 drm_mode_destroy(dev, mode); 2215 mode = NULL; 2216 } 2217 2218 if (du->pref_mode) { 2219 list_del_init(&du->pref_mode->head); 2220 drm_mode_destroy(dev, du->pref_mode); 2221 } 2222 2223 /* mode might be null here, this is intended */ 2224 du->pref_mode = mode; 2225 2226 for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) { 2227 bmode = &vmw_kms_connector_builtin[i]; 2228 if (bmode->hdisplay > max_width || 2229 bmode->vdisplay > max_height) 2230 continue; 2231 2232 if (!vmw_kms_validate_mode_vram(dev_priv, 2233 bmode->hdisplay * assumed_bpp, 2234 bmode->vdisplay)) 2235 continue; 2236 2237 mode = drm_mode_duplicate(dev, bmode); 2238 if (!mode) 2239 return 0; 2240 2241 drm_mode_probed_add(connector, mode); 2242 } 2243 2244 drm_connector_list_update(connector); 2245 /* Move the prefered mode first, help apps pick the right mode. */ 2246 drm_mode_sort(&connector->modes); 2247 2248 return 1; 2249 } 2250 2251 /** 2252 * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl 2253 * @dev: drm device for the ioctl 2254 * @data: data pointer for the ioctl 2255 * @file_priv: drm file for the ioctl call 2256 * 2257 * Update preferred topology of display unit as per ioctl request. The topology 2258 * is expressed as array of drm_vmw_rect. 2259 * e.g. 2260 * [0 0 640 480] [640 0 800 600] [0 480 640 480] 2261 * 2262 * NOTE: 2263 * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside 2264 * device limit on topology, x + w and y + h (lower right) cannot be greater 2265 * than INT_MAX. So topology beyond these limits will return with error. 2266 * 2267 * Returns: 2268 * Zero on success, negative errno on failure. 2269 */ 2270 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data, 2271 struct drm_file *file_priv) 2272 { 2273 struct vmw_private *dev_priv = vmw_priv(dev); 2274 struct drm_mode_config *mode_config = &dev->mode_config; 2275 struct drm_vmw_update_layout_arg *arg = 2276 (struct drm_vmw_update_layout_arg *)data; 2277 void __user *user_rects; 2278 struct drm_vmw_rect *rects; 2279 struct drm_rect *drm_rects; 2280 unsigned rects_size; 2281 int ret, i; 2282 2283 if (!arg->num_outputs) { 2284 struct drm_rect def_rect = {0, 0, 800, 600}; 2285 VMW_DEBUG_KMS("Default layout x1 = %d y1 = %d x2 = %d y2 = %d\n", 2286 def_rect.x1, def_rect.y1, 2287 def_rect.x2, def_rect.y2); 2288 vmw_du_update_layout(dev_priv, 1, &def_rect); 2289 return 0; 2290 } 2291 2292 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect); 2293 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect), 2294 GFP_KERNEL); 2295 if (unlikely(!rects)) 2296 return -ENOMEM; 2297 2298 user_rects = (void __user *)(unsigned long)arg->rects; 2299 ret = copy_from_user(rects, user_rects, rects_size); 2300 if (unlikely(ret != 0)) { 2301 DRM_ERROR("Failed to get rects.\n"); 2302 ret = -EFAULT; 2303 goto out_free; 2304 } 2305 2306 drm_rects = (struct drm_rect *)rects; 2307 2308 VMW_DEBUG_KMS("Layout count = %u\n", arg->num_outputs); 2309 for (i = 0; i < arg->num_outputs; i++) { 2310 struct drm_vmw_rect curr_rect; 2311 2312 /* Verify user-space for overflow as kernel use drm_rect */ 2313 if ((rects[i].x + rects[i].w > INT_MAX) || 2314 (rects[i].y + rects[i].h > INT_MAX)) { 2315 ret = -ERANGE; 2316 goto out_free; 2317 } 2318 2319 curr_rect = rects[i]; 2320 drm_rects[i].x1 = curr_rect.x; 2321 drm_rects[i].y1 = curr_rect.y; 2322 drm_rects[i].x2 = curr_rect.x + curr_rect.w; 2323 drm_rects[i].y2 = curr_rect.y + curr_rect.h; 2324 2325 VMW_DEBUG_KMS(" x1 = %d y1 = %d x2 = %d y2 = %d\n", 2326 drm_rects[i].x1, drm_rects[i].y1, 2327 drm_rects[i].x2, drm_rects[i].y2); 2328 2329 /* 2330 * Currently this check is limiting the topology within 2331 * mode_config->max (which actually is max texture size 2332 * supported by virtual device). This limit is here to address 2333 * window managers that create a big framebuffer for whole 2334 * topology. 2335 */ 2336 if (drm_rects[i].x1 < 0 || drm_rects[i].y1 < 0 || 2337 drm_rects[i].x2 > mode_config->max_width || 2338 drm_rects[i].y2 > mode_config->max_height) { 2339 VMW_DEBUG_KMS("Invalid layout %d %d %d %d\n", 2340 drm_rects[i].x1, drm_rects[i].y1, 2341 drm_rects[i].x2, drm_rects[i].y2); 2342 ret = -EINVAL; 2343 goto out_free; 2344 } 2345 } 2346 2347 ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects); 2348 2349 if (ret == 0) 2350 vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects); 2351 2352 out_free: 2353 kfree(rects); 2354 return ret; 2355 } 2356 2357 /** 2358 * vmw_kms_helper_dirty - Helper to build commands and perform actions based 2359 * on a set of cliprects and a set of display units. 2360 * 2361 * @dev_priv: Pointer to a device private structure. 2362 * @framebuffer: Pointer to the framebuffer on which to perform the actions. 2363 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL. 2364 * Cliprects are given in framebuffer coordinates. 2365 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must 2366 * be NULL. Cliprects are given in source coordinates. 2367 * @dest_x: X coordinate offset for the crtc / destination clip rects. 2368 * @dest_y: Y coordinate offset for the crtc / destination clip rects. 2369 * @num_clips: Number of cliprects in the @clips or @vclips array. 2370 * @increment: Integer with which to increment the clip counter when looping. 2371 * Used to skip a predetermined number of clip rects. 2372 * @dirty: Closure structure. See the description of struct vmw_kms_dirty. 2373 */ 2374 int vmw_kms_helper_dirty(struct vmw_private *dev_priv, 2375 struct vmw_framebuffer *framebuffer, 2376 const struct drm_clip_rect *clips, 2377 const struct drm_vmw_rect *vclips, 2378 s32 dest_x, s32 dest_y, 2379 int num_clips, 2380 int increment, 2381 struct vmw_kms_dirty *dirty) 2382 { 2383 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS]; 2384 struct drm_crtc *crtc; 2385 u32 num_units = 0; 2386 u32 i, k; 2387 2388 dirty->dev_priv = dev_priv; 2389 2390 /* If crtc is passed, no need to iterate over other display units */ 2391 if (dirty->crtc) { 2392 units[num_units++] = vmw_crtc_to_du(dirty->crtc); 2393 } else { 2394 list_for_each_entry(crtc, &dev_priv->drm.mode_config.crtc_list, 2395 head) { 2396 struct drm_plane *plane = crtc->primary; 2397 2398 if (plane->state->fb == &framebuffer->base) 2399 units[num_units++] = vmw_crtc_to_du(crtc); 2400 } 2401 } 2402 2403 for (k = 0; k < num_units; k++) { 2404 struct vmw_display_unit *unit = units[k]; 2405 s32 crtc_x = unit->crtc.x; 2406 s32 crtc_y = unit->crtc.y; 2407 s32 crtc_width = unit->crtc.mode.hdisplay; 2408 s32 crtc_height = unit->crtc.mode.vdisplay; 2409 const struct drm_clip_rect *clips_ptr = clips; 2410 const struct drm_vmw_rect *vclips_ptr = vclips; 2411 2412 dirty->unit = unit; 2413 if (dirty->fifo_reserve_size > 0) { 2414 dirty->cmd = VMW_CMD_RESERVE(dev_priv, 2415 dirty->fifo_reserve_size); 2416 if (!dirty->cmd) 2417 return -ENOMEM; 2418 2419 memset(dirty->cmd, 0, dirty->fifo_reserve_size); 2420 } 2421 dirty->num_hits = 0; 2422 for (i = 0; i < num_clips; i++, clips_ptr += increment, 2423 vclips_ptr += increment) { 2424 s32 clip_left; 2425 s32 clip_top; 2426 2427 /* 2428 * Select clip array type. Note that integer type 2429 * in @clips is unsigned short, whereas in @vclips 2430 * it's 32-bit. 2431 */ 2432 if (clips) { 2433 dirty->fb_x = (s32) clips_ptr->x1; 2434 dirty->fb_y = (s32) clips_ptr->y1; 2435 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x - 2436 crtc_x; 2437 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y - 2438 crtc_y; 2439 } else { 2440 dirty->fb_x = vclips_ptr->x; 2441 dirty->fb_y = vclips_ptr->y; 2442 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w + 2443 dest_x - crtc_x; 2444 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h + 2445 dest_y - crtc_y; 2446 } 2447 2448 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x; 2449 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y; 2450 2451 /* Skip this clip if it's outside the crtc region */ 2452 if (dirty->unit_x1 >= crtc_width || 2453 dirty->unit_y1 >= crtc_height || 2454 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0) 2455 continue; 2456 2457 /* Clip right and bottom to crtc limits */ 2458 dirty->unit_x2 = min_t(s32, dirty->unit_x2, 2459 crtc_width); 2460 dirty->unit_y2 = min_t(s32, dirty->unit_y2, 2461 crtc_height); 2462 2463 /* Clip left and top to crtc limits */ 2464 clip_left = min_t(s32, dirty->unit_x1, 0); 2465 clip_top = min_t(s32, dirty->unit_y1, 0); 2466 dirty->unit_x1 -= clip_left; 2467 dirty->unit_y1 -= clip_top; 2468 dirty->fb_x -= clip_left; 2469 dirty->fb_y -= clip_top; 2470 2471 dirty->clip(dirty); 2472 } 2473 2474 dirty->fifo_commit(dirty); 2475 } 2476 2477 return 0; 2478 } 2479 2480 /** 2481 * vmw_kms_helper_validation_finish - Helper for post KMS command submission 2482 * cleanup and fencing 2483 * @dev_priv: Pointer to the device-private struct 2484 * @file_priv: Pointer identifying the client when user-space fencing is used 2485 * @ctx: Pointer to the validation context 2486 * @out_fence: If non-NULL, returned refcounted fence-pointer 2487 * @user_fence_rep: If non-NULL, pointer to user-space address area 2488 * in which to copy user-space fence info 2489 */ 2490 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv, 2491 struct drm_file *file_priv, 2492 struct vmw_validation_context *ctx, 2493 struct vmw_fence_obj **out_fence, 2494 struct drm_vmw_fence_rep __user * 2495 user_fence_rep) 2496 { 2497 struct vmw_fence_obj *fence = NULL; 2498 uint32_t handle = 0; 2499 int ret = 0; 2500 2501 if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) || 2502 out_fence) 2503 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence, 2504 file_priv ? &handle : NULL); 2505 vmw_validation_done(ctx, fence); 2506 if (file_priv) 2507 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv), 2508 ret, user_fence_rep, fence, 2509 handle, -1, NULL); 2510 if (out_fence) 2511 *out_fence = fence; 2512 else 2513 vmw_fence_obj_unreference(&fence); 2514 } 2515 2516 /** 2517 * vmw_kms_update_proxy - Helper function to update a proxy surface from 2518 * its backing MOB. 2519 * 2520 * @res: Pointer to the surface resource 2521 * @clips: Clip rects in framebuffer (surface) space. 2522 * @num_clips: Number of clips in @clips. 2523 * @increment: Integer with which to increment the clip counter when looping. 2524 * Used to skip a predetermined number of clip rects. 2525 * 2526 * This function makes sure the proxy surface is updated from its backing MOB 2527 * using the region given by @clips. The surface resource @res and its backing 2528 * MOB needs to be reserved and validated on call. 2529 */ 2530 int vmw_kms_update_proxy(struct vmw_resource *res, 2531 const struct drm_clip_rect *clips, 2532 unsigned num_clips, 2533 int increment) 2534 { 2535 struct vmw_private *dev_priv = res->dev_priv; 2536 struct drm_vmw_size *size = &vmw_res_to_srf(res)->metadata.base_size; 2537 struct { 2538 SVGA3dCmdHeader header; 2539 SVGA3dCmdUpdateGBImage body; 2540 } *cmd; 2541 SVGA3dBox *box; 2542 size_t copy_size = 0; 2543 int i; 2544 2545 if (!clips) 2546 return 0; 2547 2548 cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd) * num_clips); 2549 if (!cmd) 2550 return -ENOMEM; 2551 2552 for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) { 2553 box = &cmd->body.box; 2554 2555 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE; 2556 cmd->header.size = sizeof(cmd->body); 2557 cmd->body.image.sid = res->id; 2558 cmd->body.image.face = 0; 2559 cmd->body.image.mipmap = 0; 2560 2561 if (clips->x1 > size->width || clips->x2 > size->width || 2562 clips->y1 > size->height || clips->y2 > size->height) { 2563 DRM_ERROR("Invalid clips outsize of framebuffer.\n"); 2564 return -EINVAL; 2565 } 2566 2567 box->x = clips->x1; 2568 box->y = clips->y1; 2569 box->z = 0; 2570 box->w = clips->x2 - clips->x1; 2571 box->h = clips->y2 - clips->y1; 2572 box->d = 1; 2573 2574 copy_size += sizeof(*cmd); 2575 } 2576 2577 vmw_cmd_commit(dev_priv, copy_size); 2578 2579 return 0; 2580 } 2581 2582 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv, 2583 unsigned unit, 2584 u32 max_width, 2585 u32 max_height, 2586 struct drm_connector **p_con, 2587 struct drm_crtc **p_crtc, 2588 struct drm_display_mode **p_mode) 2589 { 2590 struct drm_connector *con; 2591 struct vmw_display_unit *du; 2592 struct drm_display_mode *mode; 2593 int i = 0; 2594 int ret = 0; 2595 2596 mutex_lock(&dev_priv->drm.mode_config.mutex); 2597 list_for_each_entry(con, &dev_priv->drm.mode_config.connector_list, 2598 head) { 2599 if (i == unit) 2600 break; 2601 2602 ++i; 2603 } 2604 2605 if (&con->head == &dev_priv->drm.mode_config.connector_list) { 2606 DRM_ERROR("Could not find initial display unit.\n"); 2607 ret = -EINVAL; 2608 goto out_unlock; 2609 } 2610 2611 if (list_empty(&con->modes)) 2612 (void) vmw_du_connector_fill_modes(con, max_width, max_height); 2613 2614 if (list_empty(&con->modes)) { 2615 DRM_ERROR("Could not find initial display mode.\n"); 2616 ret = -EINVAL; 2617 goto out_unlock; 2618 } 2619 2620 du = vmw_connector_to_du(con); 2621 *p_con = con; 2622 *p_crtc = &du->crtc; 2623 2624 list_for_each_entry(mode, &con->modes, head) { 2625 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2626 break; 2627 } 2628 2629 if (&mode->head == &con->modes) { 2630 WARN_ONCE(true, "Could not find initial preferred mode.\n"); 2631 *p_mode = list_first_entry(&con->modes, 2632 struct drm_display_mode, 2633 head); 2634 } else { 2635 *p_mode = mode; 2636 } 2637 2638 out_unlock: 2639 mutex_unlock(&dev_priv->drm.mode_config.mutex); 2640 2641 return ret; 2642 } 2643 2644 /** 2645 * vmw_kms_create_implicit_placement_property - Set up the implicit placement 2646 * property. 2647 * 2648 * @dev_priv: Pointer to a device private struct. 2649 * 2650 * Sets up the implicit placement property unless it's already set up. 2651 */ 2652 void 2653 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv) 2654 { 2655 if (dev_priv->implicit_placement_property) 2656 return; 2657 2658 dev_priv->implicit_placement_property = 2659 drm_property_create_range(&dev_priv->drm, 2660 DRM_MODE_PROP_IMMUTABLE, 2661 "implicit_placement", 0, 1); 2662 } 2663 2664 /** 2665 * vmw_kms_suspend - Save modesetting state and turn modesetting off. 2666 * 2667 * @dev: Pointer to the drm device 2668 * Return: 0 on success. Negative error code on failure. 2669 */ 2670 int vmw_kms_suspend(struct drm_device *dev) 2671 { 2672 struct vmw_private *dev_priv = vmw_priv(dev); 2673 2674 dev_priv->suspend_state = drm_atomic_helper_suspend(dev); 2675 if (IS_ERR(dev_priv->suspend_state)) { 2676 int ret = PTR_ERR(dev_priv->suspend_state); 2677 2678 DRM_ERROR("Failed kms suspend: %d\n", ret); 2679 dev_priv->suspend_state = NULL; 2680 2681 return ret; 2682 } 2683 2684 return 0; 2685 } 2686 2687 2688 /** 2689 * vmw_kms_resume - Re-enable modesetting and restore state 2690 * 2691 * @dev: Pointer to the drm device 2692 * Return: 0 on success. Negative error code on failure. 2693 * 2694 * State is resumed from a previous vmw_kms_suspend(). It's illegal 2695 * to call this function without a previous vmw_kms_suspend(). 2696 */ 2697 int vmw_kms_resume(struct drm_device *dev) 2698 { 2699 struct vmw_private *dev_priv = vmw_priv(dev); 2700 int ret; 2701 2702 if (WARN_ON(!dev_priv->suspend_state)) 2703 return 0; 2704 2705 ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state); 2706 dev_priv->suspend_state = NULL; 2707 2708 return ret; 2709 } 2710 2711 /** 2712 * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost 2713 * 2714 * @dev: Pointer to the drm device 2715 */ 2716 void vmw_kms_lost_device(struct drm_device *dev) 2717 { 2718 drm_atomic_helper_shutdown(dev); 2719 } 2720 2721 /** 2722 * vmw_du_helper_plane_update - Helper to do plane update on a display unit. 2723 * @update: The closure structure. 2724 * 2725 * Call this helper after setting callbacks in &vmw_du_update_plane to do plane 2726 * update on display unit. 2727 * 2728 * Return: 0 on success or a negative error code on failure. 2729 */ 2730 int vmw_du_helper_plane_update(struct vmw_du_update_plane *update) 2731 { 2732 struct drm_plane_state *state = update->plane->state; 2733 struct drm_plane_state *old_state = update->old_state; 2734 struct drm_atomic_helper_damage_iter iter; 2735 struct drm_rect clip; 2736 struct drm_rect bb; 2737 DECLARE_VAL_CONTEXT(val_ctx, NULL, 0); 2738 uint32_t reserved_size = 0; 2739 uint32_t submit_size = 0; 2740 uint32_t curr_size = 0; 2741 uint32_t num_hits = 0; 2742 void *cmd_start; 2743 char *cmd_next; 2744 int ret; 2745 2746 /* 2747 * Iterate in advance to check if really need plane update and find the 2748 * number of clips that actually are in plane src for fifo allocation. 2749 */ 2750 drm_atomic_helper_damage_iter_init(&iter, old_state, state); 2751 drm_atomic_for_each_plane_damage(&iter, &clip) 2752 num_hits++; 2753 2754 if (num_hits == 0) 2755 return 0; 2756 2757 if (update->vfb->bo) { 2758 struct vmw_framebuffer_bo *vfbbo = 2759 container_of(update->vfb, typeof(*vfbbo), base); 2760 2761 ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer, false, 2762 update->cpu_blit); 2763 } else { 2764 struct vmw_framebuffer_surface *vfbs = 2765 container_of(update->vfb, typeof(*vfbs), base); 2766 2767 ret = vmw_validation_add_resource(&val_ctx, &vfbs->surface->res, 2768 0, VMW_RES_DIRTY_NONE, NULL, 2769 NULL); 2770 } 2771 2772 if (ret) 2773 return ret; 2774 2775 ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr); 2776 if (ret) 2777 goto out_unref; 2778 2779 reserved_size = update->calc_fifo_size(update, num_hits); 2780 cmd_start = VMW_CMD_RESERVE(update->dev_priv, reserved_size); 2781 if (!cmd_start) { 2782 ret = -ENOMEM; 2783 goto out_revert; 2784 } 2785 2786 cmd_next = cmd_start; 2787 2788 if (update->post_prepare) { 2789 curr_size = update->post_prepare(update, cmd_next); 2790 cmd_next += curr_size; 2791 submit_size += curr_size; 2792 } 2793 2794 if (update->pre_clip) { 2795 curr_size = update->pre_clip(update, cmd_next, num_hits); 2796 cmd_next += curr_size; 2797 submit_size += curr_size; 2798 } 2799 2800 bb.x1 = INT_MAX; 2801 bb.y1 = INT_MAX; 2802 bb.x2 = INT_MIN; 2803 bb.y2 = INT_MIN; 2804 2805 drm_atomic_helper_damage_iter_init(&iter, old_state, state); 2806 drm_atomic_for_each_plane_damage(&iter, &clip) { 2807 uint32_t fb_x = clip.x1; 2808 uint32_t fb_y = clip.y1; 2809 2810 vmw_du_translate_to_crtc(state, &clip); 2811 if (update->clip) { 2812 curr_size = update->clip(update, cmd_next, &clip, fb_x, 2813 fb_y); 2814 cmd_next += curr_size; 2815 submit_size += curr_size; 2816 } 2817 bb.x1 = min_t(int, bb.x1, clip.x1); 2818 bb.y1 = min_t(int, bb.y1, clip.y1); 2819 bb.x2 = max_t(int, bb.x2, clip.x2); 2820 bb.y2 = max_t(int, bb.y2, clip.y2); 2821 } 2822 2823 curr_size = update->post_clip(update, cmd_next, &bb); 2824 submit_size += curr_size; 2825 2826 if (reserved_size < submit_size) 2827 submit_size = 0; 2828 2829 vmw_cmd_commit(update->dev_priv, submit_size); 2830 2831 vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx, 2832 update->out_fence, NULL); 2833 return ret; 2834 2835 out_revert: 2836 vmw_validation_revert(&val_ctx); 2837 2838 out_unref: 2839 vmw_validation_unref_lists(&val_ctx); 2840 return ret; 2841 } 2842