1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /************************************************************************** 3 * 4 * Copyright 2009-2023 VMware, Inc., Palo Alto, CA., USA 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 #include "vmwgfx_kms.h" 28 29 #include "vmwgfx_bo.h" 30 #include "vmw_surface_cache.h" 31 32 #include <drm/drm_atomic.h> 33 #include <drm/drm_atomic_helper.h> 34 #include <drm/drm_damage_helper.h> 35 #include <drm/drm_fourcc.h> 36 #include <drm/drm_rect.h> 37 #include <drm/drm_sysfs.h> 38 #include <drm/drm_edid.h> 39 40 void vmw_du_cleanup(struct vmw_display_unit *du) 41 { 42 struct vmw_private *dev_priv = vmw_priv(du->primary.dev); 43 drm_plane_cleanup(&du->primary); 44 if (vmw_cmd_supported(dev_priv)) 45 drm_plane_cleanup(&du->cursor.base); 46 47 drm_connector_unregister(&du->connector); 48 drm_crtc_cleanup(&du->crtc); 49 drm_encoder_cleanup(&du->encoder); 50 drm_connector_cleanup(&du->connector); 51 } 52 53 /* 54 * Display Unit Cursor functions 55 */ 56 57 static int vmw_du_cursor_plane_unmap_cm(struct vmw_plane_state *vps); 58 static void vmw_cursor_update_mob(struct vmw_private *dev_priv, 59 struct vmw_plane_state *vps, 60 u32 *image, u32 width, u32 height, 61 u32 hotspotX, u32 hotspotY); 62 63 struct vmw_svga_fifo_cmd_define_cursor { 64 u32 cmd; 65 SVGAFifoCmdDefineAlphaCursor cursor; 66 }; 67 68 /** 69 * vmw_send_define_cursor_cmd - queue a define cursor command 70 * @dev_priv: the private driver struct 71 * @image: buffer which holds the cursor image 72 * @width: width of the mouse cursor image 73 * @height: height of the mouse cursor image 74 * @hotspotX: the horizontal position of mouse hotspot 75 * @hotspotY: the vertical position of mouse hotspot 76 */ 77 static void vmw_send_define_cursor_cmd(struct vmw_private *dev_priv, 78 u32 *image, u32 width, u32 height, 79 u32 hotspotX, u32 hotspotY) 80 { 81 struct vmw_svga_fifo_cmd_define_cursor *cmd; 82 const u32 image_size = width * height * sizeof(*image); 83 const u32 cmd_size = sizeof(*cmd) + image_size; 84 85 /* Try to reserve fifocmd space and swallow any failures; 86 such reservations cannot be left unconsumed for long 87 under the risk of clogging other fifocmd users, so 88 we treat reservations separtely from the way we treat 89 other fallible KMS-atomic resources at prepare_fb */ 90 cmd = VMW_CMD_RESERVE(dev_priv, cmd_size); 91 92 if (unlikely(!cmd)) 93 return; 94 95 memset(cmd, 0, sizeof(*cmd)); 96 97 memcpy(&cmd[1], image, image_size); 98 99 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR; 100 cmd->cursor.id = 0; 101 cmd->cursor.width = width; 102 cmd->cursor.height = height; 103 cmd->cursor.hotspotX = hotspotX; 104 cmd->cursor.hotspotY = hotspotY; 105 106 vmw_cmd_commit_flush(dev_priv, cmd_size); 107 } 108 109 /** 110 * vmw_cursor_update_image - update the cursor image on the provided plane 111 * @dev_priv: the private driver struct 112 * @vps: the plane state of the cursor plane 113 * @image: buffer which holds the cursor image 114 * @width: width of the mouse cursor image 115 * @height: height of the mouse cursor image 116 * @hotspotX: the horizontal position of mouse hotspot 117 * @hotspotY: the vertical position of mouse hotspot 118 */ 119 static void vmw_cursor_update_image(struct vmw_private *dev_priv, 120 struct vmw_plane_state *vps, 121 u32 *image, u32 width, u32 height, 122 u32 hotspotX, u32 hotspotY) 123 { 124 if (vps->cursor.bo) 125 vmw_cursor_update_mob(dev_priv, vps, image, 126 vps->base.crtc_w, vps->base.crtc_h, 127 hotspotX, hotspotY); 128 129 else 130 vmw_send_define_cursor_cmd(dev_priv, image, width, height, 131 hotspotX, hotspotY); 132 } 133 134 135 /** 136 * vmw_cursor_update_mob - Update cursor vis CursorMob mechanism 137 * 138 * Called from inside vmw_du_cursor_plane_atomic_update to actually 139 * make the cursor-image live. 140 * 141 * @dev_priv: device to work with 142 * @vps: the plane state of the cursor plane 143 * @image: cursor source data to fill the MOB with 144 * @width: source data width 145 * @height: source data height 146 * @hotspotX: cursor hotspot x 147 * @hotspotY: cursor hotspot Y 148 */ 149 static void vmw_cursor_update_mob(struct vmw_private *dev_priv, 150 struct vmw_plane_state *vps, 151 u32 *image, u32 width, u32 height, 152 u32 hotspotX, u32 hotspotY) 153 { 154 SVGAGBCursorHeader *header; 155 SVGAGBAlphaCursorHeader *alpha_header; 156 const u32 image_size = width * height * sizeof(*image); 157 158 header = vmw_bo_map_and_cache(vps->cursor.bo); 159 alpha_header = &header->header.alphaHeader; 160 161 memset(header, 0, sizeof(*header)); 162 163 header->type = SVGA_ALPHA_CURSOR; 164 header->sizeInBytes = image_size; 165 166 alpha_header->hotspotX = hotspotX; 167 alpha_header->hotspotY = hotspotY; 168 alpha_header->width = width; 169 alpha_header->height = height; 170 171 memcpy(header + 1, image, image_size); 172 vmw_write(dev_priv, SVGA_REG_CURSOR_MOBID, 173 vps->cursor.bo->tbo.resource->start); 174 } 175 176 177 static u32 vmw_du_cursor_mob_size(u32 w, u32 h) 178 { 179 return w * h * sizeof(u32) + sizeof(SVGAGBCursorHeader); 180 } 181 182 /** 183 * vmw_du_cursor_plane_acquire_image -- Acquire the image data 184 * @vps: cursor plane state 185 */ 186 static u32 *vmw_du_cursor_plane_acquire_image(struct vmw_plane_state *vps) 187 { 188 if (vps->surf) { 189 if (vps->surf_mapped) 190 return vmw_bo_map_and_cache(vps->surf->res.guest_memory_bo); 191 return vps->surf->snooper.image; 192 } else if (vps->bo) 193 return vmw_bo_map_and_cache(vps->bo); 194 return NULL; 195 } 196 197 static bool vmw_du_cursor_plane_has_changed(struct vmw_plane_state *old_vps, 198 struct vmw_plane_state *new_vps) 199 { 200 void *old_image; 201 void *new_image; 202 u32 size; 203 bool changed; 204 205 if (old_vps->base.crtc_w != new_vps->base.crtc_w || 206 old_vps->base.crtc_h != new_vps->base.crtc_h) 207 return true; 208 209 if (old_vps->cursor.hotspot_x != new_vps->cursor.hotspot_x || 210 old_vps->cursor.hotspot_y != new_vps->cursor.hotspot_y) 211 return true; 212 213 size = new_vps->base.crtc_w * new_vps->base.crtc_h * sizeof(u32); 214 215 old_image = vmw_du_cursor_plane_acquire_image(old_vps); 216 new_image = vmw_du_cursor_plane_acquire_image(new_vps); 217 218 changed = false; 219 if (old_image && new_image && old_image != new_image) 220 changed = memcmp(old_image, new_image, size) != 0; 221 222 return changed; 223 } 224 225 static void vmw_du_destroy_cursor_mob(struct vmw_bo **vbo) 226 { 227 if (!(*vbo)) 228 return; 229 230 ttm_bo_unpin(&(*vbo)->tbo); 231 vmw_bo_unreference(vbo); 232 } 233 234 static void vmw_du_put_cursor_mob(struct vmw_cursor_plane *vcp, 235 struct vmw_plane_state *vps) 236 { 237 u32 i; 238 239 if (!vps->cursor.bo) 240 return; 241 242 vmw_du_cursor_plane_unmap_cm(vps); 243 244 /* Look for a free slot to return this mob to the cache. */ 245 for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) { 246 if (!vcp->cursor_mobs[i]) { 247 vcp->cursor_mobs[i] = vps->cursor.bo; 248 vps->cursor.bo = NULL; 249 return; 250 } 251 } 252 253 /* Cache is full: See if this mob is bigger than an existing mob. */ 254 for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) { 255 if (vcp->cursor_mobs[i]->tbo.base.size < 256 vps->cursor.bo->tbo.base.size) { 257 vmw_du_destroy_cursor_mob(&vcp->cursor_mobs[i]); 258 vcp->cursor_mobs[i] = vps->cursor.bo; 259 vps->cursor.bo = NULL; 260 return; 261 } 262 } 263 264 /* Destroy it if it's not worth caching. */ 265 vmw_du_destroy_cursor_mob(&vps->cursor.bo); 266 } 267 268 static int vmw_du_get_cursor_mob(struct vmw_cursor_plane *vcp, 269 struct vmw_plane_state *vps) 270 { 271 struct vmw_private *dev_priv = vcp->base.dev->dev_private; 272 u32 size = vmw_du_cursor_mob_size(vps->base.crtc_w, vps->base.crtc_h); 273 u32 i; 274 u32 cursor_max_dim, mob_max_size; 275 struct vmw_fence_obj *fence = NULL; 276 int ret; 277 278 if (!dev_priv->has_mob || 279 (dev_priv->capabilities2 & SVGA_CAP2_CURSOR_MOB) == 0) 280 return -EINVAL; 281 282 mob_max_size = vmw_read(dev_priv, SVGA_REG_MOB_MAX_SIZE); 283 cursor_max_dim = vmw_read(dev_priv, SVGA_REG_CURSOR_MAX_DIMENSION); 284 285 if (size > mob_max_size || vps->base.crtc_w > cursor_max_dim || 286 vps->base.crtc_h > cursor_max_dim) 287 return -EINVAL; 288 289 if (vps->cursor.bo) { 290 if (vps->cursor.bo->tbo.base.size >= size) 291 return 0; 292 vmw_du_put_cursor_mob(vcp, vps); 293 } 294 295 /* Look for an unused mob in the cache. */ 296 for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) { 297 if (vcp->cursor_mobs[i] && 298 vcp->cursor_mobs[i]->tbo.base.size >= size) { 299 vps->cursor.bo = vcp->cursor_mobs[i]; 300 vcp->cursor_mobs[i] = NULL; 301 return 0; 302 } 303 } 304 /* Create a new mob if we can't find an existing one. */ 305 ret = vmw_bo_create_and_populate(dev_priv, size, 306 VMW_BO_DOMAIN_MOB, 307 &vps->cursor.bo); 308 309 if (ret != 0) 310 return ret; 311 312 /* Fence the mob creation so we are guarateed to have the mob */ 313 ret = ttm_bo_reserve(&vps->cursor.bo->tbo, false, false, NULL); 314 if (ret != 0) 315 goto teardown; 316 317 ret = vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); 318 if (ret != 0) { 319 ttm_bo_unreserve(&vps->cursor.bo->tbo); 320 goto teardown; 321 } 322 323 dma_fence_wait(&fence->base, false); 324 dma_fence_put(&fence->base); 325 326 ttm_bo_unreserve(&vps->cursor.bo->tbo); 327 return 0; 328 329 teardown: 330 vmw_du_destroy_cursor_mob(&vps->cursor.bo); 331 return ret; 332 } 333 334 335 static void vmw_cursor_update_position(struct vmw_private *dev_priv, 336 bool show, int x, int y) 337 { 338 const uint32_t svga_cursor_on = show ? SVGA_CURSOR_ON_SHOW 339 : SVGA_CURSOR_ON_HIDE; 340 uint32_t count; 341 342 spin_lock(&dev_priv->cursor_lock); 343 if (dev_priv->capabilities2 & SVGA_CAP2_EXTRA_REGS) { 344 vmw_write(dev_priv, SVGA_REG_CURSOR4_X, x); 345 vmw_write(dev_priv, SVGA_REG_CURSOR4_Y, y); 346 vmw_write(dev_priv, SVGA_REG_CURSOR4_SCREEN_ID, SVGA3D_INVALID_ID); 347 vmw_write(dev_priv, SVGA_REG_CURSOR4_ON, svga_cursor_on); 348 vmw_write(dev_priv, SVGA_REG_CURSOR4_SUBMIT, 1); 349 } else if (vmw_is_cursor_bypass3_enabled(dev_priv)) { 350 vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_ON, svga_cursor_on); 351 vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_X, x); 352 vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_Y, y); 353 count = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_CURSOR_COUNT); 354 vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_COUNT, ++count); 355 } else { 356 vmw_write(dev_priv, SVGA_REG_CURSOR_X, x); 357 vmw_write(dev_priv, SVGA_REG_CURSOR_Y, y); 358 vmw_write(dev_priv, SVGA_REG_CURSOR_ON, svga_cursor_on); 359 } 360 spin_unlock(&dev_priv->cursor_lock); 361 } 362 363 void vmw_kms_cursor_snoop(struct vmw_surface *srf, 364 struct ttm_object_file *tfile, 365 struct ttm_buffer_object *bo, 366 SVGA3dCmdHeader *header) 367 { 368 struct ttm_bo_kmap_obj map; 369 unsigned long kmap_offset; 370 unsigned long kmap_num; 371 SVGA3dCopyBox *box; 372 unsigned box_count; 373 void *virtual; 374 bool is_iomem; 375 struct vmw_dma_cmd { 376 SVGA3dCmdHeader header; 377 SVGA3dCmdSurfaceDMA dma; 378 } *cmd; 379 int i, ret; 380 const struct SVGA3dSurfaceDesc *desc = 381 vmw_surface_get_desc(VMW_CURSOR_SNOOP_FORMAT); 382 const u32 image_pitch = VMW_CURSOR_SNOOP_WIDTH * desc->pitchBytesPerBlock; 383 384 cmd = container_of(header, struct vmw_dma_cmd, header); 385 386 /* No snooper installed, nothing to copy */ 387 if (!srf->snooper.image) 388 return; 389 390 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) { 391 DRM_ERROR("face and mipmap for cursors should never != 0\n"); 392 return; 393 } 394 395 if (cmd->header.size < 64) { 396 DRM_ERROR("at least one full copy box must be given\n"); 397 return; 398 } 399 400 box = (SVGA3dCopyBox *)&cmd[1]; 401 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) / 402 sizeof(SVGA3dCopyBox); 403 404 if (cmd->dma.guest.ptr.offset % PAGE_SIZE || 405 box->x != 0 || box->y != 0 || box->z != 0 || 406 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 || 407 box->d != 1 || box_count != 1 || 408 box->w > VMW_CURSOR_SNOOP_WIDTH || box->h > VMW_CURSOR_SNOOP_HEIGHT) { 409 /* TODO handle none page aligned offsets */ 410 /* TODO handle more dst & src != 0 */ 411 /* TODO handle more then one copy */ 412 DRM_ERROR("Can't snoop dma request for cursor!\n"); 413 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n", 414 box->srcx, box->srcy, box->srcz, 415 box->x, box->y, box->z, 416 box->w, box->h, box->d, box_count, 417 cmd->dma.guest.ptr.offset); 418 return; 419 } 420 421 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT; 422 kmap_num = (VMW_CURSOR_SNOOP_HEIGHT*image_pitch) >> PAGE_SHIFT; 423 424 ret = ttm_bo_reserve(bo, true, false, NULL); 425 if (unlikely(ret != 0)) { 426 DRM_ERROR("reserve failed\n"); 427 return; 428 } 429 430 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map); 431 if (unlikely(ret != 0)) 432 goto err_unreserve; 433 434 virtual = ttm_kmap_obj_virtual(&map, &is_iomem); 435 436 if (box->w == VMW_CURSOR_SNOOP_WIDTH && cmd->dma.guest.pitch == image_pitch) { 437 memcpy(srf->snooper.image, virtual, 438 VMW_CURSOR_SNOOP_HEIGHT*image_pitch); 439 } else { 440 /* Image is unsigned pointer. */ 441 for (i = 0; i < box->h; i++) 442 memcpy(srf->snooper.image + i * image_pitch, 443 virtual + i * cmd->dma.guest.pitch, 444 box->w * desc->pitchBytesPerBlock); 445 } 446 447 srf->snooper.age++; 448 449 ttm_bo_kunmap(&map); 450 err_unreserve: 451 ttm_bo_unreserve(bo); 452 } 453 454 /** 455 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots 456 * 457 * @dev_priv: Pointer to the device private struct. 458 * 459 * Clears all legacy hotspots. 460 */ 461 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv) 462 { 463 struct drm_device *dev = &dev_priv->drm; 464 struct vmw_display_unit *du; 465 struct drm_crtc *crtc; 466 467 drm_modeset_lock_all(dev); 468 drm_for_each_crtc(crtc, dev) { 469 du = vmw_crtc_to_du(crtc); 470 471 du->hotspot_x = 0; 472 du->hotspot_y = 0; 473 } 474 drm_modeset_unlock_all(dev); 475 } 476 477 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv) 478 { 479 struct drm_device *dev = &dev_priv->drm; 480 struct vmw_display_unit *du; 481 struct drm_crtc *crtc; 482 483 mutex_lock(&dev->mode_config.mutex); 484 485 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 486 du = vmw_crtc_to_du(crtc); 487 if (!du->cursor_surface || 488 du->cursor_age == du->cursor_surface->snooper.age || 489 !du->cursor_surface->snooper.image) 490 continue; 491 492 du->cursor_age = du->cursor_surface->snooper.age; 493 vmw_send_define_cursor_cmd(dev_priv, 494 du->cursor_surface->snooper.image, 495 VMW_CURSOR_SNOOP_WIDTH, 496 VMW_CURSOR_SNOOP_HEIGHT, 497 du->hotspot_x + du->core_hotspot_x, 498 du->hotspot_y + du->core_hotspot_y); 499 } 500 501 mutex_unlock(&dev->mode_config.mutex); 502 } 503 504 505 void vmw_du_cursor_plane_destroy(struct drm_plane *plane) 506 { 507 struct vmw_cursor_plane *vcp = vmw_plane_to_vcp(plane); 508 u32 i; 509 510 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0); 511 512 for (i = 0; i < ARRAY_SIZE(vcp->cursor_mobs); i++) 513 vmw_du_destroy_cursor_mob(&vcp->cursor_mobs[i]); 514 515 drm_plane_cleanup(plane); 516 } 517 518 519 void vmw_du_primary_plane_destroy(struct drm_plane *plane) 520 { 521 drm_plane_cleanup(plane); 522 523 /* Planes are static in our case so we don't free it */ 524 } 525 526 527 /** 528 * vmw_du_plane_unpin_surf - unpins resource associated with a framebuffer surface 529 * 530 * @vps: plane state associated with the display surface 531 * @unreference: true if we also want to unreference the display. 532 */ 533 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps, 534 bool unreference) 535 { 536 if (vps->surf) { 537 if (vps->pinned) { 538 vmw_resource_unpin(&vps->surf->res); 539 vps->pinned--; 540 } 541 542 if (unreference) { 543 if (vps->pinned) 544 DRM_ERROR("Surface still pinned\n"); 545 vmw_surface_unreference(&vps->surf); 546 } 547 } 548 } 549 550 551 /** 552 * vmw_du_plane_cleanup_fb - Unpins the plane surface 553 * 554 * @plane: display plane 555 * @old_state: Contains the FB to clean up 556 * 557 * Unpins the framebuffer surface 558 * 559 * Returns 0 on success 560 */ 561 void 562 vmw_du_plane_cleanup_fb(struct drm_plane *plane, 563 struct drm_plane_state *old_state) 564 { 565 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); 566 567 vmw_du_plane_unpin_surf(vps, false); 568 } 569 570 571 /** 572 * vmw_du_cursor_plane_map_cm - Maps the cursor mobs. 573 * 574 * @vps: plane_state 575 * 576 * Returns 0 on success 577 */ 578 579 static int 580 vmw_du_cursor_plane_map_cm(struct vmw_plane_state *vps) 581 { 582 int ret; 583 u32 size = vmw_du_cursor_mob_size(vps->base.crtc_w, vps->base.crtc_h); 584 struct ttm_buffer_object *bo; 585 586 if (!vps->cursor.bo) 587 return -EINVAL; 588 589 bo = &vps->cursor.bo->tbo; 590 591 if (bo->base.size < size) 592 return -EINVAL; 593 594 if (vps->cursor.bo->map.virtual) 595 return 0; 596 597 ret = ttm_bo_reserve(bo, false, false, NULL); 598 if (unlikely(ret != 0)) 599 return -ENOMEM; 600 601 vmw_bo_map_and_cache(vps->cursor.bo); 602 603 ttm_bo_unreserve(bo); 604 605 if (unlikely(ret != 0)) 606 return -ENOMEM; 607 608 return 0; 609 } 610 611 612 /** 613 * vmw_du_cursor_plane_unmap_cm - Unmaps the cursor mobs. 614 * 615 * @vps: state of the cursor plane 616 * 617 * Returns 0 on success 618 */ 619 620 static int 621 vmw_du_cursor_plane_unmap_cm(struct vmw_plane_state *vps) 622 { 623 int ret = 0; 624 struct vmw_bo *vbo = vps->cursor.bo; 625 626 if (!vbo || !vbo->map.virtual) 627 return 0; 628 629 ret = ttm_bo_reserve(&vbo->tbo, true, false, NULL); 630 if (likely(ret == 0)) { 631 vmw_bo_unmap(vbo); 632 ttm_bo_unreserve(&vbo->tbo); 633 } 634 635 return ret; 636 } 637 638 639 /** 640 * vmw_du_cursor_plane_cleanup_fb - Unpins the plane surface 641 * 642 * @plane: cursor plane 643 * @old_state: contains the state to clean up 644 * 645 * Unmaps all cursor bo mappings and unpins the cursor surface 646 * 647 * Returns 0 on success 648 */ 649 void 650 vmw_du_cursor_plane_cleanup_fb(struct drm_plane *plane, 651 struct drm_plane_state *old_state) 652 { 653 struct vmw_cursor_plane *vcp = vmw_plane_to_vcp(plane); 654 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); 655 656 if (vps->surf_mapped) { 657 vmw_bo_unmap(vps->surf->res.guest_memory_bo); 658 vps->surf_mapped = false; 659 } 660 661 vmw_du_cursor_plane_unmap_cm(vps); 662 vmw_du_put_cursor_mob(vcp, vps); 663 664 vmw_du_plane_unpin_surf(vps, false); 665 666 if (vps->surf) { 667 vmw_surface_unreference(&vps->surf); 668 vps->surf = NULL; 669 } 670 671 if (vps->bo) { 672 vmw_bo_unreference(&vps->bo); 673 vps->bo = NULL; 674 } 675 } 676 677 678 /** 679 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it 680 * 681 * @plane: display plane 682 * @new_state: info on the new plane state, including the FB 683 * 684 * Returns 0 on success 685 */ 686 int 687 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane, 688 struct drm_plane_state *new_state) 689 { 690 struct drm_framebuffer *fb = new_state->fb; 691 struct vmw_cursor_plane *vcp = vmw_plane_to_vcp(plane); 692 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); 693 int ret = 0; 694 695 if (vps->surf) { 696 if (vps->surf_mapped) { 697 vmw_bo_unmap(vps->surf->res.guest_memory_bo); 698 vps->surf_mapped = false; 699 } 700 vmw_surface_unreference(&vps->surf); 701 vps->surf = NULL; 702 } 703 704 if (vps->bo) { 705 vmw_bo_unreference(&vps->bo); 706 vps->bo = NULL; 707 } 708 709 if (fb) { 710 if (vmw_framebuffer_to_vfb(fb)->bo) { 711 vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer; 712 vmw_bo_reference(vps->bo); 713 } else { 714 vps->surf = vmw_framebuffer_to_vfbs(fb)->surface; 715 vmw_surface_reference(vps->surf); 716 } 717 } 718 719 if (!vps->surf && vps->bo) { 720 const u32 size = new_state->crtc_w * new_state->crtc_h * sizeof(u32); 721 722 /* 723 * Not using vmw_bo_map_and_cache() helper here as we need to 724 * reserve the ttm_buffer_object first which 725 * vmw_bo_map_and_cache() omits. 726 */ 727 ret = ttm_bo_reserve(&vps->bo->tbo, true, false, NULL); 728 729 if (unlikely(ret != 0)) 730 return -ENOMEM; 731 732 ret = ttm_bo_kmap(&vps->bo->tbo, 0, PFN_UP(size), &vps->bo->map); 733 734 ttm_bo_unreserve(&vps->bo->tbo); 735 736 if (unlikely(ret != 0)) 737 return -ENOMEM; 738 } else if (vps->surf && !vps->bo && vps->surf->res.guest_memory_bo) { 739 740 WARN_ON(vps->surf->snooper.image); 741 ret = ttm_bo_reserve(&vps->surf->res.guest_memory_bo->tbo, true, false, 742 NULL); 743 if (unlikely(ret != 0)) 744 return -ENOMEM; 745 vmw_bo_map_and_cache(vps->surf->res.guest_memory_bo); 746 ttm_bo_unreserve(&vps->surf->res.guest_memory_bo->tbo); 747 vps->surf_mapped = true; 748 } 749 750 if (vps->surf || vps->bo) { 751 vmw_du_get_cursor_mob(vcp, vps); 752 vmw_du_cursor_plane_map_cm(vps); 753 } 754 755 return 0; 756 } 757 758 759 void 760 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane, 761 struct drm_atomic_state *state) 762 { 763 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 764 plane); 765 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, 766 plane); 767 struct drm_crtc *crtc = new_state->crtc ?: old_state->crtc; 768 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 769 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 770 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); 771 struct vmw_plane_state *old_vps = vmw_plane_state_to_vps(old_state); 772 s32 hotspot_x, hotspot_y; 773 774 hotspot_x = du->hotspot_x; 775 hotspot_y = du->hotspot_y; 776 777 if (new_state->fb) { 778 hotspot_x += new_state->fb->hot_x; 779 hotspot_y += new_state->fb->hot_y; 780 } 781 782 du->cursor_surface = vps->surf; 783 du->cursor_bo = vps->bo; 784 785 if (!vps->surf && !vps->bo) { 786 vmw_cursor_update_position(dev_priv, false, 0, 0); 787 return; 788 } 789 790 vps->cursor.hotspot_x = hotspot_x; 791 vps->cursor.hotspot_y = hotspot_y; 792 793 if (vps->surf) { 794 du->cursor_age = du->cursor_surface->snooper.age; 795 } 796 797 if (!vmw_du_cursor_plane_has_changed(old_vps, vps)) { 798 /* 799 * If it hasn't changed, avoid making the device do extra 800 * work by keeping the old cursor active. 801 */ 802 struct vmw_cursor_plane_state tmp = old_vps->cursor; 803 old_vps->cursor = vps->cursor; 804 vps->cursor = tmp; 805 } else { 806 void *image = vmw_du_cursor_plane_acquire_image(vps); 807 if (image) 808 vmw_cursor_update_image(dev_priv, vps, image, 809 new_state->crtc_w, 810 new_state->crtc_h, 811 hotspot_x, hotspot_y); 812 } 813 814 du->cursor_x = new_state->crtc_x + du->set_gui_x; 815 du->cursor_y = new_state->crtc_y + du->set_gui_y; 816 817 vmw_cursor_update_position(dev_priv, true, 818 du->cursor_x + hotspot_x, 819 du->cursor_y + hotspot_y); 820 821 du->core_hotspot_x = hotspot_x - du->hotspot_x; 822 du->core_hotspot_y = hotspot_y - du->hotspot_y; 823 } 824 825 826 /** 827 * vmw_du_primary_plane_atomic_check - check if the new state is okay 828 * 829 * @plane: display plane 830 * @state: info on the new plane state, including the FB 831 * 832 * Check if the new state is settable given the current state. Other 833 * than what the atomic helper checks, we care about crtc fitting 834 * the FB and maintaining one active framebuffer. 835 * 836 * Returns 0 on success 837 */ 838 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane, 839 struct drm_atomic_state *state) 840 { 841 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 842 plane); 843 struct drm_crtc_state *crtc_state = NULL; 844 struct drm_framebuffer *new_fb = new_state->fb; 845 int ret; 846 847 if (new_state->crtc) 848 crtc_state = drm_atomic_get_new_crtc_state(state, 849 new_state->crtc); 850 851 ret = drm_atomic_helper_check_plane_state(new_state, crtc_state, 852 DRM_PLANE_NO_SCALING, 853 DRM_PLANE_NO_SCALING, 854 false, true); 855 856 if (!ret && new_fb) { 857 struct drm_crtc *crtc = new_state->crtc; 858 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 859 860 vmw_connector_state_to_vcs(du->connector.state); 861 } 862 863 864 return ret; 865 } 866 867 868 /** 869 * vmw_du_cursor_plane_atomic_check - check if the new state is okay 870 * 871 * @plane: cursor plane 872 * @state: info on the new plane state 873 * 874 * This is a chance to fail if the new cursor state does not fit 875 * our requirements. 876 * 877 * Returns 0 on success 878 */ 879 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane, 880 struct drm_atomic_state *state) 881 { 882 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 883 plane); 884 int ret = 0; 885 struct drm_crtc_state *crtc_state = NULL; 886 struct vmw_surface *surface = NULL; 887 struct drm_framebuffer *fb = new_state->fb; 888 889 if (new_state->crtc) 890 crtc_state = drm_atomic_get_new_crtc_state(new_state->state, 891 new_state->crtc); 892 893 ret = drm_atomic_helper_check_plane_state(new_state, crtc_state, 894 DRM_PLANE_NO_SCALING, 895 DRM_PLANE_NO_SCALING, 896 true, true); 897 if (ret) 898 return ret; 899 900 /* Turning off */ 901 if (!fb) 902 return 0; 903 904 /* A lot of the code assumes this */ 905 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) { 906 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n", 907 new_state->crtc_w, new_state->crtc_h); 908 return -EINVAL; 909 } 910 911 if (!vmw_framebuffer_to_vfb(fb)->bo) { 912 surface = vmw_framebuffer_to_vfbs(fb)->surface; 913 914 WARN_ON(!surface); 915 916 if (!surface || 917 (!surface->snooper.image && !surface->res.guest_memory_bo)) { 918 DRM_ERROR("surface not suitable for cursor\n"); 919 return -EINVAL; 920 } 921 } 922 923 return 0; 924 } 925 926 927 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc, 928 struct drm_atomic_state *state) 929 { 930 struct vmw_private *vmw = vmw_priv(crtc->dev); 931 struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state, 932 crtc); 933 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc); 934 int connector_mask = drm_connector_mask(&du->connector); 935 bool has_primary = new_state->plane_mask & 936 drm_plane_mask(crtc->primary); 937 938 /* 939 * This is fine in general, but broken userspace might expect 940 * some actual rendering so give a clue as why it's blank. 941 */ 942 if (new_state->enable && !has_primary) 943 drm_dbg_driver(&vmw->drm, 944 "CRTC without a primary plane will be blank.\n"); 945 946 947 if (new_state->connector_mask != connector_mask && 948 new_state->connector_mask != 0) { 949 DRM_ERROR("Invalid connectors configuration\n"); 950 return -EINVAL; 951 } 952 953 /* 954 * Our virtual device does not have a dot clock, so use the logical 955 * clock value as the dot clock. 956 */ 957 if (new_state->mode.crtc_clock == 0) 958 new_state->adjusted_mode.crtc_clock = new_state->mode.clock; 959 960 return 0; 961 } 962 963 964 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc, 965 struct drm_atomic_state *state) 966 { 967 } 968 969 970 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc, 971 struct drm_atomic_state *state) 972 { 973 } 974 975 976 /** 977 * vmw_du_crtc_duplicate_state - duplicate crtc state 978 * @crtc: DRM crtc 979 * 980 * Allocates and returns a copy of the crtc state (both common and 981 * vmw-specific) for the specified crtc. 982 * 983 * Returns: The newly allocated crtc state, or NULL on failure. 984 */ 985 struct drm_crtc_state * 986 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc) 987 { 988 struct drm_crtc_state *state; 989 struct vmw_crtc_state *vcs; 990 991 if (WARN_ON(!crtc->state)) 992 return NULL; 993 994 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL); 995 996 if (!vcs) 997 return NULL; 998 999 state = &vcs->base; 1000 1001 __drm_atomic_helper_crtc_duplicate_state(crtc, state); 1002 1003 return state; 1004 } 1005 1006 1007 /** 1008 * vmw_du_crtc_reset - creates a blank vmw crtc state 1009 * @crtc: DRM crtc 1010 * 1011 * Resets the atomic state for @crtc by freeing the state pointer (which 1012 * might be NULL, e.g. at driver load time) and allocating a new empty state 1013 * object. 1014 */ 1015 void vmw_du_crtc_reset(struct drm_crtc *crtc) 1016 { 1017 struct vmw_crtc_state *vcs; 1018 1019 1020 if (crtc->state) { 1021 __drm_atomic_helper_crtc_destroy_state(crtc->state); 1022 1023 kfree(vmw_crtc_state_to_vcs(crtc->state)); 1024 } 1025 1026 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 1027 1028 if (!vcs) { 1029 DRM_ERROR("Cannot allocate vmw_crtc_state\n"); 1030 return; 1031 } 1032 1033 __drm_atomic_helper_crtc_reset(crtc, &vcs->base); 1034 } 1035 1036 1037 /** 1038 * vmw_du_crtc_destroy_state - destroy crtc state 1039 * @crtc: DRM crtc 1040 * @state: state object to destroy 1041 * 1042 * Destroys the crtc state (both common and vmw-specific) for the 1043 * specified plane. 1044 */ 1045 void 1046 vmw_du_crtc_destroy_state(struct drm_crtc *crtc, 1047 struct drm_crtc_state *state) 1048 { 1049 drm_atomic_helper_crtc_destroy_state(crtc, state); 1050 } 1051 1052 1053 /** 1054 * vmw_du_plane_duplicate_state - duplicate plane state 1055 * @plane: drm plane 1056 * 1057 * Allocates and returns a copy of the plane state (both common and 1058 * vmw-specific) for the specified plane. 1059 * 1060 * Returns: The newly allocated plane state, or NULL on failure. 1061 */ 1062 struct drm_plane_state * 1063 vmw_du_plane_duplicate_state(struct drm_plane *plane) 1064 { 1065 struct drm_plane_state *state; 1066 struct vmw_plane_state *vps; 1067 1068 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL); 1069 1070 if (!vps) 1071 return NULL; 1072 1073 vps->pinned = 0; 1074 vps->cpp = 0; 1075 1076 memset(&vps->cursor, 0, sizeof(vps->cursor)); 1077 1078 /* Each ref counted resource needs to be acquired again */ 1079 if (vps->surf) 1080 (void) vmw_surface_reference(vps->surf); 1081 1082 if (vps->bo) 1083 (void) vmw_bo_reference(vps->bo); 1084 1085 state = &vps->base; 1086 1087 __drm_atomic_helper_plane_duplicate_state(plane, state); 1088 1089 return state; 1090 } 1091 1092 1093 /** 1094 * vmw_du_plane_reset - creates a blank vmw plane state 1095 * @plane: drm plane 1096 * 1097 * Resets the atomic state for @plane by freeing the state pointer (which might 1098 * be NULL, e.g. at driver load time) and allocating a new empty state object. 1099 */ 1100 void vmw_du_plane_reset(struct drm_plane *plane) 1101 { 1102 struct vmw_plane_state *vps; 1103 1104 if (plane->state) 1105 vmw_du_plane_destroy_state(plane, plane->state); 1106 1107 vps = kzalloc(sizeof(*vps), GFP_KERNEL); 1108 1109 if (!vps) { 1110 DRM_ERROR("Cannot allocate vmw_plane_state\n"); 1111 return; 1112 } 1113 1114 __drm_atomic_helper_plane_reset(plane, &vps->base); 1115 } 1116 1117 1118 /** 1119 * vmw_du_plane_destroy_state - destroy plane state 1120 * @plane: DRM plane 1121 * @state: state object to destroy 1122 * 1123 * Destroys the plane state (both common and vmw-specific) for the 1124 * specified plane. 1125 */ 1126 void 1127 vmw_du_plane_destroy_state(struct drm_plane *plane, 1128 struct drm_plane_state *state) 1129 { 1130 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state); 1131 1132 /* Should have been freed by cleanup_fb */ 1133 if (vps->surf) 1134 vmw_surface_unreference(&vps->surf); 1135 1136 if (vps->bo) 1137 vmw_bo_unreference(&vps->bo); 1138 1139 drm_atomic_helper_plane_destroy_state(plane, state); 1140 } 1141 1142 1143 /** 1144 * vmw_du_connector_duplicate_state - duplicate connector state 1145 * @connector: DRM connector 1146 * 1147 * Allocates and returns a copy of the connector state (both common and 1148 * vmw-specific) for the specified connector. 1149 * 1150 * Returns: The newly allocated connector state, or NULL on failure. 1151 */ 1152 struct drm_connector_state * 1153 vmw_du_connector_duplicate_state(struct drm_connector *connector) 1154 { 1155 struct drm_connector_state *state; 1156 struct vmw_connector_state *vcs; 1157 1158 if (WARN_ON(!connector->state)) 1159 return NULL; 1160 1161 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL); 1162 1163 if (!vcs) 1164 return NULL; 1165 1166 state = &vcs->base; 1167 1168 __drm_atomic_helper_connector_duplicate_state(connector, state); 1169 1170 return state; 1171 } 1172 1173 1174 /** 1175 * vmw_du_connector_reset - creates a blank vmw connector state 1176 * @connector: DRM connector 1177 * 1178 * Resets the atomic state for @connector by freeing the state pointer (which 1179 * might be NULL, e.g. at driver load time) and allocating a new empty state 1180 * object. 1181 */ 1182 void vmw_du_connector_reset(struct drm_connector *connector) 1183 { 1184 struct vmw_connector_state *vcs; 1185 1186 1187 if (connector->state) { 1188 __drm_atomic_helper_connector_destroy_state(connector->state); 1189 1190 kfree(vmw_connector_state_to_vcs(connector->state)); 1191 } 1192 1193 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 1194 1195 if (!vcs) { 1196 DRM_ERROR("Cannot allocate vmw_connector_state\n"); 1197 return; 1198 } 1199 1200 __drm_atomic_helper_connector_reset(connector, &vcs->base); 1201 } 1202 1203 1204 /** 1205 * vmw_du_connector_destroy_state - destroy connector state 1206 * @connector: DRM connector 1207 * @state: state object to destroy 1208 * 1209 * Destroys the connector state (both common and vmw-specific) for the 1210 * specified plane. 1211 */ 1212 void 1213 vmw_du_connector_destroy_state(struct drm_connector *connector, 1214 struct drm_connector_state *state) 1215 { 1216 drm_atomic_helper_connector_destroy_state(connector, state); 1217 } 1218 /* 1219 * Generic framebuffer code 1220 */ 1221 1222 /* 1223 * Surface framebuffer code 1224 */ 1225 1226 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer) 1227 { 1228 struct vmw_framebuffer_surface *vfbs = 1229 vmw_framebuffer_to_vfbs(framebuffer); 1230 1231 drm_framebuffer_cleanup(framebuffer); 1232 vmw_surface_unreference(&vfbs->surface); 1233 1234 kfree(vfbs); 1235 } 1236 1237 /** 1238 * vmw_kms_readback - Perform a readback from the screen system to 1239 * a buffer-object backed framebuffer. 1240 * 1241 * @dev_priv: Pointer to the device private structure. 1242 * @file_priv: Pointer to a struct drm_file identifying the caller. 1243 * Must be set to NULL if @user_fence_rep is NULL. 1244 * @vfb: Pointer to the buffer-object backed framebuffer. 1245 * @user_fence_rep: User-space provided structure for fence information. 1246 * Must be set to non-NULL if @file_priv is non-NULL. 1247 * @vclips: Array of clip rects. 1248 * @num_clips: Number of clip rects in @vclips. 1249 * 1250 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 1251 * interrupted. 1252 */ 1253 int vmw_kms_readback(struct vmw_private *dev_priv, 1254 struct drm_file *file_priv, 1255 struct vmw_framebuffer *vfb, 1256 struct drm_vmw_fence_rep __user *user_fence_rep, 1257 struct drm_vmw_rect *vclips, 1258 uint32_t num_clips) 1259 { 1260 switch (dev_priv->active_display_unit) { 1261 case vmw_du_screen_object: 1262 return vmw_kms_sou_readback(dev_priv, file_priv, vfb, 1263 user_fence_rep, vclips, num_clips, 1264 NULL); 1265 case vmw_du_screen_target: 1266 return vmw_kms_stdu_readback(dev_priv, file_priv, vfb, 1267 user_fence_rep, NULL, vclips, num_clips, 1268 1, NULL); 1269 default: 1270 WARN_ONCE(true, 1271 "Readback called with invalid display system.\n"); 1272 } 1273 1274 return -ENOSYS; 1275 } 1276 1277 1278 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = { 1279 .destroy = vmw_framebuffer_surface_destroy, 1280 .dirty = drm_atomic_helper_dirtyfb, 1281 }; 1282 1283 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv, 1284 struct vmw_surface *surface, 1285 struct vmw_framebuffer **out, 1286 const struct drm_mode_fb_cmd2 1287 *mode_cmd, 1288 bool is_bo_proxy) 1289 1290 { 1291 struct drm_device *dev = &dev_priv->drm; 1292 struct vmw_framebuffer_surface *vfbs; 1293 enum SVGA3dSurfaceFormat format; 1294 int ret; 1295 1296 /* 3D is only supported on HWv8 and newer hosts */ 1297 if (dev_priv->active_display_unit == vmw_du_legacy) 1298 return -ENOSYS; 1299 1300 /* 1301 * Sanity checks. 1302 */ 1303 1304 if (!drm_any_plane_has_format(&dev_priv->drm, 1305 mode_cmd->pixel_format, 1306 mode_cmd->modifier[0])) { 1307 drm_dbg(&dev_priv->drm, 1308 "unsupported pixel format %p4cc / modifier 0x%llx\n", 1309 &mode_cmd->pixel_format, mode_cmd->modifier[0]); 1310 return -EINVAL; 1311 } 1312 1313 /* Surface must be marked as a scanout. */ 1314 if (unlikely(!surface->metadata.scanout)) 1315 return -EINVAL; 1316 1317 if (unlikely(surface->metadata.mip_levels[0] != 1 || 1318 surface->metadata.num_sizes != 1 || 1319 surface->metadata.base_size.width < mode_cmd->width || 1320 surface->metadata.base_size.height < mode_cmd->height || 1321 surface->metadata.base_size.depth != 1)) { 1322 DRM_ERROR("Incompatible surface dimensions " 1323 "for requested mode.\n"); 1324 return -EINVAL; 1325 } 1326 1327 switch (mode_cmd->pixel_format) { 1328 case DRM_FORMAT_ARGB8888: 1329 format = SVGA3D_A8R8G8B8; 1330 break; 1331 case DRM_FORMAT_XRGB8888: 1332 format = SVGA3D_X8R8G8B8; 1333 break; 1334 case DRM_FORMAT_RGB565: 1335 format = SVGA3D_R5G6B5; 1336 break; 1337 case DRM_FORMAT_XRGB1555: 1338 format = SVGA3D_A1R5G5B5; 1339 break; 1340 default: 1341 DRM_ERROR("Invalid pixel format: %p4cc\n", 1342 &mode_cmd->pixel_format); 1343 return -EINVAL; 1344 } 1345 1346 /* 1347 * For DX, surface format validation is done when surface->scanout 1348 * is set. 1349 */ 1350 if (!has_sm4_context(dev_priv) && format != surface->metadata.format) { 1351 DRM_ERROR("Invalid surface format for requested mode.\n"); 1352 return -EINVAL; 1353 } 1354 1355 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL); 1356 if (!vfbs) { 1357 ret = -ENOMEM; 1358 goto out_err1; 1359 } 1360 1361 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd); 1362 vfbs->surface = vmw_surface_reference(surface); 1363 vfbs->base.user_handle = mode_cmd->handles[0]; 1364 vfbs->is_bo_proxy = is_bo_proxy; 1365 1366 *out = &vfbs->base; 1367 1368 ret = drm_framebuffer_init(dev, &vfbs->base.base, 1369 &vmw_framebuffer_surface_funcs); 1370 if (ret) 1371 goto out_err2; 1372 1373 return 0; 1374 1375 out_err2: 1376 vmw_surface_unreference(&surface); 1377 kfree(vfbs); 1378 out_err1: 1379 return ret; 1380 } 1381 1382 /* 1383 * Buffer-object framebuffer code 1384 */ 1385 1386 static int vmw_framebuffer_bo_create_handle(struct drm_framebuffer *fb, 1387 struct drm_file *file_priv, 1388 unsigned int *handle) 1389 { 1390 struct vmw_framebuffer_bo *vfbd = 1391 vmw_framebuffer_to_vfbd(fb); 1392 1393 return drm_gem_handle_create(file_priv, &vfbd->buffer->tbo.base, handle); 1394 } 1395 1396 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer) 1397 { 1398 struct vmw_framebuffer_bo *vfbd = 1399 vmw_framebuffer_to_vfbd(framebuffer); 1400 1401 drm_framebuffer_cleanup(framebuffer); 1402 vmw_bo_unreference(&vfbd->buffer); 1403 1404 kfree(vfbd); 1405 } 1406 1407 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = { 1408 .create_handle = vmw_framebuffer_bo_create_handle, 1409 .destroy = vmw_framebuffer_bo_destroy, 1410 .dirty = drm_atomic_helper_dirtyfb, 1411 }; 1412 1413 /** 1414 * vmw_create_bo_proxy - create a proxy surface for the buffer object 1415 * 1416 * @dev: DRM device 1417 * @mode_cmd: parameters for the new surface 1418 * @bo_mob: MOB backing the buffer object 1419 * @srf_out: newly created surface 1420 * 1421 * When the content FB is a buffer object, we create a surface as a proxy to the 1422 * same buffer. This way we can do a surface copy rather than a surface DMA. 1423 * This is a more efficient approach 1424 * 1425 * RETURNS: 1426 * 0 on success, error code otherwise 1427 */ 1428 static int vmw_create_bo_proxy(struct drm_device *dev, 1429 const struct drm_mode_fb_cmd2 *mode_cmd, 1430 struct vmw_bo *bo_mob, 1431 struct vmw_surface **srf_out) 1432 { 1433 struct vmw_surface_metadata metadata = {0}; 1434 uint32_t format; 1435 struct vmw_resource *res; 1436 unsigned int bytes_pp; 1437 int ret; 1438 1439 switch (mode_cmd->pixel_format) { 1440 case DRM_FORMAT_ARGB8888: 1441 case DRM_FORMAT_XRGB8888: 1442 format = SVGA3D_X8R8G8B8; 1443 bytes_pp = 4; 1444 break; 1445 1446 case DRM_FORMAT_RGB565: 1447 case DRM_FORMAT_XRGB1555: 1448 format = SVGA3D_R5G6B5; 1449 bytes_pp = 2; 1450 break; 1451 1452 case 8: 1453 format = SVGA3D_P8; 1454 bytes_pp = 1; 1455 break; 1456 1457 default: 1458 DRM_ERROR("Invalid framebuffer format %p4cc\n", 1459 &mode_cmd->pixel_format); 1460 return -EINVAL; 1461 } 1462 1463 metadata.format = format; 1464 metadata.mip_levels[0] = 1; 1465 metadata.num_sizes = 1; 1466 metadata.base_size.width = mode_cmd->pitches[0] / bytes_pp; 1467 metadata.base_size.height = mode_cmd->height; 1468 metadata.base_size.depth = 1; 1469 metadata.scanout = true; 1470 1471 ret = vmw_gb_surface_define(vmw_priv(dev), &metadata, srf_out); 1472 if (ret) { 1473 DRM_ERROR("Failed to allocate proxy content buffer\n"); 1474 return ret; 1475 } 1476 1477 res = &(*srf_out)->res; 1478 1479 /* Reserve and switch the backing mob. */ 1480 mutex_lock(&res->dev_priv->cmdbuf_mutex); 1481 (void) vmw_resource_reserve(res, false, true); 1482 vmw_user_bo_unref(&res->guest_memory_bo); 1483 res->guest_memory_bo = vmw_user_bo_ref(bo_mob); 1484 res->guest_memory_offset = 0; 1485 vmw_resource_unreserve(res, false, false, false, NULL, 0); 1486 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 1487 1488 return 0; 1489 } 1490 1491 1492 1493 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv, 1494 struct vmw_bo *bo, 1495 struct vmw_framebuffer **out, 1496 const struct drm_mode_fb_cmd2 1497 *mode_cmd) 1498 1499 { 1500 struct drm_device *dev = &dev_priv->drm; 1501 struct vmw_framebuffer_bo *vfbd; 1502 unsigned int requested_size; 1503 int ret; 1504 1505 requested_size = mode_cmd->height * mode_cmd->pitches[0]; 1506 if (unlikely(requested_size > bo->tbo.base.size)) { 1507 DRM_ERROR("Screen buffer object size is too small " 1508 "for requested mode.\n"); 1509 return -EINVAL; 1510 } 1511 1512 if (!drm_any_plane_has_format(&dev_priv->drm, 1513 mode_cmd->pixel_format, 1514 mode_cmd->modifier[0])) { 1515 drm_dbg(&dev_priv->drm, 1516 "unsupported pixel format %p4cc / modifier 0x%llx\n", 1517 &mode_cmd->pixel_format, mode_cmd->modifier[0]); 1518 return -EINVAL; 1519 } 1520 1521 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL); 1522 if (!vfbd) { 1523 ret = -ENOMEM; 1524 goto out_err1; 1525 } 1526 1527 vfbd->base.base.obj[0] = &bo->tbo.base; 1528 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd); 1529 vfbd->base.bo = true; 1530 vfbd->buffer = vmw_bo_reference(bo); 1531 vfbd->base.user_handle = mode_cmd->handles[0]; 1532 *out = &vfbd->base; 1533 1534 ret = drm_framebuffer_init(dev, &vfbd->base.base, 1535 &vmw_framebuffer_bo_funcs); 1536 if (ret) 1537 goto out_err2; 1538 1539 return 0; 1540 1541 out_err2: 1542 vmw_bo_unreference(&bo); 1543 kfree(vfbd); 1544 out_err1: 1545 return ret; 1546 } 1547 1548 1549 /** 1550 * vmw_kms_srf_ok - check if a surface can be created 1551 * 1552 * @dev_priv: Pointer to device private struct. 1553 * @width: requested width 1554 * @height: requested height 1555 * 1556 * Surfaces need to be less than texture size 1557 */ 1558 static bool 1559 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height) 1560 { 1561 if (width > dev_priv->texture_max_width || 1562 height > dev_priv->texture_max_height) 1563 return false; 1564 1565 return true; 1566 } 1567 1568 /** 1569 * vmw_kms_new_framebuffer - Create a new framebuffer. 1570 * 1571 * @dev_priv: Pointer to device private struct. 1572 * @bo: Pointer to buffer object to wrap the kms framebuffer around. 1573 * Either @bo or @surface must be NULL. 1574 * @surface: Pointer to a surface to wrap the kms framebuffer around. 1575 * Either @bo or @surface must be NULL. 1576 * @only_2d: No presents will occur to this buffer object based framebuffer. 1577 * This helps the code to do some important optimizations. 1578 * @mode_cmd: Frame-buffer metadata. 1579 */ 1580 struct vmw_framebuffer * 1581 vmw_kms_new_framebuffer(struct vmw_private *dev_priv, 1582 struct vmw_bo *bo, 1583 struct vmw_surface *surface, 1584 bool only_2d, 1585 const struct drm_mode_fb_cmd2 *mode_cmd) 1586 { 1587 struct vmw_framebuffer *vfb = NULL; 1588 bool is_bo_proxy = false; 1589 int ret; 1590 1591 /* 1592 * We cannot use the SurfaceDMA command in an non-accelerated VM, 1593 * therefore, wrap the buffer object in a surface so we can use the 1594 * SurfaceCopy command. 1595 */ 1596 if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) && 1597 bo && only_2d && 1598 mode_cmd->width > 64 && /* Don't create a proxy for cursor */ 1599 dev_priv->active_display_unit == vmw_du_screen_target) { 1600 ret = vmw_create_bo_proxy(&dev_priv->drm, mode_cmd, 1601 bo, &surface); 1602 if (ret) 1603 return ERR_PTR(ret); 1604 1605 is_bo_proxy = true; 1606 } 1607 1608 /* Create the new framebuffer depending one what we have */ 1609 if (surface) { 1610 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb, 1611 mode_cmd, 1612 is_bo_proxy); 1613 /* 1614 * vmw_create_bo_proxy() adds a reference that is no longer 1615 * needed 1616 */ 1617 if (is_bo_proxy) 1618 vmw_surface_unreference(&surface); 1619 } else if (bo) { 1620 ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb, 1621 mode_cmd); 1622 } else { 1623 BUG(); 1624 } 1625 1626 if (ret) 1627 return ERR_PTR(ret); 1628 1629 return vfb; 1630 } 1631 1632 /* 1633 * Generic Kernel modesetting functions 1634 */ 1635 1636 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev, 1637 struct drm_file *file_priv, 1638 const struct drm_mode_fb_cmd2 *mode_cmd) 1639 { 1640 struct vmw_private *dev_priv = vmw_priv(dev); 1641 struct vmw_framebuffer *vfb = NULL; 1642 struct vmw_surface *surface = NULL; 1643 struct vmw_bo *bo = NULL; 1644 int ret; 1645 1646 /* returns either a bo or surface */ 1647 ret = vmw_user_lookup_handle(dev_priv, file_priv, 1648 mode_cmd->handles[0], 1649 &surface, &bo); 1650 if (ret) { 1651 DRM_ERROR("Invalid buffer object handle %u (0x%x).\n", 1652 mode_cmd->handles[0], mode_cmd->handles[0]); 1653 goto err_out; 1654 } 1655 1656 1657 if (!bo && 1658 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) { 1659 DRM_ERROR("Surface size cannot exceed %dx%d\n", 1660 dev_priv->texture_max_width, 1661 dev_priv->texture_max_height); 1662 ret = -EINVAL; 1663 goto err_out; 1664 } 1665 1666 1667 vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface, 1668 !(dev_priv->capabilities & SVGA_CAP_3D), 1669 mode_cmd); 1670 if (IS_ERR(vfb)) { 1671 ret = PTR_ERR(vfb); 1672 goto err_out; 1673 } 1674 1675 err_out: 1676 /* vmw_user_lookup_handle takes one ref so does new_fb */ 1677 if (bo) 1678 vmw_user_bo_unref(&bo); 1679 if (surface) 1680 vmw_surface_unreference(&surface); 1681 1682 if (ret) { 1683 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret); 1684 return ERR_PTR(ret); 1685 } 1686 1687 return &vfb->base; 1688 } 1689 1690 /** 1691 * vmw_kms_check_display_memory - Validates display memory required for a 1692 * topology 1693 * @dev: DRM device 1694 * @num_rects: number of drm_rect in rects 1695 * @rects: array of drm_rect representing the topology to validate indexed by 1696 * crtc index. 1697 * 1698 * Returns: 1699 * 0 on success otherwise negative error code 1700 */ 1701 static int vmw_kms_check_display_memory(struct drm_device *dev, 1702 uint32_t num_rects, 1703 struct drm_rect *rects) 1704 { 1705 struct vmw_private *dev_priv = vmw_priv(dev); 1706 struct drm_rect bounding_box = {0}; 1707 u64 total_pixels = 0, pixel_mem, bb_mem; 1708 int i; 1709 1710 for (i = 0; i < num_rects; i++) { 1711 /* 1712 * For STDU only individual screen (screen target) is limited by 1713 * SCREENTARGET_MAX_WIDTH/HEIGHT registers. 1714 */ 1715 if (dev_priv->active_display_unit == vmw_du_screen_target && 1716 (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width || 1717 drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) { 1718 VMW_DEBUG_KMS("Screen size not supported.\n"); 1719 return -EINVAL; 1720 } 1721 1722 /* Bounding box upper left is at (0,0). */ 1723 if (rects[i].x2 > bounding_box.x2) 1724 bounding_box.x2 = rects[i].x2; 1725 1726 if (rects[i].y2 > bounding_box.y2) 1727 bounding_box.y2 = rects[i].y2; 1728 1729 total_pixels += (u64) drm_rect_width(&rects[i]) * 1730 (u64) drm_rect_height(&rects[i]); 1731 } 1732 1733 /* Virtual svga device primary limits are always in 32-bpp. */ 1734 pixel_mem = total_pixels * 4; 1735 1736 /* 1737 * For HV10 and below prim_bb_mem is vram size. When 1738 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is 1739 * limit on primary bounding box 1740 */ 1741 if (pixel_mem > dev_priv->max_primary_mem) { 1742 VMW_DEBUG_KMS("Combined output size too large.\n"); 1743 return -EINVAL; 1744 } 1745 1746 /* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */ 1747 if (dev_priv->active_display_unit != vmw_du_screen_target || 1748 !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) { 1749 bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4; 1750 1751 if (bb_mem > dev_priv->max_primary_mem) { 1752 VMW_DEBUG_KMS("Topology is beyond supported limits.\n"); 1753 return -EINVAL; 1754 } 1755 } 1756 1757 return 0; 1758 } 1759 1760 /** 1761 * vmw_crtc_state_and_lock - Return new or current crtc state with locked 1762 * crtc mutex 1763 * @state: The atomic state pointer containing the new atomic state 1764 * @crtc: The crtc 1765 * 1766 * This function returns the new crtc state if it's part of the state update. 1767 * Otherwise returns the current crtc state. It also makes sure that the 1768 * crtc mutex is locked. 1769 * 1770 * Returns: A valid crtc state pointer or NULL. It may also return a 1771 * pointer error, in particular -EDEADLK if locking needs to be rerun. 1772 */ 1773 static struct drm_crtc_state * 1774 vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc) 1775 { 1776 struct drm_crtc_state *crtc_state; 1777 1778 crtc_state = drm_atomic_get_new_crtc_state(state, crtc); 1779 if (crtc_state) { 1780 lockdep_assert_held(&crtc->mutex.mutex.base); 1781 } else { 1782 int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx); 1783 1784 if (ret != 0 && ret != -EALREADY) 1785 return ERR_PTR(ret); 1786 1787 crtc_state = crtc->state; 1788 } 1789 1790 return crtc_state; 1791 } 1792 1793 /** 1794 * vmw_kms_check_implicit - Verify that all implicit display units scan out 1795 * from the same fb after the new state is committed. 1796 * @dev: The drm_device. 1797 * @state: The new state to be checked. 1798 * 1799 * Returns: 1800 * Zero on success, 1801 * -EINVAL on invalid state, 1802 * -EDEADLK if modeset locking needs to be rerun. 1803 */ 1804 static int vmw_kms_check_implicit(struct drm_device *dev, 1805 struct drm_atomic_state *state) 1806 { 1807 struct drm_framebuffer *implicit_fb = NULL; 1808 struct drm_crtc *crtc; 1809 struct drm_crtc_state *crtc_state; 1810 struct drm_plane_state *plane_state; 1811 1812 drm_for_each_crtc(crtc, dev) { 1813 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1814 1815 if (!du->is_implicit) 1816 continue; 1817 1818 crtc_state = vmw_crtc_state_and_lock(state, crtc); 1819 if (IS_ERR(crtc_state)) 1820 return PTR_ERR(crtc_state); 1821 1822 if (!crtc_state || !crtc_state->enable) 1823 continue; 1824 1825 /* 1826 * Can't move primary planes across crtcs, so this is OK. 1827 * It also means we don't need to take the plane mutex. 1828 */ 1829 plane_state = du->primary.state; 1830 if (plane_state->crtc != crtc) 1831 continue; 1832 1833 if (!implicit_fb) 1834 implicit_fb = plane_state->fb; 1835 else if (implicit_fb != plane_state->fb) 1836 return -EINVAL; 1837 } 1838 1839 return 0; 1840 } 1841 1842 /** 1843 * vmw_kms_check_topology - Validates topology in drm_atomic_state 1844 * @dev: DRM device 1845 * @state: the driver state object 1846 * 1847 * Returns: 1848 * 0 on success otherwise negative error code 1849 */ 1850 static int vmw_kms_check_topology(struct drm_device *dev, 1851 struct drm_atomic_state *state) 1852 { 1853 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 1854 struct drm_rect *rects; 1855 struct drm_crtc *crtc; 1856 uint32_t i; 1857 int ret = 0; 1858 1859 rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect), 1860 GFP_KERNEL); 1861 if (!rects) 1862 return -ENOMEM; 1863 1864 drm_for_each_crtc(crtc, dev) { 1865 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1866 struct drm_crtc_state *crtc_state; 1867 1868 i = drm_crtc_index(crtc); 1869 1870 crtc_state = vmw_crtc_state_and_lock(state, crtc); 1871 if (IS_ERR(crtc_state)) { 1872 ret = PTR_ERR(crtc_state); 1873 goto clean; 1874 } 1875 1876 if (!crtc_state) 1877 continue; 1878 1879 if (crtc_state->enable) { 1880 rects[i].x1 = du->gui_x; 1881 rects[i].y1 = du->gui_y; 1882 rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay; 1883 rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay; 1884 } else { 1885 rects[i].x1 = 0; 1886 rects[i].y1 = 0; 1887 rects[i].x2 = 0; 1888 rects[i].y2 = 0; 1889 } 1890 } 1891 1892 /* Determine change to topology due to new atomic state */ 1893 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, 1894 new_crtc_state, i) { 1895 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1896 struct drm_connector *connector; 1897 struct drm_connector_state *conn_state; 1898 struct vmw_connector_state *vmw_conn_state; 1899 1900 if (!du->pref_active && new_crtc_state->enable) { 1901 VMW_DEBUG_KMS("Enabling a disabled display unit\n"); 1902 ret = -EINVAL; 1903 goto clean; 1904 } 1905 1906 /* 1907 * For vmwgfx each crtc has only one connector attached and it 1908 * is not changed so don't really need to check the 1909 * crtc->connector_mask and iterate over it. 1910 */ 1911 connector = &du->connector; 1912 conn_state = drm_atomic_get_connector_state(state, connector); 1913 if (IS_ERR(conn_state)) { 1914 ret = PTR_ERR(conn_state); 1915 goto clean; 1916 } 1917 1918 vmw_conn_state = vmw_connector_state_to_vcs(conn_state); 1919 vmw_conn_state->gui_x = du->gui_x; 1920 vmw_conn_state->gui_y = du->gui_y; 1921 } 1922 1923 ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc, 1924 rects); 1925 1926 clean: 1927 kfree(rects); 1928 return ret; 1929 } 1930 1931 /** 1932 * vmw_kms_atomic_check_modeset- validate state object for modeset changes 1933 * 1934 * @dev: DRM device 1935 * @state: the driver state object 1936 * 1937 * This is a simple wrapper around drm_atomic_helper_check_modeset() for 1938 * us to assign a value to mode->crtc_clock so that 1939 * drm_calc_timestamping_constants() won't throw an error message 1940 * 1941 * Returns: 1942 * Zero for success or -errno 1943 */ 1944 static int 1945 vmw_kms_atomic_check_modeset(struct drm_device *dev, 1946 struct drm_atomic_state *state) 1947 { 1948 struct drm_crtc *crtc; 1949 struct drm_crtc_state *crtc_state; 1950 bool need_modeset = false; 1951 int i, ret; 1952 1953 ret = drm_atomic_helper_check(dev, state); 1954 if (ret) 1955 return ret; 1956 1957 ret = vmw_kms_check_implicit(dev, state); 1958 if (ret) { 1959 VMW_DEBUG_KMS("Invalid implicit state\n"); 1960 return ret; 1961 } 1962 1963 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 1964 if (drm_atomic_crtc_needs_modeset(crtc_state)) 1965 need_modeset = true; 1966 } 1967 1968 if (need_modeset) 1969 return vmw_kms_check_topology(dev, state); 1970 1971 return ret; 1972 } 1973 1974 static const struct drm_mode_config_funcs vmw_kms_funcs = { 1975 .fb_create = vmw_kms_fb_create, 1976 .atomic_check = vmw_kms_atomic_check_modeset, 1977 .atomic_commit = drm_atomic_helper_commit, 1978 }; 1979 1980 static int vmw_kms_generic_present(struct vmw_private *dev_priv, 1981 struct drm_file *file_priv, 1982 struct vmw_framebuffer *vfb, 1983 struct vmw_surface *surface, 1984 uint32_t sid, 1985 int32_t destX, int32_t destY, 1986 struct drm_vmw_rect *clips, 1987 uint32_t num_clips) 1988 { 1989 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips, 1990 &surface->res, destX, destY, 1991 num_clips, 1, NULL, NULL); 1992 } 1993 1994 1995 int vmw_kms_present(struct vmw_private *dev_priv, 1996 struct drm_file *file_priv, 1997 struct vmw_framebuffer *vfb, 1998 struct vmw_surface *surface, 1999 uint32_t sid, 2000 int32_t destX, int32_t destY, 2001 struct drm_vmw_rect *clips, 2002 uint32_t num_clips) 2003 { 2004 int ret; 2005 2006 switch (dev_priv->active_display_unit) { 2007 case vmw_du_screen_target: 2008 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips, 2009 &surface->res, destX, destY, 2010 num_clips, 1, NULL, NULL); 2011 break; 2012 case vmw_du_screen_object: 2013 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface, 2014 sid, destX, destY, clips, 2015 num_clips); 2016 break; 2017 default: 2018 WARN_ONCE(true, 2019 "Present called with invalid display system.\n"); 2020 ret = -ENOSYS; 2021 break; 2022 } 2023 if (ret) 2024 return ret; 2025 2026 vmw_cmd_flush(dev_priv, false); 2027 2028 return 0; 2029 } 2030 2031 static void 2032 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv) 2033 { 2034 if (dev_priv->hotplug_mode_update_property) 2035 return; 2036 2037 dev_priv->hotplug_mode_update_property = 2038 drm_property_create_range(&dev_priv->drm, 2039 DRM_MODE_PROP_IMMUTABLE, 2040 "hotplug_mode_update", 0, 1); 2041 } 2042 2043 int vmw_kms_init(struct vmw_private *dev_priv) 2044 { 2045 struct drm_device *dev = &dev_priv->drm; 2046 int ret; 2047 static const char *display_unit_names[] = { 2048 "Invalid", 2049 "Legacy", 2050 "Screen Object", 2051 "Screen Target", 2052 "Invalid (max)" 2053 }; 2054 2055 drm_mode_config_init(dev); 2056 dev->mode_config.funcs = &vmw_kms_funcs; 2057 dev->mode_config.min_width = 1; 2058 dev->mode_config.min_height = 1; 2059 dev->mode_config.max_width = dev_priv->texture_max_width; 2060 dev->mode_config.max_height = dev_priv->texture_max_height; 2061 dev->mode_config.preferred_depth = dev_priv->assume_16bpp ? 16 : 32; 2062 2063 drm_mode_create_suggested_offset_properties(dev); 2064 vmw_kms_create_hotplug_mode_update_property(dev_priv); 2065 2066 ret = vmw_kms_stdu_init_display(dev_priv); 2067 if (ret) { 2068 ret = vmw_kms_sou_init_display(dev_priv); 2069 if (ret) /* Fallback */ 2070 ret = vmw_kms_ldu_init_display(dev_priv); 2071 } 2072 BUILD_BUG_ON(ARRAY_SIZE(display_unit_names) != (vmw_du_max + 1)); 2073 drm_info(&dev_priv->drm, "%s display unit initialized\n", 2074 display_unit_names[dev_priv->active_display_unit]); 2075 2076 return ret; 2077 } 2078 2079 int vmw_kms_close(struct vmw_private *dev_priv) 2080 { 2081 int ret = 0; 2082 2083 /* 2084 * Docs says we should take the lock before calling this function 2085 * but since it destroys encoders and our destructor calls 2086 * drm_encoder_cleanup which takes the lock we deadlock. 2087 */ 2088 drm_mode_config_cleanup(&dev_priv->drm); 2089 if (dev_priv->active_display_unit == vmw_du_legacy) 2090 ret = vmw_kms_ldu_close_display(dev_priv); 2091 2092 return ret; 2093 } 2094 2095 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data, 2096 struct drm_file *file_priv) 2097 { 2098 struct drm_vmw_cursor_bypass_arg *arg = data; 2099 struct vmw_display_unit *du; 2100 struct drm_crtc *crtc; 2101 int ret = 0; 2102 2103 mutex_lock(&dev->mode_config.mutex); 2104 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) { 2105 2106 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 2107 du = vmw_crtc_to_du(crtc); 2108 du->hotspot_x = arg->xhot; 2109 du->hotspot_y = arg->yhot; 2110 } 2111 2112 mutex_unlock(&dev->mode_config.mutex); 2113 return 0; 2114 } 2115 2116 crtc = drm_crtc_find(dev, file_priv, arg->crtc_id); 2117 if (!crtc) { 2118 ret = -ENOENT; 2119 goto out; 2120 } 2121 2122 du = vmw_crtc_to_du(crtc); 2123 2124 du->hotspot_x = arg->xhot; 2125 du->hotspot_y = arg->yhot; 2126 2127 out: 2128 mutex_unlock(&dev->mode_config.mutex); 2129 2130 return ret; 2131 } 2132 2133 int vmw_kms_write_svga(struct vmw_private *vmw_priv, 2134 unsigned width, unsigned height, unsigned pitch, 2135 unsigned bpp, unsigned depth) 2136 { 2137 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 2138 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch); 2139 else if (vmw_fifo_have_pitchlock(vmw_priv)) 2140 vmw_fifo_mem_write(vmw_priv, SVGA_FIFO_PITCHLOCK, pitch); 2141 vmw_write(vmw_priv, SVGA_REG_WIDTH, width); 2142 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height); 2143 if ((vmw_priv->capabilities & SVGA_CAP_8BIT_EMULATION) != 0) 2144 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp); 2145 2146 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) { 2147 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n", 2148 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH)); 2149 return -EINVAL; 2150 } 2151 2152 return 0; 2153 } 2154 2155 static 2156 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv, 2157 u64 pitch, 2158 u64 height) 2159 { 2160 return (pitch * height) < (u64)dev_priv->vram_size; 2161 } 2162 2163 /** 2164 * vmw_du_update_layout - Update the display unit with topology from resolution 2165 * plugin and generate DRM uevent 2166 * @dev_priv: device private 2167 * @num_rects: number of drm_rect in rects 2168 * @rects: toplogy to update 2169 */ 2170 static int vmw_du_update_layout(struct vmw_private *dev_priv, 2171 unsigned int num_rects, struct drm_rect *rects) 2172 { 2173 struct drm_device *dev = &dev_priv->drm; 2174 struct vmw_display_unit *du; 2175 struct drm_connector *con; 2176 struct drm_connector_list_iter conn_iter; 2177 struct drm_modeset_acquire_ctx ctx; 2178 struct drm_crtc *crtc; 2179 int ret; 2180 2181 /* Currently gui_x/y is protected with the crtc mutex */ 2182 mutex_lock(&dev->mode_config.mutex); 2183 drm_modeset_acquire_init(&ctx, 0); 2184 retry: 2185 drm_for_each_crtc(crtc, dev) { 2186 ret = drm_modeset_lock(&crtc->mutex, &ctx); 2187 if (ret < 0) { 2188 if (ret == -EDEADLK) { 2189 drm_modeset_backoff(&ctx); 2190 goto retry; 2191 } 2192 goto out_fini; 2193 } 2194 } 2195 2196 drm_connector_list_iter_begin(dev, &conn_iter); 2197 drm_for_each_connector_iter(con, &conn_iter) { 2198 du = vmw_connector_to_du(con); 2199 if (num_rects > du->unit) { 2200 du->pref_width = drm_rect_width(&rects[du->unit]); 2201 du->pref_height = drm_rect_height(&rects[du->unit]); 2202 du->pref_active = true; 2203 du->gui_x = rects[du->unit].x1; 2204 du->gui_y = rects[du->unit].y1; 2205 } else { 2206 du->pref_width = VMWGFX_MIN_INITIAL_WIDTH; 2207 du->pref_height = VMWGFX_MIN_INITIAL_HEIGHT; 2208 du->pref_active = false; 2209 du->gui_x = 0; 2210 du->gui_y = 0; 2211 } 2212 } 2213 drm_connector_list_iter_end(&conn_iter); 2214 2215 list_for_each_entry(con, &dev->mode_config.connector_list, head) { 2216 du = vmw_connector_to_du(con); 2217 if (num_rects > du->unit) { 2218 drm_object_property_set_value 2219 (&con->base, dev->mode_config.suggested_x_property, 2220 du->gui_x); 2221 drm_object_property_set_value 2222 (&con->base, dev->mode_config.suggested_y_property, 2223 du->gui_y); 2224 } else { 2225 drm_object_property_set_value 2226 (&con->base, dev->mode_config.suggested_x_property, 2227 0); 2228 drm_object_property_set_value 2229 (&con->base, dev->mode_config.suggested_y_property, 2230 0); 2231 } 2232 con->status = vmw_du_connector_detect(con, true); 2233 } 2234 out_fini: 2235 drm_modeset_drop_locks(&ctx); 2236 drm_modeset_acquire_fini(&ctx); 2237 mutex_unlock(&dev->mode_config.mutex); 2238 2239 drm_sysfs_hotplug_event(dev); 2240 2241 return 0; 2242 } 2243 2244 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc, 2245 u16 *r, u16 *g, u16 *b, 2246 uint32_t size, 2247 struct drm_modeset_acquire_ctx *ctx) 2248 { 2249 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 2250 int i; 2251 2252 for (i = 0; i < size; i++) { 2253 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i, 2254 r[i], g[i], b[i]); 2255 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8); 2256 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8); 2257 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8); 2258 } 2259 2260 return 0; 2261 } 2262 2263 int vmw_du_connector_dpms(struct drm_connector *connector, int mode) 2264 { 2265 return 0; 2266 } 2267 2268 enum drm_connector_status 2269 vmw_du_connector_detect(struct drm_connector *connector, bool force) 2270 { 2271 uint32_t num_displays; 2272 struct drm_device *dev = connector->dev; 2273 struct vmw_private *dev_priv = vmw_priv(dev); 2274 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2275 2276 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS); 2277 2278 return ((vmw_connector_to_du(connector)->unit < num_displays && 2279 du->pref_active) ? 2280 connector_status_connected : connector_status_disconnected); 2281 } 2282 2283 /** 2284 * vmw_guess_mode_timing - Provide fake timings for a 2285 * 60Hz vrefresh mode. 2286 * 2287 * @mode: Pointer to a struct drm_display_mode with hdisplay and vdisplay 2288 * members filled in. 2289 */ 2290 void vmw_guess_mode_timing(struct drm_display_mode *mode) 2291 { 2292 mode->hsync_start = mode->hdisplay + 50; 2293 mode->hsync_end = mode->hsync_start + 50; 2294 mode->htotal = mode->hsync_end + 50; 2295 2296 mode->vsync_start = mode->vdisplay + 50; 2297 mode->vsync_end = mode->vsync_start + 50; 2298 mode->vtotal = mode->vsync_end + 50; 2299 2300 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6; 2301 } 2302 2303 2304 /** 2305 * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl 2306 * @dev: drm device for the ioctl 2307 * @data: data pointer for the ioctl 2308 * @file_priv: drm file for the ioctl call 2309 * 2310 * Update preferred topology of display unit as per ioctl request. The topology 2311 * is expressed as array of drm_vmw_rect. 2312 * e.g. 2313 * [0 0 640 480] [640 0 800 600] [0 480 640 480] 2314 * 2315 * NOTE: 2316 * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside 2317 * device limit on topology, x + w and y + h (lower right) cannot be greater 2318 * than INT_MAX. So topology beyond these limits will return with error. 2319 * 2320 * Returns: 2321 * Zero on success, negative errno on failure. 2322 */ 2323 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data, 2324 struct drm_file *file_priv) 2325 { 2326 struct vmw_private *dev_priv = vmw_priv(dev); 2327 struct drm_mode_config *mode_config = &dev->mode_config; 2328 struct drm_vmw_update_layout_arg *arg = 2329 (struct drm_vmw_update_layout_arg *)data; 2330 const void __user *user_rects; 2331 struct drm_vmw_rect *rects; 2332 struct drm_rect *drm_rects; 2333 unsigned rects_size; 2334 int ret, i; 2335 2336 if (!arg->num_outputs) { 2337 struct drm_rect def_rect = {0, 0, 2338 VMWGFX_MIN_INITIAL_WIDTH, 2339 VMWGFX_MIN_INITIAL_HEIGHT}; 2340 vmw_du_update_layout(dev_priv, 1, &def_rect); 2341 return 0; 2342 } else if (arg->num_outputs > VMWGFX_NUM_DISPLAY_UNITS) { 2343 return -E2BIG; 2344 } 2345 2346 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect); 2347 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect), 2348 GFP_KERNEL); 2349 if (unlikely(!rects)) 2350 return -ENOMEM; 2351 2352 user_rects = (void __user *)(unsigned long)arg->rects; 2353 ret = copy_from_user(rects, user_rects, rects_size); 2354 if (unlikely(ret != 0)) { 2355 DRM_ERROR("Failed to get rects.\n"); 2356 ret = -EFAULT; 2357 goto out_free; 2358 } 2359 2360 drm_rects = (struct drm_rect *)rects; 2361 2362 VMW_DEBUG_KMS("Layout count = %u\n", arg->num_outputs); 2363 for (i = 0; i < arg->num_outputs; i++) { 2364 struct drm_vmw_rect curr_rect; 2365 2366 /* Verify user-space for overflow as kernel use drm_rect */ 2367 if ((rects[i].x + rects[i].w > INT_MAX) || 2368 (rects[i].y + rects[i].h > INT_MAX)) { 2369 ret = -ERANGE; 2370 goto out_free; 2371 } 2372 2373 curr_rect = rects[i]; 2374 drm_rects[i].x1 = curr_rect.x; 2375 drm_rects[i].y1 = curr_rect.y; 2376 drm_rects[i].x2 = curr_rect.x + curr_rect.w; 2377 drm_rects[i].y2 = curr_rect.y + curr_rect.h; 2378 2379 VMW_DEBUG_KMS(" x1 = %d y1 = %d x2 = %d y2 = %d\n", 2380 drm_rects[i].x1, drm_rects[i].y1, 2381 drm_rects[i].x2, drm_rects[i].y2); 2382 2383 /* 2384 * Currently this check is limiting the topology within 2385 * mode_config->max (which actually is max texture size 2386 * supported by virtual device). This limit is here to address 2387 * window managers that create a big framebuffer for whole 2388 * topology. 2389 */ 2390 if (drm_rects[i].x1 < 0 || drm_rects[i].y1 < 0 || 2391 drm_rects[i].x2 > mode_config->max_width || 2392 drm_rects[i].y2 > mode_config->max_height) { 2393 VMW_DEBUG_KMS("Invalid layout %d %d %d %d\n", 2394 drm_rects[i].x1, drm_rects[i].y1, 2395 drm_rects[i].x2, drm_rects[i].y2); 2396 ret = -EINVAL; 2397 goto out_free; 2398 } 2399 } 2400 2401 ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects); 2402 2403 if (ret == 0) 2404 vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects); 2405 2406 out_free: 2407 kfree(rects); 2408 return ret; 2409 } 2410 2411 /** 2412 * vmw_kms_helper_dirty - Helper to build commands and perform actions based 2413 * on a set of cliprects and a set of display units. 2414 * 2415 * @dev_priv: Pointer to a device private structure. 2416 * @framebuffer: Pointer to the framebuffer on which to perform the actions. 2417 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL. 2418 * Cliprects are given in framebuffer coordinates. 2419 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must 2420 * be NULL. Cliprects are given in source coordinates. 2421 * @dest_x: X coordinate offset for the crtc / destination clip rects. 2422 * @dest_y: Y coordinate offset for the crtc / destination clip rects. 2423 * @num_clips: Number of cliprects in the @clips or @vclips array. 2424 * @increment: Integer with which to increment the clip counter when looping. 2425 * Used to skip a predetermined number of clip rects. 2426 * @dirty: Closure structure. See the description of struct vmw_kms_dirty. 2427 */ 2428 int vmw_kms_helper_dirty(struct vmw_private *dev_priv, 2429 struct vmw_framebuffer *framebuffer, 2430 const struct drm_clip_rect *clips, 2431 const struct drm_vmw_rect *vclips, 2432 s32 dest_x, s32 dest_y, 2433 int num_clips, 2434 int increment, 2435 struct vmw_kms_dirty *dirty) 2436 { 2437 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS]; 2438 struct drm_crtc *crtc; 2439 u32 num_units = 0; 2440 u32 i, k; 2441 2442 dirty->dev_priv = dev_priv; 2443 2444 /* If crtc is passed, no need to iterate over other display units */ 2445 if (dirty->crtc) { 2446 units[num_units++] = vmw_crtc_to_du(dirty->crtc); 2447 } else { 2448 list_for_each_entry(crtc, &dev_priv->drm.mode_config.crtc_list, 2449 head) { 2450 struct drm_plane *plane = crtc->primary; 2451 2452 if (plane->state->fb == &framebuffer->base) 2453 units[num_units++] = vmw_crtc_to_du(crtc); 2454 } 2455 } 2456 2457 for (k = 0; k < num_units; k++) { 2458 struct vmw_display_unit *unit = units[k]; 2459 s32 crtc_x = unit->crtc.x; 2460 s32 crtc_y = unit->crtc.y; 2461 s32 crtc_width = unit->crtc.mode.hdisplay; 2462 s32 crtc_height = unit->crtc.mode.vdisplay; 2463 const struct drm_clip_rect *clips_ptr = clips; 2464 const struct drm_vmw_rect *vclips_ptr = vclips; 2465 2466 dirty->unit = unit; 2467 if (dirty->fifo_reserve_size > 0) { 2468 dirty->cmd = VMW_CMD_RESERVE(dev_priv, 2469 dirty->fifo_reserve_size); 2470 if (!dirty->cmd) 2471 return -ENOMEM; 2472 2473 memset(dirty->cmd, 0, dirty->fifo_reserve_size); 2474 } 2475 dirty->num_hits = 0; 2476 for (i = 0; i < num_clips; i++, clips_ptr += increment, 2477 vclips_ptr += increment) { 2478 s32 clip_left; 2479 s32 clip_top; 2480 2481 /* 2482 * Select clip array type. Note that integer type 2483 * in @clips is unsigned short, whereas in @vclips 2484 * it's 32-bit. 2485 */ 2486 if (clips) { 2487 dirty->fb_x = (s32) clips_ptr->x1; 2488 dirty->fb_y = (s32) clips_ptr->y1; 2489 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x - 2490 crtc_x; 2491 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y - 2492 crtc_y; 2493 } else { 2494 dirty->fb_x = vclips_ptr->x; 2495 dirty->fb_y = vclips_ptr->y; 2496 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w + 2497 dest_x - crtc_x; 2498 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h + 2499 dest_y - crtc_y; 2500 } 2501 2502 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x; 2503 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y; 2504 2505 /* Skip this clip if it's outside the crtc region */ 2506 if (dirty->unit_x1 >= crtc_width || 2507 dirty->unit_y1 >= crtc_height || 2508 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0) 2509 continue; 2510 2511 /* Clip right and bottom to crtc limits */ 2512 dirty->unit_x2 = min_t(s32, dirty->unit_x2, 2513 crtc_width); 2514 dirty->unit_y2 = min_t(s32, dirty->unit_y2, 2515 crtc_height); 2516 2517 /* Clip left and top to crtc limits */ 2518 clip_left = min_t(s32, dirty->unit_x1, 0); 2519 clip_top = min_t(s32, dirty->unit_y1, 0); 2520 dirty->unit_x1 -= clip_left; 2521 dirty->unit_y1 -= clip_top; 2522 dirty->fb_x -= clip_left; 2523 dirty->fb_y -= clip_top; 2524 2525 dirty->clip(dirty); 2526 } 2527 2528 dirty->fifo_commit(dirty); 2529 } 2530 2531 return 0; 2532 } 2533 2534 /** 2535 * vmw_kms_helper_validation_finish - Helper for post KMS command submission 2536 * cleanup and fencing 2537 * @dev_priv: Pointer to the device-private struct 2538 * @file_priv: Pointer identifying the client when user-space fencing is used 2539 * @ctx: Pointer to the validation context 2540 * @out_fence: If non-NULL, returned refcounted fence-pointer 2541 * @user_fence_rep: If non-NULL, pointer to user-space address area 2542 * in which to copy user-space fence info 2543 */ 2544 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv, 2545 struct drm_file *file_priv, 2546 struct vmw_validation_context *ctx, 2547 struct vmw_fence_obj **out_fence, 2548 struct drm_vmw_fence_rep __user * 2549 user_fence_rep) 2550 { 2551 struct vmw_fence_obj *fence = NULL; 2552 uint32_t handle = 0; 2553 int ret = 0; 2554 2555 if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) || 2556 out_fence) 2557 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence, 2558 file_priv ? &handle : NULL); 2559 vmw_validation_done(ctx, fence); 2560 if (file_priv) 2561 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv), 2562 ret, user_fence_rep, fence, 2563 handle, -1); 2564 if (out_fence) 2565 *out_fence = fence; 2566 else 2567 vmw_fence_obj_unreference(&fence); 2568 } 2569 2570 /** 2571 * vmw_kms_update_proxy - Helper function to update a proxy surface from 2572 * its backing MOB. 2573 * 2574 * @res: Pointer to the surface resource 2575 * @clips: Clip rects in framebuffer (surface) space. 2576 * @num_clips: Number of clips in @clips. 2577 * @increment: Integer with which to increment the clip counter when looping. 2578 * Used to skip a predetermined number of clip rects. 2579 * 2580 * This function makes sure the proxy surface is updated from its backing MOB 2581 * using the region given by @clips. The surface resource @res and its backing 2582 * MOB needs to be reserved and validated on call. 2583 */ 2584 int vmw_kms_update_proxy(struct vmw_resource *res, 2585 const struct drm_clip_rect *clips, 2586 unsigned num_clips, 2587 int increment) 2588 { 2589 struct vmw_private *dev_priv = res->dev_priv; 2590 struct drm_vmw_size *size = &vmw_res_to_srf(res)->metadata.base_size; 2591 struct { 2592 SVGA3dCmdHeader header; 2593 SVGA3dCmdUpdateGBImage body; 2594 } *cmd; 2595 SVGA3dBox *box; 2596 size_t copy_size = 0; 2597 int i; 2598 2599 if (!clips) 2600 return 0; 2601 2602 cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd) * num_clips); 2603 if (!cmd) 2604 return -ENOMEM; 2605 2606 for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) { 2607 box = &cmd->body.box; 2608 2609 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE; 2610 cmd->header.size = sizeof(cmd->body); 2611 cmd->body.image.sid = res->id; 2612 cmd->body.image.face = 0; 2613 cmd->body.image.mipmap = 0; 2614 2615 if (clips->x1 > size->width || clips->x2 > size->width || 2616 clips->y1 > size->height || clips->y2 > size->height) { 2617 DRM_ERROR("Invalid clips outsize of framebuffer.\n"); 2618 return -EINVAL; 2619 } 2620 2621 box->x = clips->x1; 2622 box->y = clips->y1; 2623 box->z = 0; 2624 box->w = clips->x2 - clips->x1; 2625 box->h = clips->y2 - clips->y1; 2626 box->d = 1; 2627 2628 copy_size += sizeof(*cmd); 2629 } 2630 2631 vmw_cmd_commit(dev_priv, copy_size); 2632 2633 return 0; 2634 } 2635 2636 /** 2637 * vmw_kms_create_implicit_placement_property - Set up the implicit placement 2638 * property. 2639 * 2640 * @dev_priv: Pointer to a device private struct. 2641 * 2642 * Sets up the implicit placement property unless it's already set up. 2643 */ 2644 void 2645 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv) 2646 { 2647 if (dev_priv->implicit_placement_property) 2648 return; 2649 2650 dev_priv->implicit_placement_property = 2651 drm_property_create_range(&dev_priv->drm, 2652 DRM_MODE_PROP_IMMUTABLE, 2653 "implicit_placement", 0, 1); 2654 } 2655 2656 /** 2657 * vmw_kms_suspend - Save modesetting state and turn modesetting off. 2658 * 2659 * @dev: Pointer to the drm device 2660 * Return: 0 on success. Negative error code on failure. 2661 */ 2662 int vmw_kms_suspend(struct drm_device *dev) 2663 { 2664 struct vmw_private *dev_priv = vmw_priv(dev); 2665 2666 dev_priv->suspend_state = drm_atomic_helper_suspend(dev); 2667 if (IS_ERR(dev_priv->suspend_state)) { 2668 int ret = PTR_ERR(dev_priv->suspend_state); 2669 2670 DRM_ERROR("Failed kms suspend: %d\n", ret); 2671 dev_priv->suspend_state = NULL; 2672 2673 return ret; 2674 } 2675 2676 return 0; 2677 } 2678 2679 2680 /** 2681 * vmw_kms_resume - Re-enable modesetting and restore state 2682 * 2683 * @dev: Pointer to the drm device 2684 * Return: 0 on success. Negative error code on failure. 2685 * 2686 * State is resumed from a previous vmw_kms_suspend(). It's illegal 2687 * to call this function without a previous vmw_kms_suspend(). 2688 */ 2689 int vmw_kms_resume(struct drm_device *dev) 2690 { 2691 struct vmw_private *dev_priv = vmw_priv(dev); 2692 int ret; 2693 2694 if (WARN_ON(!dev_priv->suspend_state)) 2695 return 0; 2696 2697 ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state); 2698 dev_priv->suspend_state = NULL; 2699 2700 return ret; 2701 } 2702 2703 /** 2704 * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost 2705 * 2706 * @dev: Pointer to the drm device 2707 */ 2708 void vmw_kms_lost_device(struct drm_device *dev) 2709 { 2710 drm_atomic_helper_shutdown(dev); 2711 } 2712 2713 /** 2714 * vmw_du_helper_plane_update - Helper to do plane update on a display unit. 2715 * @update: The closure structure. 2716 * 2717 * Call this helper after setting callbacks in &vmw_du_update_plane to do plane 2718 * update on display unit. 2719 * 2720 * Return: 0 on success or a negative error code on failure. 2721 */ 2722 int vmw_du_helper_plane_update(struct vmw_du_update_plane *update) 2723 { 2724 struct drm_plane_state *state = update->plane->state; 2725 struct drm_plane_state *old_state = update->old_state; 2726 struct drm_atomic_helper_damage_iter iter; 2727 struct drm_rect clip; 2728 struct drm_rect bb; 2729 DECLARE_VAL_CONTEXT(val_ctx, NULL, 0); 2730 uint32_t reserved_size = 0; 2731 uint32_t submit_size = 0; 2732 uint32_t curr_size = 0; 2733 uint32_t num_hits = 0; 2734 void *cmd_start; 2735 char *cmd_next; 2736 int ret; 2737 2738 /* 2739 * Iterate in advance to check if really need plane update and find the 2740 * number of clips that actually are in plane src for fifo allocation. 2741 */ 2742 drm_atomic_helper_damage_iter_init(&iter, old_state, state); 2743 drm_atomic_for_each_plane_damage(&iter, &clip) 2744 num_hits++; 2745 2746 if (num_hits == 0) 2747 return 0; 2748 2749 if (update->vfb->bo) { 2750 struct vmw_framebuffer_bo *vfbbo = 2751 container_of(update->vfb, typeof(*vfbbo), base); 2752 2753 /* 2754 * For screen targets we want a mappable bo, for everything else we want 2755 * accelerated i.e. host backed (vram or gmr) bo. If the display unit 2756 * is not screen target then mob's shouldn't be available. 2757 */ 2758 if (update->dev_priv->active_display_unit == vmw_du_screen_target) { 2759 vmw_bo_placement_set(vfbbo->buffer, 2760 VMW_BO_DOMAIN_SYS | VMW_BO_DOMAIN_MOB | VMW_BO_DOMAIN_GMR, 2761 VMW_BO_DOMAIN_SYS | VMW_BO_DOMAIN_MOB | VMW_BO_DOMAIN_GMR); 2762 } else { 2763 WARN_ON(update->dev_priv->has_mob); 2764 vmw_bo_placement_set_default_accelerated(vfbbo->buffer); 2765 } 2766 ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer); 2767 } else { 2768 struct vmw_framebuffer_surface *vfbs = 2769 container_of(update->vfb, typeof(*vfbs), base); 2770 2771 ret = vmw_validation_add_resource(&val_ctx, &vfbs->surface->res, 2772 0, VMW_RES_DIRTY_NONE, NULL, 2773 NULL); 2774 } 2775 2776 if (ret) 2777 return ret; 2778 2779 ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr); 2780 if (ret) 2781 goto out_unref; 2782 2783 reserved_size = update->calc_fifo_size(update, num_hits); 2784 cmd_start = VMW_CMD_RESERVE(update->dev_priv, reserved_size); 2785 if (!cmd_start) { 2786 ret = -ENOMEM; 2787 goto out_revert; 2788 } 2789 2790 cmd_next = cmd_start; 2791 2792 if (update->post_prepare) { 2793 curr_size = update->post_prepare(update, cmd_next); 2794 cmd_next += curr_size; 2795 submit_size += curr_size; 2796 } 2797 2798 if (update->pre_clip) { 2799 curr_size = update->pre_clip(update, cmd_next, num_hits); 2800 cmd_next += curr_size; 2801 submit_size += curr_size; 2802 } 2803 2804 bb.x1 = INT_MAX; 2805 bb.y1 = INT_MAX; 2806 bb.x2 = INT_MIN; 2807 bb.y2 = INT_MIN; 2808 2809 drm_atomic_helper_damage_iter_init(&iter, old_state, state); 2810 drm_atomic_for_each_plane_damage(&iter, &clip) { 2811 uint32_t fb_x = clip.x1; 2812 uint32_t fb_y = clip.y1; 2813 2814 vmw_du_translate_to_crtc(state, &clip); 2815 if (update->clip) { 2816 curr_size = update->clip(update, cmd_next, &clip, fb_x, 2817 fb_y); 2818 cmd_next += curr_size; 2819 submit_size += curr_size; 2820 } 2821 bb.x1 = min_t(int, bb.x1, clip.x1); 2822 bb.y1 = min_t(int, bb.y1, clip.y1); 2823 bb.x2 = max_t(int, bb.x2, clip.x2); 2824 bb.y2 = max_t(int, bb.y2, clip.y2); 2825 } 2826 2827 curr_size = update->post_clip(update, cmd_next, &bb); 2828 submit_size += curr_size; 2829 2830 if (reserved_size < submit_size) 2831 submit_size = 0; 2832 2833 vmw_cmd_commit(update->dev_priv, submit_size); 2834 2835 vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx, 2836 update->out_fence, NULL); 2837 return ret; 2838 2839 out_revert: 2840 vmw_validation_revert(&val_ctx); 2841 2842 out_unref: 2843 vmw_validation_unref_lists(&val_ctx); 2844 return ret; 2845 } 2846 2847 /** 2848 * vmw_connector_mode_valid - implements drm_connector_helper_funcs.mode_valid callback 2849 * 2850 * @connector: the drm connector, part of a DU container 2851 * @mode: drm mode to check 2852 * 2853 * Returns MODE_OK on success, or a drm_mode_status error code. 2854 */ 2855 enum drm_mode_status vmw_connector_mode_valid(struct drm_connector *connector, 2856 struct drm_display_mode *mode) 2857 { 2858 enum drm_mode_status ret; 2859 struct drm_device *dev = connector->dev; 2860 struct vmw_private *dev_priv = vmw_priv(dev); 2861 u32 assumed_cpp = 4; 2862 2863 if (dev_priv->assume_16bpp) 2864 assumed_cpp = 2; 2865 2866 ret = drm_mode_validate_size(mode, dev_priv->texture_max_width, 2867 dev_priv->texture_max_height); 2868 if (ret != MODE_OK) 2869 return ret; 2870 2871 if (!vmw_kms_validate_mode_vram(dev_priv, 2872 mode->hdisplay * assumed_cpp, 2873 mode->vdisplay)) 2874 return MODE_MEM; 2875 2876 return MODE_OK; 2877 } 2878 2879 /** 2880 * vmw_connector_get_modes - implements drm_connector_helper_funcs.get_modes callback 2881 * 2882 * @connector: the drm connector, part of a DU container 2883 * 2884 * Returns the number of added modes. 2885 */ 2886 int vmw_connector_get_modes(struct drm_connector *connector) 2887 { 2888 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2889 struct drm_device *dev = connector->dev; 2890 struct vmw_private *dev_priv = vmw_priv(dev); 2891 struct drm_display_mode *mode = NULL; 2892 struct drm_display_mode prefmode = { DRM_MODE("preferred", 2893 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED, 2894 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2895 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) 2896 }; 2897 u32 max_width; 2898 u32 max_height; 2899 u32 num_modes; 2900 2901 /* Add preferred mode */ 2902 mode = drm_mode_duplicate(dev, &prefmode); 2903 if (!mode) 2904 return 0; 2905 2906 mode->hdisplay = du->pref_width; 2907 mode->vdisplay = du->pref_height; 2908 vmw_guess_mode_timing(mode); 2909 drm_mode_set_name(mode); 2910 2911 drm_mode_probed_add(connector, mode); 2912 drm_dbg_kms(dev, "preferred mode " DRM_MODE_FMT "\n", DRM_MODE_ARG(mode)); 2913 2914 /* Probe connector for all modes not exceeding our geom limits */ 2915 max_width = dev_priv->texture_max_width; 2916 max_height = dev_priv->texture_max_height; 2917 2918 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2919 max_width = min(dev_priv->stdu_max_width, max_width); 2920 max_height = min(dev_priv->stdu_max_height, max_height); 2921 } 2922 2923 num_modes = 1 + drm_add_modes_noedid(connector, max_width, max_height); 2924 2925 return num_modes; 2926 } 2927