1 /**************************************************************************
2  *
3  * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_kms.h"
29 #include <drm/drm_plane_helper.h>
30 #include <drm/drm_atomic.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_rect.h>
33 
34 
35 /* Might need a hrtimer here? */
36 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
37 
38 void vmw_du_cleanup(struct vmw_display_unit *du)
39 {
40 	drm_plane_cleanup(&du->primary);
41 	drm_plane_cleanup(&du->cursor);
42 
43 	drm_connector_unregister(&du->connector);
44 	drm_crtc_cleanup(&du->crtc);
45 	drm_encoder_cleanup(&du->encoder);
46 	drm_connector_cleanup(&du->connector);
47 }
48 
49 /*
50  * Display Unit Cursor functions
51  */
52 
53 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
54 				   u32 *image, u32 width, u32 height,
55 				   u32 hotspotX, u32 hotspotY)
56 {
57 	struct {
58 		u32 cmd;
59 		SVGAFifoCmdDefineAlphaCursor cursor;
60 	} *cmd;
61 	u32 image_size = width * height * 4;
62 	u32 cmd_size = sizeof(*cmd) + image_size;
63 
64 	if (!image)
65 		return -EINVAL;
66 
67 	cmd = vmw_fifo_reserve(dev_priv, cmd_size);
68 	if (unlikely(cmd == NULL)) {
69 		DRM_ERROR("Fifo reserve failed.\n");
70 		return -ENOMEM;
71 	}
72 
73 	memset(cmd, 0, sizeof(*cmd));
74 
75 	memcpy(&cmd[1], image, image_size);
76 
77 	cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
78 	cmd->cursor.id = 0;
79 	cmd->cursor.width = width;
80 	cmd->cursor.height = height;
81 	cmd->cursor.hotspotX = hotspotX;
82 	cmd->cursor.hotspotY = hotspotY;
83 
84 	vmw_fifo_commit_flush(dev_priv, cmd_size);
85 
86 	return 0;
87 }
88 
89 static int vmw_cursor_update_dmabuf(struct vmw_private *dev_priv,
90 				    struct vmw_dma_buffer *dmabuf,
91 				    u32 width, u32 height,
92 				    u32 hotspotX, u32 hotspotY)
93 {
94 	struct ttm_bo_kmap_obj map;
95 	unsigned long kmap_offset;
96 	unsigned long kmap_num;
97 	void *virtual;
98 	bool dummy;
99 	int ret;
100 
101 	kmap_offset = 0;
102 	kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
103 
104 	ret = ttm_bo_reserve(&dmabuf->base, true, false, NULL);
105 	if (unlikely(ret != 0)) {
106 		DRM_ERROR("reserve failed\n");
107 		return -EINVAL;
108 	}
109 
110 	ret = ttm_bo_kmap(&dmabuf->base, kmap_offset, kmap_num, &map);
111 	if (unlikely(ret != 0))
112 		goto err_unreserve;
113 
114 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
115 	ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
116 				      hotspotX, hotspotY);
117 
118 	ttm_bo_kunmap(&map);
119 err_unreserve:
120 	ttm_bo_unreserve(&dmabuf->base);
121 
122 	return ret;
123 }
124 
125 
126 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
127 				       bool show, int x, int y)
128 {
129 	u32 *fifo_mem = dev_priv->mmio_virt;
130 	uint32_t count;
131 
132 	spin_lock(&dev_priv->cursor_lock);
133 	vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
134 	vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
135 	vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
136 	count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
137 	vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
138 	spin_unlock(&dev_priv->cursor_lock);
139 }
140 
141 
142 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
143 			  struct ttm_object_file *tfile,
144 			  struct ttm_buffer_object *bo,
145 			  SVGA3dCmdHeader *header)
146 {
147 	struct ttm_bo_kmap_obj map;
148 	unsigned long kmap_offset;
149 	unsigned long kmap_num;
150 	SVGA3dCopyBox *box;
151 	unsigned box_count;
152 	void *virtual;
153 	bool dummy;
154 	struct vmw_dma_cmd {
155 		SVGA3dCmdHeader header;
156 		SVGA3dCmdSurfaceDMA dma;
157 	} *cmd;
158 	int i, ret;
159 
160 	cmd = container_of(header, struct vmw_dma_cmd, header);
161 
162 	/* No snooper installed */
163 	if (!srf->snooper.image)
164 		return;
165 
166 	if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
167 		DRM_ERROR("face and mipmap for cursors should never != 0\n");
168 		return;
169 	}
170 
171 	if (cmd->header.size < 64) {
172 		DRM_ERROR("at least one full copy box must be given\n");
173 		return;
174 	}
175 
176 	box = (SVGA3dCopyBox *)&cmd[1];
177 	box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
178 			sizeof(SVGA3dCopyBox);
179 
180 	if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
181 	    box->x != 0    || box->y != 0    || box->z != 0    ||
182 	    box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
183 	    box->d != 1    || box_count != 1) {
184 		/* TODO handle none page aligned offsets */
185 		/* TODO handle more dst & src != 0 */
186 		/* TODO handle more then one copy */
187 		DRM_ERROR("Cant snoop dma request for cursor!\n");
188 		DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
189 			  box->srcx, box->srcy, box->srcz,
190 			  box->x, box->y, box->z,
191 			  box->w, box->h, box->d, box_count,
192 			  cmd->dma.guest.ptr.offset);
193 		return;
194 	}
195 
196 	kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
197 	kmap_num = (64*64*4) >> PAGE_SHIFT;
198 
199 	ret = ttm_bo_reserve(bo, true, false, NULL);
200 	if (unlikely(ret != 0)) {
201 		DRM_ERROR("reserve failed\n");
202 		return;
203 	}
204 
205 	ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
206 	if (unlikely(ret != 0))
207 		goto err_unreserve;
208 
209 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
210 
211 	if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
212 		memcpy(srf->snooper.image, virtual, 64*64*4);
213 	} else {
214 		/* Image is unsigned pointer. */
215 		for (i = 0; i < box->h; i++)
216 			memcpy(srf->snooper.image + i * 64,
217 			       virtual + i * cmd->dma.guest.pitch,
218 			       box->w * 4);
219 	}
220 
221 	srf->snooper.age++;
222 
223 	ttm_bo_kunmap(&map);
224 err_unreserve:
225 	ttm_bo_unreserve(bo);
226 }
227 
228 /**
229  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
230  *
231  * @dev_priv: Pointer to the device private struct.
232  *
233  * Clears all legacy hotspots.
234  */
235 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
236 {
237 	struct drm_device *dev = dev_priv->dev;
238 	struct vmw_display_unit *du;
239 	struct drm_crtc *crtc;
240 
241 	drm_modeset_lock_all(dev);
242 	drm_for_each_crtc(crtc, dev) {
243 		du = vmw_crtc_to_du(crtc);
244 
245 		du->hotspot_x = 0;
246 		du->hotspot_y = 0;
247 	}
248 	drm_modeset_unlock_all(dev);
249 }
250 
251 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
252 {
253 	struct drm_device *dev = dev_priv->dev;
254 	struct vmw_display_unit *du;
255 	struct drm_crtc *crtc;
256 
257 	mutex_lock(&dev->mode_config.mutex);
258 
259 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
260 		du = vmw_crtc_to_du(crtc);
261 		if (!du->cursor_surface ||
262 		    du->cursor_age == du->cursor_surface->snooper.age)
263 			continue;
264 
265 		du->cursor_age = du->cursor_surface->snooper.age;
266 		vmw_cursor_update_image(dev_priv,
267 					du->cursor_surface->snooper.image,
268 					64, 64,
269 					du->hotspot_x + du->core_hotspot_x,
270 					du->hotspot_y + du->core_hotspot_y);
271 	}
272 
273 	mutex_unlock(&dev->mode_config.mutex);
274 }
275 
276 
277 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
278 {
279 	vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
280 
281 	drm_plane_cleanup(plane);
282 }
283 
284 
285 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
286 {
287 	drm_plane_cleanup(plane);
288 
289 	/* Planes are static in our case so we don't free it */
290 }
291 
292 
293 /**
294  * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
295  *
296  * @vps: plane state associated with the display surface
297  * @unreference: true if we also want to unreference the display.
298  */
299 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
300 			     bool unreference)
301 {
302 	if (vps->surf) {
303 		if (vps->pinned) {
304 			vmw_resource_unpin(&vps->surf->res);
305 			vps->pinned--;
306 		}
307 
308 		if (unreference) {
309 			if (vps->pinned)
310 				DRM_ERROR("Surface still pinned\n");
311 			vmw_surface_unreference(&vps->surf);
312 		}
313 	}
314 }
315 
316 
317 /**
318  * vmw_du_plane_cleanup_fb - Unpins the cursor
319  *
320  * @plane:  display plane
321  * @old_state: Contains the FB to clean up
322  *
323  * Unpins the framebuffer surface
324  *
325  * Returns 0 on success
326  */
327 void
328 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
329 			struct drm_plane_state *old_state)
330 {
331 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
332 
333 	vmw_du_plane_unpin_surf(vps, false);
334 }
335 
336 
337 /**
338  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
339  *
340  * @plane:  display plane
341  * @new_state: info on the new plane state, including the FB
342  *
343  * Returns 0 on success
344  */
345 int
346 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
347 			       struct drm_plane_state *new_state)
348 {
349 	struct drm_framebuffer *fb = new_state->fb;
350 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
351 
352 
353 	if (vps->surf)
354 		vmw_surface_unreference(&vps->surf);
355 
356 	if (vps->dmabuf)
357 		vmw_dmabuf_unreference(&vps->dmabuf);
358 
359 	if (fb) {
360 		if (vmw_framebuffer_to_vfb(fb)->dmabuf) {
361 			vps->dmabuf = vmw_framebuffer_to_vfbd(fb)->buffer;
362 			vmw_dmabuf_reference(vps->dmabuf);
363 		} else {
364 			vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
365 			vmw_surface_reference(vps->surf);
366 		}
367 	}
368 
369 	return 0;
370 }
371 
372 
373 void
374 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
375 				  struct drm_plane_state *old_state)
376 {
377 	struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
378 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
379 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
380 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
381 	s32 hotspot_x, hotspot_y;
382 	int ret = 0;
383 
384 
385 	hotspot_x = du->hotspot_x;
386 	hotspot_y = du->hotspot_y;
387 
388 	if (plane->fb) {
389 		hotspot_x += plane->fb->hot_x;
390 		hotspot_y += plane->fb->hot_y;
391 	}
392 
393 	du->cursor_surface = vps->surf;
394 	du->cursor_dmabuf = vps->dmabuf;
395 
396 	/* setup new image */
397 	if (vps->surf) {
398 		du->cursor_age = du->cursor_surface->snooper.age;
399 
400 		ret = vmw_cursor_update_image(dev_priv,
401 					      vps->surf->snooper.image,
402 					      64, 64, hotspot_x, hotspot_y);
403 	} else if (vps->dmabuf) {
404 		ret = vmw_cursor_update_dmabuf(dev_priv, vps->dmabuf,
405 					       plane->state->crtc_w,
406 					       plane->state->crtc_h,
407 					       hotspot_x, hotspot_y);
408 	} else {
409 		vmw_cursor_update_position(dev_priv, false, 0, 0);
410 		return;
411 	}
412 
413 	if (!ret) {
414 		du->cursor_x = plane->state->crtc_x + du->set_gui_x;
415 		du->cursor_y = plane->state->crtc_y + du->set_gui_y;
416 
417 		vmw_cursor_update_position(dev_priv, true,
418 					   du->cursor_x + hotspot_x,
419 					   du->cursor_y + hotspot_y);
420 
421 		du->core_hotspot_x = hotspot_x - du->hotspot_x;
422 		du->core_hotspot_y = hotspot_y - du->hotspot_y;
423 	} else {
424 		DRM_ERROR("Failed to update cursor image\n");
425 	}
426 }
427 
428 
429 /**
430  * vmw_du_primary_plane_atomic_check - check if the new state is okay
431  *
432  * @plane: display plane
433  * @state: info on the new plane state, including the FB
434  *
435  * Check if the new state is settable given the current state.  Other
436  * than what the atomic helper checks, we care about crtc fitting
437  * the FB and maintaining one active framebuffer.
438  *
439  * Returns 0 on success
440  */
441 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
442 				      struct drm_plane_state *state)
443 {
444 	struct drm_framebuffer *new_fb = state->fb;
445 	bool visible;
446 
447 	struct drm_rect src = {
448 		.x1 = state->src_x,
449 		.y1 = state->src_y,
450 		.x2 = state->src_x + state->src_w,
451 		.y2 = state->src_y + state->src_h,
452 	};
453 	struct drm_rect dest = {
454 		.x1 = state->crtc_x,
455 		.y1 = state->crtc_y,
456 		.x2 = state->crtc_x + state->crtc_w,
457 		.y2 = state->crtc_y + state->crtc_h,
458 	};
459 	struct drm_rect clip = dest;
460 	int ret;
461 
462 	ret = drm_plane_helper_check_update(plane, state->crtc, new_fb,
463 					    &src, &dest, &clip,
464 					    DRM_MODE_ROTATE_0,
465 					    DRM_PLANE_HELPER_NO_SCALING,
466 					    DRM_PLANE_HELPER_NO_SCALING,
467 					    false, true, &visible);
468 
469 
470 	if (!ret && new_fb) {
471 		struct drm_crtc *crtc = state->crtc;
472 		struct vmw_connector_state *vcs;
473 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
474 		struct vmw_private *dev_priv = vmw_priv(crtc->dev);
475 		struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb);
476 
477 		vcs = vmw_connector_state_to_vcs(du->connector.state);
478 
479 		if ((dest.x2 > new_fb->width ||
480 		     dest.y2 > new_fb->height)) {
481 			DRM_ERROR("CRTC area outside of framebuffer\n");
482 			return -EINVAL;
483 		}
484 
485 		/* Only one active implicit framebuffer at a time. */
486 		mutex_lock(&dev_priv->global_kms_state_mutex);
487 		if (vcs->is_implicit && dev_priv->implicit_fb &&
488 		    !(dev_priv->num_implicit == 1 && du->active_implicit)
489 		    && dev_priv->implicit_fb != vfb) {
490 			DRM_ERROR("Multiple implicit framebuffers "
491 				  "not supported.\n");
492 			ret = -EINVAL;
493 		}
494 		mutex_unlock(&dev_priv->global_kms_state_mutex);
495 	}
496 
497 
498 	return ret;
499 }
500 
501 
502 /**
503  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
504  *
505  * @plane: cursor plane
506  * @state: info on the new plane state
507  *
508  * This is a chance to fail if the new cursor state does not fit
509  * our requirements.
510  *
511  * Returns 0 on success
512  */
513 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
514 				     struct drm_plane_state *new_state)
515 {
516 	int ret = 0;
517 	struct vmw_surface *surface = NULL;
518 	struct drm_framebuffer *fb = new_state->fb;
519 
520 
521 	/* Turning off */
522 	if (!fb)
523 		return ret;
524 
525 	/* A lot of the code assumes this */
526 	if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
527 		DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
528 			  new_state->crtc_w, new_state->crtc_h);
529 		ret = -EINVAL;
530 	}
531 
532 	if (!vmw_framebuffer_to_vfb(fb)->dmabuf)
533 		surface = vmw_framebuffer_to_vfbs(fb)->surface;
534 
535 	if (surface && !surface->snooper.image) {
536 		DRM_ERROR("surface not suitable for cursor\n");
537 		ret = -EINVAL;
538 	}
539 
540 	return ret;
541 }
542 
543 
544 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
545 			     struct drm_crtc_state *new_state)
546 {
547 	struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
548 	int connector_mask = 1 << drm_connector_index(&du->connector);
549 	bool has_primary = new_state->plane_mask &
550 			   BIT(drm_plane_index(crtc->primary));
551 
552 	/* We always want to have an active plane with an active CRTC */
553 	if (has_primary != new_state->enable)
554 		return -EINVAL;
555 
556 
557 	if (new_state->connector_mask != connector_mask &&
558 	    new_state->connector_mask != 0) {
559 		DRM_ERROR("Invalid connectors configuration\n");
560 		return -EINVAL;
561 	}
562 
563 	/*
564 	 * Our virtual device does not have a dot clock, so use the logical
565 	 * clock value as the dot clock.
566 	 */
567 	if (new_state->mode.crtc_clock == 0)
568 		new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
569 
570 	return 0;
571 }
572 
573 
574 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
575 			      struct drm_crtc_state *old_crtc_state)
576 {
577 }
578 
579 
580 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
581 			      struct drm_crtc_state *old_crtc_state)
582 {
583 	struct drm_pending_vblank_event *event = crtc->state->event;
584 
585 	if (event) {
586 		crtc->state->event = NULL;
587 
588 		spin_lock_irq(&crtc->dev->event_lock);
589 		if (drm_crtc_vblank_get(crtc) == 0)
590 			drm_crtc_arm_vblank_event(crtc, event);
591 		else
592 			drm_crtc_send_vblank_event(crtc, event);
593 		spin_unlock_irq(&crtc->dev->event_lock);
594 	}
595 
596 }
597 
598 
599 /**
600  * vmw_du_crtc_duplicate_state - duplicate crtc state
601  * @crtc: DRM crtc
602  *
603  * Allocates and returns a copy of the crtc state (both common and
604  * vmw-specific) for the specified crtc.
605  *
606  * Returns: The newly allocated crtc state, or NULL on failure.
607  */
608 struct drm_crtc_state *
609 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
610 {
611 	struct drm_crtc_state *state;
612 	struct vmw_crtc_state *vcs;
613 
614 	if (WARN_ON(!crtc->state))
615 		return NULL;
616 
617 	vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
618 
619 	if (!vcs)
620 		return NULL;
621 
622 	state = &vcs->base;
623 
624 	__drm_atomic_helper_crtc_duplicate_state(crtc, state);
625 
626 	return state;
627 }
628 
629 
630 /**
631  * vmw_du_crtc_reset - creates a blank vmw crtc state
632  * @crtc: DRM crtc
633  *
634  * Resets the atomic state for @crtc by freeing the state pointer (which
635  * might be NULL, e.g. at driver load time) and allocating a new empty state
636  * object.
637  */
638 void vmw_du_crtc_reset(struct drm_crtc *crtc)
639 {
640 	struct vmw_crtc_state *vcs;
641 
642 
643 	if (crtc->state) {
644 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
645 
646 		kfree(vmw_crtc_state_to_vcs(crtc->state));
647 	}
648 
649 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
650 
651 	if (!vcs) {
652 		DRM_ERROR("Cannot allocate vmw_crtc_state\n");
653 		return;
654 	}
655 
656 	crtc->state = &vcs->base;
657 	crtc->state->crtc = crtc;
658 }
659 
660 
661 /**
662  * vmw_du_crtc_destroy_state - destroy crtc state
663  * @crtc: DRM crtc
664  * @state: state object to destroy
665  *
666  * Destroys the crtc state (both common and vmw-specific) for the
667  * specified plane.
668  */
669 void
670 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
671 			  struct drm_crtc_state *state)
672 {
673 	drm_atomic_helper_crtc_destroy_state(crtc, state);
674 }
675 
676 
677 /**
678  * vmw_du_plane_duplicate_state - duplicate plane state
679  * @plane: drm plane
680  *
681  * Allocates and returns a copy of the plane state (both common and
682  * vmw-specific) for the specified plane.
683  *
684  * Returns: The newly allocated plane state, or NULL on failure.
685  */
686 struct drm_plane_state *
687 vmw_du_plane_duplicate_state(struct drm_plane *plane)
688 {
689 	struct drm_plane_state *state;
690 	struct vmw_plane_state *vps;
691 
692 	vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
693 
694 	if (!vps)
695 		return NULL;
696 
697 	vps->pinned = 0;
698 
699 	/* Mapping is managed by prepare_fb/cleanup_fb */
700 	memset(&vps->guest_map, 0, sizeof(vps->guest_map));
701 	memset(&vps->host_map, 0, sizeof(vps->host_map));
702 	vps->cpp = 0;
703 
704 	/* Each ref counted resource needs to be acquired again */
705 	if (vps->surf)
706 		(void) vmw_surface_reference(vps->surf);
707 
708 	if (vps->dmabuf)
709 		(void) vmw_dmabuf_reference(vps->dmabuf);
710 
711 	state = &vps->base;
712 
713 	__drm_atomic_helper_plane_duplicate_state(plane, state);
714 
715 	return state;
716 }
717 
718 
719 /**
720  * vmw_du_plane_reset - creates a blank vmw plane state
721  * @plane: drm plane
722  *
723  * Resets the atomic state for @plane by freeing the state pointer (which might
724  * be NULL, e.g. at driver load time) and allocating a new empty state object.
725  */
726 void vmw_du_plane_reset(struct drm_plane *plane)
727 {
728 	struct vmw_plane_state *vps;
729 
730 
731 	if (plane->state)
732 		vmw_du_plane_destroy_state(plane, plane->state);
733 
734 	vps = kzalloc(sizeof(*vps), GFP_KERNEL);
735 
736 	if (!vps) {
737 		DRM_ERROR("Cannot allocate vmw_plane_state\n");
738 		return;
739 	}
740 
741 	plane->state = &vps->base;
742 	plane->state->plane = plane;
743 	plane->state->rotation = DRM_MODE_ROTATE_0;
744 }
745 
746 
747 /**
748  * vmw_du_plane_destroy_state - destroy plane state
749  * @plane: DRM plane
750  * @state: state object to destroy
751  *
752  * Destroys the plane state (both common and vmw-specific) for the
753  * specified plane.
754  */
755 void
756 vmw_du_plane_destroy_state(struct drm_plane *plane,
757 			   struct drm_plane_state *state)
758 {
759 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
760 
761 
762 	/* Should have been freed by cleanup_fb */
763 	if (vps->guest_map.virtual) {
764 		DRM_ERROR("Guest mapping not freed\n");
765 		ttm_bo_kunmap(&vps->guest_map);
766 	}
767 
768 	if (vps->host_map.virtual) {
769 		DRM_ERROR("Host mapping not freed\n");
770 		ttm_bo_kunmap(&vps->host_map);
771 	}
772 
773 	if (vps->surf)
774 		vmw_surface_unreference(&vps->surf);
775 
776 	if (vps->dmabuf)
777 		vmw_dmabuf_unreference(&vps->dmabuf);
778 
779 	drm_atomic_helper_plane_destroy_state(plane, state);
780 }
781 
782 
783 /**
784  * vmw_du_connector_duplicate_state - duplicate connector state
785  * @connector: DRM connector
786  *
787  * Allocates and returns a copy of the connector state (both common and
788  * vmw-specific) for the specified connector.
789  *
790  * Returns: The newly allocated connector state, or NULL on failure.
791  */
792 struct drm_connector_state *
793 vmw_du_connector_duplicate_state(struct drm_connector *connector)
794 {
795 	struct drm_connector_state *state;
796 	struct vmw_connector_state *vcs;
797 
798 	if (WARN_ON(!connector->state))
799 		return NULL;
800 
801 	vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
802 
803 	if (!vcs)
804 		return NULL;
805 
806 	state = &vcs->base;
807 
808 	__drm_atomic_helper_connector_duplicate_state(connector, state);
809 
810 	return state;
811 }
812 
813 
814 /**
815  * vmw_du_connector_reset - creates a blank vmw connector state
816  * @connector: DRM connector
817  *
818  * Resets the atomic state for @connector by freeing the state pointer (which
819  * might be NULL, e.g. at driver load time) and allocating a new empty state
820  * object.
821  */
822 void vmw_du_connector_reset(struct drm_connector *connector)
823 {
824 	struct vmw_connector_state *vcs;
825 
826 
827 	if (connector->state) {
828 		__drm_atomic_helper_connector_destroy_state(connector->state);
829 
830 		kfree(vmw_connector_state_to_vcs(connector->state));
831 	}
832 
833 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
834 
835 	if (!vcs) {
836 		DRM_ERROR("Cannot allocate vmw_connector_state\n");
837 		return;
838 	}
839 
840 	__drm_atomic_helper_connector_reset(connector, &vcs->base);
841 }
842 
843 
844 /**
845  * vmw_du_connector_destroy_state - destroy connector state
846  * @connector: DRM connector
847  * @state: state object to destroy
848  *
849  * Destroys the connector state (both common and vmw-specific) for the
850  * specified plane.
851  */
852 void
853 vmw_du_connector_destroy_state(struct drm_connector *connector,
854 			  struct drm_connector_state *state)
855 {
856 	drm_atomic_helper_connector_destroy_state(connector, state);
857 }
858 /*
859  * Generic framebuffer code
860  */
861 
862 /*
863  * Surface framebuffer code
864  */
865 
866 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
867 {
868 	struct vmw_framebuffer_surface *vfbs =
869 		vmw_framebuffer_to_vfbs(framebuffer);
870 
871 	drm_framebuffer_cleanup(framebuffer);
872 	vmw_surface_unreference(&vfbs->surface);
873 	if (vfbs->base.user_obj)
874 		ttm_base_object_unref(&vfbs->base.user_obj);
875 
876 	kfree(vfbs);
877 }
878 
879 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer,
880 				  struct drm_file *file_priv,
881 				  unsigned flags, unsigned color,
882 				  struct drm_clip_rect *clips,
883 				  unsigned num_clips)
884 {
885 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
886 	struct vmw_framebuffer_surface *vfbs =
887 		vmw_framebuffer_to_vfbs(framebuffer);
888 	struct drm_clip_rect norect;
889 	int ret, inc = 1;
890 
891 	/* Legacy Display Unit does not support 3D */
892 	if (dev_priv->active_display_unit == vmw_du_legacy)
893 		return -EINVAL;
894 
895 	drm_modeset_lock_all(dev_priv->dev);
896 
897 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
898 	if (unlikely(ret != 0)) {
899 		drm_modeset_unlock_all(dev_priv->dev);
900 		return ret;
901 	}
902 
903 	if (!num_clips) {
904 		num_clips = 1;
905 		clips = &norect;
906 		norect.x1 = norect.y1 = 0;
907 		norect.x2 = framebuffer->width;
908 		norect.y2 = framebuffer->height;
909 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
910 		num_clips /= 2;
911 		inc = 2; /* skip source rects */
912 	}
913 
914 	if (dev_priv->active_display_unit == vmw_du_screen_object)
915 		ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base,
916 						   clips, NULL, NULL, 0, 0,
917 						   num_clips, inc, NULL);
918 	else
919 		ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base,
920 						 clips, NULL, NULL, 0, 0,
921 						 num_clips, inc, NULL);
922 
923 	vmw_fifo_flush(dev_priv, false);
924 	ttm_read_unlock(&dev_priv->reservation_sem);
925 
926 	drm_modeset_unlock_all(dev_priv->dev);
927 
928 	return 0;
929 }
930 
931 /**
932  * vmw_kms_readback - Perform a readback from the screen system to
933  * a dma-buffer backed framebuffer.
934  *
935  * @dev_priv: Pointer to the device private structure.
936  * @file_priv: Pointer to a struct drm_file identifying the caller.
937  * Must be set to NULL if @user_fence_rep is NULL.
938  * @vfb: Pointer to the dma-buffer backed framebuffer.
939  * @user_fence_rep: User-space provided structure for fence information.
940  * Must be set to non-NULL if @file_priv is non-NULL.
941  * @vclips: Array of clip rects.
942  * @num_clips: Number of clip rects in @vclips.
943  *
944  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
945  * interrupted.
946  */
947 int vmw_kms_readback(struct vmw_private *dev_priv,
948 		     struct drm_file *file_priv,
949 		     struct vmw_framebuffer *vfb,
950 		     struct drm_vmw_fence_rep __user *user_fence_rep,
951 		     struct drm_vmw_rect *vclips,
952 		     uint32_t num_clips)
953 {
954 	switch (dev_priv->active_display_unit) {
955 	case vmw_du_screen_object:
956 		return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
957 					    user_fence_rep, vclips, num_clips);
958 	case vmw_du_screen_target:
959 		return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
960 					user_fence_rep, NULL, vclips, num_clips,
961 					1, false, true);
962 	default:
963 		WARN_ONCE(true,
964 			  "Readback called with invalid display system.\n");
965 }
966 
967 	return -ENOSYS;
968 }
969 
970 
971 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
972 	.destroy = vmw_framebuffer_surface_destroy,
973 	.dirty = vmw_framebuffer_surface_dirty,
974 };
975 
976 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
977 					   struct vmw_surface *surface,
978 					   struct vmw_framebuffer **out,
979 					   const struct drm_mode_fb_cmd2
980 					   *mode_cmd,
981 					   bool is_dmabuf_proxy)
982 
983 {
984 	struct drm_device *dev = dev_priv->dev;
985 	struct vmw_framebuffer_surface *vfbs;
986 	enum SVGA3dSurfaceFormat format;
987 	int ret;
988 	struct drm_format_name_buf format_name;
989 
990 	/* 3D is only supported on HWv8 and newer hosts */
991 	if (dev_priv->active_display_unit == vmw_du_legacy)
992 		return -ENOSYS;
993 
994 	/*
995 	 * Sanity checks.
996 	 */
997 
998 	/* Surface must be marked as a scanout. */
999 	if (unlikely(!surface->scanout))
1000 		return -EINVAL;
1001 
1002 	if (unlikely(surface->mip_levels[0] != 1 ||
1003 		     surface->num_sizes != 1 ||
1004 		     surface->base_size.width < mode_cmd->width ||
1005 		     surface->base_size.height < mode_cmd->height ||
1006 		     surface->base_size.depth != 1)) {
1007 		DRM_ERROR("Incompatible surface dimensions "
1008 			  "for requested mode.\n");
1009 		return -EINVAL;
1010 	}
1011 
1012 	switch (mode_cmd->pixel_format) {
1013 	case DRM_FORMAT_ARGB8888:
1014 		format = SVGA3D_A8R8G8B8;
1015 		break;
1016 	case DRM_FORMAT_XRGB8888:
1017 		format = SVGA3D_X8R8G8B8;
1018 		break;
1019 	case DRM_FORMAT_RGB565:
1020 		format = SVGA3D_R5G6B5;
1021 		break;
1022 	case DRM_FORMAT_XRGB1555:
1023 		format = SVGA3D_A1R5G5B5;
1024 		break;
1025 	default:
1026 		DRM_ERROR("Invalid pixel format: %s\n",
1027 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1028 		return -EINVAL;
1029 	}
1030 
1031 	/*
1032 	 * For DX, surface format validation is done when surface->scanout
1033 	 * is set.
1034 	 */
1035 	if (!dev_priv->has_dx && format != surface->format) {
1036 		DRM_ERROR("Invalid surface format for requested mode.\n");
1037 		return -EINVAL;
1038 	}
1039 
1040 	vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
1041 	if (!vfbs) {
1042 		ret = -ENOMEM;
1043 		goto out_err1;
1044 	}
1045 
1046 	drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
1047 	vfbs->surface = vmw_surface_reference(surface);
1048 	vfbs->base.user_handle = mode_cmd->handles[0];
1049 	vfbs->is_dmabuf_proxy = is_dmabuf_proxy;
1050 
1051 	*out = &vfbs->base;
1052 
1053 	ret = drm_framebuffer_init(dev, &vfbs->base.base,
1054 				   &vmw_framebuffer_surface_funcs);
1055 	if (ret)
1056 		goto out_err2;
1057 
1058 	return 0;
1059 
1060 out_err2:
1061 	vmw_surface_unreference(&surface);
1062 	kfree(vfbs);
1063 out_err1:
1064 	return ret;
1065 }
1066 
1067 /*
1068  * Dmabuf framebuffer code
1069  */
1070 
1071 static void vmw_framebuffer_dmabuf_destroy(struct drm_framebuffer *framebuffer)
1072 {
1073 	struct vmw_framebuffer_dmabuf *vfbd =
1074 		vmw_framebuffer_to_vfbd(framebuffer);
1075 
1076 	drm_framebuffer_cleanup(framebuffer);
1077 	vmw_dmabuf_unreference(&vfbd->buffer);
1078 	if (vfbd->base.user_obj)
1079 		ttm_base_object_unref(&vfbd->base.user_obj);
1080 
1081 	kfree(vfbd);
1082 }
1083 
1084 static int vmw_framebuffer_dmabuf_dirty(struct drm_framebuffer *framebuffer,
1085 				 struct drm_file *file_priv,
1086 				 unsigned flags, unsigned color,
1087 				 struct drm_clip_rect *clips,
1088 				 unsigned num_clips)
1089 {
1090 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1091 	struct vmw_framebuffer_dmabuf *vfbd =
1092 		vmw_framebuffer_to_vfbd(framebuffer);
1093 	struct drm_clip_rect norect;
1094 	int ret, increment = 1;
1095 
1096 	drm_modeset_lock_all(dev_priv->dev);
1097 
1098 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1099 	if (unlikely(ret != 0)) {
1100 		drm_modeset_unlock_all(dev_priv->dev);
1101 		return ret;
1102 	}
1103 
1104 	if (!num_clips) {
1105 		num_clips = 1;
1106 		clips = &norect;
1107 		norect.x1 = norect.y1 = 0;
1108 		norect.x2 = framebuffer->width;
1109 		norect.y2 = framebuffer->height;
1110 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1111 		num_clips /= 2;
1112 		increment = 2;
1113 	}
1114 
1115 	switch (dev_priv->active_display_unit) {
1116 	case vmw_du_screen_target:
1117 		ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL,
1118 				       clips, NULL, num_clips, increment,
1119 				       true, true);
1120 		break;
1121 	case vmw_du_screen_object:
1122 		ret = vmw_kms_sou_do_dmabuf_dirty(dev_priv, &vfbd->base,
1123 						  clips, NULL, num_clips,
1124 						  increment, true, NULL);
1125 		break;
1126 	case vmw_du_legacy:
1127 		ret = vmw_kms_ldu_do_dmabuf_dirty(dev_priv, &vfbd->base, 0, 0,
1128 						  clips, num_clips, increment);
1129 		break;
1130 	default:
1131 		ret = -EINVAL;
1132 		WARN_ONCE(true, "Dirty called with invalid display system.\n");
1133 		break;
1134 	}
1135 
1136 	vmw_fifo_flush(dev_priv, false);
1137 	ttm_read_unlock(&dev_priv->reservation_sem);
1138 
1139 	drm_modeset_unlock_all(dev_priv->dev);
1140 
1141 	return ret;
1142 }
1143 
1144 static const struct drm_framebuffer_funcs vmw_framebuffer_dmabuf_funcs = {
1145 	.destroy = vmw_framebuffer_dmabuf_destroy,
1146 	.dirty = vmw_framebuffer_dmabuf_dirty,
1147 };
1148 
1149 /**
1150  * Pin the dmabuffer to the start of vram.
1151  */
1152 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1153 {
1154 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1155 	struct vmw_dma_buffer *buf;
1156 	int ret;
1157 
1158 	buf = vfb->dmabuf ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1159 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1160 
1161 	if (!buf)
1162 		return 0;
1163 
1164 	switch (dev_priv->active_display_unit) {
1165 	case vmw_du_legacy:
1166 		vmw_overlay_pause_all(dev_priv);
1167 		ret = vmw_dmabuf_pin_in_start_of_vram(dev_priv, buf, false);
1168 		vmw_overlay_resume_all(dev_priv);
1169 		break;
1170 	case vmw_du_screen_object:
1171 	case vmw_du_screen_target:
1172 		if (vfb->dmabuf)
1173 			return vmw_dmabuf_pin_in_vram_or_gmr(dev_priv, buf,
1174 							     false);
1175 
1176 		return vmw_dmabuf_pin_in_placement(dev_priv, buf,
1177 						   &vmw_mob_placement, false);
1178 	default:
1179 		return -EINVAL;
1180 	}
1181 
1182 	return ret;
1183 }
1184 
1185 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1186 {
1187 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1188 	struct vmw_dma_buffer *buf;
1189 
1190 	buf = vfb->dmabuf ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1191 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1192 
1193 	if (WARN_ON(!buf))
1194 		return 0;
1195 
1196 	return vmw_dmabuf_unpin(dev_priv, buf, false);
1197 }
1198 
1199 /**
1200  * vmw_create_dmabuf_proxy - create a proxy surface for the DMA buf
1201  *
1202  * @dev: DRM device
1203  * @mode_cmd: parameters for the new surface
1204  * @dmabuf_mob: MOB backing the DMA buf
1205  * @srf_out: newly created surface
1206  *
1207  * When the content FB is a DMA buf, we create a surface as a proxy to the
1208  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1209  * This is a more efficient approach
1210  *
1211  * RETURNS:
1212  * 0 on success, error code otherwise
1213  */
1214 static int vmw_create_dmabuf_proxy(struct drm_device *dev,
1215 				   const struct drm_mode_fb_cmd2 *mode_cmd,
1216 				   struct vmw_dma_buffer *dmabuf_mob,
1217 				   struct vmw_surface **srf_out)
1218 {
1219 	uint32_t format;
1220 	struct drm_vmw_size content_base_size = {0};
1221 	struct vmw_resource *res;
1222 	unsigned int bytes_pp;
1223 	struct drm_format_name_buf format_name;
1224 	int ret;
1225 
1226 	switch (mode_cmd->pixel_format) {
1227 	case DRM_FORMAT_ARGB8888:
1228 	case DRM_FORMAT_XRGB8888:
1229 		format = SVGA3D_X8R8G8B8;
1230 		bytes_pp = 4;
1231 		break;
1232 
1233 	case DRM_FORMAT_RGB565:
1234 	case DRM_FORMAT_XRGB1555:
1235 		format = SVGA3D_R5G6B5;
1236 		bytes_pp = 2;
1237 		break;
1238 
1239 	case 8:
1240 		format = SVGA3D_P8;
1241 		bytes_pp = 1;
1242 		break;
1243 
1244 	default:
1245 		DRM_ERROR("Invalid framebuffer format %s\n",
1246 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1247 		return -EINVAL;
1248 	}
1249 
1250 	content_base_size.width  = mode_cmd->pitches[0] / bytes_pp;
1251 	content_base_size.height = mode_cmd->height;
1252 	content_base_size.depth  = 1;
1253 
1254 	ret = vmw_surface_gb_priv_define(dev,
1255 			0, /* kernel visible only */
1256 			0, /* flags */
1257 			format,
1258 			true, /* can be a scanout buffer */
1259 			1, /* num of mip levels */
1260 			0,
1261 			0,
1262 			content_base_size,
1263 			srf_out);
1264 	if (ret) {
1265 		DRM_ERROR("Failed to allocate proxy content buffer\n");
1266 		return ret;
1267 	}
1268 
1269 	res = &(*srf_out)->res;
1270 
1271 	/* Reserve and switch the backing mob. */
1272 	mutex_lock(&res->dev_priv->cmdbuf_mutex);
1273 	(void) vmw_resource_reserve(res, false, true);
1274 	vmw_dmabuf_unreference(&res->backup);
1275 	res->backup = vmw_dmabuf_reference(dmabuf_mob);
1276 	res->backup_offset = 0;
1277 	vmw_resource_unreserve(res, false, NULL, 0);
1278 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1279 
1280 	return 0;
1281 }
1282 
1283 
1284 
1285 static int vmw_kms_new_framebuffer_dmabuf(struct vmw_private *dev_priv,
1286 					  struct vmw_dma_buffer *dmabuf,
1287 					  struct vmw_framebuffer **out,
1288 					  const struct drm_mode_fb_cmd2
1289 					  *mode_cmd)
1290 
1291 {
1292 	struct drm_device *dev = dev_priv->dev;
1293 	struct vmw_framebuffer_dmabuf *vfbd;
1294 	unsigned int requested_size;
1295 	struct drm_format_name_buf format_name;
1296 	int ret;
1297 
1298 	requested_size = mode_cmd->height * mode_cmd->pitches[0];
1299 	if (unlikely(requested_size > dmabuf->base.num_pages * PAGE_SIZE)) {
1300 		DRM_ERROR("Screen buffer object size is too small "
1301 			  "for requested mode.\n");
1302 		return -EINVAL;
1303 	}
1304 
1305 	/* Limited framebuffer color depth support for screen objects */
1306 	if (dev_priv->active_display_unit == vmw_du_screen_object) {
1307 		switch (mode_cmd->pixel_format) {
1308 		case DRM_FORMAT_XRGB8888:
1309 		case DRM_FORMAT_ARGB8888:
1310 			break;
1311 		case DRM_FORMAT_XRGB1555:
1312 		case DRM_FORMAT_RGB565:
1313 			break;
1314 		default:
1315 			DRM_ERROR("Invalid pixel format: %s\n",
1316 				  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1317 			return -EINVAL;
1318 		}
1319 	}
1320 
1321 	vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1322 	if (!vfbd) {
1323 		ret = -ENOMEM;
1324 		goto out_err1;
1325 	}
1326 
1327 	drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1328 	vfbd->base.dmabuf = true;
1329 	vfbd->buffer = vmw_dmabuf_reference(dmabuf);
1330 	vfbd->base.user_handle = mode_cmd->handles[0];
1331 	*out = &vfbd->base;
1332 
1333 	ret = drm_framebuffer_init(dev, &vfbd->base.base,
1334 				   &vmw_framebuffer_dmabuf_funcs);
1335 	if (ret)
1336 		goto out_err2;
1337 
1338 	return 0;
1339 
1340 out_err2:
1341 	vmw_dmabuf_unreference(&dmabuf);
1342 	kfree(vfbd);
1343 out_err1:
1344 	return ret;
1345 }
1346 
1347 
1348 /**
1349  * vmw_kms_srf_ok - check if a surface can be created
1350  *
1351  * @width: requested width
1352  * @height: requested height
1353  *
1354  * Surfaces need to be less than texture size
1355  */
1356 static bool
1357 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1358 {
1359 	if (width  > dev_priv->texture_max_width ||
1360 	    height > dev_priv->texture_max_height)
1361 		return false;
1362 
1363 	return true;
1364 }
1365 
1366 /**
1367  * vmw_kms_new_framebuffer - Create a new framebuffer.
1368  *
1369  * @dev_priv: Pointer to device private struct.
1370  * @dmabuf: Pointer to dma buffer to wrap the kms framebuffer around.
1371  * Either @dmabuf or @surface must be NULL.
1372  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1373  * Either @dmabuf or @surface must be NULL.
1374  * @only_2d: No presents will occur to this dma buffer based framebuffer. This
1375  * Helps the code to do some important optimizations.
1376  * @mode_cmd: Frame-buffer metadata.
1377  */
1378 struct vmw_framebuffer *
1379 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1380 			struct vmw_dma_buffer *dmabuf,
1381 			struct vmw_surface *surface,
1382 			bool only_2d,
1383 			const struct drm_mode_fb_cmd2 *mode_cmd)
1384 {
1385 	struct vmw_framebuffer *vfb = NULL;
1386 	bool is_dmabuf_proxy = false;
1387 	int ret;
1388 
1389 	/*
1390 	 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1391 	 * therefore, wrap the DMA buf in a surface so we can use the
1392 	 * SurfaceCopy command.
1393 	 */
1394 	if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1395 	    dmabuf && only_2d &&
1396 	    mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1397 	    dev_priv->active_display_unit == vmw_du_screen_target) {
1398 		ret = vmw_create_dmabuf_proxy(dev_priv->dev, mode_cmd,
1399 					      dmabuf, &surface);
1400 		if (ret)
1401 			return ERR_PTR(ret);
1402 
1403 		is_dmabuf_proxy = true;
1404 	}
1405 
1406 	/* Create the new framebuffer depending one what we have */
1407 	if (surface) {
1408 		ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1409 						      mode_cmd,
1410 						      is_dmabuf_proxy);
1411 
1412 		/*
1413 		 * vmw_create_dmabuf_proxy() adds a reference that is no longer
1414 		 * needed
1415 		 */
1416 		if (is_dmabuf_proxy)
1417 			vmw_surface_unreference(&surface);
1418 	} else if (dmabuf) {
1419 		ret = vmw_kms_new_framebuffer_dmabuf(dev_priv, dmabuf, &vfb,
1420 						     mode_cmd);
1421 	} else {
1422 		BUG();
1423 	}
1424 
1425 	if (ret)
1426 		return ERR_PTR(ret);
1427 
1428 	vfb->pin = vmw_framebuffer_pin;
1429 	vfb->unpin = vmw_framebuffer_unpin;
1430 
1431 	return vfb;
1432 }
1433 
1434 /*
1435  * Generic Kernel modesetting functions
1436  */
1437 
1438 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1439 						 struct drm_file *file_priv,
1440 						 const struct drm_mode_fb_cmd2 *mode_cmd)
1441 {
1442 	struct vmw_private *dev_priv = vmw_priv(dev);
1443 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1444 	struct vmw_framebuffer *vfb = NULL;
1445 	struct vmw_surface *surface = NULL;
1446 	struct vmw_dma_buffer *bo = NULL;
1447 	struct ttm_base_object *user_obj;
1448 	int ret;
1449 
1450 	/**
1451 	 * This code should be conditioned on Screen Objects not being used.
1452 	 * If screen objects are used, we can allocate a GMR to hold the
1453 	 * requested framebuffer.
1454 	 */
1455 
1456 	if (!vmw_kms_validate_mode_vram(dev_priv,
1457 					mode_cmd->pitches[0],
1458 					mode_cmd->height)) {
1459 		DRM_ERROR("Requested mode exceed bounding box limit.\n");
1460 		return ERR_PTR(-ENOMEM);
1461 	}
1462 
1463 	/*
1464 	 * Take a reference on the user object of the resource
1465 	 * backing the kms fb. This ensures that user-space handle
1466 	 * lookups on that resource will always work as long as
1467 	 * it's registered with a kms framebuffer. This is important,
1468 	 * since vmw_execbuf_process identifies resources in the
1469 	 * command stream using user-space handles.
1470 	 */
1471 
1472 	user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1473 	if (unlikely(user_obj == NULL)) {
1474 		DRM_ERROR("Could not locate requested kms frame buffer.\n");
1475 		return ERR_PTR(-ENOENT);
1476 	}
1477 
1478 	/**
1479 	 * End conditioned code.
1480 	 */
1481 
1482 	/* returns either a dmabuf or surface */
1483 	ret = vmw_user_lookup_handle(dev_priv, tfile,
1484 				     mode_cmd->handles[0],
1485 				     &surface, &bo);
1486 	if (ret)
1487 		goto err_out;
1488 
1489 
1490 	if (!bo &&
1491 	    !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1492 		DRM_ERROR("Surface size cannot exceed %dx%d",
1493 			dev_priv->texture_max_width,
1494 			dev_priv->texture_max_height);
1495 		goto err_out;
1496 	}
1497 
1498 
1499 	vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1500 				      !(dev_priv->capabilities & SVGA_CAP_3D),
1501 				      mode_cmd);
1502 	if (IS_ERR(vfb)) {
1503 		ret = PTR_ERR(vfb);
1504 		goto err_out;
1505  	}
1506 
1507 err_out:
1508 	/* vmw_user_lookup_handle takes one ref so does new_fb */
1509 	if (bo)
1510 		vmw_dmabuf_unreference(&bo);
1511 	if (surface)
1512 		vmw_surface_unreference(&surface);
1513 
1514 	if (ret) {
1515 		DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1516 		ttm_base_object_unref(&user_obj);
1517 		return ERR_PTR(ret);
1518 	} else
1519 		vfb->user_obj = user_obj;
1520 
1521 	return &vfb->base;
1522 }
1523 
1524 
1525 
1526 /**
1527  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1528  *
1529  * @dev: DRM device
1530  * @state: the driver state object
1531  *
1532  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1533  * us to assign a value to mode->crtc_clock so that
1534  * drm_calc_timestamping_constants() won't throw an error message
1535  *
1536  * RETURNS
1537  * Zero for success or -errno
1538  */
1539 static int
1540 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1541 			     struct drm_atomic_state *state)
1542 {
1543 	struct drm_crtc_state *crtc_state;
1544 	struct drm_crtc *crtc;
1545 	struct vmw_private *dev_priv = vmw_priv(dev);
1546 	int i;
1547 
1548 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1549 		unsigned long requested_bb_mem = 0;
1550 
1551 		if (dev_priv->active_display_unit == vmw_du_screen_target) {
1552 			if (crtc->primary->fb) {
1553 				int cpp = crtc->primary->fb->pitches[0] /
1554 					  crtc->primary->fb->width;
1555 
1556 				requested_bb_mem += crtc->mode.hdisplay * cpp *
1557 						    crtc->mode.vdisplay;
1558 			}
1559 
1560 			if (requested_bb_mem > dev_priv->prim_bb_mem)
1561 				return -EINVAL;
1562 		}
1563 	}
1564 
1565 	return drm_atomic_helper_check(dev, state);
1566 }
1567 
1568 
1569 /**
1570  * vmw_kms_atomic_commit - Perform an atomic state commit
1571  *
1572  * @dev: DRM device
1573  * @state: the driver state object
1574  * @nonblock: Whether nonblocking behaviour is requested
1575  *
1576  * This is a simple wrapper around drm_atomic_helper_commit() for
1577  * us to clear the nonblocking value.
1578  *
1579  * Nonblocking commits currently cause synchronization issues
1580  * for vmwgfx.
1581  *
1582  * RETURNS
1583  * Zero for success or negative error code on failure.
1584  */
1585 int vmw_kms_atomic_commit(struct drm_device *dev,
1586 			  struct drm_atomic_state *state,
1587 			  bool nonblock)
1588 {
1589 	return drm_atomic_helper_commit(dev, state, false);
1590 }
1591 
1592 
1593 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1594 	.fb_create = vmw_kms_fb_create,
1595 	.atomic_check = vmw_kms_atomic_check_modeset,
1596 	.atomic_commit = vmw_kms_atomic_commit,
1597 };
1598 
1599 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1600 				   struct drm_file *file_priv,
1601 				   struct vmw_framebuffer *vfb,
1602 				   struct vmw_surface *surface,
1603 				   uint32_t sid,
1604 				   int32_t destX, int32_t destY,
1605 				   struct drm_vmw_rect *clips,
1606 				   uint32_t num_clips)
1607 {
1608 	return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1609 					    &surface->res, destX, destY,
1610 					    num_clips, 1, NULL);
1611 }
1612 
1613 
1614 int vmw_kms_present(struct vmw_private *dev_priv,
1615 		    struct drm_file *file_priv,
1616 		    struct vmw_framebuffer *vfb,
1617 		    struct vmw_surface *surface,
1618 		    uint32_t sid,
1619 		    int32_t destX, int32_t destY,
1620 		    struct drm_vmw_rect *clips,
1621 		    uint32_t num_clips)
1622 {
1623 	int ret;
1624 
1625 	switch (dev_priv->active_display_unit) {
1626 	case vmw_du_screen_target:
1627 		ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1628 						 &surface->res, destX, destY,
1629 						 num_clips, 1, NULL);
1630 		break;
1631 	case vmw_du_screen_object:
1632 		ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1633 					      sid, destX, destY, clips,
1634 					      num_clips);
1635 		break;
1636 	default:
1637 		WARN_ONCE(true,
1638 			  "Present called with invalid display system.\n");
1639 		ret = -ENOSYS;
1640 		break;
1641 	}
1642 	if (ret)
1643 		return ret;
1644 
1645 	vmw_fifo_flush(dev_priv, false);
1646 
1647 	return 0;
1648 }
1649 
1650 static void
1651 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1652 {
1653 	if (dev_priv->hotplug_mode_update_property)
1654 		return;
1655 
1656 	dev_priv->hotplug_mode_update_property =
1657 		drm_property_create_range(dev_priv->dev,
1658 					  DRM_MODE_PROP_IMMUTABLE,
1659 					  "hotplug_mode_update", 0, 1);
1660 
1661 	if (!dev_priv->hotplug_mode_update_property)
1662 		return;
1663 
1664 }
1665 
1666 int vmw_kms_init(struct vmw_private *dev_priv)
1667 {
1668 	struct drm_device *dev = dev_priv->dev;
1669 	int ret;
1670 
1671 	drm_mode_config_init(dev);
1672 	dev->mode_config.funcs = &vmw_kms_funcs;
1673 	dev->mode_config.min_width = 1;
1674 	dev->mode_config.min_height = 1;
1675 	dev->mode_config.max_width = dev_priv->texture_max_width;
1676 	dev->mode_config.max_height = dev_priv->texture_max_height;
1677 
1678 	drm_mode_create_suggested_offset_properties(dev);
1679 	vmw_kms_create_hotplug_mode_update_property(dev_priv);
1680 
1681 	ret = vmw_kms_stdu_init_display(dev_priv);
1682 	if (ret) {
1683 		ret = vmw_kms_sou_init_display(dev_priv);
1684 		if (ret) /* Fallback */
1685 			ret = vmw_kms_ldu_init_display(dev_priv);
1686 	}
1687 
1688 	return ret;
1689 }
1690 
1691 int vmw_kms_close(struct vmw_private *dev_priv)
1692 {
1693 	int ret = 0;
1694 
1695 	/*
1696 	 * Docs says we should take the lock before calling this function
1697 	 * but since it destroys encoders and our destructor calls
1698 	 * drm_encoder_cleanup which takes the lock we deadlock.
1699 	 */
1700 	drm_mode_config_cleanup(dev_priv->dev);
1701 	if (dev_priv->active_display_unit == vmw_du_legacy)
1702 		ret = vmw_kms_ldu_close_display(dev_priv);
1703 
1704 	return ret;
1705 }
1706 
1707 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1708 				struct drm_file *file_priv)
1709 {
1710 	struct drm_vmw_cursor_bypass_arg *arg = data;
1711 	struct vmw_display_unit *du;
1712 	struct drm_crtc *crtc;
1713 	int ret = 0;
1714 
1715 
1716 	mutex_lock(&dev->mode_config.mutex);
1717 	if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1718 
1719 		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1720 			du = vmw_crtc_to_du(crtc);
1721 			du->hotspot_x = arg->xhot;
1722 			du->hotspot_y = arg->yhot;
1723 		}
1724 
1725 		mutex_unlock(&dev->mode_config.mutex);
1726 		return 0;
1727 	}
1728 
1729 	crtc = drm_crtc_find(dev, arg->crtc_id);
1730 	if (!crtc) {
1731 		ret = -ENOENT;
1732 		goto out;
1733 	}
1734 
1735 	du = vmw_crtc_to_du(crtc);
1736 
1737 	du->hotspot_x = arg->xhot;
1738 	du->hotspot_y = arg->yhot;
1739 
1740 out:
1741 	mutex_unlock(&dev->mode_config.mutex);
1742 
1743 	return ret;
1744 }
1745 
1746 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1747 			unsigned width, unsigned height, unsigned pitch,
1748 			unsigned bpp, unsigned depth)
1749 {
1750 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1751 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1752 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1753 		vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1754 			       SVGA_FIFO_PITCHLOCK);
1755 	vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1756 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1757 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1758 
1759 	if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1760 		DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1761 			  depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1762 		return -EINVAL;
1763 	}
1764 
1765 	return 0;
1766 }
1767 
1768 int vmw_kms_save_vga(struct vmw_private *vmw_priv)
1769 {
1770 	struct vmw_vga_topology_state *save;
1771 	uint32_t i;
1772 
1773 	vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH);
1774 	vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT);
1775 	vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL);
1776 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1777 		vmw_priv->vga_pitchlock =
1778 		  vmw_read(vmw_priv, SVGA_REG_PITCHLOCK);
1779 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1780 		vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt +
1781 							SVGA_FIFO_PITCHLOCK);
1782 
1783 	if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1784 		return 0;
1785 
1786 	vmw_priv->num_displays = vmw_read(vmw_priv,
1787 					  SVGA_REG_NUM_GUEST_DISPLAYS);
1788 
1789 	if (vmw_priv->num_displays == 0)
1790 		vmw_priv->num_displays = 1;
1791 
1792 	for (i = 0; i < vmw_priv->num_displays; ++i) {
1793 		save = &vmw_priv->vga_save[i];
1794 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1795 		save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY);
1796 		save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X);
1797 		save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y);
1798 		save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH);
1799 		save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT);
1800 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1801 		if (i == 0 && vmw_priv->num_displays == 1 &&
1802 		    save->width == 0 && save->height == 0) {
1803 
1804 			/*
1805 			 * It should be fairly safe to assume that these
1806 			 * values are uninitialized.
1807 			 */
1808 
1809 			save->width = vmw_priv->vga_width - save->pos_x;
1810 			save->height = vmw_priv->vga_height - save->pos_y;
1811 		}
1812 	}
1813 
1814 	return 0;
1815 }
1816 
1817 int vmw_kms_restore_vga(struct vmw_private *vmw_priv)
1818 {
1819 	struct vmw_vga_topology_state *save;
1820 	uint32_t i;
1821 
1822 	vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width);
1823 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height);
1824 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp);
1825 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1826 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK,
1827 			  vmw_priv->vga_pitchlock);
1828 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1829 		vmw_mmio_write(vmw_priv->vga_pitchlock,
1830 			       vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK);
1831 
1832 	if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1833 		return 0;
1834 
1835 	for (i = 0; i < vmw_priv->num_displays; ++i) {
1836 		save = &vmw_priv->vga_save[i];
1837 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1838 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary);
1839 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x);
1840 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y);
1841 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width);
1842 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height);
1843 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1844 	}
1845 
1846 	return 0;
1847 }
1848 
1849 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1850 				uint32_t pitch,
1851 				uint32_t height)
1852 {
1853 	return ((u64) pitch * (u64) height) < (u64)
1854 		((dev_priv->active_display_unit == vmw_du_screen_target) ?
1855 		 dev_priv->prim_bb_mem : dev_priv->vram_size);
1856 }
1857 
1858 
1859 /**
1860  * Function called by DRM code called with vbl_lock held.
1861  */
1862 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
1863 {
1864 	return 0;
1865 }
1866 
1867 /**
1868  * Function called by DRM code called with vbl_lock held.
1869  */
1870 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe)
1871 {
1872 	return -ENOSYS;
1873 }
1874 
1875 /**
1876  * Function called by DRM code called with vbl_lock held.
1877  */
1878 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe)
1879 {
1880 }
1881 
1882 
1883 /*
1884  * Small shared kms functions.
1885  */
1886 
1887 static int vmw_du_update_layout(struct vmw_private *dev_priv, unsigned num,
1888 			 struct drm_vmw_rect *rects)
1889 {
1890 	struct drm_device *dev = dev_priv->dev;
1891 	struct vmw_display_unit *du;
1892 	struct drm_connector *con;
1893 
1894 	mutex_lock(&dev->mode_config.mutex);
1895 
1896 #if 0
1897 	{
1898 		unsigned int i;
1899 
1900 		DRM_INFO("%s: new layout ", __func__);
1901 		for (i = 0; i < num; i++)
1902 			DRM_INFO("(%i, %i %ux%u) ", rects[i].x, rects[i].y,
1903 				 rects[i].w, rects[i].h);
1904 		DRM_INFO("\n");
1905 	}
1906 #endif
1907 
1908 	list_for_each_entry(con, &dev->mode_config.connector_list, head) {
1909 		du = vmw_connector_to_du(con);
1910 		if (num > du->unit) {
1911 			du->pref_width = rects[du->unit].w;
1912 			du->pref_height = rects[du->unit].h;
1913 			du->pref_active = true;
1914 			du->gui_x = rects[du->unit].x;
1915 			du->gui_y = rects[du->unit].y;
1916 			drm_object_property_set_value
1917 			  (&con->base, dev->mode_config.suggested_x_property,
1918 			   du->gui_x);
1919 			drm_object_property_set_value
1920 			  (&con->base, dev->mode_config.suggested_y_property,
1921 			   du->gui_y);
1922 		} else {
1923 			du->pref_width = 800;
1924 			du->pref_height = 600;
1925 			du->pref_active = false;
1926 			drm_object_property_set_value
1927 			  (&con->base, dev->mode_config.suggested_x_property,
1928 			   0);
1929 			drm_object_property_set_value
1930 			  (&con->base, dev->mode_config.suggested_y_property,
1931 			   0);
1932 		}
1933 		con->status = vmw_du_connector_detect(con, true);
1934 	}
1935 
1936 	mutex_unlock(&dev->mode_config.mutex);
1937 	drm_sysfs_hotplug_event(dev);
1938 
1939 	return 0;
1940 }
1941 
1942 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
1943 			  u16 *r, u16 *g, u16 *b,
1944 			  uint32_t size,
1945 			  struct drm_modeset_acquire_ctx *ctx)
1946 {
1947 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
1948 	int i;
1949 
1950 	for (i = 0; i < size; i++) {
1951 		DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
1952 			  r[i], g[i], b[i]);
1953 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
1954 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
1955 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
1956 	}
1957 
1958 	return 0;
1959 }
1960 
1961 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
1962 {
1963 	return 0;
1964 }
1965 
1966 enum drm_connector_status
1967 vmw_du_connector_detect(struct drm_connector *connector, bool force)
1968 {
1969 	uint32_t num_displays;
1970 	struct drm_device *dev = connector->dev;
1971 	struct vmw_private *dev_priv = vmw_priv(dev);
1972 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
1973 
1974 	num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
1975 
1976 	return ((vmw_connector_to_du(connector)->unit < num_displays &&
1977 		 du->pref_active) ?
1978 		connector_status_connected : connector_status_disconnected);
1979 }
1980 
1981 static struct drm_display_mode vmw_kms_connector_builtin[] = {
1982 	/* 640x480@60Hz */
1983 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
1984 		   752, 800, 0, 480, 489, 492, 525, 0,
1985 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1986 	/* 800x600@60Hz */
1987 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
1988 		   968, 1056, 0, 600, 601, 605, 628, 0,
1989 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1990 	/* 1024x768@60Hz */
1991 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1992 		   1184, 1344, 0, 768, 771, 777, 806, 0,
1993 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1994 	/* 1152x864@75Hz */
1995 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1996 		   1344, 1600, 0, 864, 865, 868, 900, 0,
1997 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1998 	/* 1280x768@60Hz */
1999 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
2000 		   1472, 1664, 0, 768, 771, 778, 798, 0,
2001 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2002 	/* 1280x800@60Hz */
2003 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
2004 		   1480, 1680, 0, 800, 803, 809, 831, 0,
2005 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2006 	/* 1280x960@60Hz */
2007 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
2008 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
2009 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2010 	/* 1280x1024@60Hz */
2011 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
2012 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
2013 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2014 	/* 1360x768@60Hz */
2015 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2016 		   1536, 1792, 0, 768, 771, 777, 795, 0,
2017 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2018 	/* 1440x1050@60Hz */
2019 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2020 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2021 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2022 	/* 1440x900@60Hz */
2023 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2024 		   1672, 1904, 0, 900, 903, 909, 934, 0,
2025 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2026 	/* 1600x1200@60Hz */
2027 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2028 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2029 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2030 	/* 1680x1050@60Hz */
2031 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2032 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2033 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2034 	/* 1792x1344@60Hz */
2035 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2036 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2037 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2038 	/* 1853x1392@60Hz */
2039 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2040 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2041 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2042 	/* 1920x1200@60Hz */
2043 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2044 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2045 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2046 	/* 1920x1440@60Hz */
2047 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2048 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2049 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2050 	/* 2560x1600@60Hz */
2051 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2052 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2053 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2054 	/* Terminate */
2055 	{ DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2056 };
2057 
2058 /**
2059  * vmw_guess_mode_timing - Provide fake timings for a
2060  * 60Hz vrefresh mode.
2061  *
2062  * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2063  * members filled in.
2064  */
2065 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2066 {
2067 	mode->hsync_start = mode->hdisplay + 50;
2068 	mode->hsync_end = mode->hsync_start + 50;
2069 	mode->htotal = mode->hsync_end + 50;
2070 
2071 	mode->vsync_start = mode->vdisplay + 50;
2072 	mode->vsync_end = mode->vsync_start + 50;
2073 	mode->vtotal = mode->vsync_end + 50;
2074 
2075 	mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2076 	mode->vrefresh = drm_mode_vrefresh(mode);
2077 }
2078 
2079 
2080 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2081 				uint32_t max_width, uint32_t max_height)
2082 {
2083 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2084 	struct drm_device *dev = connector->dev;
2085 	struct vmw_private *dev_priv = vmw_priv(dev);
2086 	struct drm_display_mode *mode = NULL;
2087 	struct drm_display_mode *bmode;
2088 	struct drm_display_mode prefmode = { DRM_MODE("preferred",
2089 		DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2090 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2091 		DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2092 	};
2093 	int i;
2094 	u32 assumed_bpp = 4;
2095 
2096 	if (dev_priv->assume_16bpp)
2097 		assumed_bpp = 2;
2098 
2099 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2100 		max_width  = min(max_width,  dev_priv->stdu_max_width);
2101 		max_width  = min(max_width,  dev_priv->texture_max_width);
2102 
2103 		max_height = min(max_height, dev_priv->stdu_max_height);
2104 		max_height = min(max_height, dev_priv->texture_max_height);
2105 	}
2106 
2107 	/* Add preferred mode */
2108 	mode = drm_mode_duplicate(dev, &prefmode);
2109 	if (!mode)
2110 		return 0;
2111 	mode->hdisplay = du->pref_width;
2112 	mode->vdisplay = du->pref_height;
2113 	vmw_guess_mode_timing(mode);
2114 
2115 	if (vmw_kms_validate_mode_vram(dev_priv,
2116 					mode->hdisplay * assumed_bpp,
2117 					mode->vdisplay)) {
2118 		drm_mode_probed_add(connector, mode);
2119 	} else {
2120 		drm_mode_destroy(dev, mode);
2121 		mode = NULL;
2122 	}
2123 
2124 	if (du->pref_mode) {
2125 		list_del_init(&du->pref_mode->head);
2126 		drm_mode_destroy(dev, du->pref_mode);
2127 	}
2128 
2129 	/* mode might be null here, this is intended */
2130 	du->pref_mode = mode;
2131 
2132 	for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2133 		bmode = &vmw_kms_connector_builtin[i];
2134 		if (bmode->hdisplay > max_width ||
2135 		    bmode->vdisplay > max_height)
2136 			continue;
2137 
2138 		if (!vmw_kms_validate_mode_vram(dev_priv,
2139 						bmode->hdisplay * assumed_bpp,
2140 						bmode->vdisplay))
2141 			continue;
2142 
2143 		mode = drm_mode_duplicate(dev, bmode);
2144 		if (!mode)
2145 			return 0;
2146 		mode->vrefresh = drm_mode_vrefresh(mode);
2147 
2148 		drm_mode_probed_add(connector, mode);
2149 	}
2150 
2151 	drm_mode_connector_list_update(connector);
2152 	/* Move the prefered mode first, help apps pick the right mode. */
2153 	drm_mode_sort(&connector->modes);
2154 
2155 	return 1;
2156 }
2157 
2158 int vmw_du_connector_set_property(struct drm_connector *connector,
2159 				  struct drm_property *property,
2160 				  uint64_t val)
2161 {
2162 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2163 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2164 
2165 	if (property == dev_priv->implicit_placement_property)
2166 		du->is_implicit = val;
2167 
2168 	return 0;
2169 }
2170 
2171 
2172 
2173 /**
2174  * vmw_du_connector_atomic_set_property - Atomic version of get property
2175  *
2176  * @crtc - crtc the property is associated with
2177  *
2178  * Returns:
2179  * Zero on success, negative errno on failure.
2180  */
2181 int
2182 vmw_du_connector_atomic_set_property(struct drm_connector *connector,
2183 				     struct drm_connector_state *state,
2184 				     struct drm_property *property,
2185 				     uint64_t val)
2186 {
2187 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2188 	struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2189 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2190 
2191 
2192 	if (property == dev_priv->implicit_placement_property) {
2193 		vcs->is_implicit = val;
2194 
2195 		/*
2196 		 * We should really be doing a drm_atomic_commit() to
2197 		 * commit the new state, but since this doesn't cause
2198 		 * an immedate state change, this is probably ok
2199 		 */
2200 		du->is_implicit = vcs->is_implicit;
2201 	} else {
2202 		return -EINVAL;
2203 	}
2204 
2205 	return 0;
2206 }
2207 
2208 
2209 /**
2210  * vmw_du_connector_atomic_get_property - Atomic version of get property
2211  *
2212  * @connector - connector the property is associated with
2213  *
2214  * Returns:
2215  * Zero on success, negative errno on failure.
2216  */
2217 int
2218 vmw_du_connector_atomic_get_property(struct drm_connector *connector,
2219 				     const struct drm_connector_state *state,
2220 				     struct drm_property *property,
2221 				     uint64_t *val)
2222 {
2223 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2224 	struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2225 
2226 	if (property == dev_priv->implicit_placement_property)
2227 		*val = vcs->is_implicit;
2228 	else {
2229 		DRM_ERROR("Invalid Property %s\n", property->name);
2230 		return -EINVAL;
2231 	}
2232 
2233 	return 0;
2234 }
2235 
2236 
2237 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2238 				struct drm_file *file_priv)
2239 {
2240 	struct vmw_private *dev_priv = vmw_priv(dev);
2241 	struct drm_vmw_update_layout_arg *arg =
2242 		(struct drm_vmw_update_layout_arg *)data;
2243 	void __user *user_rects;
2244 	struct drm_vmw_rect *rects;
2245 	unsigned rects_size;
2246 	int ret;
2247 	int i;
2248 	u64 total_pixels = 0;
2249 	struct drm_mode_config *mode_config = &dev->mode_config;
2250 	struct drm_vmw_rect bounding_box = {0};
2251 
2252 	if (!arg->num_outputs) {
2253 		struct drm_vmw_rect def_rect = {0, 0, 800, 600};
2254 		vmw_du_update_layout(dev_priv, 1, &def_rect);
2255 		return 0;
2256 	}
2257 
2258 	rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2259 	rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2260 			GFP_KERNEL);
2261 	if (unlikely(!rects))
2262 		return -ENOMEM;
2263 
2264 	user_rects = (void __user *)(unsigned long)arg->rects;
2265 	ret = copy_from_user(rects, user_rects, rects_size);
2266 	if (unlikely(ret != 0)) {
2267 		DRM_ERROR("Failed to get rects.\n");
2268 		ret = -EFAULT;
2269 		goto out_free;
2270 	}
2271 
2272 	for (i = 0; i < arg->num_outputs; ++i) {
2273 		if (rects[i].x < 0 ||
2274 		    rects[i].y < 0 ||
2275 		    rects[i].x + rects[i].w > mode_config->max_width ||
2276 		    rects[i].y + rects[i].h > mode_config->max_height) {
2277 			DRM_ERROR("Invalid GUI layout.\n");
2278 			ret = -EINVAL;
2279 			goto out_free;
2280 		}
2281 
2282 		/*
2283 		 * bounding_box.w and bunding_box.h are used as
2284 		 * lower-right coordinates
2285 		 */
2286 		if (rects[i].x + rects[i].w > bounding_box.w)
2287 			bounding_box.w = rects[i].x + rects[i].w;
2288 
2289 		if (rects[i].y + rects[i].h > bounding_box.h)
2290 			bounding_box.h = rects[i].y + rects[i].h;
2291 
2292 		total_pixels += (u64) rects[i].w * (u64) rects[i].h;
2293 	}
2294 
2295 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2296 		/*
2297 		 * For Screen Targets, the limits for a toplogy are:
2298 		 *	1. Bounding box (assuming 32bpp) must be < prim_bb_mem
2299 		 *      2. Total pixels (assuming 32bpp) must be < prim_bb_mem
2300 		 */
2301 		u64 bb_mem    = (u64) bounding_box.w * bounding_box.h * 4;
2302 		u64 pixel_mem = total_pixels * 4;
2303 
2304 		if (bb_mem > dev_priv->prim_bb_mem) {
2305 			DRM_ERROR("Topology is beyond supported limits.\n");
2306 			ret = -EINVAL;
2307 			goto out_free;
2308 		}
2309 
2310 		if (pixel_mem > dev_priv->prim_bb_mem) {
2311 			DRM_ERROR("Combined output size too large\n");
2312 			ret = -EINVAL;
2313 			goto out_free;
2314 		}
2315 	}
2316 
2317 	vmw_du_update_layout(dev_priv, arg->num_outputs, rects);
2318 
2319 out_free:
2320 	kfree(rects);
2321 	return ret;
2322 }
2323 
2324 /**
2325  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2326  * on a set of cliprects and a set of display units.
2327  *
2328  * @dev_priv: Pointer to a device private structure.
2329  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2330  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2331  * Cliprects are given in framebuffer coordinates.
2332  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2333  * be NULL. Cliprects are given in source coordinates.
2334  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2335  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2336  * @num_clips: Number of cliprects in the @clips or @vclips array.
2337  * @increment: Integer with which to increment the clip counter when looping.
2338  * Used to skip a predetermined number of clip rects.
2339  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2340  */
2341 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2342 			 struct vmw_framebuffer *framebuffer,
2343 			 const struct drm_clip_rect *clips,
2344 			 const struct drm_vmw_rect *vclips,
2345 			 s32 dest_x, s32 dest_y,
2346 			 int num_clips,
2347 			 int increment,
2348 			 struct vmw_kms_dirty *dirty)
2349 {
2350 	struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2351 	struct drm_crtc *crtc;
2352 	u32 num_units = 0;
2353 	u32 i, k;
2354 
2355 	dirty->dev_priv = dev_priv;
2356 
2357 	list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, head) {
2358 		if (crtc->primary->fb != &framebuffer->base)
2359 			continue;
2360 		units[num_units++] = vmw_crtc_to_du(crtc);
2361 	}
2362 
2363 	for (k = 0; k < num_units; k++) {
2364 		struct vmw_display_unit *unit = units[k];
2365 		s32 crtc_x = unit->crtc.x;
2366 		s32 crtc_y = unit->crtc.y;
2367 		s32 crtc_width = unit->crtc.mode.hdisplay;
2368 		s32 crtc_height = unit->crtc.mode.vdisplay;
2369 		const struct drm_clip_rect *clips_ptr = clips;
2370 		const struct drm_vmw_rect *vclips_ptr = vclips;
2371 
2372 		dirty->unit = unit;
2373 		if (dirty->fifo_reserve_size > 0) {
2374 			dirty->cmd = vmw_fifo_reserve(dev_priv,
2375 						      dirty->fifo_reserve_size);
2376 			if (!dirty->cmd) {
2377 				DRM_ERROR("Couldn't reserve fifo space "
2378 					  "for dirty blits.\n");
2379 				return -ENOMEM;
2380 			}
2381 			memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2382 		}
2383 		dirty->num_hits = 0;
2384 		for (i = 0; i < num_clips; i++, clips_ptr += increment,
2385 		       vclips_ptr += increment) {
2386 			s32 clip_left;
2387 			s32 clip_top;
2388 
2389 			/*
2390 			 * Select clip array type. Note that integer type
2391 			 * in @clips is unsigned short, whereas in @vclips
2392 			 * it's 32-bit.
2393 			 */
2394 			if (clips) {
2395 				dirty->fb_x = (s32) clips_ptr->x1;
2396 				dirty->fb_y = (s32) clips_ptr->y1;
2397 				dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2398 					crtc_x;
2399 				dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2400 					crtc_y;
2401 			} else {
2402 				dirty->fb_x = vclips_ptr->x;
2403 				dirty->fb_y = vclips_ptr->y;
2404 				dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2405 					dest_x - crtc_x;
2406 				dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2407 					dest_y - crtc_y;
2408 			}
2409 
2410 			dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2411 			dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2412 
2413 			/* Skip this clip if it's outside the crtc region */
2414 			if (dirty->unit_x1 >= crtc_width ||
2415 			    dirty->unit_y1 >= crtc_height ||
2416 			    dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2417 				continue;
2418 
2419 			/* Clip right and bottom to crtc limits */
2420 			dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2421 					       crtc_width);
2422 			dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2423 					       crtc_height);
2424 
2425 			/* Clip left and top to crtc limits */
2426 			clip_left = min_t(s32, dirty->unit_x1, 0);
2427 			clip_top = min_t(s32, dirty->unit_y1, 0);
2428 			dirty->unit_x1 -= clip_left;
2429 			dirty->unit_y1 -= clip_top;
2430 			dirty->fb_x -= clip_left;
2431 			dirty->fb_y -= clip_top;
2432 
2433 			dirty->clip(dirty);
2434 		}
2435 
2436 		dirty->fifo_commit(dirty);
2437 	}
2438 
2439 	return 0;
2440 }
2441 
2442 /**
2443  * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before
2444  * command submission.
2445  *
2446  * @dev_priv. Pointer to a device private structure.
2447  * @buf: The buffer object
2448  * @interruptible: Whether to perform waits as interruptible.
2449  * @validate_as_mob: Whether the buffer should be validated as a MOB. If false,
2450  * The buffer will be validated as a GMR. Already pinned buffers will not be
2451  * validated.
2452  *
2453  * Returns 0 on success, negative error code on failure, -ERESTARTSYS if
2454  * interrupted by a signal.
2455  */
2456 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv,
2457 				  struct vmw_dma_buffer *buf,
2458 				  bool interruptible,
2459 				  bool validate_as_mob)
2460 {
2461 	struct ttm_buffer_object *bo = &buf->base;
2462 	int ret;
2463 
2464 	ttm_bo_reserve(bo, false, false, NULL);
2465 	ret = vmw_validate_single_buffer(dev_priv, bo, interruptible,
2466 					 validate_as_mob);
2467 	if (ret)
2468 		ttm_bo_unreserve(bo);
2469 
2470 	return ret;
2471 }
2472 
2473 /**
2474  * vmw_kms_helper_buffer_revert - Undo the actions of
2475  * vmw_kms_helper_buffer_prepare.
2476  *
2477  * @res: Pointer to the buffer object.
2478  *
2479  * Helper to be used if an error forces the caller to undo the actions of
2480  * vmw_kms_helper_buffer_prepare.
2481  */
2482 void vmw_kms_helper_buffer_revert(struct vmw_dma_buffer *buf)
2483 {
2484 	if (buf)
2485 		ttm_bo_unreserve(&buf->base);
2486 }
2487 
2488 /**
2489  * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after
2490  * kms command submission.
2491  *
2492  * @dev_priv: Pointer to a device private structure.
2493  * @file_priv: Pointer to a struct drm_file representing the caller's
2494  * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely
2495  * if non-NULL, @user_fence_rep must be non-NULL.
2496  * @buf: The buffer object.
2497  * @out_fence:  Optional pointer to a fence pointer. If non-NULL, a
2498  * ref-counted fence pointer is returned here.
2499  * @user_fence_rep: Optional pointer to a user-space provided struct
2500  * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the
2501  * function copies fence data to user-space in a fail-safe manner.
2502  */
2503 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv,
2504 				  struct drm_file *file_priv,
2505 				  struct vmw_dma_buffer *buf,
2506 				  struct vmw_fence_obj **out_fence,
2507 				  struct drm_vmw_fence_rep __user *
2508 				  user_fence_rep)
2509 {
2510 	struct vmw_fence_obj *fence;
2511 	uint32_t handle;
2512 	int ret;
2513 
2514 	ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2515 					 file_priv ? &handle : NULL);
2516 	if (buf)
2517 		vmw_fence_single_bo(&buf->base, fence);
2518 	if (file_priv)
2519 		vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2520 					    ret, user_fence_rep, fence,
2521 					    handle, -1, NULL);
2522 	if (out_fence)
2523 		*out_fence = fence;
2524 	else
2525 		vmw_fence_obj_unreference(&fence);
2526 
2527 	vmw_kms_helper_buffer_revert(buf);
2528 }
2529 
2530 
2531 /**
2532  * vmw_kms_helper_resource_revert - Undo the actions of
2533  * vmw_kms_helper_resource_prepare.
2534  *
2535  * @res: Pointer to the resource. Typically a surface.
2536  *
2537  * Helper to be used if an error forces the caller to undo the actions of
2538  * vmw_kms_helper_resource_prepare.
2539  */
2540 void vmw_kms_helper_resource_revert(struct vmw_resource *res)
2541 {
2542 	vmw_kms_helper_buffer_revert(res->backup);
2543 	vmw_resource_unreserve(res, false, NULL, 0);
2544 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2545 }
2546 
2547 /**
2548  * vmw_kms_helper_resource_prepare - Reserve and validate a resource before
2549  * command submission.
2550  *
2551  * @res: Pointer to the resource. Typically a surface.
2552  * @interruptible: Whether to perform waits as interruptible.
2553  *
2554  * Reserves and validates also the backup buffer if a guest-backed resource.
2555  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
2556  * interrupted by a signal.
2557  */
2558 int vmw_kms_helper_resource_prepare(struct vmw_resource *res,
2559 				    bool interruptible)
2560 {
2561 	int ret = 0;
2562 
2563 	if (interruptible)
2564 		ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex);
2565 	else
2566 		mutex_lock(&res->dev_priv->cmdbuf_mutex);
2567 
2568 	if (unlikely(ret != 0))
2569 		return -ERESTARTSYS;
2570 
2571 	ret = vmw_resource_reserve(res, interruptible, false);
2572 	if (ret)
2573 		goto out_unlock;
2574 
2575 	if (res->backup) {
2576 		ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup,
2577 						    interruptible,
2578 						    res->dev_priv->has_mob);
2579 		if (ret)
2580 			goto out_unreserve;
2581 	}
2582 	ret = vmw_resource_validate(res);
2583 	if (ret)
2584 		goto out_revert;
2585 	return 0;
2586 
2587 out_revert:
2588 	vmw_kms_helper_buffer_revert(res->backup);
2589 out_unreserve:
2590 	vmw_resource_unreserve(res, false, NULL, 0);
2591 out_unlock:
2592 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2593 	return ret;
2594 }
2595 
2596 /**
2597  * vmw_kms_helper_resource_finish - Unreserve and fence a resource after
2598  * kms command submission.
2599  *
2600  * @res: Pointer to the resource. Typically a surface.
2601  * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2602  * ref-counted fence pointer is returned here.
2603  */
2604 void vmw_kms_helper_resource_finish(struct vmw_resource *res,
2605 			     struct vmw_fence_obj **out_fence)
2606 {
2607 	if (res->backup || out_fence)
2608 		vmw_kms_helper_buffer_finish(res->dev_priv, NULL, res->backup,
2609 					     out_fence, NULL);
2610 
2611 	vmw_resource_unreserve(res, false, NULL, 0);
2612 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2613 }
2614 
2615 /**
2616  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2617  * its backing MOB.
2618  *
2619  * @res: Pointer to the surface resource
2620  * @clips: Clip rects in framebuffer (surface) space.
2621  * @num_clips: Number of clips in @clips.
2622  * @increment: Integer with which to increment the clip counter when looping.
2623  * Used to skip a predetermined number of clip rects.
2624  *
2625  * This function makes sure the proxy surface is updated from its backing MOB
2626  * using the region given by @clips. The surface resource @res and its backing
2627  * MOB needs to be reserved and validated on call.
2628  */
2629 int vmw_kms_update_proxy(struct vmw_resource *res,
2630 			 const struct drm_clip_rect *clips,
2631 			 unsigned num_clips,
2632 			 int increment)
2633 {
2634 	struct vmw_private *dev_priv = res->dev_priv;
2635 	struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size;
2636 	struct {
2637 		SVGA3dCmdHeader header;
2638 		SVGA3dCmdUpdateGBImage body;
2639 	} *cmd;
2640 	SVGA3dBox *box;
2641 	size_t copy_size = 0;
2642 	int i;
2643 
2644 	if (!clips)
2645 		return 0;
2646 
2647 	cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips);
2648 	if (!cmd) {
2649 		DRM_ERROR("Couldn't reserve fifo space for proxy surface "
2650 			  "update.\n");
2651 		return -ENOMEM;
2652 	}
2653 
2654 	for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2655 		box = &cmd->body.box;
2656 
2657 		cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2658 		cmd->header.size = sizeof(cmd->body);
2659 		cmd->body.image.sid = res->id;
2660 		cmd->body.image.face = 0;
2661 		cmd->body.image.mipmap = 0;
2662 
2663 		if (clips->x1 > size->width || clips->x2 > size->width ||
2664 		    clips->y1 > size->height || clips->y2 > size->height) {
2665 			DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2666 			return -EINVAL;
2667 		}
2668 
2669 		box->x = clips->x1;
2670 		box->y = clips->y1;
2671 		box->z = 0;
2672 		box->w = clips->x2 - clips->x1;
2673 		box->h = clips->y2 - clips->y1;
2674 		box->d = 1;
2675 
2676 		copy_size += sizeof(*cmd);
2677 	}
2678 
2679 	vmw_fifo_commit(dev_priv, copy_size);
2680 
2681 	return 0;
2682 }
2683 
2684 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2685 			    unsigned unit,
2686 			    u32 max_width,
2687 			    u32 max_height,
2688 			    struct drm_connector **p_con,
2689 			    struct drm_crtc **p_crtc,
2690 			    struct drm_display_mode **p_mode)
2691 {
2692 	struct drm_connector *con;
2693 	struct vmw_display_unit *du;
2694 	struct drm_display_mode *mode;
2695 	int i = 0;
2696 
2697 	list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2698 			    head) {
2699 		if (i == unit)
2700 			break;
2701 
2702 		++i;
2703 	}
2704 
2705 	if (i != unit) {
2706 		DRM_ERROR("Could not find initial display unit.\n");
2707 		return -EINVAL;
2708 	}
2709 
2710 	if (list_empty(&con->modes))
2711 		(void) vmw_du_connector_fill_modes(con, max_width, max_height);
2712 
2713 	if (list_empty(&con->modes)) {
2714 		DRM_ERROR("Could not find initial display mode.\n");
2715 		return -EINVAL;
2716 	}
2717 
2718 	du = vmw_connector_to_du(con);
2719 	*p_con = con;
2720 	*p_crtc = &du->crtc;
2721 
2722 	list_for_each_entry(mode, &con->modes, head) {
2723 		if (mode->type & DRM_MODE_TYPE_PREFERRED)
2724 			break;
2725 	}
2726 
2727 	if (mode->type & DRM_MODE_TYPE_PREFERRED)
2728 		*p_mode = mode;
2729 	else {
2730 		WARN_ONCE(true, "Could not find initial preferred mode.\n");
2731 		*p_mode = list_first_entry(&con->modes,
2732 					   struct drm_display_mode,
2733 					   head);
2734 	}
2735 
2736 	return 0;
2737 }
2738 
2739 /**
2740  * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer
2741  *
2742  * @dev_priv: Pointer to a device private struct.
2743  * @du: The display unit of the crtc.
2744  */
2745 void vmw_kms_del_active(struct vmw_private *dev_priv,
2746 			struct vmw_display_unit *du)
2747 {
2748 	mutex_lock(&dev_priv->global_kms_state_mutex);
2749 	if (du->active_implicit) {
2750 		if (--(dev_priv->num_implicit) == 0)
2751 			dev_priv->implicit_fb = NULL;
2752 		du->active_implicit = false;
2753 	}
2754 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2755 }
2756 
2757 /**
2758  * vmw_kms_add_active - register a crtc binding to an implicit framebuffer
2759  *
2760  * @vmw_priv: Pointer to a device private struct.
2761  * @du: The display unit of the crtc.
2762  * @vfb: The implicit framebuffer
2763  *
2764  * Registers a binding to an implicit framebuffer.
2765  */
2766 void vmw_kms_add_active(struct vmw_private *dev_priv,
2767 			struct vmw_display_unit *du,
2768 			struct vmw_framebuffer *vfb)
2769 {
2770 	mutex_lock(&dev_priv->global_kms_state_mutex);
2771 	WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb);
2772 
2773 	if (!du->active_implicit && du->is_implicit) {
2774 		dev_priv->implicit_fb = vfb;
2775 		du->active_implicit = true;
2776 		dev_priv->num_implicit++;
2777 	}
2778 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2779 }
2780 
2781 /**
2782  * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc.
2783  *
2784  * @dev_priv: Pointer to device-private struct.
2785  * @crtc: The crtc we want to flip.
2786  *
2787  * Returns true or false depending whether it's OK to flip this crtc
2788  * based on the criterion that we must not have more than one implicit
2789  * frame-buffer at any one time.
2790  */
2791 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv,
2792 			    struct drm_crtc *crtc)
2793 {
2794 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2795 	bool ret;
2796 
2797 	mutex_lock(&dev_priv->global_kms_state_mutex);
2798 	ret = !du->is_implicit || dev_priv->num_implicit == 1;
2799 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2800 
2801 	return ret;
2802 }
2803 
2804 /**
2805  * vmw_kms_update_implicit_fb - Update the implicit fb.
2806  *
2807  * @dev_priv: Pointer to device-private struct.
2808  * @crtc: The crtc the new implicit frame-buffer is bound to.
2809  */
2810 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv,
2811 				struct drm_crtc *crtc)
2812 {
2813 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2814 	struct vmw_framebuffer *vfb;
2815 
2816 	mutex_lock(&dev_priv->global_kms_state_mutex);
2817 
2818 	if (!du->is_implicit)
2819 		goto out_unlock;
2820 
2821 	vfb = vmw_framebuffer_to_vfb(crtc->primary->fb);
2822 	WARN_ON_ONCE(dev_priv->num_implicit != 1 &&
2823 		     dev_priv->implicit_fb != vfb);
2824 
2825 	dev_priv->implicit_fb = vfb;
2826 out_unlock:
2827 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2828 }
2829 
2830 /**
2831  * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2832  * property.
2833  *
2834  * @dev_priv: Pointer to a device private struct.
2835  * @immutable: Whether the property is immutable.
2836  *
2837  * Sets up the implicit placement property unless it's already set up.
2838  */
2839 void
2840 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv,
2841 					   bool immutable)
2842 {
2843 	if (dev_priv->implicit_placement_property)
2844 		return;
2845 
2846 	dev_priv->implicit_placement_property =
2847 		drm_property_create_range(dev_priv->dev,
2848 					  immutable ?
2849 					  DRM_MODE_PROP_IMMUTABLE : 0,
2850 					  "implicit_placement", 0, 1);
2851 
2852 }
2853 
2854 
2855 /**
2856  * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config
2857  *
2858  * @set: The configuration to set.
2859  *
2860  * The vmwgfx Xorg driver doesn't assign the mode::type member, which
2861  * when drm_mode_set_crtcinfo is called as part of the configuration setting
2862  * causes it to return incorrect crtc dimensions causing severe problems in
2863  * the vmwgfx modesetting. So explicitly clear that member before calling
2864  * into drm_atomic_helper_set_config.
2865  */
2866 int vmw_kms_set_config(struct drm_mode_set *set,
2867 		       struct drm_modeset_acquire_ctx *ctx)
2868 {
2869 	if (set && set->mode)
2870 		set->mode->type = 0;
2871 
2872 	return drm_atomic_helper_set_config(set, ctx);
2873 }
2874