xref: /openbmc/linux/drivers/gpu/drm/vmwgfx/vmwgfx_kms.c (revision 58919326e72f63c380dc3271dd1cc8bdf1bbe3e4)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include <drm/drm_atomic.h>
29 #include <drm/drm_atomic_helper.h>
30 #include <drm/drm_damage_helper.h>
31 #include <drm/drm_fourcc.h>
32 #include <drm/drm_plane_helper.h>
33 #include <drm/drm_rect.h>
34 #include <drm/drm_sysfs.h>
35 #include <drm/drm_vblank.h>
36 
37 #include "vmwgfx_kms.h"
38 
39 void vmw_du_cleanup(struct vmw_display_unit *du)
40 {
41 	struct vmw_private *dev_priv = vmw_priv(du->primary.dev);
42 	drm_plane_cleanup(&du->primary);
43 	if (vmw_cmd_supported(dev_priv))
44 		drm_plane_cleanup(&du->cursor);
45 
46 	drm_connector_unregister(&du->connector);
47 	drm_crtc_cleanup(&du->crtc);
48 	drm_encoder_cleanup(&du->encoder);
49 	drm_connector_cleanup(&du->connector);
50 }
51 
52 /*
53  * Display Unit Cursor functions
54  */
55 
56 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
57 				   u32 *image, u32 width, u32 height,
58 				   u32 hotspotX, u32 hotspotY)
59 {
60 	struct {
61 		u32 cmd;
62 		SVGAFifoCmdDefineAlphaCursor cursor;
63 	} *cmd;
64 	u32 image_size = width * height * 4;
65 	u32 cmd_size = sizeof(*cmd) + image_size;
66 
67 	if (!image)
68 		return -EINVAL;
69 
70 	cmd = VMW_CMD_RESERVE(dev_priv, cmd_size);
71 	if (unlikely(cmd == NULL))
72 		return -ENOMEM;
73 
74 	memset(cmd, 0, sizeof(*cmd));
75 
76 	memcpy(&cmd[1], image, image_size);
77 
78 	cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
79 	cmd->cursor.id = 0;
80 	cmd->cursor.width = width;
81 	cmd->cursor.height = height;
82 	cmd->cursor.hotspotX = hotspotX;
83 	cmd->cursor.hotspotY = hotspotY;
84 
85 	vmw_cmd_commit_flush(dev_priv, cmd_size);
86 
87 	return 0;
88 }
89 
90 static int vmw_cursor_update_bo(struct vmw_private *dev_priv,
91 				struct vmw_buffer_object *bo,
92 				u32 width, u32 height,
93 				u32 hotspotX, u32 hotspotY)
94 {
95 	struct ttm_bo_kmap_obj map;
96 	unsigned long kmap_offset;
97 	unsigned long kmap_num;
98 	void *virtual;
99 	bool dummy;
100 	int ret;
101 
102 	kmap_offset = 0;
103 	kmap_num = PFN_UP(width*height*4);
104 
105 	ret = ttm_bo_reserve(&bo->base, true, false, NULL);
106 	if (unlikely(ret != 0)) {
107 		DRM_ERROR("reserve failed\n");
108 		return -EINVAL;
109 	}
110 
111 	ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map);
112 	if (unlikely(ret != 0))
113 		goto err_unreserve;
114 
115 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
116 	ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
117 				      hotspotX, hotspotY);
118 
119 	ttm_bo_kunmap(&map);
120 err_unreserve:
121 	ttm_bo_unreserve(&bo->base);
122 
123 	return ret;
124 }
125 
126 
127 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
128 				       bool show, int x, int y)
129 {
130 	uint32_t count;
131 
132 	spin_lock(&dev_priv->cursor_lock);
133 	if (vmw_is_cursor_bypass3_enabled(dev_priv)) {
134 		vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_ON, show ? 1 : 0);
135 		vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_X, x);
136 		vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_Y, y);
137 		count = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_CURSOR_COUNT);
138 		vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_COUNT, ++count);
139 	} else {
140 		vmw_write(dev_priv, SVGA_REG_CURSOR_X, x);
141 		vmw_write(dev_priv, SVGA_REG_CURSOR_Y, y);
142 		vmw_write(dev_priv, SVGA_REG_CURSOR_ON, show ? 1 : 0);
143 	}
144 	spin_unlock(&dev_priv->cursor_lock);
145 }
146 
147 
148 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
149 			  struct ttm_object_file *tfile,
150 			  struct ttm_buffer_object *bo,
151 			  SVGA3dCmdHeader *header)
152 {
153 	struct ttm_bo_kmap_obj map;
154 	unsigned long kmap_offset;
155 	unsigned long kmap_num;
156 	SVGA3dCopyBox *box;
157 	unsigned box_count;
158 	void *virtual;
159 	bool dummy;
160 	struct vmw_dma_cmd {
161 		SVGA3dCmdHeader header;
162 		SVGA3dCmdSurfaceDMA dma;
163 	} *cmd;
164 	int i, ret;
165 
166 	cmd = container_of(header, struct vmw_dma_cmd, header);
167 
168 	/* No snooper installed */
169 	if (!srf->snooper.image)
170 		return;
171 
172 	if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
173 		DRM_ERROR("face and mipmap for cursors should never != 0\n");
174 		return;
175 	}
176 
177 	if (cmd->header.size < 64) {
178 		DRM_ERROR("at least one full copy box must be given\n");
179 		return;
180 	}
181 
182 	box = (SVGA3dCopyBox *)&cmd[1];
183 	box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
184 			sizeof(SVGA3dCopyBox);
185 
186 	if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
187 	    box->x != 0    || box->y != 0    || box->z != 0    ||
188 	    box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
189 	    box->d != 1    || box_count != 1) {
190 		/* TODO handle none page aligned offsets */
191 		/* TODO handle more dst & src != 0 */
192 		/* TODO handle more then one copy */
193 		DRM_ERROR("Can't snoop dma request for cursor!\n");
194 		DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
195 			  box->srcx, box->srcy, box->srcz,
196 			  box->x, box->y, box->z,
197 			  box->w, box->h, box->d, box_count,
198 			  cmd->dma.guest.ptr.offset);
199 		return;
200 	}
201 
202 	kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
203 	kmap_num = (64*64*4) >> PAGE_SHIFT;
204 
205 	ret = ttm_bo_reserve(bo, true, false, NULL);
206 	if (unlikely(ret != 0)) {
207 		DRM_ERROR("reserve failed\n");
208 		return;
209 	}
210 
211 	ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
212 	if (unlikely(ret != 0))
213 		goto err_unreserve;
214 
215 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
216 
217 	if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
218 		memcpy(srf->snooper.image, virtual, 64*64*4);
219 	} else {
220 		/* Image is unsigned pointer. */
221 		for (i = 0; i < box->h; i++)
222 			memcpy(srf->snooper.image + i * 64,
223 			       virtual + i * cmd->dma.guest.pitch,
224 			       box->w * 4);
225 	}
226 
227 	srf->snooper.age++;
228 
229 	ttm_bo_kunmap(&map);
230 err_unreserve:
231 	ttm_bo_unreserve(bo);
232 }
233 
234 /**
235  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
236  *
237  * @dev_priv: Pointer to the device private struct.
238  *
239  * Clears all legacy hotspots.
240  */
241 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
242 {
243 	struct drm_device *dev = &dev_priv->drm;
244 	struct vmw_display_unit *du;
245 	struct drm_crtc *crtc;
246 
247 	drm_modeset_lock_all(dev);
248 	drm_for_each_crtc(crtc, dev) {
249 		du = vmw_crtc_to_du(crtc);
250 
251 		du->hotspot_x = 0;
252 		du->hotspot_y = 0;
253 	}
254 	drm_modeset_unlock_all(dev);
255 }
256 
257 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
258 {
259 	struct drm_device *dev = &dev_priv->drm;
260 	struct vmw_display_unit *du;
261 	struct drm_crtc *crtc;
262 
263 	mutex_lock(&dev->mode_config.mutex);
264 
265 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
266 		du = vmw_crtc_to_du(crtc);
267 		if (!du->cursor_surface ||
268 		    du->cursor_age == du->cursor_surface->snooper.age)
269 			continue;
270 
271 		du->cursor_age = du->cursor_surface->snooper.age;
272 		vmw_cursor_update_image(dev_priv,
273 					du->cursor_surface->snooper.image,
274 					64, 64,
275 					du->hotspot_x + du->core_hotspot_x,
276 					du->hotspot_y + du->core_hotspot_y);
277 	}
278 
279 	mutex_unlock(&dev->mode_config.mutex);
280 }
281 
282 
283 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
284 {
285 	vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
286 
287 	drm_plane_cleanup(plane);
288 }
289 
290 
291 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
292 {
293 	drm_plane_cleanup(plane);
294 
295 	/* Planes are static in our case so we don't free it */
296 }
297 
298 
299 /**
300  * vmw_du_plane_unpin_surf - unpins resource associated with a framebuffer surface
301  *
302  * @vps: plane state associated with the display surface
303  * @unreference: true if we also want to unreference the display.
304  */
305 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
306 			     bool unreference)
307 {
308 	if (vps->surf) {
309 		if (vps->pinned) {
310 			vmw_resource_unpin(&vps->surf->res);
311 			vps->pinned--;
312 		}
313 
314 		if (unreference) {
315 			if (vps->pinned)
316 				DRM_ERROR("Surface still pinned\n");
317 			vmw_surface_unreference(&vps->surf);
318 		}
319 	}
320 }
321 
322 
323 /**
324  * vmw_du_plane_cleanup_fb - Unpins the cursor
325  *
326  * @plane:  display plane
327  * @old_state: Contains the FB to clean up
328  *
329  * Unpins the framebuffer surface
330  *
331  * Returns 0 on success
332  */
333 void
334 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
335 			struct drm_plane_state *old_state)
336 {
337 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
338 
339 	vmw_du_plane_unpin_surf(vps, false);
340 }
341 
342 
343 /**
344  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
345  *
346  * @plane:  display plane
347  * @new_state: info on the new plane state, including the FB
348  *
349  * Returns 0 on success
350  */
351 int
352 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
353 			       struct drm_plane_state *new_state)
354 {
355 	struct drm_framebuffer *fb = new_state->fb;
356 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
357 
358 
359 	if (vps->surf)
360 		vmw_surface_unreference(&vps->surf);
361 
362 	if (vps->bo)
363 		vmw_bo_unreference(&vps->bo);
364 
365 	if (fb) {
366 		if (vmw_framebuffer_to_vfb(fb)->bo) {
367 			vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer;
368 			vmw_bo_reference(vps->bo);
369 		} else {
370 			vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
371 			vmw_surface_reference(vps->surf);
372 		}
373 	}
374 
375 	return 0;
376 }
377 
378 
379 void
380 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
381 				  struct drm_atomic_state *state)
382 {
383 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
384 									   plane);
385 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
386 									   plane);
387 	struct drm_crtc *crtc = new_state->crtc ?: old_state->crtc;
388 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
389 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
390 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
391 	s32 hotspot_x, hotspot_y;
392 	int ret = 0;
393 
394 
395 	hotspot_x = du->hotspot_x;
396 	hotspot_y = du->hotspot_y;
397 
398 	if (new_state->fb) {
399 		hotspot_x += new_state->fb->hot_x;
400 		hotspot_y += new_state->fb->hot_y;
401 	}
402 
403 	du->cursor_surface = vps->surf;
404 	du->cursor_bo = vps->bo;
405 
406 	if (vps->surf) {
407 		du->cursor_age = du->cursor_surface->snooper.age;
408 
409 		ret = vmw_cursor_update_image(dev_priv,
410 					      vps->surf->snooper.image,
411 					      64, 64, hotspot_x,
412 					      hotspot_y);
413 	} else if (vps->bo) {
414 		ret = vmw_cursor_update_bo(dev_priv, vps->bo,
415 					   new_state->crtc_w,
416 					   new_state->crtc_h,
417 					   hotspot_x, hotspot_y);
418 	} else {
419 		vmw_cursor_update_position(dev_priv, false, 0, 0);
420 		return;
421 	}
422 
423 	if (!ret) {
424 		du->cursor_x = new_state->crtc_x + du->set_gui_x;
425 		du->cursor_y = new_state->crtc_y + du->set_gui_y;
426 
427 		vmw_cursor_update_position(dev_priv, true,
428 					   du->cursor_x + hotspot_x,
429 					   du->cursor_y + hotspot_y);
430 
431 		du->core_hotspot_x = hotspot_x - du->hotspot_x;
432 		du->core_hotspot_y = hotspot_y - du->hotspot_y;
433 	} else {
434 		DRM_ERROR("Failed to update cursor image\n");
435 	}
436 }
437 
438 
439 /**
440  * vmw_du_primary_plane_atomic_check - check if the new state is okay
441  *
442  * @plane: display plane
443  * @state: info on the new plane state, including the FB
444  *
445  * Check if the new state is settable given the current state.  Other
446  * than what the atomic helper checks, we care about crtc fitting
447  * the FB and maintaining one active framebuffer.
448  *
449  * Returns 0 on success
450  */
451 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
452 				      struct drm_atomic_state *state)
453 {
454 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
455 									   plane);
456 	struct drm_crtc_state *crtc_state = NULL;
457 	struct drm_framebuffer *new_fb = new_state->fb;
458 	int ret;
459 
460 	if (new_state->crtc)
461 		crtc_state = drm_atomic_get_new_crtc_state(state,
462 							   new_state->crtc);
463 
464 	ret = drm_atomic_helper_check_plane_state(new_state, crtc_state,
465 						  DRM_PLANE_HELPER_NO_SCALING,
466 						  DRM_PLANE_HELPER_NO_SCALING,
467 						  false, true);
468 
469 	if (!ret && new_fb) {
470 		struct drm_crtc *crtc = new_state->crtc;
471 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
472 
473 		vmw_connector_state_to_vcs(du->connector.state);
474 	}
475 
476 
477 	return ret;
478 }
479 
480 
481 /**
482  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
483  *
484  * @plane: cursor plane
485  * @state: info on the new plane state
486  *
487  * This is a chance to fail if the new cursor state does not fit
488  * our requirements.
489  *
490  * Returns 0 on success
491  */
492 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
493 				     struct drm_atomic_state *state)
494 {
495 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
496 									   plane);
497 	int ret = 0;
498 	struct drm_crtc_state *crtc_state = NULL;
499 	struct vmw_surface *surface = NULL;
500 	struct drm_framebuffer *fb = new_state->fb;
501 
502 	if (new_state->crtc)
503 		crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
504 							   new_state->crtc);
505 
506 	ret = drm_atomic_helper_check_plane_state(new_state, crtc_state,
507 						  DRM_PLANE_HELPER_NO_SCALING,
508 						  DRM_PLANE_HELPER_NO_SCALING,
509 						  true, true);
510 	if (ret)
511 		return ret;
512 
513 	/* Turning off */
514 	if (!fb)
515 		return 0;
516 
517 	/* A lot of the code assumes this */
518 	if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
519 		DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
520 			  new_state->crtc_w, new_state->crtc_h);
521 		ret = -EINVAL;
522 	}
523 
524 	if (!vmw_framebuffer_to_vfb(fb)->bo)
525 		surface = vmw_framebuffer_to_vfbs(fb)->surface;
526 
527 	if (surface && !surface->snooper.image) {
528 		DRM_ERROR("surface not suitable for cursor\n");
529 		ret = -EINVAL;
530 	}
531 
532 	return ret;
533 }
534 
535 
536 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
537 			     struct drm_atomic_state *state)
538 {
539 	struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
540 									 crtc);
541 	struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
542 	int connector_mask = drm_connector_mask(&du->connector);
543 	bool has_primary = new_state->plane_mask &
544 			   drm_plane_mask(crtc->primary);
545 
546 	/* We always want to have an active plane with an active CRTC */
547 	if (has_primary != new_state->enable)
548 		return -EINVAL;
549 
550 
551 	if (new_state->connector_mask != connector_mask &&
552 	    new_state->connector_mask != 0) {
553 		DRM_ERROR("Invalid connectors configuration\n");
554 		return -EINVAL;
555 	}
556 
557 	/*
558 	 * Our virtual device does not have a dot clock, so use the logical
559 	 * clock value as the dot clock.
560 	 */
561 	if (new_state->mode.crtc_clock == 0)
562 		new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
563 
564 	return 0;
565 }
566 
567 
568 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
569 			      struct drm_atomic_state *state)
570 {
571 }
572 
573 
574 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
575 			      struct drm_atomic_state *state)
576 {
577 	struct drm_pending_vblank_event *event = crtc->state->event;
578 
579 	if (event) {
580 		crtc->state->event = NULL;
581 
582 		spin_lock_irq(&crtc->dev->event_lock);
583 		drm_crtc_send_vblank_event(crtc, event);
584 		spin_unlock_irq(&crtc->dev->event_lock);
585 	}
586 }
587 
588 
589 /**
590  * vmw_du_crtc_duplicate_state - duplicate crtc state
591  * @crtc: DRM crtc
592  *
593  * Allocates and returns a copy of the crtc state (both common and
594  * vmw-specific) for the specified crtc.
595  *
596  * Returns: The newly allocated crtc state, or NULL on failure.
597  */
598 struct drm_crtc_state *
599 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
600 {
601 	struct drm_crtc_state *state;
602 	struct vmw_crtc_state *vcs;
603 
604 	if (WARN_ON(!crtc->state))
605 		return NULL;
606 
607 	vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
608 
609 	if (!vcs)
610 		return NULL;
611 
612 	state = &vcs->base;
613 
614 	__drm_atomic_helper_crtc_duplicate_state(crtc, state);
615 
616 	return state;
617 }
618 
619 
620 /**
621  * vmw_du_crtc_reset - creates a blank vmw crtc state
622  * @crtc: DRM crtc
623  *
624  * Resets the atomic state for @crtc by freeing the state pointer (which
625  * might be NULL, e.g. at driver load time) and allocating a new empty state
626  * object.
627  */
628 void vmw_du_crtc_reset(struct drm_crtc *crtc)
629 {
630 	struct vmw_crtc_state *vcs;
631 
632 
633 	if (crtc->state) {
634 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
635 
636 		kfree(vmw_crtc_state_to_vcs(crtc->state));
637 	}
638 
639 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
640 
641 	if (!vcs) {
642 		DRM_ERROR("Cannot allocate vmw_crtc_state\n");
643 		return;
644 	}
645 
646 	__drm_atomic_helper_crtc_reset(crtc, &vcs->base);
647 }
648 
649 
650 /**
651  * vmw_du_crtc_destroy_state - destroy crtc state
652  * @crtc: DRM crtc
653  * @state: state object to destroy
654  *
655  * Destroys the crtc state (both common and vmw-specific) for the
656  * specified plane.
657  */
658 void
659 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
660 			  struct drm_crtc_state *state)
661 {
662 	drm_atomic_helper_crtc_destroy_state(crtc, state);
663 }
664 
665 
666 /**
667  * vmw_du_plane_duplicate_state - duplicate plane state
668  * @plane: drm plane
669  *
670  * Allocates and returns a copy of the plane state (both common and
671  * vmw-specific) for the specified plane.
672  *
673  * Returns: The newly allocated plane state, or NULL on failure.
674  */
675 struct drm_plane_state *
676 vmw_du_plane_duplicate_state(struct drm_plane *plane)
677 {
678 	struct drm_plane_state *state;
679 	struct vmw_plane_state *vps;
680 
681 	vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
682 
683 	if (!vps)
684 		return NULL;
685 
686 	vps->pinned = 0;
687 	vps->cpp = 0;
688 
689 	/* Each ref counted resource needs to be acquired again */
690 	if (vps->surf)
691 		(void) vmw_surface_reference(vps->surf);
692 
693 	if (vps->bo)
694 		(void) vmw_bo_reference(vps->bo);
695 
696 	state = &vps->base;
697 
698 	__drm_atomic_helper_plane_duplicate_state(plane, state);
699 
700 	return state;
701 }
702 
703 
704 /**
705  * vmw_du_plane_reset - creates a blank vmw plane state
706  * @plane: drm plane
707  *
708  * Resets the atomic state for @plane by freeing the state pointer (which might
709  * be NULL, e.g. at driver load time) and allocating a new empty state object.
710  */
711 void vmw_du_plane_reset(struct drm_plane *plane)
712 {
713 	struct vmw_plane_state *vps;
714 
715 
716 	if (plane->state)
717 		vmw_du_plane_destroy_state(plane, plane->state);
718 
719 	vps = kzalloc(sizeof(*vps), GFP_KERNEL);
720 
721 	if (!vps) {
722 		DRM_ERROR("Cannot allocate vmw_plane_state\n");
723 		return;
724 	}
725 
726 	__drm_atomic_helper_plane_reset(plane, &vps->base);
727 }
728 
729 
730 /**
731  * vmw_du_plane_destroy_state - destroy plane state
732  * @plane: DRM plane
733  * @state: state object to destroy
734  *
735  * Destroys the plane state (both common and vmw-specific) for the
736  * specified plane.
737  */
738 void
739 vmw_du_plane_destroy_state(struct drm_plane *plane,
740 			   struct drm_plane_state *state)
741 {
742 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
743 
744 
745 	/* Should have been freed by cleanup_fb */
746 	if (vps->surf)
747 		vmw_surface_unreference(&vps->surf);
748 
749 	if (vps->bo)
750 		vmw_bo_unreference(&vps->bo);
751 
752 	drm_atomic_helper_plane_destroy_state(plane, state);
753 }
754 
755 
756 /**
757  * vmw_du_connector_duplicate_state - duplicate connector state
758  * @connector: DRM connector
759  *
760  * Allocates and returns a copy of the connector state (both common and
761  * vmw-specific) for the specified connector.
762  *
763  * Returns: The newly allocated connector state, or NULL on failure.
764  */
765 struct drm_connector_state *
766 vmw_du_connector_duplicate_state(struct drm_connector *connector)
767 {
768 	struct drm_connector_state *state;
769 	struct vmw_connector_state *vcs;
770 
771 	if (WARN_ON(!connector->state))
772 		return NULL;
773 
774 	vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
775 
776 	if (!vcs)
777 		return NULL;
778 
779 	state = &vcs->base;
780 
781 	__drm_atomic_helper_connector_duplicate_state(connector, state);
782 
783 	return state;
784 }
785 
786 
787 /**
788  * vmw_du_connector_reset - creates a blank vmw connector state
789  * @connector: DRM connector
790  *
791  * Resets the atomic state for @connector by freeing the state pointer (which
792  * might be NULL, e.g. at driver load time) and allocating a new empty state
793  * object.
794  */
795 void vmw_du_connector_reset(struct drm_connector *connector)
796 {
797 	struct vmw_connector_state *vcs;
798 
799 
800 	if (connector->state) {
801 		__drm_atomic_helper_connector_destroy_state(connector->state);
802 
803 		kfree(vmw_connector_state_to_vcs(connector->state));
804 	}
805 
806 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
807 
808 	if (!vcs) {
809 		DRM_ERROR("Cannot allocate vmw_connector_state\n");
810 		return;
811 	}
812 
813 	__drm_atomic_helper_connector_reset(connector, &vcs->base);
814 }
815 
816 
817 /**
818  * vmw_du_connector_destroy_state - destroy connector state
819  * @connector: DRM connector
820  * @state: state object to destroy
821  *
822  * Destroys the connector state (both common and vmw-specific) for the
823  * specified plane.
824  */
825 void
826 vmw_du_connector_destroy_state(struct drm_connector *connector,
827 			  struct drm_connector_state *state)
828 {
829 	drm_atomic_helper_connector_destroy_state(connector, state);
830 }
831 /*
832  * Generic framebuffer code
833  */
834 
835 /*
836  * Surface framebuffer code
837  */
838 
839 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
840 {
841 	struct vmw_framebuffer_surface *vfbs =
842 		vmw_framebuffer_to_vfbs(framebuffer);
843 
844 	drm_framebuffer_cleanup(framebuffer);
845 	vmw_surface_unreference(&vfbs->surface);
846 
847 	kfree(vfbs);
848 }
849 
850 /**
851  * vmw_kms_readback - Perform a readback from the screen system to
852  * a buffer-object backed framebuffer.
853  *
854  * @dev_priv: Pointer to the device private structure.
855  * @file_priv: Pointer to a struct drm_file identifying the caller.
856  * Must be set to NULL if @user_fence_rep is NULL.
857  * @vfb: Pointer to the buffer-object backed framebuffer.
858  * @user_fence_rep: User-space provided structure for fence information.
859  * Must be set to non-NULL if @file_priv is non-NULL.
860  * @vclips: Array of clip rects.
861  * @num_clips: Number of clip rects in @vclips.
862  *
863  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
864  * interrupted.
865  */
866 int vmw_kms_readback(struct vmw_private *dev_priv,
867 		     struct drm_file *file_priv,
868 		     struct vmw_framebuffer *vfb,
869 		     struct drm_vmw_fence_rep __user *user_fence_rep,
870 		     struct drm_vmw_rect *vclips,
871 		     uint32_t num_clips)
872 {
873 	switch (dev_priv->active_display_unit) {
874 	case vmw_du_screen_object:
875 		return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
876 					    user_fence_rep, vclips, num_clips,
877 					    NULL);
878 	case vmw_du_screen_target:
879 		return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
880 					user_fence_rep, NULL, vclips, num_clips,
881 					1, false, true, NULL);
882 	default:
883 		WARN_ONCE(true,
884 			  "Readback called with invalid display system.\n");
885 }
886 
887 	return -ENOSYS;
888 }
889 
890 
891 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
892 	.destroy = vmw_framebuffer_surface_destroy,
893 	.dirty = drm_atomic_helper_dirtyfb,
894 };
895 
896 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
897 					   struct vmw_surface *surface,
898 					   struct vmw_framebuffer **out,
899 					   const struct drm_mode_fb_cmd2
900 					   *mode_cmd,
901 					   bool is_bo_proxy)
902 
903 {
904 	struct drm_device *dev = &dev_priv->drm;
905 	struct vmw_framebuffer_surface *vfbs;
906 	enum SVGA3dSurfaceFormat format;
907 	int ret;
908 
909 	/* 3D is only supported on HWv8 and newer hosts */
910 	if (dev_priv->active_display_unit == vmw_du_legacy)
911 		return -ENOSYS;
912 
913 	/*
914 	 * Sanity checks.
915 	 */
916 
917 	/* Surface must be marked as a scanout. */
918 	if (unlikely(!surface->metadata.scanout))
919 		return -EINVAL;
920 
921 	if (unlikely(surface->metadata.mip_levels[0] != 1 ||
922 		     surface->metadata.num_sizes != 1 ||
923 		     surface->metadata.base_size.width < mode_cmd->width ||
924 		     surface->metadata.base_size.height < mode_cmd->height ||
925 		     surface->metadata.base_size.depth != 1)) {
926 		DRM_ERROR("Incompatible surface dimensions "
927 			  "for requested mode.\n");
928 		return -EINVAL;
929 	}
930 
931 	switch (mode_cmd->pixel_format) {
932 	case DRM_FORMAT_ARGB8888:
933 		format = SVGA3D_A8R8G8B8;
934 		break;
935 	case DRM_FORMAT_XRGB8888:
936 		format = SVGA3D_X8R8G8B8;
937 		break;
938 	case DRM_FORMAT_RGB565:
939 		format = SVGA3D_R5G6B5;
940 		break;
941 	case DRM_FORMAT_XRGB1555:
942 		format = SVGA3D_A1R5G5B5;
943 		break;
944 	default:
945 		DRM_ERROR("Invalid pixel format: %p4cc\n",
946 			  &mode_cmd->pixel_format);
947 		return -EINVAL;
948 	}
949 
950 	/*
951 	 * For DX, surface format validation is done when surface->scanout
952 	 * is set.
953 	 */
954 	if (!has_sm4_context(dev_priv) && format != surface->metadata.format) {
955 		DRM_ERROR("Invalid surface format for requested mode.\n");
956 		return -EINVAL;
957 	}
958 
959 	vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
960 	if (!vfbs) {
961 		ret = -ENOMEM;
962 		goto out_err1;
963 	}
964 
965 	drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
966 	vfbs->surface = vmw_surface_reference(surface);
967 	vfbs->base.user_handle = mode_cmd->handles[0];
968 	vfbs->is_bo_proxy = is_bo_proxy;
969 
970 	*out = &vfbs->base;
971 
972 	ret = drm_framebuffer_init(dev, &vfbs->base.base,
973 				   &vmw_framebuffer_surface_funcs);
974 	if (ret)
975 		goto out_err2;
976 
977 	return 0;
978 
979 out_err2:
980 	vmw_surface_unreference(&surface);
981 	kfree(vfbs);
982 out_err1:
983 	return ret;
984 }
985 
986 /*
987  * Buffer-object framebuffer code
988  */
989 
990 static int vmw_framebuffer_bo_create_handle(struct drm_framebuffer *fb,
991 					    struct drm_file *file_priv,
992 					    unsigned int *handle)
993 {
994 	struct vmw_framebuffer_bo *vfbd =
995 			vmw_framebuffer_to_vfbd(fb);
996 
997 	return drm_gem_handle_create(file_priv, &vfbd->buffer->base.base, handle);
998 }
999 
1000 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer)
1001 {
1002 	struct vmw_framebuffer_bo *vfbd =
1003 		vmw_framebuffer_to_vfbd(framebuffer);
1004 
1005 	drm_framebuffer_cleanup(framebuffer);
1006 	vmw_bo_unreference(&vfbd->buffer);
1007 
1008 	kfree(vfbd);
1009 }
1010 
1011 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer,
1012 				    struct drm_file *file_priv,
1013 				    unsigned int flags, unsigned int color,
1014 				    struct drm_clip_rect *clips,
1015 				    unsigned int num_clips)
1016 {
1017 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1018 	struct vmw_framebuffer_bo *vfbd =
1019 		vmw_framebuffer_to_vfbd(framebuffer);
1020 	struct drm_clip_rect norect;
1021 	int ret, increment = 1;
1022 
1023 	drm_modeset_lock_all(&dev_priv->drm);
1024 
1025 	if (!num_clips) {
1026 		num_clips = 1;
1027 		clips = &norect;
1028 		norect.x1 = norect.y1 = 0;
1029 		norect.x2 = framebuffer->width;
1030 		norect.y2 = framebuffer->height;
1031 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1032 		num_clips /= 2;
1033 		increment = 2;
1034 	}
1035 
1036 	switch (dev_priv->active_display_unit) {
1037 	case vmw_du_legacy:
1038 		ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0,
1039 					      clips, num_clips, increment);
1040 		break;
1041 	default:
1042 		ret = -EINVAL;
1043 		WARN_ONCE(true, "Dirty called with invalid display system.\n");
1044 		break;
1045 	}
1046 
1047 	vmw_cmd_flush(dev_priv, false);
1048 
1049 	drm_modeset_unlock_all(&dev_priv->drm);
1050 
1051 	return ret;
1052 }
1053 
1054 static int vmw_framebuffer_bo_dirty_ext(struct drm_framebuffer *framebuffer,
1055 					struct drm_file *file_priv,
1056 					unsigned int flags, unsigned int color,
1057 					struct drm_clip_rect *clips,
1058 					unsigned int num_clips)
1059 {
1060 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1061 
1062 	if (dev_priv->active_display_unit == vmw_du_legacy &&
1063 	    vmw_cmd_supported(dev_priv))
1064 		return vmw_framebuffer_bo_dirty(framebuffer, file_priv, flags,
1065 						color, clips, num_clips);
1066 
1067 	return drm_atomic_helper_dirtyfb(framebuffer, file_priv, flags, color,
1068 					 clips, num_clips);
1069 }
1070 
1071 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = {
1072 	.create_handle = vmw_framebuffer_bo_create_handle,
1073 	.destroy = vmw_framebuffer_bo_destroy,
1074 	.dirty = vmw_framebuffer_bo_dirty_ext,
1075 };
1076 
1077 /*
1078  * Pin the bofer in a location suitable for access by the
1079  * display system.
1080  */
1081 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1082 {
1083 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1084 	struct vmw_buffer_object *buf;
1085 	struct ttm_placement *placement;
1086 	int ret;
1087 
1088 	buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1089 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1090 
1091 	if (!buf)
1092 		return 0;
1093 
1094 	switch (dev_priv->active_display_unit) {
1095 	case vmw_du_legacy:
1096 		vmw_overlay_pause_all(dev_priv);
1097 		ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false);
1098 		vmw_overlay_resume_all(dev_priv);
1099 		break;
1100 	case vmw_du_screen_object:
1101 	case vmw_du_screen_target:
1102 		if (vfb->bo) {
1103 			if (dev_priv->capabilities & SVGA_CAP_3D) {
1104 				/*
1105 				 * Use surface DMA to get content to
1106 				 * sreen target surface.
1107 				 */
1108 				placement = &vmw_vram_gmr_placement;
1109 			} else {
1110 				/* Use CPU blit. */
1111 				placement = &vmw_sys_placement;
1112 			}
1113 		} else {
1114 			/* Use surface / image update */
1115 			placement = &vmw_mob_placement;
1116 		}
1117 
1118 		return vmw_bo_pin_in_placement(dev_priv, buf, placement, false);
1119 	default:
1120 		return -EINVAL;
1121 	}
1122 
1123 	return ret;
1124 }
1125 
1126 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1127 {
1128 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1129 	struct vmw_buffer_object *buf;
1130 
1131 	buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1132 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1133 
1134 	if (WARN_ON(!buf))
1135 		return 0;
1136 
1137 	return vmw_bo_unpin(dev_priv, buf, false);
1138 }
1139 
1140 /**
1141  * vmw_create_bo_proxy - create a proxy surface for the buffer object
1142  *
1143  * @dev: DRM device
1144  * @mode_cmd: parameters for the new surface
1145  * @bo_mob: MOB backing the buffer object
1146  * @srf_out: newly created surface
1147  *
1148  * When the content FB is a buffer object, we create a surface as a proxy to the
1149  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1150  * This is a more efficient approach
1151  *
1152  * RETURNS:
1153  * 0 on success, error code otherwise
1154  */
1155 static int vmw_create_bo_proxy(struct drm_device *dev,
1156 			       const struct drm_mode_fb_cmd2 *mode_cmd,
1157 			       struct vmw_buffer_object *bo_mob,
1158 			       struct vmw_surface **srf_out)
1159 {
1160 	struct vmw_surface_metadata metadata = {0};
1161 	uint32_t format;
1162 	struct vmw_resource *res;
1163 	unsigned int bytes_pp;
1164 	int ret;
1165 
1166 	switch (mode_cmd->pixel_format) {
1167 	case DRM_FORMAT_ARGB8888:
1168 	case DRM_FORMAT_XRGB8888:
1169 		format = SVGA3D_X8R8G8B8;
1170 		bytes_pp = 4;
1171 		break;
1172 
1173 	case DRM_FORMAT_RGB565:
1174 	case DRM_FORMAT_XRGB1555:
1175 		format = SVGA3D_R5G6B5;
1176 		bytes_pp = 2;
1177 		break;
1178 
1179 	case 8:
1180 		format = SVGA3D_P8;
1181 		bytes_pp = 1;
1182 		break;
1183 
1184 	default:
1185 		DRM_ERROR("Invalid framebuffer format %p4cc\n",
1186 			  &mode_cmd->pixel_format);
1187 		return -EINVAL;
1188 	}
1189 
1190 	metadata.format = format;
1191 	metadata.mip_levels[0] = 1;
1192 	metadata.num_sizes = 1;
1193 	metadata.base_size.width = mode_cmd->pitches[0] / bytes_pp;
1194 	metadata.base_size.height =  mode_cmd->height;
1195 	metadata.base_size.depth = 1;
1196 	metadata.scanout = true;
1197 
1198 	ret = vmw_gb_surface_define(vmw_priv(dev), &metadata, srf_out);
1199 	if (ret) {
1200 		DRM_ERROR("Failed to allocate proxy content buffer\n");
1201 		return ret;
1202 	}
1203 
1204 	res = &(*srf_out)->res;
1205 
1206 	/* Reserve and switch the backing mob. */
1207 	mutex_lock(&res->dev_priv->cmdbuf_mutex);
1208 	(void) vmw_resource_reserve(res, false, true);
1209 	vmw_bo_unreference(&res->backup);
1210 	res->backup = vmw_bo_reference(bo_mob);
1211 	res->backup_offset = 0;
1212 	vmw_resource_unreserve(res, false, false, false, NULL, 0);
1213 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1214 
1215 	return 0;
1216 }
1217 
1218 
1219 
1220 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv,
1221 				      struct vmw_buffer_object *bo,
1222 				      struct vmw_framebuffer **out,
1223 				      const struct drm_mode_fb_cmd2
1224 				      *mode_cmd)
1225 
1226 {
1227 	struct drm_device *dev = &dev_priv->drm;
1228 	struct vmw_framebuffer_bo *vfbd;
1229 	unsigned int requested_size;
1230 	int ret;
1231 
1232 	requested_size = mode_cmd->height * mode_cmd->pitches[0];
1233 	if (unlikely(requested_size > bo->base.base.size)) {
1234 		DRM_ERROR("Screen buffer object size is too small "
1235 			  "for requested mode.\n");
1236 		return -EINVAL;
1237 	}
1238 
1239 	/* Limited framebuffer color depth support for screen objects */
1240 	if (dev_priv->active_display_unit == vmw_du_screen_object) {
1241 		switch (mode_cmd->pixel_format) {
1242 		case DRM_FORMAT_XRGB8888:
1243 		case DRM_FORMAT_ARGB8888:
1244 			break;
1245 		case DRM_FORMAT_XRGB1555:
1246 		case DRM_FORMAT_RGB565:
1247 			break;
1248 		default:
1249 			DRM_ERROR("Invalid pixel format: %p4cc\n",
1250 				  &mode_cmd->pixel_format);
1251 			return -EINVAL;
1252 		}
1253 	}
1254 
1255 	vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1256 	if (!vfbd) {
1257 		ret = -ENOMEM;
1258 		goto out_err1;
1259 	}
1260 
1261 	vfbd->base.base.obj[0] = &bo->base.base;
1262 	drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1263 	vfbd->base.bo = true;
1264 	vfbd->buffer = vmw_bo_reference(bo);
1265 	vfbd->base.user_handle = mode_cmd->handles[0];
1266 	*out = &vfbd->base;
1267 
1268 	ret = drm_framebuffer_init(dev, &vfbd->base.base,
1269 				   &vmw_framebuffer_bo_funcs);
1270 	if (ret)
1271 		goto out_err2;
1272 
1273 	return 0;
1274 
1275 out_err2:
1276 	vmw_bo_unreference(&bo);
1277 	kfree(vfbd);
1278 out_err1:
1279 	return ret;
1280 }
1281 
1282 
1283 /**
1284  * vmw_kms_srf_ok - check if a surface can be created
1285  *
1286  * @dev_priv: Pointer to device private struct.
1287  * @width: requested width
1288  * @height: requested height
1289  *
1290  * Surfaces need to be less than texture size
1291  */
1292 static bool
1293 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1294 {
1295 	if (width  > dev_priv->texture_max_width ||
1296 	    height > dev_priv->texture_max_height)
1297 		return false;
1298 
1299 	return true;
1300 }
1301 
1302 /**
1303  * vmw_kms_new_framebuffer - Create a new framebuffer.
1304  *
1305  * @dev_priv: Pointer to device private struct.
1306  * @bo: Pointer to buffer object to wrap the kms framebuffer around.
1307  * Either @bo or @surface must be NULL.
1308  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1309  * Either @bo or @surface must be NULL.
1310  * @only_2d: No presents will occur to this buffer object based framebuffer.
1311  * This helps the code to do some important optimizations.
1312  * @mode_cmd: Frame-buffer metadata.
1313  */
1314 struct vmw_framebuffer *
1315 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1316 			struct vmw_buffer_object *bo,
1317 			struct vmw_surface *surface,
1318 			bool only_2d,
1319 			const struct drm_mode_fb_cmd2 *mode_cmd)
1320 {
1321 	struct vmw_framebuffer *vfb = NULL;
1322 	bool is_bo_proxy = false;
1323 	int ret;
1324 
1325 	/*
1326 	 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1327 	 * therefore, wrap the buffer object in a surface so we can use the
1328 	 * SurfaceCopy command.
1329 	 */
1330 	if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1331 	    bo && only_2d &&
1332 	    mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1333 	    dev_priv->active_display_unit == vmw_du_screen_target) {
1334 		ret = vmw_create_bo_proxy(&dev_priv->drm, mode_cmd,
1335 					  bo, &surface);
1336 		if (ret)
1337 			return ERR_PTR(ret);
1338 
1339 		is_bo_proxy = true;
1340 	}
1341 
1342 	/* Create the new framebuffer depending one what we have */
1343 	if (surface) {
1344 		ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1345 						      mode_cmd,
1346 						      is_bo_proxy);
1347 		/*
1348 		 * vmw_create_bo_proxy() adds a reference that is no longer
1349 		 * needed
1350 		 */
1351 		if (is_bo_proxy)
1352 			vmw_surface_unreference(&surface);
1353 	} else if (bo) {
1354 		ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb,
1355 						 mode_cmd);
1356 	} else {
1357 		BUG();
1358 	}
1359 
1360 	if (ret)
1361 		return ERR_PTR(ret);
1362 
1363 	vfb->pin = vmw_framebuffer_pin;
1364 	vfb->unpin = vmw_framebuffer_unpin;
1365 
1366 	return vfb;
1367 }
1368 
1369 /*
1370  * Generic Kernel modesetting functions
1371  */
1372 
1373 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1374 						 struct drm_file *file_priv,
1375 						 const struct drm_mode_fb_cmd2 *mode_cmd)
1376 {
1377 	struct vmw_private *dev_priv = vmw_priv(dev);
1378 	struct vmw_framebuffer *vfb = NULL;
1379 	struct vmw_surface *surface = NULL;
1380 	struct vmw_buffer_object *bo = NULL;
1381 	int ret;
1382 
1383 	/* returns either a bo or surface */
1384 	ret = vmw_user_lookup_handle(dev_priv, file_priv,
1385 				     mode_cmd->handles[0],
1386 				     &surface, &bo);
1387 	if (ret) {
1388 		DRM_ERROR("Invalid buffer object handle %u (0x%x).\n",
1389 			  mode_cmd->handles[0], mode_cmd->handles[0]);
1390 		goto err_out;
1391 	}
1392 
1393 
1394 	if (!bo &&
1395 	    !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1396 		DRM_ERROR("Surface size cannot exceed %dx%d\n",
1397 			dev_priv->texture_max_width,
1398 			dev_priv->texture_max_height);
1399 		goto err_out;
1400 	}
1401 
1402 
1403 	vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1404 				      !(dev_priv->capabilities & SVGA_CAP_3D),
1405 				      mode_cmd);
1406 	if (IS_ERR(vfb)) {
1407 		ret = PTR_ERR(vfb);
1408 		goto err_out;
1409  	}
1410 
1411 err_out:
1412 	/* vmw_user_lookup_handle takes one ref so does new_fb */
1413 	if (bo)
1414 		vmw_bo_unreference(&bo);
1415 	if (surface)
1416 		vmw_surface_unreference(&surface);
1417 
1418 	if (ret) {
1419 		DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1420 		return ERR_PTR(ret);
1421 	}
1422 
1423 	return &vfb->base;
1424 }
1425 
1426 /**
1427  * vmw_kms_check_display_memory - Validates display memory required for a
1428  * topology
1429  * @dev: DRM device
1430  * @num_rects: number of drm_rect in rects
1431  * @rects: array of drm_rect representing the topology to validate indexed by
1432  * crtc index.
1433  *
1434  * Returns:
1435  * 0 on success otherwise negative error code
1436  */
1437 static int vmw_kms_check_display_memory(struct drm_device *dev,
1438 					uint32_t num_rects,
1439 					struct drm_rect *rects)
1440 {
1441 	struct vmw_private *dev_priv = vmw_priv(dev);
1442 	struct drm_rect bounding_box = {0};
1443 	u64 total_pixels = 0, pixel_mem, bb_mem;
1444 	int i;
1445 
1446 	for (i = 0; i < num_rects; i++) {
1447 		/*
1448 		 * For STDU only individual screen (screen target) is limited by
1449 		 * SCREENTARGET_MAX_WIDTH/HEIGHT registers.
1450 		 */
1451 		if (dev_priv->active_display_unit == vmw_du_screen_target &&
1452 		    (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width ||
1453 		     drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) {
1454 			VMW_DEBUG_KMS("Screen size not supported.\n");
1455 			return -EINVAL;
1456 		}
1457 
1458 		/* Bounding box upper left is at (0,0). */
1459 		if (rects[i].x2 > bounding_box.x2)
1460 			bounding_box.x2 = rects[i].x2;
1461 
1462 		if (rects[i].y2 > bounding_box.y2)
1463 			bounding_box.y2 = rects[i].y2;
1464 
1465 		total_pixels += (u64) drm_rect_width(&rects[i]) *
1466 			(u64) drm_rect_height(&rects[i]);
1467 	}
1468 
1469 	/* Virtual svga device primary limits are always in 32-bpp. */
1470 	pixel_mem = total_pixels * 4;
1471 
1472 	/*
1473 	 * For HV10 and below prim_bb_mem is vram size. When
1474 	 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is
1475 	 * limit on primary bounding box
1476 	 */
1477 	if (pixel_mem > dev_priv->max_primary_mem) {
1478 		VMW_DEBUG_KMS("Combined output size too large.\n");
1479 		return -EINVAL;
1480 	}
1481 
1482 	/* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */
1483 	if (dev_priv->active_display_unit != vmw_du_screen_target ||
1484 	    !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) {
1485 		bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4;
1486 
1487 		if (bb_mem > dev_priv->max_primary_mem) {
1488 			VMW_DEBUG_KMS("Topology is beyond supported limits.\n");
1489 			return -EINVAL;
1490 		}
1491 	}
1492 
1493 	return 0;
1494 }
1495 
1496 /**
1497  * vmw_crtc_state_and_lock - Return new or current crtc state with locked
1498  * crtc mutex
1499  * @state: The atomic state pointer containing the new atomic state
1500  * @crtc: The crtc
1501  *
1502  * This function returns the new crtc state if it's part of the state update.
1503  * Otherwise returns the current crtc state. It also makes sure that the
1504  * crtc mutex is locked.
1505  *
1506  * Returns: A valid crtc state pointer or NULL. It may also return a
1507  * pointer error, in particular -EDEADLK if locking needs to be rerun.
1508  */
1509 static struct drm_crtc_state *
1510 vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc)
1511 {
1512 	struct drm_crtc_state *crtc_state;
1513 
1514 	crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
1515 	if (crtc_state) {
1516 		lockdep_assert_held(&crtc->mutex.mutex.base);
1517 	} else {
1518 		int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx);
1519 
1520 		if (ret != 0 && ret != -EALREADY)
1521 			return ERR_PTR(ret);
1522 
1523 		crtc_state = crtc->state;
1524 	}
1525 
1526 	return crtc_state;
1527 }
1528 
1529 /**
1530  * vmw_kms_check_implicit - Verify that all implicit display units scan out
1531  * from the same fb after the new state is committed.
1532  * @dev: The drm_device.
1533  * @state: The new state to be checked.
1534  *
1535  * Returns:
1536  *   Zero on success,
1537  *   -EINVAL on invalid state,
1538  *   -EDEADLK if modeset locking needs to be rerun.
1539  */
1540 static int vmw_kms_check_implicit(struct drm_device *dev,
1541 				  struct drm_atomic_state *state)
1542 {
1543 	struct drm_framebuffer *implicit_fb = NULL;
1544 	struct drm_crtc *crtc;
1545 	struct drm_crtc_state *crtc_state;
1546 	struct drm_plane_state *plane_state;
1547 
1548 	drm_for_each_crtc(crtc, dev) {
1549 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1550 
1551 		if (!du->is_implicit)
1552 			continue;
1553 
1554 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
1555 		if (IS_ERR(crtc_state))
1556 			return PTR_ERR(crtc_state);
1557 
1558 		if (!crtc_state || !crtc_state->enable)
1559 			continue;
1560 
1561 		/*
1562 		 * Can't move primary planes across crtcs, so this is OK.
1563 		 * It also means we don't need to take the plane mutex.
1564 		 */
1565 		plane_state = du->primary.state;
1566 		if (plane_state->crtc != crtc)
1567 			continue;
1568 
1569 		if (!implicit_fb)
1570 			implicit_fb = plane_state->fb;
1571 		else if (implicit_fb != plane_state->fb)
1572 			return -EINVAL;
1573 	}
1574 
1575 	return 0;
1576 }
1577 
1578 /**
1579  * vmw_kms_check_topology - Validates topology in drm_atomic_state
1580  * @dev: DRM device
1581  * @state: the driver state object
1582  *
1583  * Returns:
1584  * 0 on success otherwise negative error code
1585  */
1586 static int vmw_kms_check_topology(struct drm_device *dev,
1587 				  struct drm_atomic_state *state)
1588 {
1589 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
1590 	struct drm_rect *rects;
1591 	struct drm_crtc *crtc;
1592 	uint32_t i;
1593 	int ret = 0;
1594 
1595 	rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect),
1596 			GFP_KERNEL);
1597 	if (!rects)
1598 		return -ENOMEM;
1599 
1600 	drm_for_each_crtc(crtc, dev) {
1601 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1602 		struct drm_crtc_state *crtc_state;
1603 
1604 		i = drm_crtc_index(crtc);
1605 
1606 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
1607 		if (IS_ERR(crtc_state)) {
1608 			ret = PTR_ERR(crtc_state);
1609 			goto clean;
1610 		}
1611 
1612 		if (!crtc_state)
1613 			continue;
1614 
1615 		if (crtc_state->enable) {
1616 			rects[i].x1 = du->gui_x;
1617 			rects[i].y1 = du->gui_y;
1618 			rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay;
1619 			rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay;
1620 		} else {
1621 			rects[i].x1 = 0;
1622 			rects[i].y1 = 0;
1623 			rects[i].x2 = 0;
1624 			rects[i].y2 = 0;
1625 		}
1626 	}
1627 
1628 	/* Determine change to topology due to new atomic state */
1629 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
1630 				      new_crtc_state, i) {
1631 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1632 		struct drm_connector *connector;
1633 		struct drm_connector_state *conn_state;
1634 		struct vmw_connector_state *vmw_conn_state;
1635 
1636 		if (!du->pref_active && new_crtc_state->enable) {
1637 			VMW_DEBUG_KMS("Enabling a disabled display unit\n");
1638 			ret = -EINVAL;
1639 			goto clean;
1640 		}
1641 
1642 		/*
1643 		 * For vmwgfx each crtc has only one connector attached and it
1644 		 * is not changed so don't really need to check the
1645 		 * crtc->connector_mask and iterate over it.
1646 		 */
1647 		connector = &du->connector;
1648 		conn_state = drm_atomic_get_connector_state(state, connector);
1649 		if (IS_ERR(conn_state)) {
1650 			ret = PTR_ERR(conn_state);
1651 			goto clean;
1652 		}
1653 
1654 		vmw_conn_state = vmw_connector_state_to_vcs(conn_state);
1655 		vmw_conn_state->gui_x = du->gui_x;
1656 		vmw_conn_state->gui_y = du->gui_y;
1657 	}
1658 
1659 	ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc,
1660 					   rects);
1661 
1662 clean:
1663 	kfree(rects);
1664 	return ret;
1665 }
1666 
1667 /**
1668  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1669  *
1670  * @dev: DRM device
1671  * @state: the driver state object
1672  *
1673  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1674  * us to assign a value to mode->crtc_clock so that
1675  * drm_calc_timestamping_constants() won't throw an error message
1676  *
1677  * Returns:
1678  * Zero for success or -errno
1679  */
1680 static int
1681 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1682 			     struct drm_atomic_state *state)
1683 {
1684 	struct drm_crtc *crtc;
1685 	struct drm_crtc_state *crtc_state;
1686 	bool need_modeset = false;
1687 	int i, ret;
1688 
1689 	ret = drm_atomic_helper_check(dev, state);
1690 	if (ret)
1691 		return ret;
1692 
1693 	ret = vmw_kms_check_implicit(dev, state);
1694 	if (ret) {
1695 		VMW_DEBUG_KMS("Invalid implicit state\n");
1696 		return ret;
1697 	}
1698 
1699 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1700 		if (drm_atomic_crtc_needs_modeset(crtc_state))
1701 			need_modeset = true;
1702 	}
1703 
1704 	if (need_modeset)
1705 		return vmw_kms_check_topology(dev, state);
1706 
1707 	return ret;
1708 }
1709 
1710 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1711 	.fb_create = vmw_kms_fb_create,
1712 	.atomic_check = vmw_kms_atomic_check_modeset,
1713 	.atomic_commit = drm_atomic_helper_commit,
1714 };
1715 
1716 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1717 				   struct drm_file *file_priv,
1718 				   struct vmw_framebuffer *vfb,
1719 				   struct vmw_surface *surface,
1720 				   uint32_t sid,
1721 				   int32_t destX, int32_t destY,
1722 				   struct drm_vmw_rect *clips,
1723 				   uint32_t num_clips)
1724 {
1725 	return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1726 					    &surface->res, destX, destY,
1727 					    num_clips, 1, NULL, NULL);
1728 }
1729 
1730 
1731 int vmw_kms_present(struct vmw_private *dev_priv,
1732 		    struct drm_file *file_priv,
1733 		    struct vmw_framebuffer *vfb,
1734 		    struct vmw_surface *surface,
1735 		    uint32_t sid,
1736 		    int32_t destX, int32_t destY,
1737 		    struct drm_vmw_rect *clips,
1738 		    uint32_t num_clips)
1739 {
1740 	int ret;
1741 
1742 	switch (dev_priv->active_display_unit) {
1743 	case vmw_du_screen_target:
1744 		ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1745 						 &surface->res, destX, destY,
1746 						 num_clips, 1, NULL, NULL);
1747 		break;
1748 	case vmw_du_screen_object:
1749 		ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1750 					      sid, destX, destY, clips,
1751 					      num_clips);
1752 		break;
1753 	default:
1754 		WARN_ONCE(true,
1755 			  "Present called with invalid display system.\n");
1756 		ret = -ENOSYS;
1757 		break;
1758 	}
1759 	if (ret)
1760 		return ret;
1761 
1762 	vmw_cmd_flush(dev_priv, false);
1763 
1764 	return 0;
1765 }
1766 
1767 static void
1768 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1769 {
1770 	if (dev_priv->hotplug_mode_update_property)
1771 		return;
1772 
1773 	dev_priv->hotplug_mode_update_property =
1774 		drm_property_create_range(&dev_priv->drm,
1775 					  DRM_MODE_PROP_IMMUTABLE,
1776 					  "hotplug_mode_update", 0, 1);
1777 }
1778 
1779 int vmw_kms_init(struct vmw_private *dev_priv)
1780 {
1781 	struct drm_device *dev = &dev_priv->drm;
1782 	int ret;
1783 	static const char *display_unit_names[] = {
1784 		"Invalid",
1785 		"Legacy",
1786 		"Screen Object",
1787 		"Screen Target",
1788 		"Invalid (max)"
1789 	};
1790 
1791 	drm_mode_config_init(dev);
1792 	dev->mode_config.funcs = &vmw_kms_funcs;
1793 	dev->mode_config.min_width = 1;
1794 	dev->mode_config.min_height = 1;
1795 	dev->mode_config.max_width = dev_priv->texture_max_width;
1796 	dev->mode_config.max_height = dev_priv->texture_max_height;
1797 
1798 	drm_mode_create_suggested_offset_properties(dev);
1799 	vmw_kms_create_hotplug_mode_update_property(dev_priv);
1800 
1801 	ret = vmw_kms_stdu_init_display(dev_priv);
1802 	if (ret) {
1803 		ret = vmw_kms_sou_init_display(dev_priv);
1804 		if (ret) /* Fallback */
1805 			ret = vmw_kms_ldu_init_display(dev_priv);
1806 	}
1807 	BUILD_BUG_ON(ARRAY_SIZE(display_unit_names) != (vmw_du_max + 1));
1808 	drm_info(&dev_priv->drm, "%s display unit initialized\n",
1809 		 display_unit_names[dev_priv->active_display_unit]);
1810 
1811 	return ret;
1812 }
1813 
1814 int vmw_kms_close(struct vmw_private *dev_priv)
1815 {
1816 	int ret = 0;
1817 
1818 	/*
1819 	 * Docs says we should take the lock before calling this function
1820 	 * but since it destroys encoders and our destructor calls
1821 	 * drm_encoder_cleanup which takes the lock we deadlock.
1822 	 */
1823 	drm_mode_config_cleanup(&dev_priv->drm);
1824 	if (dev_priv->active_display_unit == vmw_du_legacy)
1825 		ret = vmw_kms_ldu_close_display(dev_priv);
1826 
1827 	return ret;
1828 }
1829 
1830 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1831 				struct drm_file *file_priv)
1832 {
1833 	struct drm_vmw_cursor_bypass_arg *arg = data;
1834 	struct vmw_display_unit *du;
1835 	struct drm_crtc *crtc;
1836 	int ret = 0;
1837 
1838 
1839 	mutex_lock(&dev->mode_config.mutex);
1840 	if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1841 
1842 		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1843 			du = vmw_crtc_to_du(crtc);
1844 			du->hotspot_x = arg->xhot;
1845 			du->hotspot_y = arg->yhot;
1846 		}
1847 
1848 		mutex_unlock(&dev->mode_config.mutex);
1849 		return 0;
1850 	}
1851 
1852 	crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
1853 	if (!crtc) {
1854 		ret = -ENOENT;
1855 		goto out;
1856 	}
1857 
1858 	du = vmw_crtc_to_du(crtc);
1859 
1860 	du->hotspot_x = arg->xhot;
1861 	du->hotspot_y = arg->yhot;
1862 
1863 out:
1864 	mutex_unlock(&dev->mode_config.mutex);
1865 
1866 	return ret;
1867 }
1868 
1869 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1870 			unsigned width, unsigned height, unsigned pitch,
1871 			unsigned bpp, unsigned depth)
1872 {
1873 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1874 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1875 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1876 		vmw_fifo_mem_write(vmw_priv, SVGA_FIFO_PITCHLOCK, pitch);
1877 	vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1878 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1879 	if ((vmw_priv->capabilities & SVGA_CAP_8BIT_EMULATION) != 0)
1880 		vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1881 
1882 	if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1883 		DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1884 			  depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1885 		return -EINVAL;
1886 	}
1887 
1888 	return 0;
1889 }
1890 
1891 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1892 				uint32_t pitch,
1893 				uint32_t height)
1894 {
1895 	return ((u64) pitch * (u64) height) < (u64)
1896 		((dev_priv->active_display_unit == vmw_du_screen_target) ?
1897 		 dev_priv->max_primary_mem : dev_priv->vram_size);
1898 }
1899 
1900 
1901 /*
1902  * Function called by DRM code called with vbl_lock held.
1903  */
1904 u32 vmw_get_vblank_counter(struct drm_crtc *crtc)
1905 {
1906 	return 0;
1907 }
1908 
1909 /*
1910  * Function called by DRM code called with vbl_lock held.
1911  */
1912 int vmw_enable_vblank(struct drm_crtc *crtc)
1913 {
1914 	return -EINVAL;
1915 }
1916 
1917 /*
1918  * Function called by DRM code called with vbl_lock held.
1919  */
1920 void vmw_disable_vblank(struct drm_crtc *crtc)
1921 {
1922 }
1923 
1924 /**
1925  * vmw_du_update_layout - Update the display unit with topology from resolution
1926  * plugin and generate DRM uevent
1927  * @dev_priv: device private
1928  * @num_rects: number of drm_rect in rects
1929  * @rects: toplogy to update
1930  */
1931 static int vmw_du_update_layout(struct vmw_private *dev_priv,
1932 				unsigned int num_rects, struct drm_rect *rects)
1933 {
1934 	struct drm_device *dev = &dev_priv->drm;
1935 	struct vmw_display_unit *du;
1936 	struct drm_connector *con;
1937 	struct drm_connector_list_iter conn_iter;
1938 	struct drm_modeset_acquire_ctx ctx;
1939 	struct drm_crtc *crtc;
1940 	int ret;
1941 
1942 	/* Currently gui_x/y is protected with the crtc mutex */
1943 	mutex_lock(&dev->mode_config.mutex);
1944 	drm_modeset_acquire_init(&ctx, 0);
1945 retry:
1946 	drm_for_each_crtc(crtc, dev) {
1947 		ret = drm_modeset_lock(&crtc->mutex, &ctx);
1948 		if (ret < 0) {
1949 			if (ret == -EDEADLK) {
1950 				drm_modeset_backoff(&ctx);
1951 				goto retry;
1952       		}
1953 			goto out_fini;
1954 		}
1955 	}
1956 
1957 	drm_connector_list_iter_begin(dev, &conn_iter);
1958 	drm_for_each_connector_iter(con, &conn_iter) {
1959 		du = vmw_connector_to_du(con);
1960 		if (num_rects > du->unit) {
1961 			du->pref_width = drm_rect_width(&rects[du->unit]);
1962 			du->pref_height = drm_rect_height(&rects[du->unit]);
1963 			du->pref_active = true;
1964 			du->gui_x = rects[du->unit].x1;
1965 			du->gui_y = rects[du->unit].y1;
1966 		} else {
1967 			du->pref_width = 800;
1968 			du->pref_height = 600;
1969 			du->pref_active = false;
1970 			du->gui_x = 0;
1971 			du->gui_y = 0;
1972 		}
1973 	}
1974 	drm_connector_list_iter_end(&conn_iter);
1975 
1976 	list_for_each_entry(con, &dev->mode_config.connector_list, head) {
1977 		du = vmw_connector_to_du(con);
1978 		if (num_rects > du->unit) {
1979 			drm_object_property_set_value
1980 			  (&con->base, dev->mode_config.suggested_x_property,
1981 			   du->gui_x);
1982 			drm_object_property_set_value
1983 			  (&con->base, dev->mode_config.suggested_y_property,
1984 			   du->gui_y);
1985 		} else {
1986 			drm_object_property_set_value
1987 			  (&con->base, dev->mode_config.suggested_x_property,
1988 			   0);
1989 			drm_object_property_set_value
1990 			  (&con->base, dev->mode_config.suggested_y_property,
1991 			   0);
1992 		}
1993 		con->status = vmw_du_connector_detect(con, true);
1994 	}
1995 
1996 	drm_sysfs_hotplug_event(dev);
1997 out_fini:
1998 	drm_modeset_drop_locks(&ctx);
1999 	drm_modeset_acquire_fini(&ctx);
2000 	mutex_unlock(&dev->mode_config.mutex);
2001 
2002 	return 0;
2003 }
2004 
2005 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
2006 			  u16 *r, u16 *g, u16 *b,
2007 			  uint32_t size,
2008 			  struct drm_modeset_acquire_ctx *ctx)
2009 {
2010 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
2011 	int i;
2012 
2013 	for (i = 0; i < size; i++) {
2014 		DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
2015 			  r[i], g[i], b[i]);
2016 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
2017 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
2018 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
2019 	}
2020 
2021 	return 0;
2022 }
2023 
2024 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
2025 {
2026 	return 0;
2027 }
2028 
2029 enum drm_connector_status
2030 vmw_du_connector_detect(struct drm_connector *connector, bool force)
2031 {
2032 	uint32_t num_displays;
2033 	struct drm_device *dev = connector->dev;
2034 	struct vmw_private *dev_priv = vmw_priv(dev);
2035 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2036 
2037 	num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
2038 
2039 	return ((vmw_connector_to_du(connector)->unit < num_displays &&
2040 		 du->pref_active) ?
2041 		connector_status_connected : connector_status_disconnected);
2042 }
2043 
2044 static struct drm_display_mode vmw_kms_connector_builtin[] = {
2045 	/* 640x480@60Hz */
2046 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
2047 		   752, 800, 0, 480, 489, 492, 525, 0,
2048 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2049 	/* 800x600@60Hz */
2050 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
2051 		   968, 1056, 0, 600, 601, 605, 628, 0,
2052 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2053 	/* 1024x768@60Hz */
2054 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
2055 		   1184, 1344, 0, 768, 771, 777, 806, 0,
2056 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2057 	/* 1152x864@75Hz */
2058 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
2059 		   1344, 1600, 0, 864, 865, 868, 900, 0,
2060 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2061 	/* 1280x720@60Hz */
2062 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74500, 1280, 1344,
2063 		   1472, 1664, 0, 720, 723, 728, 748, 0,
2064 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2065 	/* 1280x768@60Hz */
2066 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
2067 		   1472, 1664, 0, 768, 771, 778, 798, 0,
2068 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2069 	/* 1280x800@60Hz */
2070 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
2071 		   1480, 1680, 0, 800, 803, 809, 831, 0,
2072 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2073 	/* 1280x960@60Hz */
2074 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
2075 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
2076 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2077 	/* 1280x1024@60Hz */
2078 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
2079 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
2080 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2081 	/* 1360x768@60Hz */
2082 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2083 		   1536, 1792, 0, 768, 771, 777, 795, 0,
2084 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2085 	/* 1440x1050@60Hz */
2086 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2087 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2088 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2089 	/* 1440x900@60Hz */
2090 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2091 		   1672, 1904, 0, 900, 903, 909, 934, 0,
2092 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2093 	/* 1600x1200@60Hz */
2094 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2095 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2096 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2097 	/* 1680x1050@60Hz */
2098 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2099 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2100 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2101 	/* 1792x1344@60Hz */
2102 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2103 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2104 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2105 	/* 1853x1392@60Hz */
2106 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2107 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2108 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2109 	/* 1920x1080@60Hz */
2110 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 173000, 1920, 2048,
2111 		   2248, 2576, 0, 1080, 1083, 1088, 1120, 0,
2112 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2113 	/* 1920x1200@60Hz */
2114 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2115 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2116 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2117 	/* 1920x1440@60Hz */
2118 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2119 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2120 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2121 	/* 2560x1440@60Hz */
2122 	{ DRM_MODE("2560x1440", DRM_MODE_TYPE_DRIVER, 241500, 2560, 2608,
2123 		   2640, 2720, 0, 1440, 1443, 1448, 1481, 0,
2124 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2125 	/* 2560x1600@60Hz */
2126 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2127 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2128 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2129 	/* 2880x1800@60Hz */
2130 	{ DRM_MODE("2880x1800", DRM_MODE_TYPE_DRIVER, 337500, 2880, 2928,
2131 		   2960, 3040, 0, 1800, 1803, 1809, 1852, 0,
2132 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2133 	/* 3840x2160@60Hz */
2134 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 533000, 3840, 3888,
2135 		   3920, 4000, 0, 2160, 2163, 2168, 2222, 0,
2136 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2137 	/* 3840x2400@60Hz */
2138 	{ DRM_MODE("3840x2400", DRM_MODE_TYPE_DRIVER, 592250, 3840, 3888,
2139 		   3920, 4000, 0, 2400, 2403, 2409, 2469, 0,
2140 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2141 	/* Terminate */
2142 	{ DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2143 };
2144 
2145 /**
2146  * vmw_guess_mode_timing - Provide fake timings for a
2147  * 60Hz vrefresh mode.
2148  *
2149  * @mode: Pointer to a struct drm_display_mode with hdisplay and vdisplay
2150  * members filled in.
2151  */
2152 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2153 {
2154 	mode->hsync_start = mode->hdisplay + 50;
2155 	mode->hsync_end = mode->hsync_start + 50;
2156 	mode->htotal = mode->hsync_end + 50;
2157 
2158 	mode->vsync_start = mode->vdisplay + 50;
2159 	mode->vsync_end = mode->vsync_start + 50;
2160 	mode->vtotal = mode->vsync_end + 50;
2161 
2162 	mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2163 }
2164 
2165 
2166 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2167 				uint32_t max_width, uint32_t max_height)
2168 {
2169 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2170 	struct drm_device *dev = connector->dev;
2171 	struct vmw_private *dev_priv = vmw_priv(dev);
2172 	struct drm_display_mode *mode = NULL;
2173 	struct drm_display_mode *bmode;
2174 	struct drm_display_mode prefmode = { DRM_MODE("preferred",
2175 		DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2176 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2177 		DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2178 	};
2179 	int i;
2180 	u32 assumed_bpp = 4;
2181 
2182 	if (dev_priv->assume_16bpp)
2183 		assumed_bpp = 2;
2184 
2185 	max_width  = min(max_width,  dev_priv->texture_max_width);
2186 	max_height = min(max_height, dev_priv->texture_max_height);
2187 
2188 	/*
2189 	 * For STDU extra limit for a mode on SVGA_REG_SCREENTARGET_MAX_WIDTH/
2190 	 * HEIGHT registers.
2191 	 */
2192 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2193 		max_width  = min(max_width,  dev_priv->stdu_max_width);
2194 		max_height = min(max_height, dev_priv->stdu_max_height);
2195 	}
2196 
2197 	/* Add preferred mode */
2198 	mode = drm_mode_duplicate(dev, &prefmode);
2199 	if (!mode)
2200 		return 0;
2201 	mode->hdisplay = du->pref_width;
2202 	mode->vdisplay = du->pref_height;
2203 	vmw_guess_mode_timing(mode);
2204 	drm_mode_set_name(mode);
2205 
2206 	if (vmw_kms_validate_mode_vram(dev_priv,
2207 					mode->hdisplay * assumed_bpp,
2208 					mode->vdisplay)) {
2209 		drm_mode_probed_add(connector, mode);
2210 	} else {
2211 		drm_mode_destroy(dev, mode);
2212 		mode = NULL;
2213 	}
2214 
2215 	if (du->pref_mode) {
2216 		list_del_init(&du->pref_mode->head);
2217 		drm_mode_destroy(dev, du->pref_mode);
2218 	}
2219 
2220 	/* mode might be null here, this is intended */
2221 	du->pref_mode = mode;
2222 
2223 	for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2224 		bmode = &vmw_kms_connector_builtin[i];
2225 		if (bmode->hdisplay > max_width ||
2226 		    bmode->vdisplay > max_height)
2227 			continue;
2228 
2229 		if (!vmw_kms_validate_mode_vram(dev_priv,
2230 						bmode->hdisplay * assumed_bpp,
2231 						bmode->vdisplay))
2232 			continue;
2233 
2234 		mode = drm_mode_duplicate(dev, bmode);
2235 		if (!mode)
2236 			return 0;
2237 
2238 		drm_mode_probed_add(connector, mode);
2239 	}
2240 
2241 	drm_connector_list_update(connector);
2242 	/* Move the prefered mode first, help apps pick the right mode. */
2243 	drm_mode_sort(&connector->modes);
2244 
2245 	return 1;
2246 }
2247 
2248 /**
2249  * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl
2250  * @dev: drm device for the ioctl
2251  * @data: data pointer for the ioctl
2252  * @file_priv: drm file for the ioctl call
2253  *
2254  * Update preferred topology of display unit as per ioctl request. The topology
2255  * is expressed as array of drm_vmw_rect.
2256  * e.g.
2257  * [0 0 640 480] [640 0 800 600] [0 480 640 480]
2258  *
2259  * NOTE:
2260  * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside
2261  * device limit on topology, x + w and y + h (lower right) cannot be greater
2262  * than INT_MAX. So topology beyond these limits will return with error.
2263  *
2264  * Returns:
2265  * Zero on success, negative errno on failure.
2266  */
2267 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2268 				struct drm_file *file_priv)
2269 {
2270 	struct vmw_private *dev_priv = vmw_priv(dev);
2271 	struct drm_mode_config *mode_config = &dev->mode_config;
2272 	struct drm_vmw_update_layout_arg *arg =
2273 		(struct drm_vmw_update_layout_arg *)data;
2274 	void __user *user_rects;
2275 	struct drm_vmw_rect *rects;
2276 	struct drm_rect *drm_rects;
2277 	unsigned rects_size;
2278 	int ret, i;
2279 
2280 	if (!arg->num_outputs) {
2281 		struct drm_rect def_rect = {0, 0, 800, 600};
2282 		VMW_DEBUG_KMS("Default layout x1 = %d y1 = %d x2 = %d y2 = %d\n",
2283 			      def_rect.x1, def_rect.y1,
2284 			      def_rect.x2, def_rect.y2);
2285 		vmw_du_update_layout(dev_priv, 1, &def_rect);
2286 		return 0;
2287 	}
2288 
2289 	rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2290 	rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2291 			GFP_KERNEL);
2292 	if (unlikely(!rects))
2293 		return -ENOMEM;
2294 
2295 	user_rects = (void __user *)(unsigned long)arg->rects;
2296 	ret = copy_from_user(rects, user_rects, rects_size);
2297 	if (unlikely(ret != 0)) {
2298 		DRM_ERROR("Failed to get rects.\n");
2299 		ret = -EFAULT;
2300 		goto out_free;
2301 	}
2302 
2303 	drm_rects = (struct drm_rect *)rects;
2304 
2305 	VMW_DEBUG_KMS("Layout count = %u\n", arg->num_outputs);
2306 	for (i = 0; i < arg->num_outputs; i++) {
2307 		struct drm_vmw_rect curr_rect;
2308 
2309 		/* Verify user-space for overflow as kernel use drm_rect */
2310 		if ((rects[i].x + rects[i].w > INT_MAX) ||
2311 		    (rects[i].y + rects[i].h > INT_MAX)) {
2312 			ret = -ERANGE;
2313 			goto out_free;
2314 		}
2315 
2316 		curr_rect = rects[i];
2317 		drm_rects[i].x1 = curr_rect.x;
2318 		drm_rects[i].y1 = curr_rect.y;
2319 		drm_rects[i].x2 = curr_rect.x + curr_rect.w;
2320 		drm_rects[i].y2 = curr_rect.y + curr_rect.h;
2321 
2322 		VMW_DEBUG_KMS("  x1 = %d y1 = %d x2 = %d y2 = %d\n",
2323 			      drm_rects[i].x1, drm_rects[i].y1,
2324 			      drm_rects[i].x2, drm_rects[i].y2);
2325 
2326 		/*
2327 		 * Currently this check is limiting the topology within
2328 		 * mode_config->max (which actually is max texture size
2329 		 * supported by virtual device). This limit is here to address
2330 		 * window managers that create a big framebuffer for whole
2331 		 * topology.
2332 		 */
2333 		if (drm_rects[i].x1 < 0 ||  drm_rects[i].y1 < 0 ||
2334 		    drm_rects[i].x2 > mode_config->max_width ||
2335 		    drm_rects[i].y2 > mode_config->max_height) {
2336 			VMW_DEBUG_KMS("Invalid layout %d %d %d %d\n",
2337 				      drm_rects[i].x1, drm_rects[i].y1,
2338 				      drm_rects[i].x2, drm_rects[i].y2);
2339 			ret = -EINVAL;
2340 			goto out_free;
2341 		}
2342 	}
2343 
2344 	ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects);
2345 
2346 	if (ret == 0)
2347 		vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects);
2348 
2349 out_free:
2350 	kfree(rects);
2351 	return ret;
2352 }
2353 
2354 /**
2355  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2356  * on a set of cliprects and a set of display units.
2357  *
2358  * @dev_priv: Pointer to a device private structure.
2359  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2360  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2361  * Cliprects are given in framebuffer coordinates.
2362  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2363  * be NULL. Cliprects are given in source coordinates.
2364  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2365  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2366  * @num_clips: Number of cliprects in the @clips or @vclips array.
2367  * @increment: Integer with which to increment the clip counter when looping.
2368  * Used to skip a predetermined number of clip rects.
2369  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2370  */
2371 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2372 			 struct vmw_framebuffer *framebuffer,
2373 			 const struct drm_clip_rect *clips,
2374 			 const struct drm_vmw_rect *vclips,
2375 			 s32 dest_x, s32 dest_y,
2376 			 int num_clips,
2377 			 int increment,
2378 			 struct vmw_kms_dirty *dirty)
2379 {
2380 	struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2381 	struct drm_crtc *crtc;
2382 	u32 num_units = 0;
2383 	u32 i, k;
2384 
2385 	dirty->dev_priv = dev_priv;
2386 
2387 	/* If crtc is passed, no need to iterate over other display units */
2388 	if (dirty->crtc) {
2389 		units[num_units++] = vmw_crtc_to_du(dirty->crtc);
2390 	} else {
2391 		list_for_each_entry(crtc, &dev_priv->drm.mode_config.crtc_list,
2392 				    head) {
2393 			struct drm_plane *plane = crtc->primary;
2394 
2395 			if (plane->state->fb == &framebuffer->base)
2396 				units[num_units++] = vmw_crtc_to_du(crtc);
2397 		}
2398 	}
2399 
2400 	for (k = 0; k < num_units; k++) {
2401 		struct vmw_display_unit *unit = units[k];
2402 		s32 crtc_x = unit->crtc.x;
2403 		s32 crtc_y = unit->crtc.y;
2404 		s32 crtc_width = unit->crtc.mode.hdisplay;
2405 		s32 crtc_height = unit->crtc.mode.vdisplay;
2406 		const struct drm_clip_rect *clips_ptr = clips;
2407 		const struct drm_vmw_rect *vclips_ptr = vclips;
2408 
2409 		dirty->unit = unit;
2410 		if (dirty->fifo_reserve_size > 0) {
2411 			dirty->cmd = VMW_CMD_RESERVE(dev_priv,
2412 						      dirty->fifo_reserve_size);
2413 			if (!dirty->cmd)
2414 				return -ENOMEM;
2415 
2416 			memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2417 		}
2418 		dirty->num_hits = 0;
2419 		for (i = 0; i < num_clips; i++, clips_ptr += increment,
2420 		       vclips_ptr += increment) {
2421 			s32 clip_left;
2422 			s32 clip_top;
2423 
2424 			/*
2425 			 * Select clip array type. Note that integer type
2426 			 * in @clips is unsigned short, whereas in @vclips
2427 			 * it's 32-bit.
2428 			 */
2429 			if (clips) {
2430 				dirty->fb_x = (s32) clips_ptr->x1;
2431 				dirty->fb_y = (s32) clips_ptr->y1;
2432 				dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2433 					crtc_x;
2434 				dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2435 					crtc_y;
2436 			} else {
2437 				dirty->fb_x = vclips_ptr->x;
2438 				dirty->fb_y = vclips_ptr->y;
2439 				dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2440 					dest_x - crtc_x;
2441 				dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2442 					dest_y - crtc_y;
2443 			}
2444 
2445 			dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2446 			dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2447 
2448 			/* Skip this clip if it's outside the crtc region */
2449 			if (dirty->unit_x1 >= crtc_width ||
2450 			    dirty->unit_y1 >= crtc_height ||
2451 			    dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2452 				continue;
2453 
2454 			/* Clip right and bottom to crtc limits */
2455 			dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2456 					       crtc_width);
2457 			dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2458 					       crtc_height);
2459 
2460 			/* Clip left and top to crtc limits */
2461 			clip_left = min_t(s32, dirty->unit_x1, 0);
2462 			clip_top = min_t(s32, dirty->unit_y1, 0);
2463 			dirty->unit_x1 -= clip_left;
2464 			dirty->unit_y1 -= clip_top;
2465 			dirty->fb_x -= clip_left;
2466 			dirty->fb_y -= clip_top;
2467 
2468 			dirty->clip(dirty);
2469 		}
2470 
2471 		dirty->fifo_commit(dirty);
2472 	}
2473 
2474 	return 0;
2475 }
2476 
2477 /**
2478  * vmw_kms_helper_validation_finish - Helper for post KMS command submission
2479  * cleanup and fencing
2480  * @dev_priv: Pointer to the device-private struct
2481  * @file_priv: Pointer identifying the client when user-space fencing is used
2482  * @ctx: Pointer to the validation context
2483  * @out_fence: If non-NULL, returned refcounted fence-pointer
2484  * @user_fence_rep: If non-NULL, pointer to user-space address area
2485  * in which to copy user-space fence info
2486  */
2487 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv,
2488 				      struct drm_file *file_priv,
2489 				      struct vmw_validation_context *ctx,
2490 				      struct vmw_fence_obj **out_fence,
2491 				      struct drm_vmw_fence_rep __user *
2492 				      user_fence_rep)
2493 {
2494 	struct vmw_fence_obj *fence = NULL;
2495 	uint32_t handle = 0;
2496 	int ret = 0;
2497 
2498 	if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) ||
2499 	    out_fence)
2500 		ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2501 						 file_priv ? &handle : NULL);
2502 	vmw_validation_done(ctx, fence);
2503 	if (file_priv)
2504 		vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2505 					    ret, user_fence_rep, fence,
2506 					    handle, -1);
2507 	if (out_fence)
2508 		*out_fence = fence;
2509 	else
2510 		vmw_fence_obj_unreference(&fence);
2511 }
2512 
2513 /**
2514  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2515  * its backing MOB.
2516  *
2517  * @res: Pointer to the surface resource
2518  * @clips: Clip rects in framebuffer (surface) space.
2519  * @num_clips: Number of clips in @clips.
2520  * @increment: Integer with which to increment the clip counter when looping.
2521  * Used to skip a predetermined number of clip rects.
2522  *
2523  * This function makes sure the proxy surface is updated from its backing MOB
2524  * using the region given by @clips. The surface resource @res and its backing
2525  * MOB needs to be reserved and validated on call.
2526  */
2527 int vmw_kms_update_proxy(struct vmw_resource *res,
2528 			 const struct drm_clip_rect *clips,
2529 			 unsigned num_clips,
2530 			 int increment)
2531 {
2532 	struct vmw_private *dev_priv = res->dev_priv;
2533 	struct drm_vmw_size *size = &vmw_res_to_srf(res)->metadata.base_size;
2534 	struct {
2535 		SVGA3dCmdHeader header;
2536 		SVGA3dCmdUpdateGBImage body;
2537 	} *cmd;
2538 	SVGA3dBox *box;
2539 	size_t copy_size = 0;
2540 	int i;
2541 
2542 	if (!clips)
2543 		return 0;
2544 
2545 	cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd) * num_clips);
2546 	if (!cmd)
2547 		return -ENOMEM;
2548 
2549 	for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2550 		box = &cmd->body.box;
2551 
2552 		cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2553 		cmd->header.size = sizeof(cmd->body);
2554 		cmd->body.image.sid = res->id;
2555 		cmd->body.image.face = 0;
2556 		cmd->body.image.mipmap = 0;
2557 
2558 		if (clips->x1 > size->width || clips->x2 > size->width ||
2559 		    clips->y1 > size->height || clips->y2 > size->height) {
2560 			DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2561 			return -EINVAL;
2562 		}
2563 
2564 		box->x = clips->x1;
2565 		box->y = clips->y1;
2566 		box->z = 0;
2567 		box->w = clips->x2 - clips->x1;
2568 		box->h = clips->y2 - clips->y1;
2569 		box->d = 1;
2570 
2571 		copy_size += sizeof(*cmd);
2572 	}
2573 
2574 	vmw_cmd_commit(dev_priv, copy_size);
2575 
2576 	return 0;
2577 }
2578 
2579 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2580 			    unsigned unit,
2581 			    u32 max_width,
2582 			    u32 max_height,
2583 			    struct drm_connector **p_con,
2584 			    struct drm_crtc **p_crtc,
2585 			    struct drm_display_mode **p_mode)
2586 {
2587 	struct drm_connector *con;
2588 	struct vmw_display_unit *du;
2589 	struct drm_display_mode *mode;
2590 	int i = 0;
2591 	int ret = 0;
2592 
2593 	mutex_lock(&dev_priv->drm.mode_config.mutex);
2594 	list_for_each_entry(con, &dev_priv->drm.mode_config.connector_list,
2595 			    head) {
2596 		if (i == unit)
2597 			break;
2598 
2599 		++i;
2600 	}
2601 
2602 	if (&con->head == &dev_priv->drm.mode_config.connector_list) {
2603 		DRM_ERROR("Could not find initial display unit.\n");
2604 		ret = -EINVAL;
2605 		goto out_unlock;
2606 	}
2607 
2608 	if (list_empty(&con->modes))
2609 		(void) vmw_du_connector_fill_modes(con, max_width, max_height);
2610 
2611 	if (list_empty(&con->modes)) {
2612 		DRM_ERROR("Could not find initial display mode.\n");
2613 		ret = -EINVAL;
2614 		goto out_unlock;
2615 	}
2616 
2617 	du = vmw_connector_to_du(con);
2618 	*p_con = con;
2619 	*p_crtc = &du->crtc;
2620 
2621 	list_for_each_entry(mode, &con->modes, head) {
2622 		if (mode->type & DRM_MODE_TYPE_PREFERRED)
2623 			break;
2624 	}
2625 
2626 	if (&mode->head == &con->modes) {
2627 		WARN_ONCE(true, "Could not find initial preferred mode.\n");
2628 		*p_mode = list_first_entry(&con->modes,
2629 					   struct drm_display_mode,
2630 					   head);
2631 	} else {
2632 		*p_mode = mode;
2633 	}
2634 
2635  out_unlock:
2636 	mutex_unlock(&dev_priv->drm.mode_config.mutex);
2637 
2638 	return ret;
2639 }
2640 
2641 /**
2642  * vmw_kms_create_implicit_placement_property - Set up the implicit placement
2643  * property.
2644  *
2645  * @dev_priv: Pointer to a device private struct.
2646  *
2647  * Sets up the implicit placement property unless it's already set up.
2648  */
2649 void
2650 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv)
2651 {
2652 	if (dev_priv->implicit_placement_property)
2653 		return;
2654 
2655 	dev_priv->implicit_placement_property =
2656 		drm_property_create_range(&dev_priv->drm,
2657 					  DRM_MODE_PROP_IMMUTABLE,
2658 					  "implicit_placement", 0, 1);
2659 }
2660 
2661 /**
2662  * vmw_kms_suspend - Save modesetting state and turn modesetting off.
2663  *
2664  * @dev: Pointer to the drm device
2665  * Return: 0 on success. Negative error code on failure.
2666  */
2667 int vmw_kms_suspend(struct drm_device *dev)
2668 {
2669 	struct vmw_private *dev_priv = vmw_priv(dev);
2670 
2671 	dev_priv->suspend_state = drm_atomic_helper_suspend(dev);
2672 	if (IS_ERR(dev_priv->suspend_state)) {
2673 		int ret = PTR_ERR(dev_priv->suspend_state);
2674 
2675 		DRM_ERROR("Failed kms suspend: %d\n", ret);
2676 		dev_priv->suspend_state = NULL;
2677 
2678 		return ret;
2679 	}
2680 
2681 	return 0;
2682 }
2683 
2684 
2685 /**
2686  * vmw_kms_resume - Re-enable modesetting and restore state
2687  *
2688  * @dev: Pointer to the drm device
2689  * Return: 0 on success. Negative error code on failure.
2690  *
2691  * State is resumed from a previous vmw_kms_suspend(). It's illegal
2692  * to call this function without a previous vmw_kms_suspend().
2693  */
2694 int vmw_kms_resume(struct drm_device *dev)
2695 {
2696 	struct vmw_private *dev_priv = vmw_priv(dev);
2697 	int ret;
2698 
2699 	if (WARN_ON(!dev_priv->suspend_state))
2700 		return 0;
2701 
2702 	ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state);
2703 	dev_priv->suspend_state = NULL;
2704 
2705 	return ret;
2706 }
2707 
2708 /**
2709  * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost
2710  *
2711  * @dev: Pointer to the drm device
2712  */
2713 void vmw_kms_lost_device(struct drm_device *dev)
2714 {
2715 	drm_atomic_helper_shutdown(dev);
2716 }
2717 
2718 /**
2719  * vmw_du_helper_plane_update - Helper to do plane update on a display unit.
2720  * @update: The closure structure.
2721  *
2722  * Call this helper after setting callbacks in &vmw_du_update_plane to do plane
2723  * update on display unit.
2724  *
2725  * Return: 0 on success or a negative error code on failure.
2726  */
2727 int vmw_du_helper_plane_update(struct vmw_du_update_plane *update)
2728 {
2729 	struct drm_plane_state *state = update->plane->state;
2730 	struct drm_plane_state *old_state = update->old_state;
2731 	struct drm_atomic_helper_damage_iter iter;
2732 	struct drm_rect clip;
2733 	struct drm_rect bb;
2734 	DECLARE_VAL_CONTEXT(val_ctx, NULL, 0);
2735 	uint32_t reserved_size = 0;
2736 	uint32_t submit_size = 0;
2737 	uint32_t curr_size = 0;
2738 	uint32_t num_hits = 0;
2739 	void *cmd_start;
2740 	char *cmd_next;
2741 	int ret;
2742 
2743 	/*
2744 	 * Iterate in advance to check if really need plane update and find the
2745 	 * number of clips that actually are in plane src for fifo allocation.
2746 	 */
2747 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
2748 	drm_atomic_for_each_plane_damage(&iter, &clip)
2749 		num_hits++;
2750 
2751 	if (num_hits == 0)
2752 		return 0;
2753 
2754 	if (update->vfb->bo) {
2755 		struct vmw_framebuffer_bo *vfbbo =
2756 			container_of(update->vfb, typeof(*vfbbo), base);
2757 
2758 		ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer, false,
2759 					    update->cpu_blit);
2760 	} else {
2761 		struct vmw_framebuffer_surface *vfbs =
2762 			container_of(update->vfb, typeof(*vfbs), base);
2763 
2764 		ret = vmw_validation_add_resource(&val_ctx, &vfbs->surface->res,
2765 						  0, VMW_RES_DIRTY_NONE, NULL,
2766 						  NULL);
2767 	}
2768 
2769 	if (ret)
2770 		return ret;
2771 
2772 	ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr);
2773 	if (ret)
2774 		goto out_unref;
2775 
2776 	reserved_size = update->calc_fifo_size(update, num_hits);
2777 	cmd_start = VMW_CMD_RESERVE(update->dev_priv, reserved_size);
2778 	if (!cmd_start) {
2779 		ret = -ENOMEM;
2780 		goto out_revert;
2781 	}
2782 
2783 	cmd_next = cmd_start;
2784 
2785 	if (update->post_prepare) {
2786 		curr_size = update->post_prepare(update, cmd_next);
2787 		cmd_next += curr_size;
2788 		submit_size += curr_size;
2789 	}
2790 
2791 	if (update->pre_clip) {
2792 		curr_size = update->pre_clip(update, cmd_next, num_hits);
2793 		cmd_next += curr_size;
2794 		submit_size += curr_size;
2795 	}
2796 
2797 	bb.x1 = INT_MAX;
2798 	bb.y1 = INT_MAX;
2799 	bb.x2 = INT_MIN;
2800 	bb.y2 = INT_MIN;
2801 
2802 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
2803 	drm_atomic_for_each_plane_damage(&iter, &clip) {
2804 		uint32_t fb_x = clip.x1;
2805 		uint32_t fb_y = clip.y1;
2806 
2807 		vmw_du_translate_to_crtc(state, &clip);
2808 		if (update->clip) {
2809 			curr_size = update->clip(update, cmd_next, &clip, fb_x,
2810 						 fb_y);
2811 			cmd_next += curr_size;
2812 			submit_size += curr_size;
2813 		}
2814 		bb.x1 = min_t(int, bb.x1, clip.x1);
2815 		bb.y1 = min_t(int, bb.y1, clip.y1);
2816 		bb.x2 = max_t(int, bb.x2, clip.x2);
2817 		bb.y2 = max_t(int, bb.y2, clip.y2);
2818 	}
2819 
2820 	curr_size = update->post_clip(update, cmd_next, &bb);
2821 	submit_size += curr_size;
2822 
2823 	if (reserved_size < submit_size)
2824 		submit_size = 0;
2825 
2826 	vmw_cmd_commit(update->dev_priv, submit_size);
2827 
2828 	vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx,
2829 					 update->out_fence, NULL);
2830 	return ret;
2831 
2832 out_revert:
2833 	vmw_validation_revert(&val_ctx);
2834 
2835 out_unref:
2836 	vmw_validation_unref_lists(&val_ctx);
2837 	return ret;
2838 }
2839