1 /************************************************************************** 2 * 3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include "vmwgfx_kms.h" 29 #include <drm/drm_plane_helper.h> 30 #include <drm/drm_atomic.h> 31 #include <drm/drm_atomic_helper.h> 32 #include <drm/drm_rect.h> 33 34 35 /* Might need a hrtimer here? */ 36 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1) 37 38 void vmw_du_cleanup(struct vmw_display_unit *du) 39 { 40 drm_plane_cleanup(&du->primary); 41 drm_plane_cleanup(&du->cursor); 42 43 drm_connector_unregister(&du->connector); 44 drm_crtc_cleanup(&du->crtc); 45 drm_encoder_cleanup(&du->encoder); 46 drm_connector_cleanup(&du->connector); 47 } 48 49 /* 50 * Display Unit Cursor functions 51 */ 52 53 static int vmw_cursor_update_image(struct vmw_private *dev_priv, 54 u32 *image, u32 width, u32 height, 55 u32 hotspotX, u32 hotspotY) 56 { 57 struct { 58 u32 cmd; 59 SVGAFifoCmdDefineAlphaCursor cursor; 60 } *cmd; 61 u32 image_size = width * height * 4; 62 u32 cmd_size = sizeof(*cmd) + image_size; 63 64 if (!image) 65 return -EINVAL; 66 67 cmd = vmw_fifo_reserve(dev_priv, cmd_size); 68 if (unlikely(cmd == NULL)) { 69 DRM_ERROR("Fifo reserve failed.\n"); 70 return -ENOMEM; 71 } 72 73 memset(cmd, 0, sizeof(*cmd)); 74 75 memcpy(&cmd[1], image, image_size); 76 77 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR; 78 cmd->cursor.id = 0; 79 cmd->cursor.width = width; 80 cmd->cursor.height = height; 81 cmd->cursor.hotspotX = hotspotX; 82 cmd->cursor.hotspotY = hotspotY; 83 84 vmw_fifo_commit_flush(dev_priv, cmd_size); 85 86 return 0; 87 } 88 89 static int vmw_cursor_update_dmabuf(struct vmw_private *dev_priv, 90 struct vmw_dma_buffer *dmabuf, 91 u32 width, u32 height, 92 u32 hotspotX, u32 hotspotY) 93 { 94 struct ttm_bo_kmap_obj map; 95 unsigned long kmap_offset; 96 unsigned long kmap_num; 97 void *virtual; 98 bool dummy; 99 int ret; 100 101 kmap_offset = 0; 102 kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT; 103 104 ret = ttm_bo_reserve(&dmabuf->base, true, false, NULL); 105 if (unlikely(ret != 0)) { 106 DRM_ERROR("reserve failed\n"); 107 return -EINVAL; 108 } 109 110 ret = ttm_bo_kmap(&dmabuf->base, kmap_offset, kmap_num, &map); 111 if (unlikely(ret != 0)) 112 goto err_unreserve; 113 114 virtual = ttm_kmap_obj_virtual(&map, &dummy); 115 ret = vmw_cursor_update_image(dev_priv, virtual, width, height, 116 hotspotX, hotspotY); 117 118 ttm_bo_kunmap(&map); 119 err_unreserve: 120 ttm_bo_unreserve(&dmabuf->base); 121 122 return ret; 123 } 124 125 126 static void vmw_cursor_update_position(struct vmw_private *dev_priv, 127 bool show, int x, int y) 128 { 129 u32 *fifo_mem = dev_priv->mmio_virt; 130 uint32_t count; 131 132 spin_lock(&dev_priv->cursor_lock); 133 vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON); 134 vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X); 135 vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y); 136 count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT); 137 vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT); 138 spin_unlock(&dev_priv->cursor_lock); 139 } 140 141 142 void vmw_kms_cursor_snoop(struct vmw_surface *srf, 143 struct ttm_object_file *tfile, 144 struct ttm_buffer_object *bo, 145 SVGA3dCmdHeader *header) 146 { 147 struct ttm_bo_kmap_obj map; 148 unsigned long kmap_offset; 149 unsigned long kmap_num; 150 SVGA3dCopyBox *box; 151 unsigned box_count; 152 void *virtual; 153 bool dummy; 154 struct vmw_dma_cmd { 155 SVGA3dCmdHeader header; 156 SVGA3dCmdSurfaceDMA dma; 157 } *cmd; 158 int i, ret; 159 160 cmd = container_of(header, struct vmw_dma_cmd, header); 161 162 /* No snooper installed */ 163 if (!srf->snooper.image) 164 return; 165 166 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) { 167 DRM_ERROR("face and mipmap for cursors should never != 0\n"); 168 return; 169 } 170 171 if (cmd->header.size < 64) { 172 DRM_ERROR("at least one full copy box must be given\n"); 173 return; 174 } 175 176 box = (SVGA3dCopyBox *)&cmd[1]; 177 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) / 178 sizeof(SVGA3dCopyBox); 179 180 if (cmd->dma.guest.ptr.offset % PAGE_SIZE || 181 box->x != 0 || box->y != 0 || box->z != 0 || 182 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 || 183 box->d != 1 || box_count != 1) { 184 /* TODO handle none page aligned offsets */ 185 /* TODO handle more dst & src != 0 */ 186 /* TODO handle more then one copy */ 187 DRM_ERROR("Cant snoop dma request for cursor!\n"); 188 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n", 189 box->srcx, box->srcy, box->srcz, 190 box->x, box->y, box->z, 191 box->w, box->h, box->d, box_count, 192 cmd->dma.guest.ptr.offset); 193 return; 194 } 195 196 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT; 197 kmap_num = (64*64*4) >> PAGE_SHIFT; 198 199 ret = ttm_bo_reserve(bo, true, false, NULL); 200 if (unlikely(ret != 0)) { 201 DRM_ERROR("reserve failed\n"); 202 return; 203 } 204 205 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map); 206 if (unlikely(ret != 0)) 207 goto err_unreserve; 208 209 virtual = ttm_kmap_obj_virtual(&map, &dummy); 210 211 if (box->w == 64 && cmd->dma.guest.pitch == 64*4) { 212 memcpy(srf->snooper.image, virtual, 64*64*4); 213 } else { 214 /* Image is unsigned pointer. */ 215 for (i = 0; i < box->h; i++) 216 memcpy(srf->snooper.image + i * 64, 217 virtual + i * cmd->dma.guest.pitch, 218 box->w * 4); 219 } 220 221 srf->snooper.age++; 222 223 ttm_bo_kunmap(&map); 224 err_unreserve: 225 ttm_bo_unreserve(bo); 226 } 227 228 /** 229 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots 230 * 231 * @dev_priv: Pointer to the device private struct. 232 * 233 * Clears all legacy hotspots. 234 */ 235 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv) 236 { 237 struct drm_device *dev = dev_priv->dev; 238 struct vmw_display_unit *du; 239 struct drm_crtc *crtc; 240 241 drm_modeset_lock_all(dev); 242 drm_for_each_crtc(crtc, dev) { 243 du = vmw_crtc_to_du(crtc); 244 245 du->hotspot_x = 0; 246 du->hotspot_y = 0; 247 } 248 drm_modeset_unlock_all(dev); 249 } 250 251 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv) 252 { 253 struct drm_device *dev = dev_priv->dev; 254 struct vmw_display_unit *du; 255 struct drm_crtc *crtc; 256 257 mutex_lock(&dev->mode_config.mutex); 258 259 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 260 du = vmw_crtc_to_du(crtc); 261 if (!du->cursor_surface || 262 du->cursor_age == du->cursor_surface->snooper.age) 263 continue; 264 265 du->cursor_age = du->cursor_surface->snooper.age; 266 vmw_cursor_update_image(dev_priv, 267 du->cursor_surface->snooper.image, 268 64, 64, 269 du->hotspot_x + du->core_hotspot_x, 270 du->hotspot_y + du->core_hotspot_y); 271 } 272 273 mutex_unlock(&dev->mode_config.mutex); 274 } 275 276 277 void vmw_du_cursor_plane_destroy(struct drm_plane *plane) 278 { 279 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0); 280 281 drm_plane_cleanup(plane); 282 } 283 284 285 void vmw_du_primary_plane_destroy(struct drm_plane *plane) 286 { 287 drm_plane_cleanup(plane); 288 289 /* Planes are static in our case so we don't free it */ 290 } 291 292 293 /** 294 * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface 295 * 296 * @vps: plane state associated with the display surface 297 * @unreference: true if we also want to unreference the display. 298 */ 299 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps, 300 bool unreference) 301 { 302 if (vps->surf) { 303 if (vps->pinned) { 304 vmw_resource_unpin(&vps->surf->res); 305 vps->pinned--; 306 } 307 308 if (unreference) { 309 if (vps->pinned) 310 DRM_ERROR("Surface still pinned\n"); 311 vmw_surface_unreference(&vps->surf); 312 } 313 } 314 } 315 316 317 /** 318 * vmw_du_plane_cleanup_fb - Unpins the cursor 319 * 320 * @plane: display plane 321 * @old_state: Contains the FB to clean up 322 * 323 * Unpins the framebuffer surface 324 * 325 * Returns 0 on success 326 */ 327 void 328 vmw_du_plane_cleanup_fb(struct drm_plane *plane, 329 struct drm_plane_state *old_state) 330 { 331 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); 332 333 vmw_du_plane_unpin_surf(vps, false); 334 } 335 336 337 /** 338 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it 339 * 340 * @plane: display plane 341 * @new_state: info on the new plane state, including the FB 342 * 343 * Returns 0 on success 344 */ 345 int 346 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane, 347 struct drm_plane_state *new_state) 348 { 349 struct drm_framebuffer *fb = new_state->fb; 350 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); 351 352 353 if (vps->surf) 354 vmw_surface_unreference(&vps->surf); 355 356 if (vps->dmabuf) 357 vmw_dmabuf_unreference(&vps->dmabuf); 358 359 if (fb) { 360 if (vmw_framebuffer_to_vfb(fb)->dmabuf) { 361 vps->dmabuf = vmw_framebuffer_to_vfbd(fb)->buffer; 362 vmw_dmabuf_reference(vps->dmabuf); 363 } else { 364 vps->surf = vmw_framebuffer_to_vfbs(fb)->surface; 365 vmw_surface_reference(vps->surf); 366 } 367 } 368 369 return 0; 370 } 371 372 373 void 374 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane, 375 struct drm_plane_state *old_state) 376 { 377 struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc; 378 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 379 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 380 struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state); 381 s32 hotspot_x, hotspot_y; 382 int ret = 0; 383 384 385 hotspot_x = du->hotspot_x; 386 hotspot_y = du->hotspot_y; 387 388 if (plane->fb) { 389 hotspot_x += plane->fb->hot_x; 390 hotspot_y += plane->fb->hot_y; 391 } 392 393 du->cursor_surface = vps->surf; 394 du->cursor_dmabuf = vps->dmabuf; 395 396 /* setup new image */ 397 if (vps->surf) { 398 du->cursor_age = du->cursor_surface->snooper.age; 399 400 ret = vmw_cursor_update_image(dev_priv, 401 vps->surf->snooper.image, 402 64, 64, hotspot_x, hotspot_y); 403 } else if (vps->dmabuf) { 404 ret = vmw_cursor_update_dmabuf(dev_priv, vps->dmabuf, 405 plane->state->crtc_w, 406 plane->state->crtc_h, 407 hotspot_x, hotspot_y); 408 } else { 409 vmw_cursor_update_position(dev_priv, false, 0, 0); 410 return; 411 } 412 413 if (!ret) { 414 du->cursor_x = plane->state->crtc_x + du->set_gui_x; 415 du->cursor_y = plane->state->crtc_y + du->set_gui_y; 416 417 vmw_cursor_update_position(dev_priv, true, 418 du->cursor_x + hotspot_x, 419 du->cursor_y + hotspot_y); 420 421 du->core_hotspot_x = hotspot_x - du->hotspot_x; 422 du->core_hotspot_y = hotspot_y - du->hotspot_y; 423 } else { 424 DRM_ERROR("Failed to update cursor image\n"); 425 } 426 } 427 428 429 /** 430 * vmw_du_primary_plane_atomic_check - check if the new state is okay 431 * 432 * @plane: display plane 433 * @state: info on the new plane state, including the FB 434 * 435 * Check if the new state is settable given the current state. Other 436 * than what the atomic helper checks, we care about crtc fitting 437 * the FB and maintaining one active framebuffer. 438 * 439 * Returns 0 on success 440 */ 441 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane, 442 struct drm_plane_state *state) 443 { 444 struct drm_framebuffer *new_fb = state->fb; 445 bool visible; 446 447 struct drm_rect src = { 448 .x1 = state->src_x, 449 .y1 = state->src_y, 450 .x2 = state->src_x + state->src_w, 451 .y2 = state->src_y + state->src_h, 452 }; 453 struct drm_rect dest = { 454 .x1 = state->crtc_x, 455 .y1 = state->crtc_y, 456 .x2 = state->crtc_x + state->crtc_w, 457 .y2 = state->crtc_y + state->crtc_h, 458 }; 459 struct drm_rect clip = dest; 460 int ret; 461 462 ret = drm_plane_helper_check_update(plane, state->crtc, new_fb, 463 &src, &dest, &clip, 464 DRM_MODE_ROTATE_0, 465 DRM_PLANE_HELPER_NO_SCALING, 466 DRM_PLANE_HELPER_NO_SCALING, 467 false, true, &visible); 468 469 470 if (!ret && new_fb) { 471 struct drm_crtc *crtc = state->crtc; 472 struct vmw_connector_state *vcs; 473 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 474 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 475 struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb); 476 477 vcs = vmw_connector_state_to_vcs(du->connector.state); 478 479 if ((dest.x2 > new_fb->width || 480 dest.y2 > new_fb->height)) { 481 DRM_ERROR("CRTC area outside of framebuffer\n"); 482 return -EINVAL; 483 } 484 485 /* Only one active implicit framebuffer at a time. */ 486 mutex_lock(&dev_priv->global_kms_state_mutex); 487 if (vcs->is_implicit && dev_priv->implicit_fb && 488 !(dev_priv->num_implicit == 1 && du->active_implicit) 489 && dev_priv->implicit_fb != vfb) { 490 DRM_ERROR("Multiple implicit framebuffers " 491 "not supported.\n"); 492 ret = -EINVAL; 493 } 494 mutex_unlock(&dev_priv->global_kms_state_mutex); 495 } 496 497 498 return ret; 499 } 500 501 502 /** 503 * vmw_du_cursor_plane_atomic_check - check if the new state is okay 504 * 505 * @plane: cursor plane 506 * @state: info on the new plane state 507 * 508 * This is a chance to fail if the new cursor state does not fit 509 * our requirements. 510 * 511 * Returns 0 on success 512 */ 513 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane, 514 struct drm_plane_state *new_state) 515 { 516 int ret = 0; 517 struct vmw_surface *surface = NULL; 518 struct drm_framebuffer *fb = new_state->fb; 519 520 521 /* Turning off */ 522 if (!fb) 523 return ret; 524 525 /* A lot of the code assumes this */ 526 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) { 527 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n", 528 new_state->crtc_w, new_state->crtc_h); 529 ret = -EINVAL; 530 } 531 532 if (!vmw_framebuffer_to_vfb(fb)->dmabuf) 533 surface = vmw_framebuffer_to_vfbs(fb)->surface; 534 535 if (surface && !surface->snooper.image) { 536 DRM_ERROR("surface not suitable for cursor\n"); 537 ret = -EINVAL; 538 } 539 540 return ret; 541 } 542 543 544 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc, 545 struct drm_crtc_state *new_state) 546 { 547 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc); 548 int connector_mask = 1 << drm_connector_index(&du->connector); 549 bool has_primary = new_state->plane_mask & 550 BIT(drm_plane_index(crtc->primary)); 551 552 /* We always want to have an active plane with an active CRTC */ 553 if (has_primary != new_state->enable) 554 return -EINVAL; 555 556 557 if (new_state->connector_mask != connector_mask && 558 new_state->connector_mask != 0) { 559 DRM_ERROR("Invalid connectors configuration\n"); 560 return -EINVAL; 561 } 562 563 /* 564 * Our virtual device does not have a dot clock, so use the logical 565 * clock value as the dot clock. 566 */ 567 if (new_state->mode.crtc_clock == 0) 568 new_state->adjusted_mode.crtc_clock = new_state->mode.clock; 569 570 return 0; 571 } 572 573 574 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc, 575 struct drm_crtc_state *old_crtc_state) 576 { 577 } 578 579 580 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc, 581 struct drm_crtc_state *old_crtc_state) 582 { 583 struct drm_pending_vblank_event *event = crtc->state->event; 584 585 if (event) { 586 crtc->state->event = NULL; 587 588 spin_lock_irq(&crtc->dev->event_lock); 589 if (drm_crtc_vblank_get(crtc) == 0) 590 drm_crtc_arm_vblank_event(crtc, event); 591 else 592 drm_crtc_send_vblank_event(crtc, event); 593 spin_unlock_irq(&crtc->dev->event_lock); 594 } 595 596 } 597 598 599 /** 600 * vmw_du_crtc_duplicate_state - duplicate crtc state 601 * @crtc: DRM crtc 602 * 603 * Allocates and returns a copy of the crtc state (both common and 604 * vmw-specific) for the specified crtc. 605 * 606 * Returns: The newly allocated crtc state, or NULL on failure. 607 */ 608 struct drm_crtc_state * 609 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc) 610 { 611 struct drm_crtc_state *state; 612 struct vmw_crtc_state *vcs; 613 614 if (WARN_ON(!crtc->state)) 615 return NULL; 616 617 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL); 618 619 if (!vcs) 620 return NULL; 621 622 state = &vcs->base; 623 624 __drm_atomic_helper_crtc_duplicate_state(crtc, state); 625 626 return state; 627 } 628 629 630 /** 631 * vmw_du_crtc_reset - creates a blank vmw crtc state 632 * @crtc: DRM crtc 633 * 634 * Resets the atomic state for @crtc by freeing the state pointer (which 635 * might be NULL, e.g. at driver load time) and allocating a new empty state 636 * object. 637 */ 638 void vmw_du_crtc_reset(struct drm_crtc *crtc) 639 { 640 struct vmw_crtc_state *vcs; 641 642 643 if (crtc->state) { 644 __drm_atomic_helper_crtc_destroy_state(crtc->state); 645 646 kfree(vmw_crtc_state_to_vcs(crtc->state)); 647 } 648 649 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 650 651 if (!vcs) { 652 DRM_ERROR("Cannot allocate vmw_crtc_state\n"); 653 return; 654 } 655 656 crtc->state = &vcs->base; 657 crtc->state->crtc = crtc; 658 } 659 660 661 /** 662 * vmw_du_crtc_destroy_state - destroy crtc state 663 * @crtc: DRM crtc 664 * @state: state object to destroy 665 * 666 * Destroys the crtc state (both common and vmw-specific) for the 667 * specified plane. 668 */ 669 void 670 vmw_du_crtc_destroy_state(struct drm_crtc *crtc, 671 struct drm_crtc_state *state) 672 { 673 drm_atomic_helper_crtc_destroy_state(crtc, state); 674 } 675 676 677 /** 678 * vmw_du_plane_duplicate_state - duplicate plane state 679 * @plane: drm plane 680 * 681 * Allocates and returns a copy of the plane state (both common and 682 * vmw-specific) for the specified plane. 683 * 684 * Returns: The newly allocated plane state, or NULL on failure. 685 */ 686 struct drm_plane_state * 687 vmw_du_plane_duplicate_state(struct drm_plane *plane) 688 { 689 struct drm_plane_state *state; 690 struct vmw_plane_state *vps; 691 692 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL); 693 694 if (!vps) 695 return NULL; 696 697 vps->pinned = 0; 698 699 /* Mapping is managed by prepare_fb/cleanup_fb */ 700 memset(&vps->guest_map, 0, sizeof(vps->guest_map)); 701 memset(&vps->host_map, 0, sizeof(vps->host_map)); 702 vps->cpp = 0; 703 704 /* Each ref counted resource needs to be acquired again */ 705 if (vps->surf) 706 (void) vmw_surface_reference(vps->surf); 707 708 if (vps->dmabuf) 709 (void) vmw_dmabuf_reference(vps->dmabuf); 710 711 state = &vps->base; 712 713 __drm_atomic_helper_plane_duplicate_state(plane, state); 714 715 return state; 716 } 717 718 719 /** 720 * vmw_du_plane_reset - creates a blank vmw plane state 721 * @plane: drm plane 722 * 723 * Resets the atomic state for @plane by freeing the state pointer (which might 724 * be NULL, e.g. at driver load time) and allocating a new empty state object. 725 */ 726 void vmw_du_plane_reset(struct drm_plane *plane) 727 { 728 struct vmw_plane_state *vps; 729 730 731 if (plane->state) 732 vmw_du_plane_destroy_state(plane, plane->state); 733 734 vps = kzalloc(sizeof(*vps), GFP_KERNEL); 735 736 if (!vps) { 737 DRM_ERROR("Cannot allocate vmw_plane_state\n"); 738 return; 739 } 740 741 plane->state = &vps->base; 742 plane->state->plane = plane; 743 plane->state->rotation = DRM_MODE_ROTATE_0; 744 } 745 746 747 /** 748 * vmw_du_plane_destroy_state - destroy plane state 749 * @plane: DRM plane 750 * @state: state object to destroy 751 * 752 * Destroys the plane state (both common and vmw-specific) for the 753 * specified plane. 754 */ 755 void 756 vmw_du_plane_destroy_state(struct drm_plane *plane, 757 struct drm_plane_state *state) 758 { 759 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state); 760 761 762 /* Should have been freed by cleanup_fb */ 763 if (vps->guest_map.virtual) { 764 DRM_ERROR("Guest mapping not freed\n"); 765 ttm_bo_kunmap(&vps->guest_map); 766 } 767 768 if (vps->host_map.virtual) { 769 DRM_ERROR("Host mapping not freed\n"); 770 ttm_bo_kunmap(&vps->host_map); 771 } 772 773 if (vps->surf) 774 vmw_surface_unreference(&vps->surf); 775 776 if (vps->dmabuf) 777 vmw_dmabuf_unreference(&vps->dmabuf); 778 779 drm_atomic_helper_plane_destroy_state(plane, state); 780 } 781 782 783 /** 784 * vmw_du_connector_duplicate_state - duplicate connector state 785 * @connector: DRM connector 786 * 787 * Allocates and returns a copy of the connector state (both common and 788 * vmw-specific) for the specified connector. 789 * 790 * Returns: The newly allocated connector state, or NULL on failure. 791 */ 792 struct drm_connector_state * 793 vmw_du_connector_duplicate_state(struct drm_connector *connector) 794 { 795 struct drm_connector_state *state; 796 struct vmw_connector_state *vcs; 797 798 if (WARN_ON(!connector->state)) 799 return NULL; 800 801 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL); 802 803 if (!vcs) 804 return NULL; 805 806 state = &vcs->base; 807 808 __drm_atomic_helper_connector_duplicate_state(connector, state); 809 810 return state; 811 } 812 813 814 /** 815 * vmw_du_connector_reset - creates a blank vmw connector state 816 * @connector: DRM connector 817 * 818 * Resets the atomic state for @connector by freeing the state pointer (which 819 * might be NULL, e.g. at driver load time) and allocating a new empty state 820 * object. 821 */ 822 void vmw_du_connector_reset(struct drm_connector *connector) 823 { 824 struct vmw_connector_state *vcs; 825 826 827 if (connector->state) { 828 __drm_atomic_helper_connector_destroy_state(connector->state); 829 830 kfree(vmw_connector_state_to_vcs(connector->state)); 831 } 832 833 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 834 835 if (!vcs) { 836 DRM_ERROR("Cannot allocate vmw_connector_state\n"); 837 return; 838 } 839 840 __drm_atomic_helper_connector_reset(connector, &vcs->base); 841 } 842 843 844 /** 845 * vmw_du_connector_destroy_state - destroy connector state 846 * @connector: DRM connector 847 * @state: state object to destroy 848 * 849 * Destroys the connector state (both common and vmw-specific) for the 850 * specified plane. 851 */ 852 void 853 vmw_du_connector_destroy_state(struct drm_connector *connector, 854 struct drm_connector_state *state) 855 { 856 drm_atomic_helper_connector_destroy_state(connector, state); 857 } 858 /* 859 * Generic framebuffer code 860 */ 861 862 /* 863 * Surface framebuffer code 864 */ 865 866 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer) 867 { 868 struct vmw_framebuffer_surface *vfbs = 869 vmw_framebuffer_to_vfbs(framebuffer); 870 871 drm_framebuffer_cleanup(framebuffer); 872 vmw_surface_unreference(&vfbs->surface); 873 if (vfbs->base.user_obj) 874 ttm_base_object_unref(&vfbs->base.user_obj); 875 876 kfree(vfbs); 877 } 878 879 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer, 880 struct drm_file *file_priv, 881 unsigned flags, unsigned color, 882 struct drm_clip_rect *clips, 883 unsigned num_clips) 884 { 885 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 886 struct vmw_framebuffer_surface *vfbs = 887 vmw_framebuffer_to_vfbs(framebuffer); 888 struct drm_clip_rect norect; 889 int ret, inc = 1; 890 891 /* Legacy Display Unit does not support 3D */ 892 if (dev_priv->active_display_unit == vmw_du_legacy) 893 return -EINVAL; 894 895 drm_modeset_lock_all(dev_priv->dev); 896 897 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 898 if (unlikely(ret != 0)) { 899 drm_modeset_unlock_all(dev_priv->dev); 900 return ret; 901 } 902 903 if (!num_clips) { 904 num_clips = 1; 905 clips = &norect; 906 norect.x1 = norect.y1 = 0; 907 norect.x2 = framebuffer->width; 908 norect.y2 = framebuffer->height; 909 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 910 num_clips /= 2; 911 inc = 2; /* skip source rects */ 912 } 913 914 if (dev_priv->active_display_unit == vmw_du_screen_object) 915 ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base, 916 clips, NULL, NULL, 0, 0, 917 num_clips, inc, NULL); 918 else 919 ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base, 920 clips, NULL, NULL, 0, 0, 921 num_clips, inc, NULL); 922 923 vmw_fifo_flush(dev_priv, false); 924 ttm_read_unlock(&dev_priv->reservation_sem); 925 926 drm_modeset_unlock_all(dev_priv->dev); 927 928 return 0; 929 } 930 931 /** 932 * vmw_kms_readback - Perform a readback from the screen system to 933 * a dma-buffer backed framebuffer. 934 * 935 * @dev_priv: Pointer to the device private structure. 936 * @file_priv: Pointer to a struct drm_file identifying the caller. 937 * Must be set to NULL if @user_fence_rep is NULL. 938 * @vfb: Pointer to the dma-buffer backed framebuffer. 939 * @user_fence_rep: User-space provided structure for fence information. 940 * Must be set to non-NULL if @file_priv is non-NULL. 941 * @vclips: Array of clip rects. 942 * @num_clips: Number of clip rects in @vclips. 943 * 944 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 945 * interrupted. 946 */ 947 int vmw_kms_readback(struct vmw_private *dev_priv, 948 struct drm_file *file_priv, 949 struct vmw_framebuffer *vfb, 950 struct drm_vmw_fence_rep __user *user_fence_rep, 951 struct drm_vmw_rect *vclips, 952 uint32_t num_clips) 953 { 954 switch (dev_priv->active_display_unit) { 955 case vmw_du_screen_object: 956 return vmw_kms_sou_readback(dev_priv, file_priv, vfb, 957 user_fence_rep, vclips, num_clips); 958 case vmw_du_screen_target: 959 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb, 960 user_fence_rep, NULL, vclips, num_clips, 961 1, false, true); 962 default: 963 WARN_ONCE(true, 964 "Readback called with invalid display system.\n"); 965 } 966 967 return -ENOSYS; 968 } 969 970 971 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = { 972 .destroy = vmw_framebuffer_surface_destroy, 973 .dirty = vmw_framebuffer_surface_dirty, 974 }; 975 976 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv, 977 struct vmw_surface *surface, 978 struct vmw_framebuffer **out, 979 const struct drm_mode_fb_cmd2 980 *mode_cmd, 981 bool is_dmabuf_proxy) 982 983 { 984 struct drm_device *dev = dev_priv->dev; 985 struct vmw_framebuffer_surface *vfbs; 986 enum SVGA3dSurfaceFormat format; 987 int ret; 988 struct drm_format_name_buf format_name; 989 990 /* 3D is only supported on HWv8 and newer hosts */ 991 if (dev_priv->active_display_unit == vmw_du_legacy) 992 return -ENOSYS; 993 994 /* 995 * Sanity checks. 996 */ 997 998 /* Surface must be marked as a scanout. */ 999 if (unlikely(!surface->scanout)) 1000 return -EINVAL; 1001 1002 if (unlikely(surface->mip_levels[0] != 1 || 1003 surface->num_sizes != 1 || 1004 surface->base_size.width < mode_cmd->width || 1005 surface->base_size.height < mode_cmd->height || 1006 surface->base_size.depth != 1)) { 1007 DRM_ERROR("Incompatible surface dimensions " 1008 "for requested mode.\n"); 1009 return -EINVAL; 1010 } 1011 1012 switch (mode_cmd->pixel_format) { 1013 case DRM_FORMAT_ARGB8888: 1014 format = SVGA3D_A8R8G8B8; 1015 break; 1016 case DRM_FORMAT_XRGB8888: 1017 format = SVGA3D_X8R8G8B8; 1018 break; 1019 case DRM_FORMAT_RGB565: 1020 format = SVGA3D_R5G6B5; 1021 break; 1022 case DRM_FORMAT_XRGB1555: 1023 format = SVGA3D_A1R5G5B5; 1024 break; 1025 default: 1026 DRM_ERROR("Invalid pixel format: %s\n", 1027 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1028 return -EINVAL; 1029 } 1030 1031 /* 1032 * For DX, surface format validation is done when surface->scanout 1033 * is set. 1034 */ 1035 if (!dev_priv->has_dx && format != surface->format) { 1036 DRM_ERROR("Invalid surface format for requested mode.\n"); 1037 return -EINVAL; 1038 } 1039 1040 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL); 1041 if (!vfbs) { 1042 ret = -ENOMEM; 1043 goto out_err1; 1044 } 1045 1046 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd); 1047 vfbs->surface = vmw_surface_reference(surface); 1048 vfbs->base.user_handle = mode_cmd->handles[0]; 1049 vfbs->is_dmabuf_proxy = is_dmabuf_proxy; 1050 1051 *out = &vfbs->base; 1052 1053 ret = drm_framebuffer_init(dev, &vfbs->base.base, 1054 &vmw_framebuffer_surface_funcs); 1055 if (ret) 1056 goto out_err2; 1057 1058 return 0; 1059 1060 out_err2: 1061 vmw_surface_unreference(&surface); 1062 kfree(vfbs); 1063 out_err1: 1064 return ret; 1065 } 1066 1067 /* 1068 * Dmabuf framebuffer code 1069 */ 1070 1071 static void vmw_framebuffer_dmabuf_destroy(struct drm_framebuffer *framebuffer) 1072 { 1073 struct vmw_framebuffer_dmabuf *vfbd = 1074 vmw_framebuffer_to_vfbd(framebuffer); 1075 1076 drm_framebuffer_cleanup(framebuffer); 1077 vmw_dmabuf_unreference(&vfbd->buffer); 1078 if (vfbd->base.user_obj) 1079 ttm_base_object_unref(&vfbd->base.user_obj); 1080 1081 kfree(vfbd); 1082 } 1083 1084 static int vmw_framebuffer_dmabuf_dirty(struct drm_framebuffer *framebuffer, 1085 struct drm_file *file_priv, 1086 unsigned flags, unsigned color, 1087 struct drm_clip_rect *clips, 1088 unsigned num_clips) 1089 { 1090 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 1091 struct vmw_framebuffer_dmabuf *vfbd = 1092 vmw_framebuffer_to_vfbd(framebuffer); 1093 struct drm_clip_rect norect; 1094 int ret, increment = 1; 1095 1096 drm_modeset_lock_all(dev_priv->dev); 1097 1098 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 1099 if (unlikely(ret != 0)) { 1100 drm_modeset_unlock_all(dev_priv->dev); 1101 return ret; 1102 } 1103 1104 if (!num_clips) { 1105 num_clips = 1; 1106 clips = &norect; 1107 norect.x1 = norect.y1 = 0; 1108 norect.x2 = framebuffer->width; 1109 norect.y2 = framebuffer->height; 1110 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 1111 num_clips /= 2; 1112 increment = 2; 1113 } 1114 1115 switch (dev_priv->active_display_unit) { 1116 case vmw_du_screen_target: 1117 ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL, 1118 clips, NULL, num_clips, increment, 1119 true, true); 1120 break; 1121 case vmw_du_screen_object: 1122 ret = vmw_kms_sou_do_dmabuf_dirty(dev_priv, &vfbd->base, 1123 clips, NULL, num_clips, 1124 increment, true, NULL); 1125 break; 1126 case vmw_du_legacy: 1127 ret = vmw_kms_ldu_do_dmabuf_dirty(dev_priv, &vfbd->base, 0, 0, 1128 clips, num_clips, increment); 1129 break; 1130 default: 1131 ret = -EINVAL; 1132 WARN_ONCE(true, "Dirty called with invalid display system.\n"); 1133 break; 1134 } 1135 1136 vmw_fifo_flush(dev_priv, false); 1137 ttm_read_unlock(&dev_priv->reservation_sem); 1138 1139 drm_modeset_unlock_all(dev_priv->dev); 1140 1141 return ret; 1142 } 1143 1144 static const struct drm_framebuffer_funcs vmw_framebuffer_dmabuf_funcs = { 1145 .destroy = vmw_framebuffer_dmabuf_destroy, 1146 .dirty = vmw_framebuffer_dmabuf_dirty, 1147 }; 1148 1149 /** 1150 * Pin the dmabuffer to the start of vram. 1151 */ 1152 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb) 1153 { 1154 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1155 struct vmw_dma_buffer *buf; 1156 int ret; 1157 1158 buf = vfb->dmabuf ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1159 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1160 1161 if (!buf) 1162 return 0; 1163 1164 switch (dev_priv->active_display_unit) { 1165 case vmw_du_legacy: 1166 vmw_overlay_pause_all(dev_priv); 1167 ret = vmw_dmabuf_pin_in_start_of_vram(dev_priv, buf, false); 1168 vmw_overlay_resume_all(dev_priv); 1169 break; 1170 case vmw_du_screen_object: 1171 case vmw_du_screen_target: 1172 if (vfb->dmabuf) 1173 return vmw_dmabuf_pin_in_vram_or_gmr(dev_priv, buf, 1174 false); 1175 1176 return vmw_dmabuf_pin_in_placement(dev_priv, buf, 1177 &vmw_mob_placement, false); 1178 default: 1179 return -EINVAL; 1180 } 1181 1182 return ret; 1183 } 1184 1185 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb) 1186 { 1187 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1188 struct vmw_dma_buffer *buf; 1189 1190 buf = vfb->dmabuf ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1191 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1192 1193 if (WARN_ON(!buf)) 1194 return 0; 1195 1196 return vmw_dmabuf_unpin(dev_priv, buf, false); 1197 } 1198 1199 /** 1200 * vmw_create_dmabuf_proxy - create a proxy surface for the DMA buf 1201 * 1202 * @dev: DRM device 1203 * @mode_cmd: parameters for the new surface 1204 * @dmabuf_mob: MOB backing the DMA buf 1205 * @srf_out: newly created surface 1206 * 1207 * When the content FB is a DMA buf, we create a surface as a proxy to the 1208 * same buffer. This way we can do a surface copy rather than a surface DMA. 1209 * This is a more efficient approach 1210 * 1211 * RETURNS: 1212 * 0 on success, error code otherwise 1213 */ 1214 static int vmw_create_dmabuf_proxy(struct drm_device *dev, 1215 const struct drm_mode_fb_cmd2 *mode_cmd, 1216 struct vmw_dma_buffer *dmabuf_mob, 1217 struct vmw_surface **srf_out) 1218 { 1219 uint32_t format; 1220 struct drm_vmw_size content_base_size = {0}; 1221 struct vmw_resource *res; 1222 unsigned int bytes_pp; 1223 struct drm_format_name_buf format_name; 1224 int ret; 1225 1226 switch (mode_cmd->pixel_format) { 1227 case DRM_FORMAT_ARGB8888: 1228 case DRM_FORMAT_XRGB8888: 1229 format = SVGA3D_X8R8G8B8; 1230 bytes_pp = 4; 1231 break; 1232 1233 case DRM_FORMAT_RGB565: 1234 case DRM_FORMAT_XRGB1555: 1235 format = SVGA3D_R5G6B5; 1236 bytes_pp = 2; 1237 break; 1238 1239 case 8: 1240 format = SVGA3D_P8; 1241 bytes_pp = 1; 1242 break; 1243 1244 default: 1245 DRM_ERROR("Invalid framebuffer format %s\n", 1246 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1247 return -EINVAL; 1248 } 1249 1250 content_base_size.width = mode_cmd->pitches[0] / bytes_pp; 1251 content_base_size.height = mode_cmd->height; 1252 content_base_size.depth = 1; 1253 1254 ret = vmw_surface_gb_priv_define(dev, 1255 0, /* kernel visible only */ 1256 0, /* flags */ 1257 format, 1258 true, /* can be a scanout buffer */ 1259 1, /* num of mip levels */ 1260 0, 1261 0, 1262 content_base_size, 1263 srf_out); 1264 if (ret) { 1265 DRM_ERROR("Failed to allocate proxy content buffer\n"); 1266 return ret; 1267 } 1268 1269 res = &(*srf_out)->res; 1270 1271 /* Reserve and switch the backing mob. */ 1272 mutex_lock(&res->dev_priv->cmdbuf_mutex); 1273 (void) vmw_resource_reserve(res, false, true); 1274 vmw_dmabuf_unreference(&res->backup); 1275 res->backup = vmw_dmabuf_reference(dmabuf_mob); 1276 res->backup_offset = 0; 1277 vmw_resource_unreserve(res, false, NULL, 0); 1278 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 1279 1280 return 0; 1281 } 1282 1283 1284 1285 static int vmw_kms_new_framebuffer_dmabuf(struct vmw_private *dev_priv, 1286 struct vmw_dma_buffer *dmabuf, 1287 struct vmw_framebuffer **out, 1288 const struct drm_mode_fb_cmd2 1289 *mode_cmd) 1290 1291 { 1292 struct drm_device *dev = dev_priv->dev; 1293 struct vmw_framebuffer_dmabuf *vfbd; 1294 unsigned int requested_size; 1295 struct drm_format_name_buf format_name; 1296 int ret; 1297 1298 requested_size = mode_cmd->height * mode_cmd->pitches[0]; 1299 if (unlikely(requested_size > dmabuf->base.num_pages * PAGE_SIZE)) { 1300 DRM_ERROR("Screen buffer object size is too small " 1301 "for requested mode.\n"); 1302 return -EINVAL; 1303 } 1304 1305 /* Limited framebuffer color depth support for screen objects */ 1306 if (dev_priv->active_display_unit == vmw_du_screen_object) { 1307 switch (mode_cmd->pixel_format) { 1308 case DRM_FORMAT_XRGB8888: 1309 case DRM_FORMAT_ARGB8888: 1310 break; 1311 case DRM_FORMAT_XRGB1555: 1312 case DRM_FORMAT_RGB565: 1313 break; 1314 default: 1315 DRM_ERROR("Invalid pixel format: %s\n", 1316 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1317 return -EINVAL; 1318 } 1319 } 1320 1321 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL); 1322 if (!vfbd) { 1323 ret = -ENOMEM; 1324 goto out_err1; 1325 } 1326 1327 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd); 1328 vfbd->base.dmabuf = true; 1329 vfbd->buffer = vmw_dmabuf_reference(dmabuf); 1330 vfbd->base.user_handle = mode_cmd->handles[0]; 1331 *out = &vfbd->base; 1332 1333 ret = drm_framebuffer_init(dev, &vfbd->base.base, 1334 &vmw_framebuffer_dmabuf_funcs); 1335 if (ret) 1336 goto out_err2; 1337 1338 return 0; 1339 1340 out_err2: 1341 vmw_dmabuf_unreference(&dmabuf); 1342 kfree(vfbd); 1343 out_err1: 1344 return ret; 1345 } 1346 1347 1348 /** 1349 * vmw_kms_srf_ok - check if a surface can be created 1350 * 1351 * @width: requested width 1352 * @height: requested height 1353 * 1354 * Surfaces need to be less than texture size 1355 */ 1356 static bool 1357 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height) 1358 { 1359 if (width > dev_priv->texture_max_width || 1360 height > dev_priv->texture_max_height) 1361 return false; 1362 1363 return true; 1364 } 1365 1366 /** 1367 * vmw_kms_new_framebuffer - Create a new framebuffer. 1368 * 1369 * @dev_priv: Pointer to device private struct. 1370 * @dmabuf: Pointer to dma buffer to wrap the kms framebuffer around. 1371 * Either @dmabuf or @surface must be NULL. 1372 * @surface: Pointer to a surface to wrap the kms framebuffer around. 1373 * Either @dmabuf or @surface must be NULL. 1374 * @only_2d: No presents will occur to this dma buffer based framebuffer. This 1375 * Helps the code to do some important optimizations. 1376 * @mode_cmd: Frame-buffer metadata. 1377 */ 1378 struct vmw_framebuffer * 1379 vmw_kms_new_framebuffer(struct vmw_private *dev_priv, 1380 struct vmw_dma_buffer *dmabuf, 1381 struct vmw_surface *surface, 1382 bool only_2d, 1383 const struct drm_mode_fb_cmd2 *mode_cmd) 1384 { 1385 struct vmw_framebuffer *vfb = NULL; 1386 bool is_dmabuf_proxy = false; 1387 int ret; 1388 1389 /* 1390 * We cannot use the SurfaceDMA command in an non-accelerated VM, 1391 * therefore, wrap the DMA buf in a surface so we can use the 1392 * SurfaceCopy command. 1393 */ 1394 if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) && 1395 dmabuf && only_2d && 1396 mode_cmd->width > 64 && /* Don't create a proxy for cursor */ 1397 dev_priv->active_display_unit == vmw_du_screen_target) { 1398 ret = vmw_create_dmabuf_proxy(dev_priv->dev, mode_cmd, 1399 dmabuf, &surface); 1400 if (ret) 1401 return ERR_PTR(ret); 1402 1403 is_dmabuf_proxy = true; 1404 } 1405 1406 /* Create the new framebuffer depending one what we have */ 1407 if (surface) { 1408 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb, 1409 mode_cmd, 1410 is_dmabuf_proxy); 1411 1412 /* 1413 * vmw_create_dmabuf_proxy() adds a reference that is no longer 1414 * needed 1415 */ 1416 if (is_dmabuf_proxy) 1417 vmw_surface_unreference(&surface); 1418 } else if (dmabuf) { 1419 ret = vmw_kms_new_framebuffer_dmabuf(dev_priv, dmabuf, &vfb, 1420 mode_cmd); 1421 } else { 1422 BUG(); 1423 } 1424 1425 if (ret) 1426 return ERR_PTR(ret); 1427 1428 vfb->pin = vmw_framebuffer_pin; 1429 vfb->unpin = vmw_framebuffer_unpin; 1430 1431 return vfb; 1432 } 1433 1434 /* 1435 * Generic Kernel modesetting functions 1436 */ 1437 1438 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev, 1439 struct drm_file *file_priv, 1440 const struct drm_mode_fb_cmd2 *mode_cmd) 1441 { 1442 struct vmw_private *dev_priv = vmw_priv(dev); 1443 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 1444 struct vmw_framebuffer *vfb = NULL; 1445 struct vmw_surface *surface = NULL; 1446 struct vmw_dma_buffer *bo = NULL; 1447 struct ttm_base_object *user_obj; 1448 int ret; 1449 1450 /** 1451 * This code should be conditioned on Screen Objects not being used. 1452 * If screen objects are used, we can allocate a GMR to hold the 1453 * requested framebuffer. 1454 */ 1455 1456 if (!vmw_kms_validate_mode_vram(dev_priv, 1457 mode_cmd->pitches[0], 1458 mode_cmd->height)) { 1459 DRM_ERROR("Requested mode exceed bounding box limit.\n"); 1460 return ERR_PTR(-ENOMEM); 1461 } 1462 1463 /* 1464 * Take a reference on the user object of the resource 1465 * backing the kms fb. This ensures that user-space handle 1466 * lookups on that resource will always work as long as 1467 * it's registered with a kms framebuffer. This is important, 1468 * since vmw_execbuf_process identifies resources in the 1469 * command stream using user-space handles. 1470 */ 1471 1472 user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]); 1473 if (unlikely(user_obj == NULL)) { 1474 DRM_ERROR("Could not locate requested kms frame buffer.\n"); 1475 return ERR_PTR(-ENOENT); 1476 } 1477 1478 /** 1479 * End conditioned code. 1480 */ 1481 1482 /* returns either a dmabuf or surface */ 1483 ret = vmw_user_lookup_handle(dev_priv, tfile, 1484 mode_cmd->handles[0], 1485 &surface, &bo); 1486 if (ret) 1487 goto err_out; 1488 1489 1490 if (!bo && 1491 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) { 1492 DRM_ERROR("Surface size cannot exceed %dx%d", 1493 dev_priv->texture_max_width, 1494 dev_priv->texture_max_height); 1495 goto err_out; 1496 } 1497 1498 1499 vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface, 1500 !(dev_priv->capabilities & SVGA_CAP_3D), 1501 mode_cmd); 1502 if (IS_ERR(vfb)) { 1503 ret = PTR_ERR(vfb); 1504 goto err_out; 1505 } 1506 1507 err_out: 1508 /* vmw_user_lookup_handle takes one ref so does new_fb */ 1509 if (bo) 1510 vmw_dmabuf_unreference(&bo); 1511 if (surface) 1512 vmw_surface_unreference(&surface); 1513 1514 if (ret) { 1515 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret); 1516 ttm_base_object_unref(&user_obj); 1517 return ERR_PTR(ret); 1518 } else 1519 vfb->user_obj = user_obj; 1520 1521 return &vfb->base; 1522 } 1523 1524 1525 1526 /** 1527 * vmw_kms_atomic_check_modeset- validate state object for modeset changes 1528 * 1529 * @dev: DRM device 1530 * @state: the driver state object 1531 * 1532 * This is a simple wrapper around drm_atomic_helper_check_modeset() for 1533 * us to assign a value to mode->crtc_clock so that 1534 * drm_calc_timestamping_constants() won't throw an error message 1535 * 1536 * RETURNS 1537 * Zero for success or -errno 1538 */ 1539 static int 1540 vmw_kms_atomic_check_modeset(struct drm_device *dev, 1541 struct drm_atomic_state *state) 1542 { 1543 struct drm_crtc_state *crtc_state; 1544 struct drm_crtc *crtc; 1545 struct vmw_private *dev_priv = vmw_priv(dev); 1546 int i; 1547 1548 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 1549 unsigned long requested_bb_mem = 0; 1550 1551 if (dev_priv->active_display_unit == vmw_du_screen_target) { 1552 if (crtc->primary->fb) { 1553 int cpp = crtc->primary->fb->pitches[0] / 1554 crtc->primary->fb->width; 1555 1556 requested_bb_mem += crtc->mode.hdisplay * cpp * 1557 crtc->mode.vdisplay; 1558 } 1559 1560 if (requested_bb_mem > dev_priv->prim_bb_mem) 1561 return -EINVAL; 1562 } 1563 } 1564 1565 return drm_atomic_helper_check(dev, state); 1566 } 1567 1568 1569 /** 1570 * vmw_kms_atomic_commit - Perform an atomic state commit 1571 * 1572 * @dev: DRM device 1573 * @state: the driver state object 1574 * @nonblock: Whether nonblocking behaviour is requested 1575 * 1576 * This is a simple wrapper around drm_atomic_helper_commit() for 1577 * us to clear the nonblocking value. 1578 * 1579 * Nonblocking commits currently cause synchronization issues 1580 * for vmwgfx. 1581 * 1582 * RETURNS 1583 * Zero for success or negative error code on failure. 1584 */ 1585 int vmw_kms_atomic_commit(struct drm_device *dev, 1586 struct drm_atomic_state *state, 1587 bool nonblock) 1588 { 1589 return drm_atomic_helper_commit(dev, state, false); 1590 } 1591 1592 1593 static const struct drm_mode_config_funcs vmw_kms_funcs = { 1594 .fb_create = vmw_kms_fb_create, 1595 .atomic_check = vmw_kms_atomic_check_modeset, 1596 .atomic_commit = vmw_kms_atomic_commit, 1597 }; 1598 1599 static int vmw_kms_generic_present(struct vmw_private *dev_priv, 1600 struct drm_file *file_priv, 1601 struct vmw_framebuffer *vfb, 1602 struct vmw_surface *surface, 1603 uint32_t sid, 1604 int32_t destX, int32_t destY, 1605 struct drm_vmw_rect *clips, 1606 uint32_t num_clips) 1607 { 1608 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips, 1609 &surface->res, destX, destY, 1610 num_clips, 1, NULL); 1611 } 1612 1613 1614 int vmw_kms_present(struct vmw_private *dev_priv, 1615 struct drm_file *file_priv, 1616 struct vmw_framebuffer *vfb, 1617 struct vmw_surface *surface, 1618 uint32_t sid, 1619 int32_t destX, int32_t destY, 1620 struct drm_vmw_rect *clips, 1621 uint32_t num_clips) 1622 { 1623 int ret; 1624 1625 switch (dev_priv->active_display_unit) { 1626 case vmw_du_screen_target: 1627 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips, 1628 &surface->res, destX, destY, 1629 num_clips, 1, NULL); 1630 break; 1631 case vmw_du_screen_object: 1632 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface, 1633 sid, destX, destY, clips, 1634 num_clips); 1635 break; 1636 default: 1637 WARN_ONCE(true, 1638 "Present called with invalid display system.\n"); 1639 ret = -ENOSYS; 1640 break; 1641 } 1642 if (ret) 1643 return ret; 1644 1645 vmw_fifo_flush(dev_priv, false); 1646 1647 return 0; 1648 } 1649 1650 static void 1651 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv) 1652 { 1653 if (dev_priv->hotplug_mode_update_property) 1654 return; 1655 1656 dev_priv->hotplug_mode_update_property = 1657 drm_property_create_range(dev_priv->dev, 1658 DRM_MODE_PROP_IMMUTABLE, 1659 "hotplug_mode_update", 0, 1); 1660 1661 if (!dev_priv->hotplug_mode_update_property) 1662 return; 1663 1664 } 1665 1666 int vmw_kms_init(struct vmw_private *dev_priv) 1667 { 1668 struct drm_device *dev = dev_priv->dev; 1669 int ret; 1670 1671 drm_mode_config_init(dev); 1672 dev->mode_config.funcs = &vmw_kms_funcs; 1673 dev->mode_config.min_width = 1; 1674 dev->mode_config.min_height = 1; 1675 dev->mode_config.max_width = dev_priv->texture_max_width; 1676 dev->mode_config.max_height = dev_priv->texture_max_height; 1677 1678 drm_mode_create_suggested_offset_properties(dev); 1679 vmw_kms_create_hotplug_mode_update_property(dev_priv); 1680 1681 ret = vmw_kms_stdu_init_display(dev_priv); 1682 if (ret) { 1683 ret = vmw_kms_sou_init_display(dev_priv); 1684 if (ret) /* Fallback */ 1685 ret = vmw_kms_ldu_init_display(dev_priv); 1686 } 1687 1688 return ret; 1689 } 1690 1691 int vmw_kms_close(struct vmw_private *dev_priv) 1692 { 1693 int ret = 0; 1694 1695 /* 1696 * Docs says we should take the lock before calling this function 1697 * but since it destroys encoders and our destructor calls 1698 * drm_encoder_cleanup which takes the lock we deadlock. 1699 */ 1700 drm_mode_config_cleanup(dev_priv->dev); 1701 if (dev_priv->active_display_unit == vmw_du_legacy) 1702 ret = vmw_kms_ldu_close_display(dev_priv); 1703 1704 return ret; 1705 } 1706 1707 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data, 1708 struct drm_file *file_priv) 1709 { 1710 struct drm_vmw_cursor_bypass_arg *arg = data; 1711 struct vmw_display_unit *du; 1712 struct drm_crtc *crtc; 1713 int ret = 0; 1714 1715 1716 mutex_lock(&dev->mode_config.mutex); 1717 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) { 1718 1719 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 1720 du = vmw_crtc_to_du(crtc); 1721 du->hotspot_x = arg->xhot; 1722 du->hotspot_y = arg->yhot; 1723 } 1724 1725 mutex_unlock(&dev->mode_config.mutex); 1726 return 0; 1727 } 1728 1729 crtc = drm_crtc_find(dev, arg->crtc_id); 1730 if (!crtc) { 1731 ret = -ENOENT; 1732 goto out; 1733 } 1734 1735 du = vmw_crtc_to_du(crtc); 1736 1737 du->hotspot_x = arg->xhot; 1738 du->hotspot_y = arg->yhot; 1739 1740 out: 1741 mutex_unlock(&dev->mode_config.mutex); 1742 1743 return ret; 1744 } 1745 1746 int vmw_kms_write_svga(struct vmw_private *vmw_priv, 1747 unsigned width, unsigned height, unsigned pitch, 1748 unsigned bpp, unsigned depth) 1749 { 1750 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1751 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch); 1752 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1753 vmw_mmio_write(pitch, vmw_priv->mmio_virt + 1754 SVGA_FIFO_PITCHLOCK); 1755 vmw_write(vmw_priv, SVGA_REG_WIDTH, width); 1756 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height); 1757 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp); 1758 1759 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) { 1760 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n", 1761 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH)); 1762 return -EINVAL; 1763 } 1764 1765 return 0; 1766 } 1767 1768 int vmw_kms_save_vga(struct vmw_private *vmw_priv) 1769 { 1770 struct vmw_vga_topology_state *save; 1771 uint32_t i; 1772 1773 vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH); 1774 vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT); 1775 vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL); 1776 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1777 vmw_priv->vga_pitchlock = 1778 vmw_read(vmw_priv, SVGA_REG_PITCHLOCK); 1779 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1780 vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt + 1781 SVGA_FIFO_PITCHLOCK); 1782 1783 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY)) 1784 return 0; 1785 1786 vmw_priv->num_displays = vmw_read(vmw_priv, 1787 SVGA_REG_NUM_GUEST_DISPLAYS); 1788 1789 if (vmw_priv->num_displays == 0) 1790 vmw_priv->num_displays = 1; 1791 1792 for (i = 0; i < vmw_priv->num_displays; ++i) { 1793 save = &vmw_priv->vga_save[i]; 1794 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i); 1795 save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY); 1796 save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X); 1797 save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y); 1798 save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH); 1799 save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT); 1800 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID); 1801 if (i == 0 && vmw_priv->num_displays == 1 && 1802 save->width == 0 && save->height == 0) { 1803 1804 /* 1805 * It should be fairly safe to assume that these 1806 * values are uninitialized. 1807 */ 1808 1809 save->width = vmw_priv->vga_width - save->pos_x; 1810 save->height = vmw_priv->vga_height - save->pos_y; 1811 } 1812 } 1813 1814 return 0; 1815 } 1816 1817 int vmw_kms_restore_vga(struct vmw_private *vmw_priv) 1818 { 1819 struct vmw_vga_topology_state *save; 1820 uint32_t i; 1821 1822 vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width); 1823 vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height); 1824 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp); 1825 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1826 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, 1827 vmw_priv->vga_pitchlock); 1828 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1829 vmw_mmio_write(vmw_priv->vga_pitchlock, 1830 vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK); 1831 1832 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY)) 1833 return 0; 1834 1835 for (i = 0; i < vmw_priv->num_displays; ++i) { 1836 save = &vmw_priv->vga_save[i]; 1837 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i); 1838 vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary); 1839 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x); 1840 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y); 1841 vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width); 1842 vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height); 1843 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID); 1844 } 1845 1846 return 0; 1847 } 1848 1849 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv, 1850 uint32_t pitch, 1851 uint32_t height) 1852 { 1853 return ((u64) pitch * (u64) height) < (u64) 1854 ((dev_priv->active_display_unit == vmw_du_screen_target) ? 1855 dev_priv->prim_bb_mem : dev_priv->vram_size); 1856 } 1857 1858 1859 /** 1860 * Function called by DRM code called with vbl_lock held. 1861 */ 1862 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 1863 { 1864 return 0; 1865 } 1866 1867 /** 1868 * Function called by DRM code called with vbl_lock held. 1869 */ 1870 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe) 1871 { 1872 return -ENOSYS; 1873 } 1874 1875 /** 1876 * Function called by DRM code called with vbl_lock held. 1877 */ 1878 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe) 1879 { 1880 } 1881 1882 1883 /* 1884 * Small shared kms functions. 1885 */ 1886 1887 static int vmw_du_update_layout(struct vmw_private *dev_priv, unsigned num, 1888 struct drm_vmw_rect *rects) 1889 { 1890 struct drm_device *dev = dev_priv->dev; 1891 struct vmw_display_unit *du; 1892 struct drm_connector *con; 1893 1894 mutex_lock(&dev->mode_config.mutex); 1895 1896 #if 0 1897 { 1898 unsigned int i; 1899 1900 DRM_INFO("%s: new layout ", __func__); 1901 for (i = 0; i < num; i++) 1902 DRM_INFO("(%i, %i %ux%u) ", rects[i].x, rects[i].y, 1903 rects[i].w, rects[i].h); 1904 DRM_INFO("\n"); 1905 } 1906 #endif 1907 1908 list_for_each_entry(con, &dev->mode_config.connector_list, head) { 1909 du = vmw_connector_to_du(con); 1910 if (num > du->unit) { 1911 du->pref_width = rects[du->unit].w; 1912 du->pref_height = rects[du->unit].h; 1913 du->pref_active = true; 1914 du->gui_x = rects[du->unit].x; 1915 du->gui_y = rects[du->unit].y; 1916 drm_object_property_set_value 1917 (&con->base, dev->mode_config.suggested_x_property, 1918 du->gui_x); 1919 drm_object_property_set_value 1920 (&con->base, dev->mode_config.suggested_y_property, 1921 du->gui_y); 1922 } else { 1923 du->pref_width = 800; 1924 du->pref_height = 600; 1925 du->pref_active = false; 1926 drm_object_property_set_value 1927 (&con->base, dev->mode_config.suggested_x_property, 1928 0); 1929 drm_object_property_set_value 1930 (&con->base, dev->mode_config.suggested_y_property, 1931 0); 1932 } 1933 con->status = vmw_du_connector_detect(con, true); 1934 } 1935 1936 mutex_unlock(&dev->mode_config.mutex); 1937 drm_sysfs_hotplug_event(dev); 1938 1939 return 0; 1940 } 1941 1942 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc, 1943 u16 *r, u16 *g, u16 *b, 1944 uint32_t size, 1945 struct drm_modeset_acquire_ctx *ctx) 1946 { 1947 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 1948 int i; 1949 1950 for (i = 0; i < size; i++) { 1951 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i, 1952 r[i], g[i], b[i]); 1953 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8); 1954 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8); 1955 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8); 1956 } 1957 1958 return 0; 1959 } 1960 1961 int vmw_du_connector_dpms(struct drm_connector *connector, int mode) 1962 { 1963 return 0; 1964 } 1965 1966 enum drm_connector_status 1967 vmw_du_connector_detect(struct drm_connector *connector, bool force) 1968 { 1969 uint32_t num_displays; 1970 struct drm_device *dev = connector->dev; 1971 struct vmw_private *dev_priv = vmw_priv(dev); 1972 struct vmw_display_unit *du = vmw_connector_to_du(connector); 1973 1974 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS); 1975 1976 return ((vmw_connector_to_du(connector)->unit < num_displays && 1977 du->pref_active) ? 1978 connector_status_connected : connector_status_disconnected); 1979 } 1980 1981 static struct drm_display_mode vmw_kms_connector_builtin[] = { 1982 /* 640x480@60Hz */ 1983 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 1984 752, 800, 0, 480, 489, 492, 525, 0, 1985 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 1986 /* 800x600@60Hz */ 1987 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 1988 968, 1056, 0, 600, 601, 605, 628, 0, 1989 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1990 /* 1024x768@60Hz */ 1991 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 1992 1184, 1344, 0, 768, 771, 777, 806, 0, 1993 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 1994 /* 1152x864@75Hz */ 1995 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 1996 1344, 1600, 0, 864, 865, 868, 900, 0, 1997 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1998 /* 1280x768@60Hz */ 1999 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 2000 1472, 1664, 0, 768, 771, 778, 798, 0, 2001 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2002 /* 1280x800@60Hz */ 2003 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 2004 1480, 1680, 0, 800, 803, 809, 831, 0, 2005 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2006 /* 1280x960@60Hz */ 2007 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 2008 1488, 1800, 0, 960, 961, 964, 1000, 0, 2009 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2010 /* 1280x1024@60Hz */ 2011 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 2012 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 2013 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2014 /* 1360x768@60Hz */ 2015 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 2016 1536, 1792, 0, 768, 771, 777, 795, 0, 2017 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2018 /* 1440x1050@60Hz */ 2019 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 2020 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, 2021 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2022 /* 1440x900@60Hz */ 2023 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 2024 1672, 1904, 0, 900, 903, 909, 934, 0, 2025 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2026 /* 1600x1200@60Hz */ 2027 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 2028 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 2029 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2030 /* 1680x1050@60Hz */ 2031 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 2032 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, 2033 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2034 /* 1792x1344@60Hz */ 2035 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 2036 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, 2037 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2038 /* 1853x1392@60Hz */ 2039 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 2040 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, 2041 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2042 /* 1920x1200@60Hz */ 2043 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 2044 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, 2045 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2046 /* 1920x1440@60Hz */ 2047 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 2048 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, 2049 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2050 /* 2560x1600@60Hz */ 2051 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 2052 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, 2053 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2054 /* Terminate */ 2055 { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) }, 2056 }; 2057 2058 /** 2059 * vmw_guess_mode_timing - Provide fake timings for a 2060 * 60Hz vrefresh mode. 2061 * 2062 * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay 2063 * members filled in. 2064 */ 2065 void vmw_guess_mode_timing(struct drm_display_mode *mode) 2066 { 2067 mode->hsync_start = mode->hdisplay + 50; 2068 mode->hsync_end = mode->hsync_start + 50; 2069 mode->htotal = mode->hsync_end + 50; 2070 2071 mode->vsync_start = mode->vdisplay + 50; 2072 mode->vsync_end = mode->vsync_start + 50; 2073 mode->vtotal = mode->vsync_end + 50; 2074 2075 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6; 2076 mode->vrefresh = drm_mode_vrefresh(mode); 2077 } 2078 2079 2080 int vmw_du_connector_fill_modes(struct drm_connector *connector, 2081 uint32_t max_width, uint32_t max_height) 2082 { 2083 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2084 struct drm_device *dev = connector->dev; 2085 struct vmw_private *dev_priv = vmw_priv(dev); 2086 struct drm_display_mode *mode = NULL; 2087 struct drm_display_mode *bmode; 2088 struct drm_display_mode prefmode = { DRM_MODE("preferred", 2089 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED, 2090 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2091 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) 2092 }; 2093 int i; 2094 u32 assumed_bpp = 4; 2095 2096 if (dev_priv->assume_16bpp) 2097 assumed_bpp = 2; 2098 2099 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2100 max_width = min(max_width, dev_priv->stdu_max_width); 2101 max_width = min(max_width, dev_priv->texture_max_width); 2102 2103 max_height = min(max_height, dev_priv->stdu_max_height); 2104 max_height = min(max_height, dev_priv->texture_max_height); 2105 } 2106 2107 /* Add preferred mode */ 2108 mode = drm_mode_duplicate(dev, &prefmode); 2109 if (!mode) 2110 return 0; 2111 mode->hdisplay = du->pref_width; 2112 mode->vdisplay = du->pref_height; 2113 vmw_guess_mode_timing(mode); 2114 2115 if (vmw_kms_validate_mode_vram(dev_priv, 2116 mode->hdisplay * assumed_bpp, 2117 mode->vdisplay)) { 2118 drm_mode_probed_add(connector, mode); 2119 } else { 2120 drm_mode_destroy(dev, mode); 2121 mode = NULL; 2122 } 2123 2124 if (du->pref_mode) { 2125 list_del_init(&du->pref_mode->head); 2126 drm_mode_destroy(dev, du->pref_mode); 2127 } 2128 2129 /* mode might be null here, this is intended */ 2130 du->pref_mode = mode; 2131 2132 for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) { 2133 bmode = &vmw_kms_connector_builtin[i]; 2134 if (bmode->hdisplay > max_width || 2135 bmode->vdisplay > max_height) 2136 continue; 2137 2138 if (!vmw_kms_validate_mode_vram(dev_priv, 2139 bmode->hdisplay * assumed_bpp, 2140 bmode->vdisplay)) 2141 continue; 2142 2143 mode = drm_mode_duplicate(dev, bmode); 2144 if (!mode) 2145 return 0; 2146 mode->vrefresh = drm_mode_vrefresh(mode); 2147 2148 drm_mode_probed_add(connector, mode); 2149 } 2150 2151 drm_mode_connector_list_update(connector); 2152 /* Move the prefered mode first, help apps pick the right mode. */ 2153 drm_mode_sort(&connector->modes); 2154 2155 return 1; 2156 } 2157 2158 int vmw_du_connector_set_property(struct drm_connector *connector, 2159 struct drm_property *property, 2160 uint64_t val) 2161 { 2162 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2163 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2164 2165 if (property == dev_priv->implicit_placement_property) 2166 du->is_implicit = val; 2167 2168 return 0; 2169 } 2170 2171 2172 2173 /** 2174 * vmw_du_connector_atomic_set_property - Atomic version of get property 2175 * 2176 * @crtc - crtc the property is associated with 2177 * 2178 * Returns: 2179 * Zero on success, negative errno on failure. 2180 */ 2181 int 2182 vmw_du_connector_atomic_set_property(struct drm_connector *connector, 2183 struct drm_connector_state *state, 2184 struct drm_property *property, 2185 uint64_t val) 2186 { 2187 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2188 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state); 2189 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2190 2191 2192 if (property == dev_priv->implicit_placement_property) { 2193 vcs->is_implicit = val; 2194 2195 /* 2196 * We should really be doing a drm_atomic_commit() to 2197 * commit the new state, but since this doesn't cause 2198 * an immedate state change, this is probably ok 2199 */ 2200 du->is_implicit = vcs->is_implicit; 2201 } else { 2202 return -EINVAL; 2203 } 2204 2205 return 0; 2206 } 2207 2208 2209 /** 2210 * vmw_du_connector_atomic_get_property - Atomic version of get property 2211 * 2212 * @connector - connector the property is associated with 2213 * 2214 * Returns: 2215 * Zero on success, negative errno on failure. 2216 */ 2217 int 2218 vmw_du_connector_atomic_get_property(struct drm_connector *connector, 2219 const struct drm_connector_state *state, 2220 struct drm_property *property, 2221 uint64_t *val) 2222 { 2223 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2224 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state); 2225 2226 if (property == dev_priv->implicit_placement_property) 2227 *val = vcs->is_implicit; 2228 else { 2229 DRM_ERROR("Invalid Property %s\n", property->name); 2230 return -EINVAL; 2231 } 2232 2233 return 0; 2234 } 2235 2236 2237 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data, 2238 struct drm_file *file_priv) 2239 { 2240 struct vmw_private *dev_priv = vmw_priv(dev); 2241 struct drm_vmw_update_layout_arg *arg = 2242 (struct drm_vmw_update_layout_arg *)data; 2243 void __user *user_rects; 2244 struct drm_vmw_rect *rects; 2245 unsigned rects_size; 2246 int ret; 2247 int i; 2248 u64 total_pixels = 0; 2249 struct drm_mode_config *mode_config = &dev->mode_config; 2250 struct drm_vmw_rect bounding_box = {0}; 2251 2252 if (!arg->num_outputs) { 2253 struct drm_vmw_rect def_rect = {0, 0, 800, 600}; 2254 vmw_du_update_layout(dev_priv, 1, &def_rect); 2255 return 0; 2256 } 2257 2258 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect); 2259 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect), 2260 GFP_KERNEL); 2261 if (unlikely(!rects)) 2262 return -ENOMEM; 2263 2264 user_rects = (void __user *)(unsigned long)arg->rects; 2265 ret = copy_from_user(rects, user_rects, rects_size); 2266 if (unlikely(ret != 0)) { 2267 DRM_ERROR("Failed to get rects.\n"); 2268 ret = -EFAULT; 2269 goto out_free; 2270 } 2271 2272 for (i = 0; i < arg->num_outputs; ++i) { 2273 if (rects[i].x < 0 || 2274 rects[i].y < 0 || 2275 rects[i].x + rects[i].w > mode_config->max_width || 2276 rects[i].y + rects[i].h > mode_config->max_height) { 2277 DRM_ERROR("Invalid GUI layout.\n"); 2278 ret = -EINVAL; 2279 goto out_free; 2280 } 2281 2282 /* 2283 * bounding_box.w and bunding_box.h are used as 2284 * lower-right coordinates 2285 */ 2286 if (rects[i].x + rects[i].w > bounding_box.w) 2287 bounding_box.w = rects[i].x + rects[i].w; 2288 2289 if (rects[i].y + rects[i].h > bounding_box.h) 2290 bounding_box.h = rects[i].y + rects[i].h; 2291 2292 total_pixels += (u64) rects[i].w * (u64) rects[i].h; 2293 } 2294 2295 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2296 /* 2297 * For Screen Targets, the limits for a toplogy are: 2298 * 1. Bounding box (assuming 32bpp) must be < prim_bb_mem 2299 * 2. Total pixels (assuming 32bpp) must be < prim_bb_mem 2300 */ 2301 u64 bb_mem = (u64) bounding_box.w * bounding_box.h * 4; 2302 u64 pixel_mem = total_pixels * 4; 2303 2304 if (bb_mem > dev_priv->prim_bb_mem) { 2305 DRM_ERROR("Topology is beyond supported limits.\n"); 2306 ret = -EINVAL; 2307 goto out_free; 2308 } 2309 2310 if (pixel_mem > dev_priv->prim_bb_mem) { 2311 DRM_ERROR("Combined output size too large\n"); 2312 ret = -EINVAL; 2313 goto out_free; 2314 } 2315 } 2316 2317 vmw_du_update_layout(dev_priv, arg->num_outputs, rects); 2318 2319 out_free: 2320 kfree(rects); 2321 return ret; 2322 } 2323 2324 /** 2325 * vmw_kms_helper_dirty - Helper to build commands and perform actions based 2326 * on a set of cliprects and a set of display units. 2327 * 2328 * @dev_priv: Pointer to a device private structure. 2329 * @framebuffer: Pointer to the framebuffer on which to perform the actions. 2330 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL. 2331 * Cliprects are given in framebuffer coordinates. 2332 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must 2333 * be NULL. Cliprects are given in source coordinates. 2334 * @dest_x: X coordinate offset for the crtc / destination clip rects. 2335 * @dest_y: Y coordinate offset for the crtc / destination clip rects. 2336 * @num_clips: Number of cliprects in the @clips or @vclips array. 2337 * @increment: Integer with which to increment the clip counter when looping. 2338 * Used to skip a predetermined number of clip rects. 2339 * @dirty: Closure structure. See the description of struct vmw_kms_dirty. 2340 */ 2341 int vmw_kms_helper_dirty(struct vmw_private *dev_priv, 2342 struct vmw_framebuffer *framebuffer, 2343 const struct drm_clip_rect *clips, 2344 const struct drm_vmw_rect *vclips, 2345 s32 dest_x, s32 dest_y, 2346 int num_clips, 2347 int increment, 2348 struct vmw_kms_dirty *dirty) 2349 { 2350 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS]; 2351 struct drm_crtc *crtc; 2352 u32 num_units = 0; 2353 u32 i, k; 2354 2355 dirty->dev_priv = dev_priv; 2356 2357 list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, head) { 2358 if (crtc->primary->fb != &framebuffer->base) 2359 continue; 2360 units[num_units++] = vmw_crtc_to_du(crtc); 2361 } 2362 2363 for (k = 0; k < num_units; k++) { 2364 struct vmw_display_unit *unit = units[k]; 2365 s32 crtc_x = unit->crtc.x; 2366 s32 crtc_y = unit->crtc.y; 2367 s32 crtc_width = unit->crtc.mode.hdisplay; 2368 s32 crtc_height = unit->crtc.mode.vdisplay; 2369 const struct drm_clip_rect *clips_ptr = clips; 2370 const struct drm_vmw_rect *vclips_ptr = vclips; 2371 2372 dirty->unit = unit; 2373 if (dirty->fifo_reserve_size > 0) { 2374 dirty->cmd = vmw_fifo_reserve(dev_priv, 2375 dirty->fifo_reserve_size); 2376 if (!dirty->cmd) { 2377 DRM_ERROR("Couldn't reserve fifo space " 2378 "for dirty blits.\n"); 2379 return -ENOMEM; 2380 } 2381 memset(dirty->cmd, 0, dirty->fifo_reserve_size); 2382 } 2383 dirty->num_hits = 0; 2384 for (i = 0; i < num_clips; i++, clips_ptr += increment, 2385 vclips_ptr += increment) { 2386 s32 clip_left; 2387 s32 clip_top; 2388 2389 /* 2390 * Select clip array type. Note that integer type 2391 * in @clips is unsigned short, whereas in @vclips 2392 * it's 32-bit. 2393 */ 2394 if (clips) { 2395 dirty->fb_x = (s32) clips_ptr->x1; 2396 dirty->fb_y = (s32) clips_ptr->y1; 2397 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x - 2398 crtc_x; 2399 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y - 2400 crtc_y; 2401 } else { 2402 dirty->fb_x = vclips_ptr->x; 2403 dirty->fb_y = vclips_ptr->y; 2404 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w + 2405 dest_x - crtc_x; 2406 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h + 2407 dest_y - crtc_y; 2408 } 2409 2410 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x; 2411 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y; 2412 2413 /* Skip this clip if it's outside the crtc region */ 2414 if (dirty->unit_x1 >= crtc_width || 2415 dirty->unit_y1 >= crtc_height || 2416 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0) 2417 continue; 2418 2419 /* Clip right and bottom to crtc limits */ 2420 dirty->unit_x2 = min_t(s32, dirty->unit_x2, 2421 crtc_width); 2422 dirty->unit_y2 = min_t(s32, dirty->unit_y2, 2423 crtc_height); 2424 2425 /* Clip left and top to crtc limits */ 2426 clip_left = min_t(s32, dirty->unit_x1, 0); 2427 clip_top = min_t(s32, dirty->unit_y1, 0); 2428 dirty->unit_x1 -= clip_left; 2429 dirty->unit_y1 -= clip_top; 2430 dirty->fb_x -= clip_left; 2431 dirty->fb_y -= clip_top; 2432 2433 dirty->clip(dirty); 2434 } 2435 2436 dirty->fifo_commit(dirty); 2437 } 2438 2439 return 0; 2440 } 2441 2442 /** 2443 * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before 2444 * command submission. 2445 * 2446 * @dev_priv. Pointer to a device private structure. 2447 * @buf: The buffer object 2448 * @interruptible: Whether to perform waits as interruptible. 2449 * @validate_as_mob: Whether the buffer should be validated as a MOB. If false, 2450 * The buffer will be validated as a GMR. Already pinned buffers will not be 2451 * validated. 2452 * 2453 * Returns 0 on success, negative error code on failure, -ERESTARTSYS if 2454 * interrupted by a signal. 2455 */ 2456 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv, 2457 struct vmw_dma_buffer *buf, 2458 bool interruptible, 2459 bool validate_as_mob) 2460 { 2461 struct ttm_buffer_object *bo = &buf->base; 2462 int ret; 2463 2464 ttm_bo_reserve(bo, false, false, NULL); 2465 ret = vmw_validate_single_buffer(dev_priv, bo, interruptible, 2466 validate_as_mob); 2467 if (ret) 2468 ttm_bo_unreserve(bo); 2469 2470 return ret; 2471 } 2472 2473 /** 2474 * vmw_kms_helper_buffer_revert - Undo the actions of 2475 * vmw_kms_helper_buffer_prepare. 2476 * 2477 * @res: Pointer to the buffer object. 2478 * 2479 * Helper to be used if an error forces the caller to undo the actions of 2480 * vmw_kms_helper_buffer_prepare. 2481 */ 2482 void vmw_kms_helper_buffer_revert(struct vmw_dma_buffer *buf) 2483 { 2484 if (buf) 2485 ttm_bo_unreserve(&buf->base); 2486 } 2487 2488 /** 2489 * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after 2490 * kms command submission. 2491 * 2492 * @dev_priv: Pointer to a device private structure. 2493 * @file_priv: Pointer to a struct drm_file representing the caller's 2494 * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely 2495 * if non-NULL, @user_fence_rep must be non-NULL. 2496 * @buf: The buffer object. 2497 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a 2498 * ref-counted fence pointer is returned here. 2499 * @user_fence_rep: Optional pointer to a user-space provided struct 2500 * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the 2501 * function copies fence data to user-space in a fail-safe manner. 2502 */ 2503 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv, 2504 struct drm_file *file_priv, 2505 struct vmw_dma_buffer *buf, 2506 struct vmw_fence_obj **out_fence, 2507 struct drm_vmw_fence_rep __user * 2508 user_fence_rep) 2509 { 2510 struct vmw_fence_obj *fence; 2511 uint32_t handle; 2512 int ret; 2513 2514 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence, 2515 file_priv ? &handle : NULL); 2516 if (buf) 2517 vmw_fence_single_bo(&buf->base, fence); 2518 if (file_priv) 2519 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv), 2520 ret, user_fence_rep, fence, 2521 handle, -1, NULL); 2522 if (out_fence) 2523 *out_fence = fence; 2524 else 2525 vmw_fence_obj_unreference(&fence); 2526 2527 vmw_kms_helper_buffer_revert(buf); 2528 } 2529 2530 2531 /** 2532 * vmw_kms_helper_resource_revert - Undo the actions of 2533 * vmw_kms_helper_resource_prepare. 2534 * 2535 * @res: Pointer to the resource. Typically a surface. 2536 * 2537 * Helper to be used if an error forces the caller to undo the actions of 2538 * vmw_kms_helper_resource_prepare. 2539 */ 2540 void vmw_kms_helper_resource_revert(struct vmw_resource *res) 2541 { 2542 vmw_kms_helper_buffer_revert(res->backup); 2543 vmw_resource_unreserve(res, false, NULL, 0); 2544 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2545 } 2546 2547 /** 2548 * vmw_kms_helper_resource_prepare - Reserve and validate a resource before 2549 * command submission. 2550 * 2551 * @res: Pointer to the resource. Typically a surface. 2552 * @interruptible: Whether to perform waits as interruptible. 2553 * 2554 * Reserves and validates also the backup buffer if a guest-backed resource. 2555 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 2556 * interrupted by a signal. 2557 */ 2558 int vmw_kms_helper_resource_prepare(struct vmw_resource *res, 2559 bool interruptible) 2560 { 2561 int ret = 0; 2562 2563 if (interruptible) 2564 ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex); 2565 else 2566 mutex_lock(&res->dev_priv->cmdbuf_mutex); 2567 2568 if (unlikely(ret != 0)) 2569 return -ERESTARTSYS; 2570 2571 ret = vmw_resource_reserve(res, interruptible, false); 2572 if (ret) 2573 goto out_unlock; 2574 2575 if (res->backup) { 2576 ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup, 2577 interruptible, 2578 res->dev_priv->has_mob); 2579 if (ret) 2580 goto out_unreserve; 2581 } 2582 ret = vmw_resource_validate(res); 2583 if (ret) 2584 goto out_revert; 2585 return 0; 2586 2587 out_revert: 2588 vmw_kms_helper_buffer_revert(res->backup); 2589 out_unreserve: 2590 vmw_resource_unreserve(res, false, NULL, 0); 2591 out_unlock: 2592 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2593 return ret; 2594 } 2595 2596 /** 2597 * vmw_kms_helper_resource_finish - Unreserve and fence a resource after 2598 * kms command submission. 2599 * 2600 * @res: Pointer to the resource. Typically a surface. 2601 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a 2602 * ref-counted fence pointer is returned here. 2603 */ 2604 void vmw_kms_helper_resource_finish(struct vmw_resource *res, 2605 struct vmw_fence_obj **out_fence) 2606 { 2607 if (res->backup || out_fence) 2608 vmw_kms_helper_buffer_finish(res->dev_priv, NULL, res->backup, 2609 out_fence, NULL); 2610 2611 vmw_resource_unreserve(res, false, NULL, 0); 2612 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2613 } 2614 2615 /** 2616 * vmw_kms_update_proxy - Helper function to update a proxy surface from 2617 * its backing MOB. 2618 * 2619 * @res: Pointer to the surface resource 2620 * @clips: Clip rects in framebuffer (surface) space. 2621 * @num_clips: Number of clips in @clips. 2622 * @increment: Integer with which to increment the clip counter when looping. 2623 * Used to skip a predetermined number of clip rects. 2624 * 2625 * This function makes sure the proxy surface is updated from its backing MOB 2626 * using the region given by @clips. The surface resource @res and its backing 2627 * MOB needs to be reserved and validated on call. 2628 */ 2629 int vmw_kms_update_proxy(struct vmw_resource *res, 2630 const struct drm_clip_rect *clips, 2631 unsigned num_clips, 2632 int increment) 2633 { 2634 struct vmw_private *dev_priv = res->dev_priv; 2635 struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size; 2636 struct { 2637 SVGA3dCmdHeader header; 2638 SVGA3dCmdUpdateGBImage body; 2639 } *cmd; 2640 SVGA3dBox *box; 2641 size_t copy_size = 0; 2642 int i; 2643 2644 if (!clips) 2645 return 0; 2646 2647 cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips); 2648 if (!cmd) { 2649 DRM_ERROR("Couldn't reserve fifo space for proxy surface " 2650 "update.\n"); 2651 return -ENOMEM; 2652 } 2653 2654 for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) { 2655 box = &cmd->body.box; 2656 2657 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE; 2658 cmd->header.size = sizeof(cmd->body); 2659 cmd->body.image.sid = res->id; 2660 cmd->body.image.face = 0; 2661 cmd->body.image.mipmap = 0; 2662 2663 if (clips->x1 > size->width || clips->x2 > size->width || 2664 clips->y1 > size->height || clips->y2 > size->height) { 2665 DRM_ERROR("Invalid clips outsize of framebuffer.\n"); 2666 return -EINVAL; 2667 } 2668 2669 box->x = clips->x1; 2670 box->y = clips->y1; 2671 box->z = 0; 2672 box->w = clips->x2 - clips->x1; 2673 box->h = clips->y2 - clips->y1; 2674 box->d = 1; 2675 2676 copy_size += sizeof(*cmd); 2677 } 2678 2679 vmw_fifo_commit(dev_priv, copy_size); 2680 2681 return 0; 2682 } 2683 2684 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv, 2685 unsigned unit, 2686 u32 max_width, 2687 u32 max_height, 2688 struct drm_connector **p_con, 2689 struct drm_crtc **p_crtc, 2690 struct drm_display_mode **p_mode) 2691 { 2692 struct drm_connector *con; 2693 struct vmw_display_unit *du; 2694 struct drm_display_mode *mode; 2695 int i = 0; 2696 2697 list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list, 2698 head) { 2699 if (i == unit) 2700 break; 2701 2702 ++i; 2703 } 2704 2705 if (i != unit) { 2706 DRM_ERROR("Could not find initial display unit.\n"); 2707 return -EINVAL; 2708 } 2709 2710 if (list_empty(&con->modes)) 2711 (void) vmw_du_connector_fill_modes(con, max_width, max_height); 2712 2713 if (list_empty(&con->modes)) { 2714 DRM_ERROR("Could not find initial display mode.\n"); 2715 return -EINVAL; 2716 } 2717 2718 du = vmw_connector_to_du(con); 2719 *p_con = con; 2720 *p_crtc = &du->crtc; 2721 2722 list_for_each_entry(mode, &con->modes, head) { 2723 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2724 break; 2725 } 2726 2727 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2728 *p_mode = mode; 2729 else { 2730 WARN_ONCE(true, "Could not find initial preferred mode.\n"); 2731 *p_mode = list_first_entry(&con->modes, 2732 struct drm_display_mode, 2733 head); 2734 } 2735 2736 return 0; 2737 } 2738 2739 /** 2740 * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer 2741 * 2742 * @dev_priv: Pointer to a device private struct. 2743 * @du: The display unit of the crtc. 2744 */ 2745 void vmw_kms_del_active(struct vmw_private *dev_priv, 2746 struct vmw_display_unit *du) 2747 { 2748 mutex_lock(&dev_priv->global_kms_state_mutex); 2749 if (du->active_implicit) { 2750 if (--(dev_priv->num_implicit) == 0) 2751 dev_priv->implicit_fb = NULL; 2752 du->active_implicit = false; 2753 } 2754 mutex_unlock(&dev_priv->global_kms_state_mutex); 2755 } 2756 2757 /** 2758 * vmw_kms_add_active - register a crtc binding to an implicit framebuffer 2759 * 2760 * @vmw_priv: Pointer to a device private struct. 2761 * @du: The display unit of the crtc. 2762 * @vfb: The implicit framebuffer 2763 * 2764 * Registers a binding to an implicit framebuffer. 2765 */ 2766 void vmw_kms_add_active(struct vmw_private *dev_priv, 2767 struct vmw_display_unit *du, 2768 struct vmw_framebuffer *vfb) 2769 { 2770 mutex_lock(&dev_priv->global_kms_state_mutex); 2771 WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb); 2772 2773 if (!du->active_implicit && du->is_implicit) { 2774 dev_priv->implicit_fb = vfb; 2775 du->active_implicit = true; 2776 dev_priv->num_implicit++; 2777 } 2778 mutex_unlock(&dev_priv->global_kms_state_mutex); 2779 } 2780 2781 /** 2782 * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc. 2783 * 2784 * @dev_priv: Pointer to device-private struct. 2785 * @crtc: The crtc we want to flip. 2786 * 2787 * Returns true or false depending whether it's OK to flip this crtc 2788 * based on the criterion that we must not have more than one implicit 2789 * frame-buffer at any one time. 2790 */ 2791 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv, 2792 struct drm_crtc *crtc) 2793 { 2794 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 2795 bool ret; 2796 2797 mutex_lock(&dev_priv->global_kms_state_mutex); 2798 ret = !du->is_implicit || dev_priv->num_implicit == 1; 2799 mutex_unlock(&dev_priv->global_kms_state_mutex); 2800 2801 return ret; 2802 } 2803 2804 /** 2805 * vmw_kms_update_implicit_fb - Update the implicit fb. 2806 * 2807 * @dev_priv: Pointer to device-private struct. 2808 * @crtc: The crtc the new implicit frame-buffer is bound to. 2809 */ 2810 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv, 2811 struct drm_crtc *crtc) 2812 { 2813 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 2814 struct vmw_framebuffer *vfb; 2815 2816 mutex_lock(&dev_priv->global_kms_state_mutex); 2817 2818 if (!du->is_implicit) 2819 goto out_unlock; 2820 2821 vfb = vmw_framebuffer_to_vfb(crtc->primary->fb); 2822 WARN_ON_ONCE(dev_priv->num_implicit != 1 && 2823 dev_priv->implicit_fb != vfb); 2824 2825 dev_priv->implicit_fb = vfb; 2826 out_unlock: 2827 mutex_unlock(&dev_priv->global_kms_state_mutex); 2828 } 2829 2830 /** 2831 * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement 2832 * property. 2833 * 2834 * @dev_priv: Pointer to a device private struct. 2835 * @immutable: Whether the property is immutable. 2836 * 2837 * Sets up the implicit placement property unless it's already set up. 2838 */ 2839 void 2840 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv, 2841 bool immutable) 2842 { 2843 if (dev_priv->implicit_placement_property) 2844 return; 2845 2846 dev_priv->implicit_placement_property = 2847 drm_property_create_range(dev_priv->dev, 2848 immutable ? 2849 DRM_MODE_PROP_IMMUTABLE : 0, 2850 "implicit_placement", 0, 1); 2851 2852 } 2853 2854 2855 /** 2856 * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config 2857 * 2858 * @set: The configuration to set. 2859 * 2860 * The vmwgfx Xorg driver doesn't assign the mode::type member, which 2861 * when drm_mode_set_crtcinfo is called as part of the configuration setting 2862 * causes it to return incorrect crtc dimensions causing severe problems in 2863 * the vmwgfx modesetting. So explicitly clear that member before calling 2864 * into drm_atomic_helper_set_config. 2865 */ 2866 int vmw_kms_set_config(struct drm_mode_set *set, 2867 struct drm_modeset_acquire_ctx *ctx) 2868 { 2869 if (set && set->mode) 2870 set->mode->type = 0; 2871 2872 return drm_atomic_helper_set_config(set, ctx); 2873 } 2874