1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2023 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 #include "vmwgfx_kms.h"
28 
29 #include "vmwgfx_bo.h"
30 #include "vmw_surface_cache.h"
31 
32 #include <drm/drm_atomic.h>
33 #include <drm/drm_atomic_helper.h>
34 #include <drm/drm_damage_helper.h>
35 #include <drm/drm_fourcc.h>
36 #include <drm/drm_rect.h>
37 #include <drm/drm_sysfs.h>
38 #include <drm/drm_edid.h>
39 
40 void vmw_du_cleanup(struct vmw_display_unit *du)
41 {
42 	struct vmw_private *dev_priv = vmw_priv(du->primary.dev);
43 	drm_plane_cleanup(&du->primary);
44 	if (vmw_cmd_supported(dev_priv))
45 		drm_plane_cleanup(&du->cursor.base);
46 
47 	drm_connector_unregister(&du->connector);
48 	drm_crtc_cleanup(&du->crtc);
49 	drm_encoder_cleanup(&du->encoder);
50 	drm_connector_cleanup(&du->connector);
51 }
52 
53 /*
54  * Display Unit Cursor functions
55  */
56 
57 static int vmw_du_cursor_plane_unmap_cm(struct vmw_plane_state *vps);
58 static void vmw_cursor_update_mob(struct vmw_private *dev_priv,
59 				  struct vmw_plane_state *vps,
60 				  u32 *image, u32 width, u32 height,
61 				  u32 hotspotX, u32 hotspotY);
62 
63 struct vmw_svga_fifo_cmd_define_cursor {
64 	u32 cmd;
65 	SVGAFifoCmdDefineAlphaCursor cursor;
66 };
67 
68 /**
69  * vmw_send_define_cursor_cmd - queue a define cursor command
70  * @dev_priv: the private driver struct
71  * @image: buffer which holds the cursor image
72  * @width: width of the mouse cursor image
73  * @height: height of the mouse cursor image
74  * @hotspotX: the horizontal position of mouse hotspot
75  * @hotspotY: the vertical position of mouse hotspot
76  */
77 static void vmw_send_define_cursor_cmd(struct vmw_private *dev_priv,
78 				       u32 *image, u32 width, u32 height,
79 				       u32 hotspotX, u32 hotspotY)
80 {
81 	struct vmw_svga_fifo_cmd_define_cursor *cmd;
82 	const u32 image_size = width * height * sizeof(*image);
83 	const u32 cmd_size = sizeof(*cmd) + image_size;
84 
85 	/* Try to reserve fifocmd space and swallow any failures;
86 	   such reservations cannot be left unconsumed for long
87 	   under the risk of clogging other fifocmd users, so
88 	   we treat reservations separtely from the way we treat
89 	   other fallible KMS-atomic resources at prepare_fb */
90 	cmd = VMW_CMD_RESERVE(dev_priv, cmd_size);
91 
92 	if (unlikely(!cmd))
93 		return;
94 
95 	memset(cmd, 0, sizeof(*cmd));
96 
97 	memcpy(&cmd[1], image, image_size);
98 
99 	cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
100 	cmd->cursor.id = 0;
101 	cmd->cursor.width = width;
102 	cmd->cursor.height = height;
103 	cmd->cursor.hotspotX = hotspotX;
104 	cmd->cursor.hotspotY = hotspotY;
105 
106 	vmw_cmd_commit_flush(dev_priv, cmd_size);
107 }
108 
109 /**
110  * vmw_cursor_update_image - update the cursor image on the provided plane
111  * @dev_priv: the private driver struct
112  * @vps: the plane state of the cursor plane
113  * @image: buffer which holds the cursor image
114  * @width: width of the mouse cursor image
115  * @height: height of the mouse cursor image
116  * @hotspotX: the horizontal position of mouse hotspot
117  * @hotspotY: the vertical position of mouse hotspot
118  */
119 static void vmw_cursor_update_image(struct vmw_private *dev_priv,
120 				    struct vmw_plane_state *vps,
121 				    u32 *image, u32 width, u32 height,
122 				    u32 hotspotX, u32 hotspotY)
123 {
124 	if (vps->cursor.bo)
125 		vmw_cursor_update_mob(dev_priv, vps, image,
126 				      vps->base.crtc_w, vps->base.crtc_h,
127 				      hotspotX, hotspotY);
128 
129 	else
130 		vmw_send_define_cursor_cmd(dev_priv, image, width, height,
131 					   hotspotX, hotspotY);
132 }
133 
134 
135 /**
136  * vmw_cursor_update_mob - Update cursor vis CursorMob mechanism
137  *
138  * Called from inside vmw_du_cursor_plane_atomic_update to actually
139  * make the cursor-image live.
140  *
141  * @dev_priv: device to work with
142  * @vps: the plane state of the cursor plane
143  * @image: cursor source data to fill the MOB with
144  * @width: source data width
145  * @height: source data height
146  * @hotspotX: cursor hotspot x
147  * @hotspotY: cursor hotspot Y
148  */
149 static void vmw_cursor_update_mob(struct vmw_private *dev_priv,
150 				  struct vmw_plane_state *vps,
151 				  u32 *image, u32 width, u32 height,
152 				  u32 hotspotX, u32 hotspotY)
153 {
154 	SVGAGBCursorHeader *header;
155 	SVGAGBAlphaCursorHeader *alpha_header;
156 	const u32 image_size = width * height * sizeof(*image);
157 
158 	header = vmw_bo_map_and_cache(vps->cursor.bo);
159 	alpha_header = &header->header.alphaHeader;
160 
161 	memset(header, 0, sizeof(*header));
162 
163 	header->type = SVGA_ALPHA_CURSOR;
164 	header->sizeInBytes = image_size;
165 
166 	alpha_header->hotspotX = hotspotX;
167 	alpha_header->hotspotY = hotspotY;
168 	alpha_header->width = width;
169 	alpha_header->height = height;
170 
171 	memcpy(header + 1, image, image_size);
172 	vmw_write(dev_priv, SVGA_REG_CURSOR_MOBID,
173 		  vps->cursor.bo->tbo.resource->start);
174 }
175 
176 
177 static u32 vmw_du_cursor_mob_size(u32 w, u32 h)
178 {
179 	return w * h * sizeof(u32) + sizeof(SVGAGBCursorHeader);
180 }
181 
182 /**
183  * vmw_du_cursor_plane_acquire_image -- Acquire the image data
184  * @vps: cursor plane state
185  */
186 static u32 *vmw_du_cursor_plane_acquire_image(struct vmw_plane_state *vps)
187 {
188 	if (vps->surf) {
189 		if (vps->surf_mapped)
190 			return vmw_bo_map_and_cache(vps->surf->res.guest_memory_bo);
191 		return vps->surf->snooper.image;
192 	} else if (vps->bo)
193 		return vmw_bo_map_and_cache(vps->bo);
194 	return NULL;
195 }
196 
197 static bool vmw_du_cursor_plane_has_changed(struct vmw_plane_state *old_vps,
198 					    struct vmw_plane_state *new_vps)
199 {
200 	void *old_image;
201 	void *new_image;
202 	u32 size;
203 	bool changed;
204 
205 	if (old_vps->base.crtc_w != new_vps->base.crtc_w ||
206 	    old_vps->base.crtc_h != new_vps->base.crtc_h)
207 	    return true;
208 
209 	if (old_vps->cursor.hotspot_x != new_vps->cursor.hotspot_x ||
210 	    old_vps->cursor.hotspot_y != new_vps->cursor.hotspot_y)
211 	    return true;
212 
213 	size = new_vps->base.crtc_w * new_vps->base.crtc_h * sizeof(u32);
214 
215 	old_image = vmw_du_cursor_plane_acquire_image(old_vps);
216 	new_image = vmw_du_cursor_plane_acquire_image(new_vps);
217 
218 	changed = false;
219 	if (old_image && new_image && old_image != new_image)
220 		changed = memcmp(old_image, new_image, size) != 0;
221 
222 	return changed;
223 }
224 
225 static void vmw_du_destroy_cursor_mob(struct vmw_bo **vbo)
226 {
227 	if (!(*vbo))
228 		return;
229 
230 	ttm_bo_unpin(&(*vbo)->tbo);
231 	vmw_bo_unreference(vbo);
232 }
233 
234 static void vmw_du_put_cursor_mob(struct vmw_cursor_plane *vcp,
235 				  struct vmw_plane_state *vps)
236 {
237 	u32 i;
238 
239 	if (!vps->cursor.bo)
240 		return;
241 
242 	vmw_du_cursor_plane_unmap_cm(vps);
243 
244 	/* Look for a free slot to return this mob to the cache. */
245 	for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) {
246 		if (!vcp->cursor_mobs[i]) {
247 			vcp->cursor_mobs[i] = vps->cursor.bo;
248 			vps->cursor.bo = NULL;
249 			return;
250 		}
251 	}
252 
253 	/* Cache is full: See if this mob is bigger than an existing mob. */
254 	for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) {
255 		if (vcp->cursor_mobs[i]->tbo.base.size <
256 		    vps->cursor.bo->tbo.base.size) {
257 			vmw_du_destroy_cursor_mob(&vcp->cursor_mobs[i]);
258 			vcp->cursor_mobs[i] = vps->cursor.bo;
259 			vps->cursor.bo = NULL;
260 			return;
261 		}
262 	}
263 
264 	/* Destroy it if it's not worth caching. */
265 	vmw_du_destroy_cursor_mob(&vps->cursor.bo);
266 }
267 
268 static int vmw_du_get_cursor_mob(struct vmw_cursor_plane *vcp,
269 				 struct vmw_plane_state *vps)
270 {
271 	struct vmw_private *dev_priv = vcp->base.dev->dev_private;
272 	u32 size = vmw_du_cursor_mob_size(vps->base.crtc_w, vps->base.crtc_h);
273 	u32 i;
274 	u32 cursor_max_dim, mob_max_size;
275 	struct vmw_fence_obj *fence = NULL;
276 	int ret;
277 
278 	if (!dev_priv->has_mob ||
279 	    (dev_priv->capabilities2 & SVGA_CAP2_CURSOR_MOB) == 0)
280 		return -EINVAL;
281 
282 	mob_max_size = vmw_read(dev_priv, SVGA_REG_MOB_MAX_SIZE);
283 	cursor_max_dim = vmw_read(dev_priv, SVGA_REG_CURSOR_MAX_DIMENSION);
284 
285 	if (size > mob_max_size || vps->base.crtc_w > cursor_max_dim ||
286 	    vps->base.crtc_h > cursor_max_dim)
287 		return -EINVAL;
288 
289 	if (vps->cursor.bo) {
290 		if (vps->cursor.bo->tbo.base.size >= size)
291 			return 0;
292 		vmw_du_put_cursor_mob(vcp, vps);
293 	}
294 
295 	/* Look for an unused mob in the cache. */
296 	for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) {
297 		if (vcp->cursor_mobs[i] &&
298 		    vcp->cursor_mobs[i]->tbo.base.size >= size) {
299 			vps->cursor.bo = vcp->cursor_mobs[i];
300 			vcp->cursor_mobs[i] = NULL;
301 			return 0;
302 		}
303 	}
304 	/* Create a new mob if we can't find an existing one. */
305 	ret = vmw_bo_create_and_populate(dev_priv, size,
306 					 VMW_BO_DOMAIN_MOB,
307 					 &vps->cursor.bo);
308 
309 	if (ret != 0)
310 		return ret;
311 
312 	/* Fence the mob creation so we are guarateed to have the mob */
313 	ret = ttm_bo_reserve(&vps->cursor.bo->tbo, false, false, NULL);
314 	if (ret != 0)
315 		goto teardown;
316 
317 	ret = vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
318 	if (ret != 0) {
319 		ttm_bo_unreserve(&vps->cursor.bo->tbo);
320 		goto teardown;
321 	}
322 
323 	dma_fence_wait(&fence->base, false);
324 	dma_fence_put(&fence->base);
325 
326 	ttm_bo_unreserve(&vps->cursor.bo->tbo);
327 	return 0;
328 
329 teardown:
330 	vmw_du_destroy_cursor_mob(&vps->cursor.bo);
331 	return ret;
332 }
333 
334 
335 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
336 				       bool show, int x, int y)
337 {
338 	const uint32_t svga_cursor_on = show ? SVGA_CURSOR_ON_SHOW
339 					     : SVGA_CURSOR_ON_HIDE;
340 	uint32_t count;
341 
342 	spin_lock(&dev_priv->cursor_lock);
343 	if (dev_priv->capabilities2 & SVGA_CAP2_EXTRA_REGS) {
344 		vmw_write(dev_priv, SVGA_REG_CURSOR4_X, x);
345 		vmw_write(dev_priv, SVGA_REG_CURSOR4_Y, y);
346 		vmw_write(dev_priv, SVGA_REG_CURSOR4_SCREEN_ID, SVGA3D_INVALID_ID);
347 		vmw_write(dev_priv, SVGA_REG_CURSOR4_ON, svga_cursor_on);
348 		vmw_write(dev_priv, SVGA_REG_CURSOR4_SUBMIT, 1);
349 	} else if (vmw_is_cursor_bypass3_enabled(dev_priv)) {
350 		vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_ON, svga_cursor_on);
351 		vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_X, x);
352 		vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_Y, y);
353 		count = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_CURSOR_COUNT);
354 		vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_COUNT, ++count);
355 	} else {
356 		vmw_write(dev_priv, SVGA_REG_CURSOR_X, x);
357 		vmw_write(dev_priv, SVGA_REG_CURSOR_Y, y);
358 		vmw_write(dev_priv, SVGA_REG_CURSOR_ON, svga_cursor_on);
359 	}
360 	spin_unlock(&dev_priv->cursor_lock);
361 }
362 
363 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
364 			  struct ttm_object_file *tfile,
365 			  struct ttm_buffer_object *bo,
366 			  SVGA3dCmdHeader *header)
367 {
368 	struct ttm_bo_kmap_obj map;
369 	unsigned long kmap_offset;
370 	unsigned long kmap_num;
371 	SVGA3dCopyBox *box;
372 	unsigned box_count;
373 	void *virtual;
374 	bool is_iomem;
375 	struct vmw_dma_cmd {
376 		SVGA3dCmdHeader header;
377 		SVGA3dCmdSurfaceDMA dma;
378 	} *cmd;
379 	int i, ret;
380 	const struct SVGA3dSurfaceDesc *desc =
381 		vmw_surface_get_desc(VMW_CURSOR_SNOOP_FORMAT);
382 	const u32 image_pitch = VMW_CURSOR_SNOOP_WIDTH * desc->pitchBytesPerBlock;
383 
384 	cmd = container_of(header, struct vmw_dma_cmd, header);
385 
386 	/* No snooper installed, nothing to copy */
387 	if (!srf->snooper.image)
388 		return;
389 
390 	if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
391 		DRM_ERROR("face and mipmap for cursors should never != 0\n");
392 		return;
393 	}
394 
395 	if (cmd->header.size < 64) {
396 		DRM_ERROR("at least one full copy box must be given\n");
397 		return;
398 	}
399 
400 	box = (SVGA3dCopyBox *)&cmd[1];
401 	box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
402 			sizeof(SVGA3dCopyBox);
403 
404 	if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
405 	    box->x != 0    || box->y != 0    || box->z != 0    ||
406 	    box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
407 	    box->d != 1    || box_count != 1 ||
408 	    box->w > VMW_CURSOR_SNOOP_WIDTH || box->h > VMW_CURSOR_SNOOP_HEIGHT) {
409 		/* TODO handle none page aligned offsets */
410 		/* TODO handle more dst & src != 0 */
411 		/* TODO handle more then one copy */
412 		DRM_ERROR("Can't snoop dma request for cursor!\n");
413 		DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
414 			  box->srcx, box->srcy, box->srcz,
415 			  box->x, box->y, box->z,
416 			  box->w, box->h, box->d, box_count,
417 			  cmd->dma.guest.ptr.offset);
418 		return;
419 	}
420 
421 	kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
422 	kmap_num = (VMW_CURSOR_SNOOP_HEIGHT*image_pitch) >> PAGE_SHIFT;
423 
424 	ret = ttm_bo_reserve(bo, true, false, NULL);
425 	if (unlikely(ret != 0)) {
426 		DRM_ERROR("reserve failed\n");
427 		return;
428 	}
429 
430 	ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
431 	if (unlikely(ret != 0))
432 		goto err_unreserve;
433 
434 	virtual = ttm_kmap_obj_virtual(&map, &is_iomem);
435 
436 	if (box->w == VMW_CURSOR_SNOOP_WIDTH && cmd->dma.guest.pitch == image_pitch) {
437 		memcpy(srf->snooper.image, virtual,
438 		       VMW_CURSOR_SNOOP_HEIGHT*image_pitch);
439 	} else {
440 		/* Image is unsigned pointer. */
441 		for (i = 0; i < box->h; i++)
442 			memcpy(srf->snooper.image + i * image_pitch,
443 			       virtual + i * cmd->dma.guest.pitch,
444 			       box->w * desc->pitchBytesPerBlock);
445 	}
446 
447 	srf->snooper.age++;
448 
449 	ttm_bo_kunmap(&map);
450 err_unreserve:
451 	ttm_bo_unreserve(bo);
452 }
453 
454 /**
455  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
456  *
457  * @dev_priv: Pointer to the device private struct.
458  *
459  * Clears all legacy hotspots.
460  */
461 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
462 {
463 	struct drm_device *dev = &dev_priv->drm;
464 	struct vmw_display_unit *du;
465 	struct drm_crtc *crtc;
466 
467 	drm_modeset_lock_all(dev);
468 	drm_for_each_crtc(crtc, dev) {
469 		du = vmw_crtc_to_du(crtc);
470 
471 		du->hotspot_x = 0;
472 		du->hotspot_y = 0;
473 	}
474 	drm_modeset_unlock_all(dev);
475 }
476 
477 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
478 {
479 	struct drm_device *dev = &dev_priv->drm;
480 	struct vmw_display_unit *du;
481 	struct drm_crtc *crtc;
482 
483 	mutex_lock(&dev->mode_config.mutex);
484 
485 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
486 		du = vmw_crtc_to_du(crtc);
487 		if (!du->cursor_surface ||
488 		    du->cursor_age == du->cursor_surface->snooper.age ||
489 		    !du->cursor_surface->snooper.image)
490 			continue;
491 
492 		du->cursor_age = du->cursor_surface->snooper.age;
493 		vmw_send_define_cursor_cmd(dev_priv,
494 					   du->cursor_surface->snooper.image,
495 					   VMW_CURSOR_SNOOP_WIDTH,
496 					   VMW_CURSOR_SNOOP_HEIGHT,
497 					   du->hotspot_x + du->core_hotspot_x,
498 					   du->hotspot_y + du->core_hotspot_y);
499 	}
500 
501 	mutex_unlock(&dev->mode_config.mutex);
502 }
503 
504 
505 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
506 {
507 	struct vmw_cursor_plane *vcp = vmw_plane_to_vcp(plane);
508 	u32 i;
509 
510 	vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
511 
512 	for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++)
513 		vmw_du_destroy_cursor_mob(&vcp->cursor_mobs[i]);
514 
515 	drm_plane_cleanup(plane);
516 }
517 
518 
519 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
520 {
521 	drm_plane_cleanup(plane);
522 
523 	/* Planes are static in our case so we don't free it */
524 }
525 
526 
527 /**
528  * vmw_du_plane_unpin_surf - unpins resource associated with a framebuffer surface
529  *
530  * @vps: plane state associated with the display surface
531  * @unreference: true if we also want to unreference the display.
532  */
533 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
534 			     bool unreference)
535 {
536 	if (vps->surf) {
537 		if (vps->pinned) {
538 			vmw_resource_unpin(&vps->surf->res);
539 			vps->pinned--;
540 		}
541 
542 		if (unreference) {
543 			if (vps->pinned)
544 				DRM_ERROR("Surface still pinned\n");
545 			vmw_surface_unreference(&vps->surf);
546 		}
547 	}
548 }
549 
550 
551 /**
552  * vmw_du_plane_cleanup_fb - Unpins the plane surface
553  *
554  * @plane:  display plane
555  * @old_state: Contains the FB to clean up
556  *
557  * Unpins the framebuffer surface
558  *
559  * Returns 0 on success
560  */
561 void
562 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
563 			struct drm_plane_state *old_state)
564 {
565 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
566 
567 	vmw_du_plane_unpin_surf(vps, false);
568 }
569 
570 
571 /**
572  * vmw_du_cursor_plane_map_cm - Maps the cursor mobs.
573  *
574  * @vps: plane_state
575  *
576  * Returns 0 on success
577  */
578 
579 static int
580 vmw_du_cursor_plane_map_cm(struct vmw_plane_state *vps)
581 {
582 	int ret;
583 	u32 size = vmw_du_cursor_mob_size(vps->base.crtc_w, vps->base.crtc_h);
584 	struct ttm_buffer_object *bo;
585 
586 	if (!vps->cursor.bo)
587 		return -EINVAL;
588 
589 	bo = &vps->cursor.bo->tbo;
590 
591 	if (bo->base.size < size)
592 		return -EINVAL;
593 
594 	if (vps->cursor.bo->map.virtual)
595 		return 0;
596 
597 	ret = ttm_bo_reserve(bo, false, false, NULL);
598 	if (unlikely(ret != 0))
599 		return -ENOMEM;
600 
601 	vmw_bo_map_and_cache(vps->cursor.bo);
602 
603 	ttm_bo_unreserve(bo);
604 
605 	if (unlikely(ret != 0))
606 		return -ENOMEM;
607 
608 	return 0;
609 }
610 
611 
612 /**
613  * vmw_du_cursor_plane_unmap_cm - Unmaps the cursor mobs.
614  *
615  * @vps: state of the cursor plane
616  *
617  * Returns 0 on success
618  */
619 
620 static int
621 vmw_du_cursor_plane_unmap_cm(struct vmw_plane_state *vps)
622 {
623 	int ret = 0;
624 	struct vmw_bo *vbo = vps->cursor.bo;
625 
626 	if (!vbo || !vbo->map.virtual)
627 		return 0;
628 
629 	ret = ttm_bo_reserve(&vbo->tbo, true, false, NULL);
630 	if (likely(ret == 0)) {
631 		vmw_bo_unmap(vbo);
632 		ttm_bo_unreserve(&vbo->tbo);
633 	}
634 
635 	return ret;
636 }
637 
638 
639 /**
640  * vmw_du_cursor_plane_cleanup_fb - Unpins the plane surface
641  *
642  * @plane: cursor plane
643  * @old_state: contains the state to clean up
644  *
645  * Unmaps all cursor bo mappings and unpins the cursor surface
646  *
647  * Returns 0 on success
648  */
649 void
650 vmw_du_cursor_plane_cleanup_fb(struct drm_plane *plane,
651 			       struct drm_plane_state *old_state)
652 {
653 	struct vmw_cursor_plane *vcp = vmw_plane_to_vcp(plane);
654 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
655 
656 	if (vps->surf_mapped) {
657 		vmw_bo_unmap(vps->surf->res.guest_memory_bo);
658 		vps->surf_mapped = false;
659 	}
660 
661 	vmw_du_cursor_plane_unmap_cm(vps);
662 	vmw_du_put_cursor_mob(vcp, vps);
663 
664 	vmw_du_plane_unpin_surf(vps, false);
665 
666 	if (vps->surf) {
667 		vmw_surface_unreference(&vps->surf);
668 		vps->surf = NULL;
669 	}
670 
671 	if (vps->bo) {
672 		vmw_bo_unreference(&vps->bo);
673 		vps->bo = NULL;
674 	}
675 }
676 
677 
678 /**
679  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
680  *
681  * @plane:  display plane
682  * @new_state: info on the new plane state, including the FB
683  *
684  * Returns 0 on success
685  */
686 int
687 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
688 			       struct drm_plane_state *new_state)
689 {
690 	struct drm_framebuffer *fb = new_state->fb;
691 	struct vmw_cursor_plane *vcp = vmw_plane_to_vcp(plane);
692 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
693 	int ret = 0;
694 
695 	if (vps->surf) {
696 		if (vps->surf_mapped) {
697 			vmw_bo_unmap(vps->surf->res.guest_memory_bo);
698 			vps->surf_mapped = false;
699 		}
700 		vmw_surface_unreference(&vps->surf);
701 		vps->surf = NULL;
702 	}
703 
704 	if (vps->bo) {
705 		vmw_bo_unreference(&vps->bo);
706 		vps->bo = NULL;
707 	}
708 
709 	if (fb) {
710 		if (vmw_framebuffer_to_vfb(fb)->bo) {
711 			vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer;
712 			vmw_bo_reference(vps->bo);
713 		} else {
714 			vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
715 			vmw_surface_reference(vps->surf);
716 		}
717 	}
718 
719 	if (!vps->surf && vps->bo) {
720 		const u32 size = new_state->crtc_w * new_state->crtc_h * sizeof(u32);
721 
722 		/*
723 		 * Not using vmw_bo_map_and_cache() helper here as we need to
724 		 * reserve the ttm_buffer_object first which
725 		 * vmw_bo_map_and_cache() omits.
726 		 */
727 		ret = ttm_bo_reserve(&vps->bo->tbo, true, false, NULL);
728 
729 		if (unlikely(ret != 0))
730 			return -ENOMEM;
731 
732 		ret = ttm_bo_kmap(&vps->bo->tbo, 0, PFN_UP(size), &vps->bo->map);
733 
734 		ttm_bo_unreserve(&vps->bo->tbo);
735 
736 		if (unlikely(ret != 0))
737 			return -ENOMEM;
738 	} else if (vps->surf && !vps->bo && vps->surf->res.guest_memory_bo) {
739 
740 		WARN_ON(vps->surf->snooper.image);
741 		ret = ttm_bo_reserve(&vps->surf->res.guest_memory_bo->tbo, true, false,
742 				     NULL);
743 		if (unlikely(ret != 0))
744 			return -ENOMEM;
745 		vmw_bo_map_and_cache(vps->surf->res.guest_memory_bo);
746 		ttm_bo_unreserve(&vps->surf->res.guest_memory_bo->tbo);
747 		vps->surf_mapped = true;
748 	}
749 
750 	if (vps->surf || vps->bo) {
751 		vmw_du_get_cursor_mob(vcp, vps);
752 		vmw_du_cursor_plane_map_cm(vps);
753 	}
754 
755 	return 0;
756 }
757 
758 
759 void
760 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
761 				  struct drm_atomic_state *state)
762 {
763 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
764 									   plane);
765 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
766 									   plane);
767 	struct drm_crtc *crtc = new_state->crtc ?: old_state->crtc;
768 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
769 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
770 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
771 	struct vmw_plane_state *old_vps = vmw_plane_state_to_vps(old_state);
772 	s32 hotspot_x, hotspot_y;
773 
774 	hotspot_x = du->hotspot_x;
775 	hotspot_y = du->hotspot_y;
776 
777 	if (new_state->fb) {
778 		hotspot_x += new_state->fb->hot_x;
779 		hotspot_y += new_state->fb->hot_y;
780 	}
781 
782 	du->cursor_surface = vps->surf;
783 	du->cursor_bo = vps->bo;
784 
785 	if (!vps->surf && !vps->bo) {
786 		vmw_cursor_update_position(dev_priv, false, 0, 0);
787 		return;
788 	}
789 
790 	vps->cursor.hotspot_x = hotspot_x;
791 	vps->cursor.hotspot_y = hotspot_y;
792 
793 	if (vps->surf) {
794 		du->cursor_age = du->cursor_surface->snooper.age;
795 	}
796 
797 	if (!vmw_du_cursor_plane_has_changed(old_vps, vps)) {
798 		/*
799 		 * If it hasn't changed, avoid making the device do extra
800 		 * work by keeping the old cursor active.
801 		 */
802 		struct vmw_cursor_plane_state tmp = old_vps->cursor;
803 		old_vps->cursor = vps->cursor;
804 		vps->cursor = tmp;
805 	} else {
806 		void *image = vmw_du_cursor_plane_acquire_image(vps);
807 		if (image)
808 			vmw_cursor_update_image(dev_priv, vps, image,
809 						new_state->crtc_w,
810 						new_state->crtc_h,
811 						hotspot_x, hotspot_y);
812 	}
813 
814 	du->cursor_x = new_state->crtc_x + du->set_gui_x;
815 	du->cursor_y = new_state->crtc_y + du->set_gui_y;
816 
817 	vmw_cursor_update_position(dev_priv, true,
818 				   du->cursor_x + hotspot_x,
819 				   du->cursor_y + hotspot_y);
820 
821 	du->core_hotspot_x = hotspot_x - du->hotspot_x;
822 	du->core_hotspot_y = hotspot_y - du->hotspot_y;
823 }
824 
825 
826 /**
827  * vmw_du_primary_plane_atomic_check - check if the new state is okay
828  *
829  * @plane: display plane
830  * @state: info on the new plane state, including the FB
831  *
832  * Check if the new state is settable given the current state.  Other
833  * than what the atomic helper checks, we care about crtc fitting
834  * the FB and maintaining one active framebuffer.
835  *
836  * Returns 0 on success
837  */
838 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
839 				      struct drm_atomic_state *state)
840 {
841 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
842 									   plane);
843 	struct drm_crtc_state *crtc_state = NULL;
844 	struct drm_framebuffer *new_fb = new_state->fb;
845 	int ret;
846 
847 	if (new_state->crtc)
848 		crtc_state = drm_atomic_get_new_crtc_state(state,
849 							   new_state->crtc);
850 
851 	ret = drm_atomic_helper_check_plane_state(new_state, crtc_state,
852 						  DRM_PLANE_NO_SCALING,
853 						  DRM_PLANE_NO_SCALING,
854 						  false, true);
855 
856 	if (!ret && new_fb) {
857 		struct drm_crtc *crtc = new_state->crtc;
858 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
859 
860 		vmw_connector_state_to_vcs(du->connector.state);
861 	}
862 
863 
864 	return ret;
865 }
866 
867 
868 /**
869  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
870  *
871  * @plane: cursor plane
872  * @state: info on the new plane state
873  *
874  * This is a chance to fail if the new cursor state does not fit
875  * our requirements.
876  *
877  * Returns 0 on success
878  */
879 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
880 				     struct drm_atomic_state *state)
881 {
882 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
883 									   plane);
884 	int ret = 0;
885 	struct drm_crtc_state *crtc_state = NULL;
886 	struct vmw_surface *surface = NULL;
887 	struct drm_framebuffer *fb = new_state->fb;
888 
889 	if (new_state->crtc)
890 		crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
891 							   new_state->crtc);
892 
893 	ret = drm_atomic_helper_check_plane_state(new_state, crtc_state,
894 						  DRM_PLANE_NO_SCALING,
895 						  DRM_PLANE_NO_SCALING,
896 						  true, true);
897 	if (ret)
898 		return ret;
899 
900 	/* Turning off */
901 	if (!fb)
902 		return 0;
903 
904 	/* A lot of the code assumes this */
905 	if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
906 		DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
907 			  new_state->crtc_w, new_state->crtc_h);
908 		return -EINVAL;
909 	}
910 
911 	if (!vmw_framebuffer_to_vfb(fb)->bo) {
912 		surface = vmw_framebuffer_to_vfbs(fb)->surface;
913 
914 		WARN_ON(!surface);
915 
916 		if (!surface ||
917 		    (!surface->snooper.image && !surface->res.guest_memory_bo)) {
918 			DRM_ERROR("surface not suitable for cursor\n");
919 			return -EINVAL;
920 		}
921 	}
922 
923 	return 0;
924 }
925 
926 
927 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
928 			     struct drm_atomic_state *state)
929 {
930 	struct vmw_private *vmw = vmw_priv(crtc->dev);
931 	struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
932 									 crtc);
933 	struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
934 	int connector_mask = drm_connector_mask(&du->connector);
935 	bool has_primary = new_state->plane_mask &
936 			   drm_plane_mask(crtc->primary);
937 
938 	/*
939 	 * This is fine in general, but broken userspace might expect
940 	 * some actual rendering so give a clue as why it's blank.
941 	 */
942 	if (new_state->enable && !has_primary)
943 		drm_dbg_driver(&vmw->drm,
944 			       "CRTC without a primary plane will be blank.\n");
945 
946 
947 	if (new_state->connector_mask != connector_mask &&
948 	    new_state->connector_mask != 0) {
949 		DRM_ERROR("Invalid connectors configuration\n");
950 		return -EINVAL;
951 	}
952 
953 	/*
954 	 * Our virtual device does not have a dot clock, so use the logical
955 	 * clock value as the dot clock.
956 	 */
957 	if (new_state->mode.crtc_clock == 0)
958 		new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
959 
960 	return 0;
961 }
962 
963 
964 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
965 			      struct drm_atomic_state *state)
966 {
967 }
968 
969 
970 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
971 			      struct drm_atomic_state *state)
972 {
973 }
974 
975 
976 /**
977  * vmw_du_crtc_duplicate_state - duplicate crtc state
978  * @crtc: DRM crtc
979  *
980  * Allocates and returns a copy of the crtc state (both common and
981  * vmw-specific) for the specified crtc.
982  *
983  * Returns: The newly allocated crtc state, or NULL on failure.
984  */
985 struct drm_crtc_state *
986 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
987 {
988 	struct drm_crtc_state *state;
989 	struct vmw_crtc_state *vcs;
990 
991 	if (WARN_ON(!crtc->state))
992 		return NULL;
993 
994 	vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
995 
996 	if (!vcs)
997 		return NULL;
998 
999 	state = &vcs->base;
1000 
1001 	__drm_atomic_helper_crtc_duplicate_state(crtc, state);
1002 
1003 	return state;
1004 }
1005 
1006 
1007 /**
1008  * vmw_du_crtc_reset - creates a blank vmw crtc state
1009  * @crtc: DRM crtc
1010  *
1011  * Resets the atomic state for @crtc by freeing the state pointer (which
1012  * might be NULL, e.g. at driver load time) and allocating a new empty state
1013  * object.
1014  */
1015 void vmw_du_crtc_reset(struct drm_crtc *crtc)
1016 {
1017 	struct vmw_crtc_state *vcs;
1018 
1019 
1020 	if (crtc->state) {
1021 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
1022 
1023 		kfree(vmw_crtc_state_to_vcs(crtc->state));
1024 	}
1025 
1026 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
1027 
1028 	if (!vcs) {
1029 		DRM_ERROR("Cannot allocate vmw_crtc_state\n");
1030 		return;
1031 	}
1032 
1033 	__drm_atomic_helper_crtc_reset(crtc, &vcs->base);
1034 }
1035 
1036 
1037 /**
1038  * vmw_du_crtc_destroy_state - destroy crtc state
1039  * @crtc: DRM crtc
1040  * @state: state object to destroy
1041  *
1042  * Destroys the crtc state (both common and vmw-specific) for the
1043  * specified plane.
1044  */
1045 void
1046 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
1047 			  struct drm_crtc_state *state)
1048 {
1049 	drm_atomic_helper_crtc_destroy_state(crtc, state);
1050 }
1051 
1052 
1053 /**
1054  * vmw_du_plane_duplicate_state - duplicate plane state
1055  * @plane: drm plane
1056  *
1057  * Allocates and returns a copy of the plane state (both common and
1058  * vmw-specific) for the specified plane.
1059  *
1060  * Returns: The newly allocated plane state, or NULL on failure.
1061  */
1062 struct drm_plane_state *
1063 vmw_du_plane_duplicate_state(struct drm_plane *plane)
1064 {
1065 	struct drm_plane_state *state;
1066 	struct vmw_plane_state *vps;
1067 
1068 	vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
1069 
1070 	if (!vps)
1071 		return NULL;
1072 
1073 	vps->pinned = 0;
1074 	vps->cpp = 0;
1075 
1076 	memset(&vps->cursor, 0, sizeof(vps->cursor));
1077 
1078 	/* Each ref counted resource needs to be acquired again */
1079 	if (vps->surf)
1080 		(void) vmw_surface_reference(vps->surf);
1081 
1082 	if (vps->bo)
1083 		(void) vmw_bo_reference(vps->bo);
1084 
1085 	state = &vps->base;
1086 
1087 	__drm_atomic_helper_plane_duplicate_state(plane, state);
1088 
1089 	return state;
1090 }
1091 
1092 
1093 /**
1094  * vmw_du_plane_reset - creates a blank vmw plane state
1095  * @plane: drm plane
1096  *
1097  * Resets the atomic state for @plane by freeing the state pointer (which might
1098  * be NULL, e.g. at driver load time) and allocating a new empty state object.
1099  */
1100 void vmw_du_plane_reset(struct drm_plane *plane)
1101 {
1102 	struct vmw_plane_state *vps;
1103 
1104 	if (plane->state)
1105 		vmw_du_plane_destroy_state(plane, plane->state);
1106 
1107 	vps = kzalloc(sizeof(*vps), GFP_KERNEL);
1108 
1109 	if (!vps) {
1110 		DRM_ERROR("Cannot allocate vmw_plane_state\n");
1111 		return;
1112 	}
1113 
1114 	__drm_atomic_helper_plane_reset(plane, &vps->base);
1115 }
1116 
1117 
1118 /**
1119  * vmw_du_plane_destroy_state - destroy plane state
1120  * @plane: DRM plane
1121  * @state: state object to destroy
1122  *
1123  * Destroys the plane state (both common and vmw-specific) for the
1124  * specified plane.
1125  */
1126 void
1127 vmw_du_plane_destroy_state(struct drm_plane *plane,
1128 			   struct drm_plane_state *state)
1129 {
1130 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
1131 
1132 	/* Should have been freed by cleanup_fb */
1133 	if (vps->surf)
1134 		vmw_surface_unreference(&vps->surf);
1135 
1136 	if (vps->bo)
1137 		vmw_bo_unreference(&vps->bo);
1138 
1139 	drm_atomic_helper_plane_destroy_state(plane, state);
1140 }
1141 
1142 
1143 /**
1144  * vmw_du_connector_duplicate_state - duplicate connector state
1145  * @connector: DRM connector
1146  *
1147  * Allocates and returns a copy of the connector state (both common and
1148  * vmw-specific) for the specified connector.
1149  *
1150  * Returns: The newly allocated connector state, or NULL on failure.
1151  */
1152 struct drm_connector_state *
1153 vmw_du_connector_duplicate_state(struct drm_connector *connector)
1154 {
1155 	struct drm_connector_state *state;
1156 	struct vmw_connector_state *vcs;
1157 
1158 	if (WARN_ON(!connector->state))
1159 		return NULL;
1160 
1161 	vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
1162 
1163 	if (!vcs)
1164 		return NULL;
1165 
1166 	state = &vcs->base;
1167 
1168 	__drm_atomic_helper_connector_duplicate_state(connector, state);
1169 
1170 	return state;
1171 }
1172 
1173 
1174 /**
1175  * vmw_du_connector_reset - creates a blank vmw connector state
1176  * @connector: DRM connector
1177  *
1178  * Resets the atomic state for @connector by freeing the state pointer (which
1179  * might be NULL, e.g. at driver load time) and allocating a new empty state
1180  * object.
1181  */
1182 void vmw_du_connector_reset(struct drm_connector *connector)
1183 {
1184 	struct vmw_connector_state *vcs;
1185 
1186 
1187 	if (connector->state) {
1188 		__drm_atomic_helper_connector_destroy_state(connector->state);
1189 
1190 		kfree(vmw_connector_state_to_vcs(connector->state));
1191 	}
1192 
1193 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
1194 
1195 	if (!vcs) {
1196 		DRM_ERROR("Cannot allocate vmw_connector_state\n");
1197 		return;
1198 	}
1199 
1200 	__drm_atomic_helper_connector_reset(connector, &vcs->base);
1201 }
1202 
1203 
1204 /**
1205  * vmw_du_connector_destroy_state - destroy connector state
1206  * @connector: DRM connector
1207  * @state: state object to destroy
1208  *
1209  * Destroys the connector state (both common and vmw-specific) for the
1210  * specified plane.
1211  */
1212 void
1213 vmw_du_connector_destroy_state(struct drm_connector *connector,
1214 			  struct drm_connector_state *state)
1215 {
1216 	drm_atomic_helper_connector_destroy_state(connector, state);
1217 }
1218 /*
1219  * Generic framebuffer code
1220  */
1221 
1222 /*
1223  * Surface framebuffer code
1224  */
1225 
1226 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
1227 {
1228 	struct vmw_framebuffer_surface *vfbs =
1229 		vmw_framebuffer_to_vfbs(framebuffer);
1230 
1231 	drm_framebuffer_cleanup(framebuffer);
1232 	vmw_surface_unreference(&vfbs->surface);
1233 
1234 	kfree(vfbs);
1235 }
1236 
1237 /**
1238  * vmw_kms_readback - Perform a readback from the screen system to
1239  * a buffer-object backed framebuffer.
1240  *
1241  * @dev_priv: Pointer to the device private structure.
1242  * @file_priv: Pointer to a struct drm_file identifying the caller.
1243  * Must be set to NULL if @user_fence_rep is NULL.
1244  * @vfb: Pointer to the buffer-object backed framebuffer.
1245  * @user_fence_rep: User-space provided structure for fence information.
1246  * Must be set to non-NULL if @file_priv is non-NULL.
1247  * @vclips: Array of clip rects.
1248  * @num_clips: Number of clip rects in @vclips.
1249  *
1250  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
1251  * interrupted.
1252  */
1253 int vmw_kms_readback(struct vmw_private *dev_priv,
1254 		     struct drm_file *file_priv,
1255 		     struct vmw_framebuffer *vfb,
1256 		     struct drm_vmw_fence_rep __user *user_fence_rep,
1257 		     struct drm_vmw_rect *vclips,
1258 		     uint32_t num_clips)
1259 {
1260 	switch (dev_priv->active_display_unit) {
1261 	case vmw_du_screen_object:
1262 		return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
1263 					    user_fence_rep, vclips, num_clips,
1264 					    NULL);
1265 	case vmw_du_screen_target:
1266 		return vmw_kms_stdu_readback(dev_priv, file_priv, vfb,
1267 					     user_fence_rep, NULL, vclips, num_clips,
1268 					     1, NULL);
1269 	default:
1270 		WARN_ONCE(true,
1271 			  "Readback called with invalid display system.\n");
1272 }
1273 
1274 	return -ENOSYS;
1275 }
1276 
1277 
1278 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
1279 	.destroy = vmw_framebuffer_surface_destroy,
1280 	.dirty = drm_atomic_helper_dirtyfb,
1281 };
1282 
1283 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
1284 					   struct vmw_surface *surface,
1285 					   struct vmw_framebuffer **out,
1286 					   const struct drm_mode_fb_cmd2
1287 					   *mode_cmd,
1288 					   bool is_bo_proxy)
1289 
1290 {
1291 	struct drm_device *dev = &dev_priv->drm;
1292 	struct vmw_framebuffer_surface *vfbs;
1293 	enum SVGA3dSurfaceFormat format;
1294 	int ret;
1295 
1296 	/* 3D is only supported on HWv8 and newer hosts */
1297 	if (dev_priv->active_display_unit == vmw_du_legacy)
1298 		return -ENOSYS;
1299 
1300 	/*
1301 	 * Sanity checks.
1302 	 */
1303 
1304 	if (!drm_any_plane_has_format(&dev_priv->drm,
1305 				      mode_cmd->pixel_format,
1306 				      mode_cmd->modifier[0])) {
1307 		drm_dbg(&dev_priv->drm,
1308 			"unsupported pixel format %p4cc / modifier 0x%llx\n",
1309 			&mode_cmd->pixel_format, mode_cmd->modifier[0]);
1310 		return -EINVAL;
1311 	}
1312 
1313 	/* Surface must be marked as a scanout. */
1314 	if (unlikely(!surface->metadata.scanout))
1315 		return -EINVAL;
1316 
1317 	if (unlikely(surface->metadata.mip_levels[0] != 1 ||
1318 		     surface->metadata.num_sizes != 1 ||
1319 		     surface->metadata.base_size.width < mode_cmd->width ||
1320 		     surface->metadata.base_size.height < mode_cmd->height ||
1321 		     surface->metadata.base_size.depth != 1)) {
1322 		DRM_ERROR("Incompatible surface dimensions "
1323 			  "for requested mode.\n");
1324 		return -EINVAL;
1325 	}
1326 
1327 	switch (mode_cmd->pixel_format) {
1328 	case DRM_FORMAT_ARGB8888:
1329 		format = SVGA3D_A8R8G8B8;
1330 		break;
1331 	case DRM_FORMAT_XRGB8888:
1332 		format = SVGA3D_X8R8G8B8;
1333 		break;
1334 	case DRM_FORMAT_RGB565:
1335 		format = SVGA3D_R5G6B5;
1336 		break;
1337 	case DRM_FORMAT_XRGB1555:
1338 		format = SVGA3D_A1R5G5B5;
1339 		break;
1340 	default:
1341 		DRM_ERROR("Invalid pixel format: %p4cc\n",
1342 			  &mode_cmd->pixel_format);
1343 		return -EINVAL;
1344 	}
1345 
1346 	/*
1347 	 * For DX, surface format validation is done when surface->scanout
1348 	 * is set.
1349 	 */
1350 	if (!has_sm4_context(dev_priv) && format != surface->metadata.format) {
1351 		DRM_ERROR("Invalid surface format for requested mode.\n");
1352 		return -EINVAL;
1353 	}
1354 
1355 	vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
1356 	if (!vfbs) {
1357 		ret = -ENOMEM;
1358 		goto out_err1;
1359 	}
1360 
1361 	drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
1362 	vfbs->surface = vmw_surface_reference(surface);
1363 	vfbs->base.user_handle = mode_cmd->handles[0];
1364 	vfbs->is_bo_proxy = is_bo_proxy;
1365 
1366 	*out = &vfbs->base;
1367 
1368 	ret = drm_framebuffer_init(dev, &vfbs->base.base,
1369 				   &vmw_framebuffer_surface_funcs);
1370 	if (ret)
1371 		goto out_err2;
1372 
1373 	return 0;
1374 
1375 out_err2:
1376 	vmw_surface_unreference(&surface);
1377 	kfree(vfbs);
1378 out_err1:
1379 	return ret;
1380 }
1381 
1382 /*
1383  * Buffer-object framebuffer code
1384  */
1385 
1386 static int vmw_framebuffer_bo_create_handle(struct drm_framebuffer *fb,
1387 					    struct drm_file *file_priv,
1388 					    unsigned int *handle)
1389 {
1390 	struct vmw_framebuffer_bo *vfbd =
1391 			vmw_framebuffer_to_vfbd(fb);
1392 
1393 	return drm_gem_handle_create(file_priv, &vfbd->buffer->tbo.base, handle);
1394 }
1395 
1396 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer)
1397 {
1398 	struct vmw_framebuffer_bo *vfbd =
1399 		vmw_framebuffer_to_vfbd(framebuffer);
1400 
1401 	drm_framebuffer_cleanup(framebuffer);
1402 	vmw_bo_unreference(&vfbd->buffer);
1403 
1404 	kfree(vfbd);
1405 }
1406 
1407 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = {
1408 	.create_handle = vmw_framebuffer_bo_create_handle,
1409 	.destroy = vmw_framebuffer_bo_destroy,
1410 	.dirty = drm_atomic_helper_dirtyfb,
1411 };
1412 
1413 /**
1414  * vmw_create_bo_proxy - create a proxy surface for the buffer object
1415  *
1416  * @dev: DRM device
1417  * @mode_cmd: parameters for the new surface
1418  * @bo_mob: MOB backing the buffer object
1419  * @srf_out: newly created surface
1420  *
1421  * When the content FB is a buffer object, we create a surface as a proxy to the
1422  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1423  * This is a more efficient approach
1424  *
1425  * RETURNS:
1426  * 0 on success, error code otherwise
1427  */
1428 static int vmw_create_bo_proxy(struct drm_device *dev,
1429 			       const struct drm_mode_fb_cmd2 *mode_cmd,
1430 			       struct vmw_bo *bo_mob,
1431 			       struct vmw_surface **srf_out)
1432 {
1433 	struct vmw_surface_metadata metadata = {0};
1434 	uint32_t format;
1435 	struct vmw_resource *res;
1436 	unsigned int bytes_pp;
1437 	int ret;
1438 
1439 	switch (mode_cmd->pixel_format) {
1440 	case DRM_FORMAT_ARGB8888:
1441 	case DRM_FORMAT_XRGB8888:
1442 		format = SVGA3D_X8R8G8B8;
1443 		bytes_pp = 4;
1444 		break;
1445 
1446 	case DRM_FORMAT_RGB565:
1447 	case DRM_FORMAT_XRGB1555:
1448 		format = SVGA3D_R5G6B5;
1449 		bytes_pp = 2;
1450 		break;
1451 
1452 	case 8:
1453 		format = SVGA3D_P8;
1454 		bytes_pp = 1;
1455 		break;
1456 
1457 	default:
1458 		DRM_ERROR("Invalid framebuffer format %p4cc\n",
1459 			  &mode_cmd->pixel_format);
1460 		return -EINVAL;
1461 	}
1462 
1463 	metadata.format = format;
1464 	metadata.mip_levels[0] = 1;
1465 	metadata.num_sizes = 1;
1466 	metadata.base_size.width = mode_cmd->pitches[0] / bytes_pp;
1467 	metadata.base_size.height =  mode_cmd->height;
1468 	metadata.base_size.depth = 1;
1469 	metadata.scanout = true;
1470 
1471 	ret = vmw_gb_surface_define(vmw_priv(dev), &metadata, srf_out);
1472 	if (ret) {
1473 		DRM_ERROR("Failed to allocate proxy content buffer\n");
1474 		return ret;
1475 	}
1476 
1477 	res = &(*srf_out)->res;
1478 
1479 	/* Reserve and switch the backing mob. */
1480 	mutex_lock(&res->dev_priv->cmdbuf_mutex);
1481 	(void) vmw_resource_reserve(res, false, true);
1482 	vmw_user_bo_unref(&res->guest_memory_bo);
1483 	res->guest_memory_bo = vmw_user_bo_ref(bo_mob);
1484 	res->guest_memory_offset = 0;
1485 	vmw_resource_unreserve(res, false, false, false, NULL, 0);
1486 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1487 
1488 	return 0;
1489 }
1490 
1491 
1492 
1493 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv,
1494 				      struct vmw_bo *bo,
1495 				      struct vmw_framebuffer **out,
1496 				      const struct drm_mode_fb_cmd2
1497 				      *mode_cmd)
1498 
1499 {
1500 	struct drm_device *dev = &dev_priv->drm;
1501 	struct vmw_framebuffer_bo *vfbd;
1502 	unsigned int requested_size;
1503 	int ret;
1504 
1505 	requested_size = mode_cmd->height * mode_cmd->pitches[0];
1506 	if (unlikely(requested_size > bo->tbo.base.size)) {
1507 		DRM_ERROR("Screen buffer object size is too small "
1508 			  "for requested mode.\n");
1509 		return -EINVAL;
1510 	}
1511 
1512 	if (!drm_any_plane_has_format(&dev_priv->drm,
1513 				      mode_cmd->pixel_format,
1514 				      mode_cmd->modifier[0])) {
1515 		drm_dbg(&dev_priv->drm,
1516 			"unsupported pixel format %p4cc / modifier 0x%llx\n",
1517 			&mode_cmd->pixel_format, mode_cmd->modifier[0]);
1518 		return -EINVAL;
1519 	}
1520 
1521 	vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1522 	if (!vfbd) {
1523 		ret = -ENOMEM;
1524 		goto out_err1;
1525 	}
1526 
1527 	vfbd->base.base.obj[0] = &bo->tbo.base;
1528 	drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1529 	vfbd->base.bo = true;
1530 	vfbd->buffer = vmw_bo_reference(bo);
1531 	vfbd->base.user_handle = mode_cmd->handles[0];
1532 	*out = &vfbd->base;
1533 
1534 	ret = drm_framebuffer_init(dev, &vfbd->base.base,
1535 				   &vmw_framebuffer_bo_funcs);
1536 	if (ret)
1537 		goto out_err2;
1538 
1539 	return 0;
1540 
1541 out_err2:
1542 	vmw_bo_unreference(&bo);
1543 	kfree(vfbd);
1544 out_err1:
1545 	return ret;
1546 }
1547 
1548 
1549 /**
1550  * vmw_kms_srf_ok - check if a surface can be created
1551  *
1552  * @dev_priv: Pointer to device private struct.
1553  * @width: requested width
1554  * @height: requested height
1555  *
1556  * Surfaces need to be less than texture size
1557  */
1558 static bool
1559 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1560 {
1561 	if (width  > dev_priv->texture_max_width ||
1562 	    height > dev_priv->texture_max_height)
1563 		return false;
1564 
1565 	return true;
1566 }
1567 
1568 /**
1569  * vmw_kms_new_framebuffer - Create a new framebuffer.
1570  *
1571  * @dev_priv: Pointer to device private struct.
1572  * @bo: Pointer to buffer object to wrap the kms framebuffer around.
1573  * Either @bo or @surface must be NULL.
1574  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1575  * Either @bo or @surface must be NULL.
1576  * @only_2d: No presents will occur to this buffer object based framebuffer.
1577  * This helps the code to do some important optimizations.
1578  * @mode_cmd: Frame-buffer metadata.
1579  */
1580 struct vmw_framebuffer *
1581 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1582 			struct vmw_bo *bo,
1583 			struct vmw_surface *surface,
1584 			bool only_2d,
1585 			const struct drm_mode_fb_cmd2 *mode_cmd)
1586 {
1587 	struct vmw_framebuffer *vfb = NULL;
1588 	bool is_bo_proxy = false;
1589 	int ret;
1590 
1591 	/*
1592 	 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1593 	 * therefore, wrap the buffer object in a surface so we can use the
1594 	 * SurfaceCopy command.
1595 	 */
1596 	if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1597 	    bo && only_2d &&
1598 	    mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1599 	    dev_priv->active_display_unit == vmw_du_screen_target) {
1600 		ret = vmw_create_bo_proxy(&dev_priv->drm, mode_cmd,
1601 					  bo, &surface);
1602 		if (ret)
1603 			return ERR_PTR(ret);
1604 
1605 		is_bo_proxy = true;
1606 	}
1607 
1608 	/* Create the new framebuffer depending one what we have */
1609 	if (surface) {
1610 		ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1611 						      mode_cmd,
1612 						      is_bo_proxy);
1613 		/*
1614 		 * vmw_create_bo_proxy() adds a reference that is no longer
1615 		 * needed
1616 		 */
1617 		if (is_bo_proxy)
1618 			vmw_surface_unreference(&surface);
1619 	} else if (bo) {
1620 		ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb,
1621 						 mode_cmd);
1622 	} else {
1623 		BUG();
1624 	}
1625 
1626 	if (ret)
1627 		return ERR_PTR(ret);
1628 
1629 	return vfb;
1630 }
1631 
1632 /*
1633  * Generic Kernel modesetting functions
1634  */
1635 
1636 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1637 						 struct drm_file *file_priv,
1638 						 const struct drm_mode_fb_cmd2 *mode_cmd)
1639 {
1640 	struct vmw_private *dev_priv = vmw_priv(dev);
1641 	struct vmw_framebuffer *vfb = NULL;
1642 	struct vmw_surface *surface = NULL;
1643 	struct vmw_bo *bo = NULL;
1644 	int ret;
1645 
1646 	/* returns either a bo or surface */
1647 	ret = vmw_user_lookup_handle(dev_priv, file_priv,
1648 				     mode_cmd->handles[0],
1649 				     &surface, &bo);
1650 	if (ret) {
1651 		DRM_ERROR("Invalid buffer object handle %u (0x%x).\n",
1652 			  mode_cmd->handles[0], mode_cmd->handles[0]);
1653 		goto err_out;
1654 	}
1655 
1656 
1657 	if (!bo &&
1658 	    !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1659 		DRM_ERROR("Surface size cannot exceed %dx%d\n",
1660 			dev_priv->texture_max_width,
1661 			dev_priv->texture_max_height);
1662 		ret = -EINVAL;
1663 		goto err_out;
1664 	}
1665 
1666 
1667 	vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1668 				      !(dev_priv->capabilities & SVGA_CAP_3D),
1669 				      mode_cmd);
1670 	if (IS_ERR(vfb)) {
1671 		ret = PTR_ERR(vfb);
1672 		goto err_out;
1673 	}
1674 
1675 err_out:
1676 	/* vmw_user_lookup_handle takes one ref so does new_fb */
1677 	if (bo)
1678 		vmw_user_bo_unref(&bo);
1679 	if (surface)
1680 		vmw_surface_unreference(&surface);
1681 
1682 	if (ret) {
1683 		DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1684 		return ERR_PTR(ret);
1685 	}
1686 
1687 	return &vfb->base;
1688 }
1689 
1690 /**
1691  * vmw_kms_check_display_memory - Validates display memory required for a
1692  * topology
1693  * @dev: DRM device
1694  * @num_rects: number of drm_rect in rects
1695  * @rects: array of drm_rect representing the topology to validate indexed by
1696  * crtc index.
1697  *
1698  * Returns:
1699  * 0 on success otherwise negative error code
1700  */
1701 static int vmw_kms_check_display_memory(struct drm_device *dev,
1702 					uint32_t num_rects,
1703 					struct drm_rect *rects)
1704 {
1705 	struct vmw_private *dev_priv = vmw_priv(dev);
1706 	struct drm_rect bounding_box = {0};
1707 	u64 total_pixels = 0, pixel_mem, bb_mem;
1708 	int i;
1709 
1710 	for (i = 0; i < num_rects; i++) {
1711 		/*
1712 		 * For STDU only individual screen (screen target) is limited by
1713 		 * SCREENTARGET_MAX_WIDTH/HEIGHT registers.
1714 		 */
1715 		if (dev_priv->active_display_unit == vmw_du_screen_target &&
1716 		    (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width ||
1717 		     drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) {
1718 			VMW_DEBUG_KMS("Screen size not supported.\n");
1719 			return -EINVAL;
1720 		}
1721 
1722 		/* Bounding box upper left is at (0,0). */
1723 		if (rects[i].x2 > bounding_box.x2)
1724 			bounding_box.x2 = rects[i].x2;
1725 
1726 		if (rects[i].y2 > bounding_box.y2)
1727 			bounding_box.y2 = rects[i].y2;
1728 
1729 		total_pixels += (u64) drm_rect_width(&rects[i]) *
1730 			(u64) drm_rect_height(&rects[i]);
1731 	}
1732 
1733 	/* Virtual svga device primary limits are always in 32-bpp. */
1734 	pixel_mem = total_pixels * 4;
1735 
1736 	/*
1737 	 * For HV10 and below prim_bb_mem is vram size. When
1738 	 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is
1739 	 * limit on primary bounding box
1740 	 */
1741 	if (pixel_mem > dev_priv->max_primary_mem) {
1742 		VMW_DEBUG_KMS("Combined output size too large.\n");
1743 		return -EINVAL;
1744 	}
1745 
1746 	/* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */
1747 	if (dev_priv->active_display_unit != vmw_du_screen_target ||
1748 	    !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) {
1749 		bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4;
1750 
1751 		if (bb_mem > dev_priv->max_primary_mem) {
1752 			VMW_DEBUG_KMS("Topology is beyond supported limits.\n");
1753 			return -EINVAL;
1754 		}
1755 	}
1756 
1757 	return 0;
1758 }
1759 
1760 /**
1761  * vmw_crtc_state_and_lock - Return new or current crtc state with locked
1762  * crtc mutex
1763  * @state: The atomic state pointer containing the new atomic state
1764  * @crtc: The crtc
1765  *
1766  * This function returns the new crtc state if it's part of the state update.
1767  * Otherwise returns the current crtc state. It also makes sure that the
1768  * crtc mutex is locked.
1769  *
1770  * Returns: A valid crtc state pointer or NULL. It may also return a
1771  * pointer error, in particular -EDEADLK if locking needs to be rerun.
1772  */
1773 static struct drm_crtc_state *
1774 vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc)
1775 {
1776 	struct drm_crtc_state *crtc_state;
1777 
1778 	crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
1779 	if (crtc_state) {
1780 		lockdep_assert_held(&crtc->mutex.mutex.base);
1781 	} else {
1782 		int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx);
1783 
1784 		if (ret != 0 && ret != -EALREADY)
1785 			return ERR_PTR(ret);
1786 
1787 		crtc_state = crtc->state;
1788 	}
1789 
1790 	return crtc_state;
1791 }
1792 
1793 /**
1794  * vmw_kms_check_implicit - Verify that all implicit display units scan out
1795  * from the same fb after the new state is committed.
1796  * @dev: The drm_device.
1797  * @state: The new state to be checked.
1798  *
1799  * Returns:
1800  *   Zero on success,
1801  *   -EINVAL on invalid state,
1802  *   -EDEADLK if modeset locking needs to be rerun.
1803  */
1804 static int vmw_kms_check_implicit(struct drm_device *dev,
1805 				  struct drm_atomic_state *state)
1806 {
1807 	struct drm_framebuffer *implicit_fb = NULL;
1808 	struct drm_crtc *crtc;
1809 	struct drm_crtc_state *crtc_state;
1810 	struct drm_plane_state *plane_state;
1811 
1812 	drm_for_each_crtc(crtc, dev) {
1813 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1814 
1815 		if (!du->is_implicit)
1816 			continue;
1817 
1818 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
1819 		if (IS_ERR(crtc_state))
1820 			return PTR_ERR(crtc_state);
1821 
1822 		if (!crtc_state || !crtc_state->enable)
1823 			continue;
1824 
1825 		/*
1826 		 * Can't move primary planes across crtcs, so this is OK.
1827 		 * It also means we don't need to take the plane mutex.
1828 		 */
1829 		plane_state = du->primary.state;
1830 		if (plane_state->crtc != crtc)
1831 			continue;
1832 
1833 		if (!implicit_fb)
1834 			implicit_fb = plane_state->fb;
1835 		else if (implicit_fb != plane_state->fb)
1836 			return -EINVAL;
1837 	}
1838 
1839 	return 0;
1840 }
1841 
1842 /**
1843  * vmw_kms_check_topology - Validates topology in drm_atomic_state
1844  * @dev: DRM device
1845  * @state: the driver state object
1846  *
1847  * Returns:
1848  * 0 on success otherwise negative error code
1849  */
1850 static int vmw_kms_check_topology(struct drm_device *dev,
1851 				  struct drm_atomic_state *state)
1852 {
1853 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
1854 	struct drm_rect *rects;
1855 	struct drm_crtc *crtc;
1856 	uint32_t i;
1857 	int ret = 0;
1858 
1859 	rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect),
1860 			GFP_KERNEL);
1861 	if (!rects)
1862 		return -ENOMEM;
1863 
1864 	drm_for_each_crtc(crtc, dev) {
1865 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1866 		struct drm_crtc_state *crtc_state;
1867 
1868 		i = drm_crtc_index(crtc);
1869 
1870 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
1871 		if (IS_ERR(crtc_state)) {
1872 			ret = PTR_ERR(crtc_state);
1873 			goto clean;
1874 		}
1875 
1876 		if (!crtc_state)
1877 			continue;
1878 
1879 		if (crtc_state->enable) {
1880 			rects[i].x1 = du->gui_x;
1881 			rects[i].y1 = du->gui_y;
1882 			rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay;
1883 			rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay;
1884 		} else {
1885 			rects[i].x1 = 0;
1886 			rects[i].y1 = 0;
1887 			rects[i].x2 = 0;
1888 			rects[i].y2 = 0;
1889 		}
1890 	}
1891 
1892 	/* Determine change to topology due to new atomic state */
1893 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
1894 				      new_crtc_state, i) {
1895 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1896 		struct drm_connector *connector;
1897 		struct drm_connector_state *conn_state;
1898 		struct vmw_connector_state *vmw_conn_state;
1899 
1900 		if (!du->pref_active && new_crtc_state->enable) {
1901 			VMW_DEBUG_KMS("Enabling a disabled display unit\n");
1902 			ret = -EINVAL;
1903 			goto clean;
1904 		}
1905 
1906 		/*
1907 		 * For vmwgfx each crtc has only one connector attached and it
1908 		 * is not changed so don't really need to check the
1909 		 * crtc->connector_mask and iterate over it.
1910 		 */
1911 		connector = &du->connector;
1912 		conn_state = drm_atomic_get_connector_state(state, connector);
1913 		if (IS_ERR(conn_state)) {
1914 			ret = PTR_ERR(conn_state);
1915 			goto clean;
1916 		}
1917 
1918 		vmw_conn_state = vmw_connector_state_to_vcs(conn_state);
1919 		vmw_conn_state->gui_x = du->gui_x;
1920 		vmw_conn_state->gui_y = du->gui_y;
1921 	}
1922 
1923 	ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc,
1924 					   rects);
1925 
1926 clean:
1927 	kfree(rects);
1928 	return ret;
1929 }
1930 
1931 /**
1932  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1933  *
1934  * @dev: DRM device
1935  * @state: the driver state object
1936  *
1937  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1938  * us to assign a value to mode->crtc_clock so that
1939  * drm_calc_timestamping_constants() won't throw an error message
1940  *
1941  * Returns:
1942  * Zero for success or -errno
1943  */
1944 static int
1945 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1946 			     struct drm_atomic_state *state)
1947 {
1948 	struct drm_crtc *crtc;
1949 	struct drm_crtc_state *crtc_state;
1950 	bool need_modeset = false;
1951 	int i, ret;
1952 
1953 	ret = drm_atomic_helper_check(dev, state);
1954 	if (ret)
1955 		return ret;
1956 
1957 	ret = vmw_kms_check_implicit(dev, state);
1958 	if (ret) {
1959 		VMW_DEBUG_KMS("Invalid implicit state\n");
1960 		return ret;
1961 	}
1962 
1963 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1964 		if (drm_atomic_crtc_needs_modeset(crtc_state))
1965 			need_modeset = true;
1966 	}
1967 
1968 	if (need_modeset)
1969 		return vmw_kms_check_topology(dev, state);
1970 
1971 	return ret;
1972 }
1973 
1974 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1975 	.fb_create = vmw_kms_fb_create,
1976 	.atomic_check = vmw_kms_atomic_check_modeset,
1977 	.atomic_commit = drm_atomic_helper_commit,
1978 };
1979 
1980 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1981 				   struct drm_file *file_priv,
1982 				   struct vmw_framebuffer *vfb,
1983 				   struct vmw_surface *surface,
1984 				   uint32_t sid,
1985 				   int32_t destX, int32_t destY,
1986 				   struct drm_vmw_rect *clips,
1987 				   uint32_t num_clips)
1988 {
1989 	return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1990 					    &surface->res, destX, destY,
1991 					    num_clips, 1, NULL, NULL);
1992 }
1993 
1994 
1995 int vmw_kms_present(struct vmw_private *dev_priv,
1996 		    struct drm_file *file_priv,
1997 		    struct vmw_framebuffer *vfb,
1998 		    struct vmw_surface *surface,
1999 		    uint32_t sid,
2000 		    int32_t destX, int32_t destY,
2001 		    struct drm_vmw_rect *clips,
2002 		    uint32_t num_clips)
2003 {
2004 	int ret;
2005 
2006 	switch (dev_priv->active_display_unit) {
2007 	case vmw_du_screen_target:
2008 		ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
2009 						 &surface->res, destX, destY,
2010 						 num_clips, 1, NULL, NULL);
2011 		break;
2012 	case vmw_du_screen_object:
2013 		ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
2014 					      sid, destX, destY, clips,
2015 					      num_clips);
2016 		break;
2017 	default:
2018 		WARN_ONCE(true,
2019 			  "Present called with invalid display system.\n");
2020 		ret = -ENOSYS;
2021 		break;
2022 	}
2023 	if (ret)
2024 		return ret;
2025 
2026 	vmw_cmd_flush(dev_priv, false);
2027 
2028 	return 0;
2029 }
2030 
2031 static void
2032 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
2033 {
2034 	if (dev_priv->hotplug_mode_update_property)
2035 		return;
2036 
2037 	dev_priv->hotplug_mode_update_property =
2038 		drm_property_create_range(&dev_priv->drm,
2039 					  DRM_MODE_PROP_IMMUTABLE,
2040 					  "hotplug_mode_update", 0, 1);
2041 }
2042 
2043 int vmw_kms_init(struct vmw_private *dev_priv)
2044 {
2045 	struct drm_device *dev = &dev_priv->drm;
2046 	int ret;
2047 	static const char *display_unit_names[] = {
2048 		"Invalid",
2049 		"Legacy",
2050 		"Screen Object",
2051 		"Screen Target",
2052 		"Invalid (max)"
2053 	};
2054 
2055 	drm_mode_config_init(dev);
2056 	dev->mode_config.funcs = &vmw_kms_funcs;
2057 	dev->mode_config.min_width = 1;
2058 	dev->mode_config.min_height = 1;
2059 	dev->mode_config.max_width = dev_priv->texture_max_width;
2060 	dev->mode_config.max_height = dev_priv->texture_max_height;
2061 	dev->mode_config.preferred_depth = dev_priv->assume_16bpp ? 16 : 32;
2062 
2063 	drm_mode_create_suggested_offset_properties(dev);
2064 	vmw_kms_create_hotplug_mode_update_property(dev_priv);
2065 
2066 	ret = vmw_kms_stdu_init_display(dev_priv);
2067 	if (ret) {
2068 		ret = vmw_kms_sou_init_display(dev_priv);
2069 		if (ret) /* Fallback */
2070 			ret = vmw_kms_ldu_init_display(dev_priv);
2071 	}
2072 	BUILD_BUG_ON(ARRAY_SIZE(display_unit_names) != (vmw_du_max + 1));
2073 	drm_info(&dev_priv->drm, "%s display unit initialized\n",
2074 		 display_unit_names[dev_priv->active_display_unit]);
2075 
2076 	return ret;
2077 }
2078 
2079 int vmw_kms_close(struct vmw_private *dev_priv)
2080 {
2081 	int ret = 0;
2082 
2083 	/*
2084 	 * Docs says we should take the lock before calling this function
2085 	 * but since it destroys encoders and our destructor calls
2086 	 * drm_encoder_cleanup which takes the lock we deadlock.
2087 	 */
2088 	drm_mode_config_cleanup(&dev_priv->drm);
2089 	if (dev_priv->active_display_unit == vmw_du_legacy)
2090 		ret = vmw_kms_ldu_close_display(dev_priv);
2091 
2092 	return ret;
2093 }
2094 
2095 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
2096 				struct drm_file *file_priv)
2097 {
2098 	struct drm_vmw_cursor_bypass_arg *arg = data;
2099 	struct vmw_display_unit *du;
2100 	struct drm_crtc *crtc;
2101 	int ret = 0;
2102 
2103 	mutex_lock(&dev->mode_config.mutex);
2104 	if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
2105 
2106 		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2107 			du = vmw_crtc_to_du(crtc);
2108 			du->hotspot_x = arg->xhot;
2109 			du->hotspot_y = arg->yhot;
2110 		}
2111 
2112 		mutex_unlock(&dev->mode_config.mutex);
2113 		return 0;
2114 	}
2115 
2116 	crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
2117 	if (!crtc) {
2118 		ret = -ENOENT;
2119 		goto out;
2120 	}
2121 
2122 	du = vmw_crtc_to_du(crtc);
2123 
2124 	du->hotspot_x = arg->xhot;
2125 	du->hotspot_y = arg->yhot;
2126 
2127 out:
2128 	mutex_unlock(&dev->mode_config.mutex);
2129 
2130 	return ret;
2131 }
2132 
2133 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
2134 			unsigned width, unsigned height, unsigned pitch,
2135 			unsigned bpp, unsigned depth)
2136 {
2137 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
2138 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
2139 	else if (vmw_fifo_have_pitchlock(vmw_priv))
2140 		vmw_fifo_mem_write(vmw_priv, SVGA_FIFO_PITCHLOCK, pitch);
2141 	vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
2142 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
2143 	if ((vmw_priv->capabilities & SVGA_CAP_8BIT_EMULATION) != 0)
2144 		vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
2145 
2146 	if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
2147 		DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
2148 			  depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
2149 		return -EINVAL;
2150 	}
2151 
2152 	return 0;
2153 }
2154 
2155 static
2156 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
2157 				u64 pitch,
2158 				u64 height)
2159 {
2160 	return (pitch * height) < (u64)dev_priv->vram_size;
2161 }
2162 
2163 /**
2164  * vmw_du_update_layout - Update the display unit with topology from resolution
2165  * plugin and generate DRM uevent
2166  * @dev_priv: device private
2167  * @num_rects: number of drm_rect in rects
2168  * @rects: toplogy to update
2169  */
2170 static int vmw_du_update_layout(struct vmw_private *dev_priv,
2171 				unsigned int num_rects, struct drm_rect *rects)
2172 {
2173 	struct drm_device *dev = &dev_priv->drm;
2174 	struct vmw_display_unit *du;
2175 	struct drm_connector *con;
2176 	struct drm_connector_list_iter conn_iter;
2177 	struct drm_modeset_acquire_ctx ctx;
2178 	struct drm_crtc *crtc;
2179 	int ret;
2180 
2181 	/* Currently gui_x/y is protected with the crtc mutex */
2182 	mutex_lock(&dev->mode_config.mutex);
2183 	drm_modeset_acquire_init(&ctx, 0);
2184 retry:
2185 	drm_for_each_crtc(crtc, dev) {
2186 		ret = drm_modeset_lock(&crtc->mutex, &ctx);
2187 		if (ret < 0) {
2188 			if (ret == -EDEADLK) {
2189 				drm_modeset_backoff(&ctx);
2190 				goto retry;
2191 		}
2192 			goto out_fini;
2193 		}
2194 	}
2195 
2196 	drm_connector_list_iter_begin(dev, &conn_iter);
2197 	drm_for_each_connector_iter(con, &conn_iter) {
2198 		du = vmw_connector_to_du(con);
2199 		if (num_rects > du->unit) {
2200 			du->pref_width = drm_rect_width(&rects[du->unit]);
2201 			du->pref_height = drm_rect_height(&rects[du->unit]);
2202 			du->pref_active = true;
2203 			du->gui_x = rects[du->unit].x1;
2204 			du->gui_y = rects[du->unit].y1;
2205 		} else {
2206 			du->pref_width  = VMWGFX_MIN_INITIAL_WIDTH;
2207 			du->pref_height = VMWGFX_MIN_INITIAL_HEIGHT;
2208 			du->pref_active = false;
2209 			du->gui_x = 0;
2210 			du->gui_y = 0;
2211 		}
2212 	}
2213 	drm_connector_list_iter_end(&conn_iter);
2214 
2215 	list_for_each_entry(con, &dev->mode_config.connector_list, head) {
2216 		du = vmw_connector_to_du(con);
2217 		if (num_rects > du->unit) {
2218 			drm_object_property_set_value
2219 			  (&con->base, dev->mode_config.suggested_x_property,
2220 			   du->gui_x);
2221 			drm_object_property_set_value
2222 			  (&con->base, dev->mode_config.suggested_y_property,
2223 			   du->gui_y);
2224 		} else {
2225 			drm_object_property_set_value
2226 			  (&con->base, dev->mode_config.suggested_x_property,
2227 			   0);
2228 			drm_object_property_set_value
2229 			  (&con->base, dev->mode_config.suggested_y_property,
2230 			   0);
2231 		}
2232 		con->status = vmw_du_connector_detect(con, true);
2233 	}
2234 out_fini:
2235 	drm_modeset_drop_locks(&ctx);
2236 	drm_modeset_acquire_fini(&ctx);
2237 	mutex_unlock(&dev->mode_config.mutex);
2238 
2239 	drm_sysfs_hotplug_event(dev);
2240 
2241 	return 0;
2242 }
2243 
2244 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
2245 			  u16 *r, u16 *g, u16 *b,
2246 			  uint32_t size,
2247 			  struct drm_modeset_acquire_ctx *ctx)
2248 {
2249 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
2250 	int i;
2251 
2252 	for (i = 0; i < size; i++) {
2253 		DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
2254 			  r[i], g[i], b[i]);
2255 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
2256 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
2257 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
2258 	}
2259 
2260 	return 0;
2261 }
2262 
2263 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
2264 {
2265 	return 0;
2266 }
2267 
2268 enum drm_connector_status
2269 vmw_du_connector_detect(struct drm_connector *connector, bool force)
2270 {
2271 	uint32_t num_displays;
2272 	struct drm_device *dev = connector->dev;
2273 	struct vmw_private *dev_priv = vmw_priv(dev);
2274 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2275 
2276 	num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
2277 
2278 	return ((vmw_connector_to_du(connector)->unit < num_displays &&
2279 		 du->pref_active) ?
2280 		connector_status_connected : connector_status_disconnected);
2281 }
2282 
2283 /**
2284  * vmw_guess_mode_timing - Provide fake timings for a
2285  * 60Hz vrefresh mode.
2286  *
2287  * @mode: Pointer to a struct drm_display_mode with hdisplay and vdisplay
2288  * members filled in.
2289  */
2290 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2291 {
2292 	mode->hsync_start = mode->hdisplay + 50;
2293 	mode->hsync_end = mode->hsync_start + 50;
2294 	mode->htotal = mode->hsync_end + 50;
2295 
2296 	mode->vsync_start = mode->vdisplay + 50;
2297 	mode->vsync_end = mode->vsync_start + 50;
2298 	mode->vtotal = mode->vsync_end + 50;
2299 
2300 	mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2301 }
2302 
2303 
2304 /**
2305  * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl
2306  * @dev: drm device for the ioctl
2307  * @data: data pointer for the ioctl
2308  * @file_priv: drm file for the ioctl call
2309  *
2310  * Update preferred topology of display unit as per ioctl request. The topology
2311  * is expressed as array of drm_vmw_rect.
2312  * e.g.
2313  * [0 0 640 480] [640 0 800 600] [0 480 640 480]
2314  *
2315  * NOTE:
2316  * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside
2317  * device limit on topology, x + w and y + h (lower right) cannot be greater
2318  * than INT_MAX. So topology beyond these limits will return with error.
2319  *
2320  * Returns:
2321  * Zero on success, negative errno on failure.
2322  */
2323 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2324 				struct drm_file *file_priv)
2325 {
2326 	struct vmw_private *dev_priv = vmw_priv(dev);
2327 	struct drm_mode_config *mode_config = &dev->mode_config;
2328 	struct drm_vmw_update_layout_arg *arg =
2329 		(struct drm_vmw_update_layout_arg *)data;
2330 	const void __user *user_rects;
2331 	struct drm_vmw_rect *rects;
2332 	struct drm_rect *drm_rects;
2333 	unsigned rects_size;
2334 	int ret, i;
2335 
2336 	if (!arg->num_outputs) {
2337 		struct drm_rect def_rect = {0, 0,
2338 					    VMWGFX_MIN_INITIAL_WIDTH,
2339 					    VMWGFX_MIN_INITIAL_HEIGHT};
2340 		vmw_du_update_layout(dev_priv, 1, &def_rect);
2341 		return 0;
2342 	} else if (arg->num_outputs > VMWGFX_NUM_DISPLAY_UNITS) {
2343 		return -E2BIG;
2344 	}
2345 
2346 	rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2347 	rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2348 			GFP_KERNEL);
2349 	if (unlikely(!rects))
2350 		return -ENOMEM;
2351 
2352 	user_rects = (void __user *)(unsigned long)arg->rects;
2353 	ret = copy_from_user(rects, user_rects, rects_size);
2354 	if (unlikely(ret != 0)) {
2355 		DRM_ERROR("Failed to get rects.\n");
2356 		ret = -EFAULT;
2357 		goto out_free;
2358 	}
2359 
2360 	drm_rects = (struct drm_rect *)rects;
2361 
2362 	VMW_DEBUG_KMS("Layout count = %u\n", arg->num_outputs);
2363 	for (i = 0; i < arg->num_outputs; i++) {
2364 		struct drm_vmw_rect curr_rect;
2365 
2366 		/* Verify user-space for overflow as kernel use drm_rect */
2367 		if ((rects[i].x + rects[i].w > INT_MAX) ||
2368 		    (rects[i].y + rects[i].h > INT_MAX)) {
2369 			ret = -ERANGE;
2370 			goto out_free;
2371 		}
2372 
2373 		curr_rect = rects[i];
2374 		drm_rects[i].x1 = curr_rect.x;
2375 		drm_rects[i].y1 = curr_rect.y;
2376 		drm_rects[i].x2 = curr_rect.x + curr_rect.w;
2377 		drm_rects[i].y2 = curr_rect.y + curr_rect.h;
2378 
2379 		VMW_DEBUG_KMS("  x1 = %d y1 = %d x2 = %d y2 = %d\n",
2380 			      drm_rects[i].x1, drm_rects[i].y1,
2381 			      drm_rects[i].x2, drm_rects[i].y2);
2382 
2383 		/*
2384 		 * Currently this check is limiting the topology within
2385 		 * mode_config->max (which actually is max texture size
2386 		 * supported by virtual device). This limit is here to address
2387 		 * window managers that create a big framebuffer for whole
2388 		 * topology.
2389 		 */
2390 		if (drm_rects[i].x1 < 0 ||  drm_rects[i].y1 < 0 ||
2391 		    drm_rects[i].x2 > mode_config->max_width ||
2392 		    drm_rects[i].y2 > mode_config->max_height) {
2393 			VMW_DEBUG_KMS("Invalid layout %d %d %d %d\n",
2394 				      drm_rects[i].x1, drm_rects[i].y1,
2395 				      drm_rects[i].x2, drm_rects[i].y2);
2396 			ret = -EINVAL;
2397 			goto out_free;
2398 		}
2399 	}
2400 
2401 	ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects);
2402 
2403 	if (ret == 0)
2404 		vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects);
2405 
2406 out_free:
2407 	kfree(rects);
2408 	return ret;
2409 }
2410 
2411 /**
2412  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2413  * on a set of cliprects and a set of display units.
2414  *
2415  * @dev_priv: Pointer to a device private structure.
2416  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2417  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2418  * Cliprects are given in framebuffer coordinates.
2419  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2420  * be NULL. Cliprects are given in source coordinates.
2421  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2422  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2423  * @num_clips: Number of cliprects in the @clips or @vclips array.
2424  * @increment: Integer with which to increment the clip counter when looping.
2425  * Used to skip a predetermined number of clip rects.
2426  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2427  */
2428 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2429 			 struct vmw_framebuffer *framebuffer,
2430 			 const struct drm_clip_rect *clips,
2431 			 const struct drm_vmw_rect *vclips,
2432 			 s32 dest_x, s32 dest_y,
2433 			 int num_clips,
2434 			 int increment,
2435 			 struct vmw_kms_dirty *dirty)
2436 {
2437 	struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2438 	struct drm_crtc *crtc;
2439 	u32 num_units = 0;
2440 	u32 i, k;
2441 
2442 	dirty->dev_priv = dev_priv;
2443 
2444 	/* If crtc is passed, no need to iterate over other display units */
2445 	if (dirty->crtc) {
2446 		units[num_units++] = vmw_crtc_to_du(dirty->crtc);
2447 	} else {
2448 		list_for_each_entry(crtc, &dev_priv->drm.mode_config.crtc_list,
2449 				    head) {
2450 			struct drm_plane *plane = crtc->primary;
2451 
2452 			if (plane->state->fb == &framebuffer->base)
2453 				units[num_units++] = vmw_crtc_to_du(crtc);
2454 		}
2455 	}
2456 
2457 	for (k = 0; k < num_units; k++) {
2458 		struct vmw_display_unit *unit = units[k];
2459 		s32 crtc_x = unit->crtc.x;
2460 		s32 crtc_y = unit->crtc.y;
2461 		s32 crtc_width = unit->crtc.mode.hdisplay;
2462 		s32 crtc_height = unit->crtc.mode.vdisplay;
2463 		const struct drm_clip_rect *clips_ptr = clips;
2464 		const struct drm_vmw_rect *vclips_ptr = vclips;
2465 
2466 		dirty->unit = unit;
2467 		if (dirty->fifo_reserve_size > 0) {
2468 			dirty->cmd = VMW_CMD_RESERVE(dev_priv,
2469 						      dirty->fifo_reserve_size);
2470 			if (!dirty->cmd)
2471 				return -ENOMEM;
2472 
2473 			memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2474 		}
2475 		dirty->num_hits = 0;
2476 		for (i = 0; i < num_clips; i++, clips_ptr += increment,
2477 		       vclips_ptr += increment) {
2478 			s32 clip_left;
2479 			s32 clip_top;
2480 
2481 			/*
2482 			 * Select clip array type. Note that integer type
2483 			 * in @clips is unsigned short, whereas in @vclips
2484 			 * it's 32-bit.
2485 			 */
2486 			if (clips) {
2487 				dirty->fb_x = (s32) clips_ptr->x1;
2488 				dirty->fb_y = (s32) clips_ptr->y1;
2489 				dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2490 					crtc_x;
2491 				dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2492 					crtc_y;
2493 			} else {
2494 				dirty->fb_x = vclips_ptr->x;
2495 				dirty->fb_y = vclips_ptr->y;
2496 				dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2497 					dest_x - crtc_x;
2498 				dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2499 					dest_y - crtc_y;
2500 			}
2501 
2502 			dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2503 			dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2504 
2505 			/* Skip this clip if it's outside the crtc region */
2506 			if (dirty->unit_x1 >= crtc_width ||
2507 			    dirty->unit_y1 >= crtc_height ||
2508 			    dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2509 				continue;
2510 
2511 			/* Clip right and bottom to crtc limits */
2512 			dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2513 					       crtc_width);
2514 			dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2515 					       crtc_height);
2516 
2517 			/* Clip left and top to crtc limits */
2518 			clip_left = min_t(s32, dirty->unit_x1, 0);
2519 			clip_top = min_t(s32, dirty->unit_y1, 0);
2520 			dirty->unit_x1 -= clip_left;
2521 			dirty->unit_y1 -= clip_top;
2522 			dirty->fb_x -= clip_left;
2523 			dirty->fb_y -= clip_top;
2524 
2525 			dirty->clip(dirty);
2526 		}
2527 
2528 		dirty->fifo_commit(dirty);
2529 	}
2530 
2531 	return 0;
2532 }
2533 
2534 /**
2535  * vmw_kms_helper_validation_finish - Helper for post KMS command submission
2536  * cleanup and fencing
2537  * @dev_priv: Pointer to the device-private struct
2538  * @file_priv: Pointer identifying the client when user-space fencing is used
2539  * @ctx: Pointer to the validation context
2540  * @out_fence: If non-NULL, returned refcounted fence-pointer
2541  * @user_fence_rep: If non-NULL, pointer to user-space address area
2542  * in which to copy user-space fence info
2543  */
2544 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv,
2545 				      struct drm_file *file_priv,
2546 				      struct vmw_validation_context *ctx,
2547 				      struct vmw_fence_obj **out_fence,
2548 				      struct drm_vmw_fence_rep __user *
2549 				      user_fence_rep)
2550 {
2551 	struct vmw_fence_obj *fence = NULL;
2552 	uint32_t handle = 0;
2553 	int ret = 0;
2554 
2555 	if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) ||
2556 	    out_fence)
2557 		ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2558 						 file_priv ? &handle : NULL);
2559 	vmw_validation_done(ctx, fence);
2560 	if (file_priv)
2561 		vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2562 					    ret, user_fence_rep, fence,
2563 					    handle, -1);
2564 	if (out_fence)
2565 		*out_fence = fence;
2566 	else
2567 		vmw_fence_obj_unreference(&fence);
2568 }
2569 
2570 /**
2571  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2572  * its backing MOB.
2573  *
2574  * @res: Pointer to the surface resource
2575  * @clips: Clip rects in framebuffer (surface) space.
2576  * @num_clips: Number of clips in @clips.
2577  * @increment: Integer with which to increment the clip counter when looping.
2578  * Used to skip a predetermined number of clip rects.
2579  *
2580  * This function makes sure the proxy surface is updated from its backing MOB
2581  * using the region given by @clips. The surface resource @res and its backing
2582  * MOB needs to be reserved and validated on call.
2583  */
2584 int vmw_kms_update_proxy(struct vmw_resource *res,
2585 			 const struct drm_clip_rect *clips,
2586 			 unsigned num_clips,
2587 			 int increment)
2588 {
2589 	struct vmw_private *dev_priv = res->dev_priv;
2590 	struct drm_vmw_size *size = &vmw_res_to_srf(res)->metadata.base_size;
2591 	struct {
2592 		SVGA3dCmdHeader header;
2593 		SVGA3dCmdUpdateGBImage body;
2594 	} *cmd;
2595 	SVGA3dBox *box;
2596 	size_t copy_size = 0;
2597 	int i;
2598 
2599 	if (!clips)
2600 		return 0;
2601 
2602 	cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd) * num_clips);
2603 	if (!cmd)
2604 		return -ENOMEM;
2605 
2606 	for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2607 		box = &cmd->body.box;
2608 
2609 		cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2610 		cmd->header.size = sizeof(cmd->body);
2611 		cmd->body.image.sid = res->id;
2612 		cmd->body.image.face = 0;
2613 		cmd->body.image.mipmap = 0;
2614 
2615 		if (clips->x1 > size->width || clips->x2 > size->width ||
2616 		    clips->y1 > size->height || clips->y2 > size->height) {
2617 			DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2618 			return -EINVAL;
2619 		}
2620 
2621 		box->x = clips->x1;
2622 		box->y = clips->y1;
2623 		box->z = 0;
2624 		box->w = clips->x2 - clips->x1;
2625 		box->h = clips->y2 - clips->y1;
2626 		box->d = 1;
2627 
2628 		copy_size += sizeof(*cmd);
2629 	}
2630 
2631 	vmw_cmd_commit(dev_priv, copy_size);
2632 
2633 	return 0;
2634 }
2635 
2636 /**
2637  * vmw_kms_create_implicit_placement_property - Set up the implicit placement
2638  * property.
2639  *
2640  * @dev_priv: Pointer to a device private struct.
2641  *
2642  * Sets up the implicit placement property unless it's already set up.
2643  */
2644 void
2645 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv)
2646 {
2647 	if (dev_priv->implicit_placement_property)
2648 		return;
2649 
2650 	dev_priv->implicit_placement_property =
2651 		drm_property_create_range(&dev_priv->drm,
2652 					  DRM_MODE_PROP_IMMUTABLE,
2653 					  "implicit_placement", 0, 1);
2654 }
2655 
2656 /**
2657  * vmw_kms_suspend - Save modesetting state and turn modesetting off.
2658  *
2659  * @dev: Pointer to the drm device
2660  * Return: 0 on success. Negative error code on failure.
2661  */
2662 int vmw_kms_suspend(struct drm_device *dev)
2663 {
2664 	struct vmw_private *dev_priv = vmw_priv(dev);
2665 
2666 	dev_priv->suspend_state = drm_atomic_helper_suspend(dev);
2667 	if (IS_ERR(dev_priv->suspend_state)) {
2668 		int ret = PTR_ERR(dev_priv->suspend_state);
2669 
2670 		DRM_ERROR("Failed kms suspend: %d\n", ret);
2671 		dev_priv->suspend_state = NULL;
2672 
2673 		return ret;
2674 	}
2675 
2676 	return 0;
2677 }
2678 
2679 
2680 /**
2681  * vmw_kms_resume - Re-enable modesetting and restore state
2682  *
2683  * @dev: Pointer to the drm device
2684  * Return: 0 on success. Negative error code on failure.
2685  *
2686  * State is resumed from a previous vmw_kms_suspend(). It's illegal
2687  * to call this function without a previous vmw_kms_suspend().
2688  */
2689 int vmw_kms_resume(struct drm_device *dev)
2690 {
2691 	struct vmw_private *dev_priv = vmw_priv(dev);
2692 	int ret;
2693 
2694 	if (WARN_ON(!dev_priv->suspend_state))
2695 		return 0;
2696 
2697 	ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state);
2698 	dev_priv->suspend_state = NULL;
2699 
2700 	return ret;
2701 }
2702 
2703 /**
2704  * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost
2705  *
2706  * @dev: Pointer to the drm device
2707  */
2708 void vmw_kms_lost_device(struct drm_device *dev)
2709 {
2710 	drm_atomic_helper_shutdown(dev);
2711 }
2712 
2713 /**
2714  * vmw_du_helper_plane_update - Helper to do plane update on a display unit.
2715  * @update: The closure structure.
2716  *
2717  * Call this helper after setting callbacks in &vmw_du_update_plane to do plane
2718  * update on display unit.
2719  *
2720  * Return: 0 on success or a negative error code on failure.
2721  */
2722 int vmw_du_helper_plane_update(struct vmw_du_update_plane *update)
2723 {
2724 	struct drm_plane_state *state = update->plane->state;
2725 	struct drm_plane_state *old_state = update->old_state;
2726 	struct drm_atomic_helper_damage_iter iter;
2727 	struct drm_rect clip;
2728 	struct drm_rect bb;
2729 	DECLARE_VAL_CONTEXT(val_ctx, NULL, 0);
2730 	uint32_t reserved_size = 0;
2731 	uint32_t submit_size = 0;
2732 	uint32_t curr_size = 0;
2733 	uint32_t num_hits = 0;
2734 	void *cmd_start;
2735 	char *cmd_next;
2736 	int ret;
2737 
2738 	/*
2739 	 * Iterate in advance to check if really need plane update and find the
2740 	 * number of clips that actually are in plane src for fifo allocation.
2741 	 */
2742 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
2743 	drm_atomic_for_each_plane_damage(&iter, &clip)
2744 		num_hits++;
2745 
2746 	if (num_hits == 0)
2747 		return 0;
2748 
2749 	if (update->vfb->bo) {
2750 		struct vmw_framebuffer_bo *vfbbo =
2751 			container_of(update->vfb, typeof(*vfbbo), base);
2752 
2753 		/*
2754 		 * For screen targets we want a mappable bo, for everything else we want
2755 		 * accelerated i.e. host backed (vram or gmr) bo. If the display unit
2756 		 * is not screen target then mob's shouldn't be available.
2757 		 */
2758 		if (update->dev_priv->active_display_unit == vmw_du_screen_target) {
2759 			vmw_bo_placement_set(vfbbo->buffer,
2760 					     VMW_BO_DOMAIN_SYS | VMW_BO_DOMAIN_MOB | VMW_BO_DOMAIN_GMR,
2761 					     VMW_BO_DOMAIN_SYS | VMW_BO_DOMAIN_MOB | VMW_BO_DOMAIN_GMR);
2762 		} else {
2763 			WARN_ON(update->dev_priv->has_mob);
2764 			vmw_bo_placement_set_default_accelerated(vfbbo->buffer);
2765 		}
2766 		ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer);
2767 	} else {
2768 		struct vmw_framebuffer_surface *vfbs =
2769 			container_of(update->vfb, typeof(*vfbs), base);
2770 
2771 		ret = vmw_validation_add_resource(&val_ctx, &vfbs->surface->res,
2772 						  0, VMW_RES_DIRTY_NONE, NULL,
2773 						  NULL);
2774 	}
2775 
2776 	if (ret)
2777 		return ret;
2778 
2779 	ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr);
2780 	if (ret)
2781 		goto out_unref;
2782 
2783 	reserved_size = update->calc_fifo_size(update, num_hits);
2784 	cmd_start = VMW_CMD_RESERVE(update->dev_priv, reserved_size);
2785 	if (!cmd_start) {
2786 		ret = -ENOMEM;
2787 		goto out_revert;
2788 	}
2789 
2790 	cmd_next = cmd_start;
2791 
2792 	if (update->post_prepare) {
2793 		curr_size = update->post_prepare(update, cmd_next);
2794 		cmd_next += curr_size;
2795 		submit_size += curr_size;
2796 	}
2797 
2798 	if (update->pre_clip) {
2799 		curr_size = update->pre_clip(update, cmd_next, num_hits);
2800 		cmd_next += curr_size;
2801 		submit_size += curr_size;
2802 	}
2803 
2804 	bb.x1 = INT_MAX;
2805 	bb.y1 = INT_MAX;
2806 	bb.x2 = INT_MIN;
2807 	bb.y2 = INT_MIN;
2808 
2809 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
2810 	drm_atomic_for_each_plane_damage(&iter, &clip) {
2811 		uint32_t fb_x = clip.x1;
2812 		uint32_t fb_y = clip.y1;
2813 
2814 		vmw_du_translate_to_crtc(state, &clip);
2815 		if (update->clip) {
2816 			curr_size = update->clip(update, cmd_next, &clip, fb_x,
2817 						 fb_y);
2818 			cmd_next += curr_size;
2819 			submit_size += curr_size;
2820 		}
2821 		bb.x1 = min_t(int, bb.x1, clip.x1);
2822 		bb.y1 = min_t(int, bb.y1, clip.y1);
2823 		bb.x2 = max_t(int, bb.x2, clip.x2);
2824 		bb.y2 = max_t(int, bb.y2, clip.y2);
2825 	}
2826 
2827 	curr_size = update->post_clip(update, cmd_next, &bb);
2828 	submit_size += curr_size;
2829 
2830 	if (reserved_size < submit_size)
2831 		submit_size = 0;
2832 
2833 	vmw_cmd_commit(update->dev_priv, submit_size);
2834 
2835 	vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx,
2836 					 update->out_fence, NULL);
2837 	return ret;
2838 
2839 out_revert:
2840 	vmw_validation_revert(&val_ctx);
2841 
2842 out_unref:
2843 	vmw_validation_unref_lists(&val_ctx);
2844 	return ret;
2845 }
2846 
2847 /**
2848  * vmw_connector_mode_valid - implements drm_connector_helper_funcs.mode_valid callback
2849  *
2850  * @connector: the drm connector, part of a DU container
2851  * @mode: drm mode to check
2852  *
2853  * Returns MODE_OK on success, or a drm_mode_status error code.
2854  */
2855 enum drm_mode_status vmw_connector_mode_valid(struct drm_connector *connector,
2856 					      struct drm_display_mode *mode)
2857 {
2858 	enum drm_mode_status ret;
2859 	struct drm_device *dev = connector->dev;
2860 	struct vmw_private *dev_priv = vmw_priv(dev);
2861 	u32 assumed_cpp = 4;
2862 
2863 	if (dev_priv->assume_16bpp)
2864 		assumed_cpp = 2;
2865 
2866 	ret = drm_mode_validate_size(mode, dev_priv->texture_max_width,
2867 				     dev_priv->texture_max_height);
2868 	if (ret != MODE_OK)
2869 		return ret;
2870 
2871 	if (!vmw_kms_validate_mode_vram(dev_priv,
2872 					mode->hdisplay * assumed_cpp,
2873 					mode->vdisplay))
2874 		return MODE_MEM;
2875 
2876 	return MODE_OK;
2877 }
2878 
2879 /**
2880  * vmw_connector_get_modes - implements drm_connector_helper_funcs.get_modes callback
2881  *
2882  * @connector: the drm connector, part of a DU container
2883  *
2884  * Returns the number of added modes.
2885  */
2886 int vmw_connector_get_modes(struct drm_connector *connector)
2887 {
2888 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2889 	struct drm_device *dev = connector->dev;
2890 	struct vmw_private *dev_priv = vmw_priv(dev);
2891 	struct drm_display_mode *mode = NULL;
2892 	struct drm_display_mode prefmode = { DRM_MODE("preferred",
2893 		DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2894 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2895 		DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2896 	};
2897 	u32 max_width;
2898 	u32 max_height;
2899 	u32 num_modes;
2900 
2901 	/* Add preferred mode */
2902 	mode = drm_mode_duplicate(dev, &prefmode);
2903 	if (!mode)
2904 		return 0;
2905 
2906 	mode->hdisplay = du->pref_width;
2907 	mode->vdisplay = du->pref_height;
2908 	vmw_guess_mode_timing(mode);
2909 	drm_mode_set_name(mode);
2910 
2911 	drm_mode_probed_add(connector, mode);
2912 	drm_dbg_kms(dev, "preferred mode " DRM_MODE_FMT "\n", DRM_MODE_ARG(mode));
2913 
2914 	/* Probe connector for all modes not exceeding our geom limits */
2915 	max_width  = dev_priv->texture_max_width;
2916 	max_height = dev_priv->texture_max_height;
2917 
2918 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2919 		max_width  = min(dev_priv->stdu_max_width,  max_width);
2920 		max_height = min(dev_priv->stdu_max_height, max_height);
2921 	}
2922 
2923 	num_modes = 1 + drm_add_modes_noedid(connector, max_width, max_height);
2924 
2925 	return num_modes;
2926 }
2927