1 /**************************************************************************
2  *
3  * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_kms.h"
29 #include <drm/drm_plane_helper.h>
30 #include <drm/drm_atomic.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_rect.h>
33 
34 
35 /* Might need a hrtimer here? */
36 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
37 
38 void vmw_du_cleanup(struct vmw_display_unit *du)
39 {
40 	drm_plane_cleanup(&du->primary);
41 	drm_plane_cleanup(&du->cursor);
42 
43 	drm_connector_unregister(&du->connector);
44 	drm_crtc_cleanup(&du->crtc);
45 	drm_encoder_cleanup(&du->encoder);
46 	drm_connector_cleanup(&du->connector);
47 }
48 
49 /*
50  * Display Unit Cursor functions
51  */
52 
53 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
54 				   u32 *image, u32 width, u32 height,
55 				   u32 hotspotX, u32 hotspotY)
56 {
57 	struct {
58 		u32 cmd;
59 		SVGAFifoCmdDefineAlphaCursor cursor;
60 	} *cmd;
61 	u32 image_size = width * height * 4;
62 	u32 cmd_size = sizeof(*cmd) + image_size;
63 
64 	if (!image)
65 		return -EINVAL;
66 
67 	cmd = vmw_fifo_reserve(dev_priv, cmd_size);
68 	if (unlikely(cmd == NULL)) {
69 		DRM_ERROR("Fifo reserve failed.\n");
70 		return -ENOMEM;
71 	}
72 
73 	memset(cmd, 0, sizeof(*cmd));
74 
75 	memcpy(&cmd[1], image, image_size);
76 
77 	cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
78 	cmd->cursor.id = 0;
79 	cmd->cursor.width = width;
80 	cmd->cursor.height = height;
81 	cmd->cursor.hotspotX = hotspotX;
82 	cmd->cursor.hotspotY = hotspotY;
83 
84 	vmw_fifo_commit_flush(dev_priv, cmd_size);
85 
86 	return 0;
87 }
88 
89 static int vmw_cursor_update_dmabuf(struct vmw_private *dev_priv,
90 				    struct vmw_dma_buffer *dmabuf,
91 				    u32 width, u32 height,
92 				    u32 hotspotX, u32 hotspotY)
93 {
94 	struct ttm_bo_kmap_obj map;
95 	unsigned long kmap_offset;
96 	unsigned long kmap_num;
97 	void *virtual;
98 	bool dummy;
99 	int ret;
100 
101 	kmap_offset = 0;
102 	kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
103 
104 	ret = ttm_bo_reserve(&dmabuf->base, true, false, NULL);
105 	if (unlikely(ret != 0)) {
106 		DRM_ERROR("reserve failed\n");
107 		return -EINVAL;
108 	}
109 
110 	ret = ttm_bo_kmap(&dmabuf->base, kmap_offset, kmap_num, &map);
111 	if (unlikely(ret != 0))
112 		goto err_unreserve;
113 
114 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
115 	ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
116 				      hotspotX, hotspotY);
117 
118 	ttm_bo_kunmap(&map);
119 err_unreserve:
120 	ttm_bo_unreserve(&dmabuf->base);
121 
122 	return ret;
123 }
124 
125 
126 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
127 				       bool show, int x, int y)
128 {
129 	u32 *fifo_mem = dev_priv->mmio_virt;
130 	uint32_t count;
131 
132 	spin_lock(&dev_priv->cursor_lock);
133 	vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
134 	vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
135 	vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
136 	count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
137 	vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
138 	spin_unlock(&dev_priv->cursor_lock);
139 }
140 
141 
142 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
143 			  struct ttm_object_file *tfile,
144 			  struct ttm_buffer_object *bo,
145 			  SVGA3dCmdHeader *header)
146 {
147 	struct ttm_bo_kmap_obj map;
148 	unsigned long kmap_offset;
149 	unsigned long kmap_num;
150 	SVGA3dCopyBox *box;
151 	unsigned box_count;
152 	void *virtual;
153 	bool dummy;
154 	struct vmw_dma_cmd {
155 		SVGA3dCmdHeader header;
156 		SVGA3dCmdSurfaceDMA dma;
157 	} *cmd;
158 	int i, ret;
159 
160 	cmd = container_of(header, struct vmw_dma_cmd, header);
161 
162 	/* No snooper installed */
163 	if (!srf->snooper.image)
164 		return;
165 
166 	if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
167 		DRM_ERROR("face and mipmap for cursors should never != 0\n");
168 		return;
169 	}
170 
171 	if (cmd->header.size < 64) {
172 		DRM_ERROR("at least one full copy box must be given\n");
173 		return;
174 	}
175 
176 	box = (SVGA3dCopyBox *)&cmd[1];
177 	box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
178 			sizeof(SVGA3dCopyBox);
179 
180 	if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
181 	    box->x != 0    || box->y != 0    || box->z != 0    ||
182 	    box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
183 	    box->d != 1    || box_count != 1) {
184 		/* TODO handle none page aligned offsets */
185 		/* TODO handle more dst & src != 0 */
186 		/* TODO handle more then one copy */
187 		DRM_ERROR("Cant snoop dma request for cursor!\n");
188 		DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
189 			  box->srcx, box->srcy, box->srcz,
190 			  box->x, box->y, box->z,
191 			  box->w, box->h, box->d, box_count,
192 			  cmd->dma.guest.ptr.offset);
193 		return;
194 	}
195 
196 	kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
197 	kmap_num = (64*64*4) >> PAGE_SHIFT;
198 
199 	ret = ttm_bo_reserve(bo, true, false, NULL);
200 	if (unlikely(ret != 0)) {
201 		DRM_ERROR("reserve failed\n");
202 		return;
203 	}
204 
205 	ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
206 	if (unlikely(ret != 0))
207 		goto err_unreserve;
208 
209 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
210 
211 	if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
212 		memcpy(srf->snooper.image, virtual, 64*64*4);
213 	} else {
214 		/* Image is unsigned pointer. */
215 		for (i = 0; i < box->h; i++)
216 			memcpy(srf->snooper.image + i * 64,
217 			       virtual + i * cmd->dma.guest.pitch,
218 			       box->w * 4);
219 	}
220 
221 	srf->snooper.age++;
222 
223 	ttm_bo_kunmap(&map);
224 err_unreserve:
225 	ttm_bo_unreserve(bo);
226 }
227 
228 /**
229  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
230  *
231  * @dev_priv: Pointer to the device private struct.
232  *
233  * Clears all legacy hotspots.
234  */
235 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
236 {
237 	struct drm_device *dev = dev_priv->dev;
238 	struct vmw_display_unit *du;
239 	struct drm_crtc *crtc;
240 
241 	drm_modeset_lock_all(dev);
242 	drm_for_each_crtc(crtc, dev) {
243 		du = vmw_crtc_to_du(crtc);
244 
245 		du->hotspot_x = 0;
246 		du->hotspot_y = 0;
247 	}
248 	drm_modeset_unlock_all(dev);
249 }
250 
251 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
252 {
253 	struct drm_device *dev = dev_priv->dev;
254 	struct vmw_display_unit *du;
255 	struct drm_crtc *crtc;
256 
257 	mutex_lock(&dev->mode_config.mutex);
258 
259 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
260 		du = vmw_crtc_to_du(crtc);
261 		if (!du->cursor_surface ||
262 		    du->cursor_age == du->cursor_surface->snooper.age)
263 			continue;
264 
265 		du->cursor_age = du->cursor_surface->snooper.age;
266 		vmw_cursor_update_image(dev_priv,
267 					du->cursor_surface->snooper.image,
268 					64, 64,
269 					du->hotspot_x + du->core_hotspot_x,
270 					du->hotspot_y + du->core_hotspot_y);
271 	}
272 
273 	mutex_unlock(&dev->mode_config.mutex);
274 }
275 
276 
277 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
278 {
279 	vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
280 
281 	drm_plane_cleanup(plane);
282 }
283 
284 
285 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
286 {
287 	drm_plane_cleanup(plane);
288 
289 	/* Planes are static in our case so we don't free it */
290 }
291 
292 
293 /**
294  * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
295  *
296  * @vps: plane state associated with the display surface
297  * @unreference: true if we also want to unreference the display.
298  */
299 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
300 			     bool unreference)
301 {
302 	if (vps->surf) {
303 		if (vps->pinned) {
304 			vmw_resource_unpin(&vps->surf->res);
305 			vps->pinned--;
306 		}
307 
308 		if (unreference) {
309 			if (vps->pinned)
310 				DRM_ERROR("Surface still pinned\n");
311 			vmw_surface_unreference(&vps->surf);
312 		}
313 	}
314 }
315 
316 
317 /**
318  * vmw_du_plane_cleanup_fb - Unpins the cursor
319  *
320  * @plane:  display plane
321  * @old_state: Contains the FB to clean up
322  *
323  * Unpins the framebuffer surface
324  *
325  * Returns 0 on success
326  */
327 void
328 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
329 			struct drm_plane_state *old_state)
330 {
331 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
332 
333 	vmw_du_plane_unpin_surf(vps, false);
334 }
335 
336 
337 /**
338  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
339  *
340  * @plane:  display plane
341  * @new_state: info on the new plane state, including the FB
342  *
343  * Returns 0 on success
344  */
345 int
346 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
347 			       struct drm_plane_state *new_state)
348 {
349 	struct drm_framebuffer *fb = new_state->fb;
350 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
351 
352 
353 	if (vps->surf)
354 		vmw_surface_unreference(&vps->surf);
355 
356 	if (vps->dmabuf)
357 		vmw_dmabuf_unreference(&vps->dmabuf);
358 
359 	if (fb) {
360 		if (vmw_framebuffer_to_vfb(fb)->dmabuf) {
361 			vps->dmabuf = vmw_framebuffer_to_vfbd(fb)->buffer;
362 			vmw_dmabuf_reference(vps->dmabuf);
363 		} else {
364 			vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
365 			vmw_surface_reference(vps->surf);
366 		}
367 	}
368 
369 	return 0;
370 }
371 
372 
373 void
374 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
375 				  struct drm_plane_state *old_state)
376 {
377 	struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
378 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
379 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
380 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
381 	s32 hotspot_x, hotspot_y;
382 	int ret = 0;
383 
384 
385 	hotspot_x = du->hotspot_x;
386 	hotspot_y = du->hotspot_y;
387 	du->cursor_surface = vps->surf;
388 	du->cursor_dmabuf = vps->dmabuf;
389 
390 	/* setup new image */
391 	if (vps->surf) {
392 		du->cursor_age = du->cursor_surface->snooper.age;
393 
394 		ret = vmw_cursor_update_image(dev_priv,
395 					      vps->surf->snooper.image,
396 					      64, 64, hotspot_x, hotspot_y);
397 	} else if (vps->dmabuf) {
398 		ret = vmw_cursor_update_dmabuf(dev_priv, vps->dmabuf,
399 					       plane->state->crtc_w,
400 					       plane->state->crtc_h,
401 					       hotspot_x, hotspot_y);
402 	} else {
403 		vmw_cursor_update_position(dev_priv, false, 0, 0);
404 		return;
405 	}
406 
407 	if (!ret) {
408 		du->cursor_x = plane->state->crtc_x + du->set_gui_x;
409 		du->cursor_y = plane->state->crtc_y + du->set_gui_y;
410 
411 		vmw_cursor_update_position(dev_priv, true,
412 					   du->cursor_x + hotspot_x,
413 					   du->cursor_y + hotspot_y);
414 	} else {
415 		DRM_ERROR("Failed to update cursor image\n");
416 	}
417 }
418 
419 
420 /**
421  * vmw_du_primary_plane_atomic_check - check if the new state is okay
422  *
423  * @plane: display plane
424  * @state: info on the new plane state, including the FB
425  *
426  * Check if the new state is settable given the current state.  Other
427  * than what the atomic helper checks, we care about crtc fitting
428  * the FB and maintaining one active framebuffer.
429  *
430  * Returns 0 on success
431  */
432 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
433 				      struct drm_plane_state *state)
434 {
435 	struct drm_framebuffer *new_fb = state->fb;
436 	bool visible;
437 
438 	struct drm_rect src = {
439 		.x1 = state->src_x,
440 		.y1 = state->src_y,
441 		.x2 = state->src_x + state->src_w,
442 		.y2 = state->src_y + state->src_h,
443 	};
444 	struct drm_rect dest = {
445 		.x1 = state->crtc_x,
446 		.y1 = state->crtc_y,
447 		.x2 = state->crtc_x + state->crtc_w,
448 		.y2 = state->crtc_y + state->crtc_h,
449 	};
450 	struct drm_rect clip = dest;
451 	int ret;
452 
453 	ret = drm_plane_helper_check_update(plane, state->crtc, new_fb,
454 					    &src, &dest, &clip,
455 					    DRM_MODE_ROTATE_0,
456 					    DRM_PLANE_HELPER_NO_SCALING,
457 					    DRM_PLANE_HELPER_NO_SCALING,
458 					    false, true, &visible);
459 
460 
461 	if (!ret && new_fb) {
462 		struct drm_crtc *crtc = state->crtc;
463 		struct vmw_connector_state *vcs;
464 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
465 		struct vmw_private *dev_priv = vmw_priv(crtc->dev);
466 		struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb);
467 
468 		vcs = vmw_connector_state_to_vcs(du->connector.state);
469 
470 		if ((dest.x2 > new_fb->width ||
471 		     dest.y2 > new_fb->height)) {
472 			DRM_ERROR("CRTC area outside of framebuffer\n");
473 			return -EINVAL;
474 		}
475 
476 		/* Only one active implicit framebuffer at a time. */
477 		mutex_lock(&dev_priv->global_kms_state_mutex);
478 		if (vcs->is_implicit && dev_priv->implicit_fb &&
479 		    !(dev_priv->num_implicit == 1 && du->active_implicit)
480 		    && dev_priv->implicit_fb != vfb) {
481 			DRM_ERROR("Multiple implicit framebuffers "
482 				  "not supported.\n");
483 			ret = -EINVAL;
484 		}
485 		mutex_unlock(&dev_priv->global_kms_state_mutex);
486 	}
487 
488 
489 	return ret;
490 }
491 
492 
493 /**
494  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
495  *
496  * @plane: cursor plane
497  * @state: info on the new plane state
498  *
499  * This is a chance to fail if the new cursor state does not fit
500  * our requirements.
501  *
502  * Returns 0 on success
503  */
504 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
505 				     struct drm_plane_state *new_state)
506 {
507 	int ret = 0;
508 	struct vmw_surface *surface = NULL;
509 	struct drm_framebuffer *fb = new_state->fb;
510 
511 
512 	/* Turning off */
513 	if (!fb)
514 		return ret;
515 
516 	/* A lot of the code assumes this */
517 	if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
518 		DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
519 			  new_state->crtc_w, new_state->crtc_h);
520 		ret = -EINVAL;
521 	}
522 
523 	if (!vmw_framebuffer_to_vfb(fb)->dmabuf)
524 		surface = vmw_framebuffer_to_vfbs(fb)->surface;
525 
526 	if (surface && !surface->snooper.image) {
527 		DRM_ERROR("surface not suitable for cursor\n");
528 		ret = -EINVAL;
529 	}
530 
531 	return ret;
532 }
533 
534 
535 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
536 			     struct drm_crtc_state *new_state)
537 {
538 	struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
539 	int connector_mask = 1 << drm_connector_index(&du->connector);
540 	bool has_primary = new_state->plane_mask &
541 			   BIT(drm_plane_index(crtc->primary));
542 
543 	/* We always want to have an active plane with an active CRTC */
544 	if (has_primary != new_state->enable)
545 		return -EINVAL;
546 
547 
548 	if (new_state->connector_mask != connector_mask &&
549 	    new_state->connector_mask != 0) {
550 		DRM_ERROR("Invalid connectors configuration\n");
551 		return -EINVAL;
552 	}
553 
554 	/*
555 	 * Our virtual device does not have a dot clock, so use the logical
556 	 * clock value as the dot clock.
557 	 */
558 	if (new_state->mode.crtc_clock == 0)
559 		new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
560 
561 	return 0;
562 }
563 
564 
565 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
566 			      struct drm_crtc_state *old_crtc_state)
567 {
568 }
569 
570 
571 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
572 			      struct drm_crtc_state *old_crtc_state)
573 {
574 	struct drm_pending_vblank_event *event = crtc->state->event;
575 
576 	if (event) {
577 		crtc->state->event = NULL;
578 
579 		spin_lock_irq(&crtc->dev->event_lock);
580 		if (drm_crtc_vblank_get(crtc) == 0)
581 			drm_crtc_arm_vblank_event(crtc, event);
582 		else
583 			drm_crtc_send_vblank_event(crtc, event);
584 		spin_unlock_irq(&crtc->dev->event_lock);
585 	}
586 
587 }
588 
589 
590 /**
591  * vmw_du_crtc_duplicate_state - duplicate crtc state
592  * @crtc: DRM crtc
593  *
594  * Allocates and returns a copy of the crtc state (both common and
595  * vmw-specific) for the specified crtc.
596  *
597  * Returns: The newly allocated crtc state, or NULL on failure.
598  */
599 struct drm_crtc_state *
600 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
601 {
602 	struct drm_crtc_state *state;
603 	struct vmw_crtc_state *vcs;
604 
605 	if (WARN_ON(!crtc->state))
606 		return NULL;
607 
608 	vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
609 
610 	if (!vcs)
611 		return NULL;
612 
613 	state = &vcs->base;
614 
615 	__drm_atomic_helper_crtc_duplicate_state(crtc, state);
616 
617 	return state;
618 }
619 
620 
621 /**
622  * vmw_du_crtc_reset - creates a blank vmw crtc state
623  * @crtc: DRM crtc
624  *
625  * Resets the atomic state for @crtc by freeing the state pointer (which
626  * might be NULL, e.g. at driver load time) and allocating a new empty state
627  * object.
628  */
629 void vmw_du_crtc_reset(struct drm_crtc *crtc)
630 {
631 	struct vmw_crtc_state *vcs;
632 
633 
634 	if (crtc->state) {
635 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
636 
637 		kfree(vmw_crtc_state_to_vcs(crtc->state));
638 	}
639 
640 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
641 
642 	if (!vcs) {
643 		DRM_ERROR("Cannot allocate vmw_crtc_state\n");
644 		return;
645 	}
646 
647 	crtc->state = &vcs->base;
648 	crtc->state->crtc = crtc;
649 }
650 
651 
652 /**
653  * vmw_du_crtc_destroy_state - destroy crtc state
654  * @crtc: DRM crtc
655  * @state: state object to destroy
656  *
657  * Destroys the crtc state (both common and vmw-specific) for the
658  * specified plane.
659  */
660 void
661 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
662 			  struct drm_crtc_state *state)
663 {
664 	drm_atomic_helper_crtc_destroy_state(crtc, state);
665 }
666 
667 
668 /**
669  * vmw_du_plane_duplicate_state - duplicate plane state
670  * @plane: drm plane
671  *
672  * Allocates and returns a copy of the plane state (both common and
673  * vmw-specific) for the specified plane.
674  *
675  * Returns: The newly allocated plane state, or NULL on failure.
676  */
677 struct drm_plane_state *
678 vmw_du_plane_duplicate_state(struct drm_plane *plane)
679 {
680 	struct drm_plane_state *state;
681 	struct vmw_plane_state *vps;
682 
683 	vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
684 
685 	if (!vps)
686 		return NULL;
687 
688 	vps->pinned = 0;
689 
690 	/* Mapping is managed by prepare_fb/cleanup_fb */
691 	memset(&vps->guest_map, 0, sizeof(vps->guest_map));
692 	memset(&vps->host_map, 0, sizeof(vps->host_map));
693 	vps->cpp = 0;
694 
695 	/* Each ref counted resource needs to be acquired again */
696 	if (vps->surf)
697 		(void) vmw_surface_reference(vps->surf);
698 
699 	if (vps->dmabuf)
700 		(void) vmw_dmabuf_reference(vps->dmabuf);
701 
702 	state = &vps->base;
703 
704 	__drm_atomic_helper_plane_duplicate_state(plane, state);
705 
706 	return state;
707 }
708 
709 
710 /**
711  * vmw_du_plane_reset - creates a blank vmw plane state
712  * @plane: drm plane
713  *
714  * Resets the atomic state for @plane by freeing the state pointer (which might
715  * be NULL, e.g. at driver load time) and allocating a new empty state object.
716  */
717 void vmw_du_plane_reset(struct drm_plane *plane)
718 {
719 	struct vmw_plane_state *vps;
720 
721 
722 	if (plane->state)
723 		vmw_du_plane_destroy_state(plane, plane->state);
724 
725 	vps = kzalloc(sizeof(*vps), GFP_KERNEL);
726 
727 	if (!vps) {
728 		DRM_ERROR("Cannot allocate vmw_plane_state\n");
729 		return;
730 	}
731 
732 	plane->state = &vps->base;
733 	plane->state->plane = plane;
734 	plane->state->rotation = DRM_MODE_ROTATE_0;
735 }
736 
737 
738 /**
739  * vmw_du_plane_destroy_state - destroy plane state
740  * @plane: DRM plane
741  * @state: state object to destroy
742  *
743  * Destroys the plane state (both common and vmw-specific) for the
744  * specified plane.
745  */
746 void
747 vmw_du_plane_destroy_state(struct drm_plane *plane,
748 			   struct drm_plane_state *state)
749 {
750 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
751 
752 
753 	/* Should have been freed by cleanup_fb */
754 	if (vps->guest_map.virtual) {
755 		DRM_ERROR("Guest mapping not freed\n");
756 		ttm_bo_kunmap(&vps->guest_map);
757 	}
758 
759 	if (vps->host_map.virtual) {
760 		DRM_ERROR("Host mapping not freed\n");
761 		ttm_bo_kunmap(&vps->host_map);
762 	}
763 
764 	if (vps->surf)
765 		vmw_surface_unreference(&vps->surf);
766 
767 	if (vps->dmabuf)
768 		vmw_dmabuf_unreference(&vps->dmabuf);
769 
770 	drm_atomic_helper_plane_destroy_state(plane, state);
771 }
772 
773 
774 /**
775  * vmw_du_connector_duplicate_state - duplicate connector state
776  * @connector: DRM connector
777  *
778  * Allocates and returns a copy of the connector state (both common and
779  * vmw-specific) for the specified connector.
780  *
781  * Returns: The newly allocated connector state, or NULL on failure.
782  */
783 struct drm_connector_state *
784 vmw_du_connector_duplicate_state(struct drm_connector *connector)
785 {
786 	struct drm_connector_state *state;
787 	struct vmw_connector_state *vcs;
788 
789 	if (WARN_ON(!connector->state))
790 		return NULL;
791 
792 	vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
793 
794 	if (!vcs)
795 		return NULL;
796 
797 	state = &vcs->base;
798 
799 	__drm_atomic_helper_connector_duplicate_state(connector, state);
800 
801 	return state;
802 }
803 
804 
805 /**
806  * vmw_du_connector_reset - creates a blank vmw connector state
807  * @connector: DRM connector
808  *
809  * Resets the atomic state for @connector by freeing the state pointer (which
810  * might be NULL, e.g. at driver load time) and allocating a new empty state
811  * object.
812  */
813 void vmw_du_connector_reset(struct drm_connector *connector)
814 {
815 	struct vmw_connector_state *vcs;
816 
817 
818 	if (connector->state) {
819 		__drm_atomic_helper_connector_destroy_state(connector->state);
820 
821 		kfree(vmw_connector_state_to_vcs(connector->state));
822 	}
823 
824 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
825 
826 	if (!vcs) {
827 		DRM_ERROR("Cannot allocate vmw_connector_state\n");
828 		return;
829 	}
830 
831 	__drm_atomic_helper_connector_reset(connector, &vcs->base);
832 }
833 
834 
835 /**
836  * vmw_du_connector_destroy_state - destroy connector state
837  * @connector: DRM connector
838  * @state: state object to destroy
839  *
840  * Destroys the connector state (both common and vmw-specific) for the
841  * specified plane.
842  */
843 void
844 vmw_du_connector_destroy_state(struct drm_connector *connector,
845 			  struct drm_connector_state *state)
846 {
847 	drm_atomic_helper_connector_destroy_state(connector, state);
848 }
849 /*
850  * Generic framebuffer code
851  */
852 
853 /*
854  * Surface framebuffer code
855  */
856 
857 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
858 {
859 	struct vmw_framebuffer_surface *vfbs =
860 		vmw_framebuffer_to_vfbs(framebuffer);
861 
862 	drm_framebuffer_cleanup(framebuffer);
863 	vmw_surface_unreference(&vfbs->surface);
864 	if (vfbs->base.user_obj)
865 		ttm_base_object_unref(&vfbs->base.user_obj);
866 
867 	kfree(vfbs);
868 }
869 
870 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer,
871 				  struct drm_file *file_priv,
872 				  unsigned flags, unsigned color,
873 				  struct drm_clip_rect *clips,
874 				  unsigned num_clips)
875 {
876 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
877 	struct vmw_framebuffer_surface *vfbs =
878 		vmw_framebuffer_to_vfbs(framebuffer);
879 	struct drm_clip_rect norect;
880 	int ret, inc = 1;
881 
882 	/* Legacy Display Unit does not support 3D */
883 	if (dev_priv->active_display_unit == vmw_du_legacy)
884 		return -EINVAL;
885 
886 	drm_modeset_lock_all(dev_priv->dev);
887 
888 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
889 	if (unlikely(ret != 0)) {
890 		drm_modeset_unlock_all(dev_priv->dev);
891 		return ret;
892 	}
893 
894 	if (!num_clips) {
895 		num_clips = 1;
896 		clips = &norect;
897 		norect.x1 = norect.y1 = 0;
898 		norect.x2 = framebuffer->width;
899 		norect.y2 = framebuffer->height;
900 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
901 		num_clips /= 2;
902 		inc = 2; /* skip source rects */
903 	}
904 
905 	if (dev_priv->active_display_unit == vmw_du_screen_object)
906 		ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base,
907 						   clips, NULL, NULL, 0, 0,
908 						   num_clips, inc, NULL);
909 	else
910 		ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base,
911 						 clips, NULL, NULL, 0, 0,
912 						 num_clips, inc, NULL);
913 
914 	vmw_fifo_flush(dev_priv, false);
915 	ttm_read_unlock(&dev_priv->reservation_sem);
916 
917 	drm_modeset_unlock_all(dev_priv->dev);
918 
919 	return 0;
920 }
921 
922 /**
923  * vmw_kms_readback - Perform a readback from the screen system to
924  * a dma-buffer backed framebuffer.
925  *
926  * @dev_priv: Pointer to the device private structure.
927  * @file_priv: Pointer to a struct drm_file identifying the caller.
928  * Must be set to NULL if @user_fence_rep is NULL.
929  * @vfb: Pointer to the dma-buffer backed framebuffer.
930  * @user_fence_rep: User-space provided structure for fence information.
931  * Must be set to non-NULL if @file_priv is non-NULL.
932  * @vclips: Array of clip rects.
933  * @num_clips: Number of clip rects in @vclips.
934  *
935  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
936  * interrupted.
937  */
938 int vmw_kms_readback(struct vmw_private *dev_priv,
939 		     struct drm_file *file_priv,
940 		     struct vmw_framebuffer *vfb,
941 		     struct drm_vmw_fence_rep __user *user_fence_rep,
942 		     struct drm_vmw_rect *vclips,
943 		     uint32_t num_clips)
944 {
945 	switch (dev_priv->active_display_unit) {
946 	case vmw_du_screen_object:
947 		return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
948 					    user_fence_rep, vclips, num_clips);
949 	case vmw_du_screen_target:
950 		return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
951 					user_fence_rep, NULL, vclips, num_clips,
952 					1, false, true);
953 	default:
954 		WARN_ONCE(true,
955 			  "Readback called with invalid display system.\n");
956 }
957 
958 	return -ENOSYS;
959 }
960 
961 
962 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
963 	.destroy = vmw_framebuffer_surface_destroy,
964 	.dirty = vmw_framebuffer_surface_dirty,
965 };
966 
967 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
968 					   struct vmw_surface *surface,
969 					   struct vmw_framebuffer **out,
970 					   const struct drm_mode_fb_cmd2
971 					   *mode_cmd,
972 					   bool is_dmabuf_proxy)
973 
974 {
975 	struct drm_device *dev = dev_priv->dev;
976 	struct vmw_framebuffer_surface *vfbs;
977 	enum SVGA3dSurfaceFormat format;
978 	int ret;
979 	struct drm_format_name_buf format_name;
980 
981 	/* 3D is only supported on HWv8 and newer hosts */
982 	if (dev_priv->active_display_unit == vmw_du_legacy)
983 		return -ENOSYS;
984 
985 	/*
986 	 * Sanity checks.
987 	 */
988 
989 	/* Surface must be marked as a scanout. */
990 	if (unlikely(!surface->scanout))
991 		return -EINVAL;
992 
993 	if (unlikely(surface->mip_levels[0] != 1 ||
994 		     surface->num_sizes != 1 ||
995 		     surface->base_size.width < mode_cmd->width ||
996 		     surface->base_size.height < mode_cmd->height ||
997 		     surface->base_size.depth != 1)) {
998 		DRM_ERROR("Incompatible surface dimensions "
999 			  "for requested mode.\n");
1000 		return -EINVAL;
1001 	}
1002 
1003 	switch (mode_cmd->pixel_format) {
1004 	case DRM_FORMAT_ARGB8888:
1005 		format = SVGA3D_A8R8G8B8;
1006 		break;
1007 	case DRM_FORMAT_XRGB8888:
1008 		format = SVGA3D_X8R8G8B8;
1009 		break;
1010 	case DRM_FORMAT_RGB565:
1011 		format = SVGA3D_R5G6B5;
1012 		break;
1013 	case DRM_FORMAT_XRGB1555:
1014 		format = SVGA3D_A1R5G5B5;
1015 		break;
1016 	default:
1017 		DRM_ERROR("Invalid pixel format: %s\n",
1018 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1019 		return -EINVAL;
1020 	}
1021 
1022 	/*
1023 	 * For DX, surface format validation is done when surface->scanout
1024 	 * is set.
1025 	 */
1026 	if (!dev_priv->has_dx && format != surface->format) {
1027 		DRM_ERROR("Invalid surface format for requested mode.\n");
1028 		return -EINVAL;
1029 	}
1030 
1031 	vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
1032 	if (!vfbs) {
1033 		ret = -ENOMEM;
1034 		goto out_err1;
1035 	}
1036 
1037 	drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
1038 	vfbs->surface = vmw_surface_reference(surface);
1039 	vfbs->base.user_handle = mode_cmd->handles[0];
1040 	vfbs->is_dmabuf_proxy = is_dmabuf_proxy;
1041 
1042 	*out = &vfbs->base;
1043 
1044 	ret = drm_framebuffer_init(dev, &vfbs->base.base,
1045 				   &vmw_framebuffer_surface_funcs);
1046 	if (ret)
1047 		goto out_err2;
1048 
1049 	return 0;
1050 
1051 out_err2:
1052 	vmw_surface_unreference(&surface);
1053 	kfree(vfbs);
1054 out_err1:
1055 	return ret;
1056 }
1057 
1058 /*
1059  * Dmabuf framebuffer code
1060  */
1061 
1062 static void vmw_framebuffer_dmabuf_destroy(struct drm_framebuffer *framebuffer)
1063 {
1064 	struct vmw_framebuffer_dmabuf *vfbd =
1065 		vmw_framebuffer_to_vfbd(framebuffer);
1066 
1067 	drm_framebuffer_cleanup(framebuffer);
1068 	vmw_dmabuf_unreference(&vfbd->buffer);
1069 	if (vfbd->base.user_obj)
1070 		ttm_base_object_unref(&vfbd->base.user_obj);
1071 
1072 	kfree(vfbd);
1073 }
1074 
1075 static int vmw_framebuffer_dmabuf_dirty(struct drm_framebuffer *framebuffer,
1076 				 struct drm_file *file_priv,
1077 				 unsigned flags, unsigned color,
1078 				 struct drm_clip_rect *clips,
1079 				 unsigned num_clips)
1080 {
1081 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1082 	struct vmw_framebuffer_dmabuf *vfbd =
1083 		vmw_framebuffer_to_vfbd(framebuffer);
1084 	struct drm_clip_rect norect;
1085 	int ret, increment = 1;
1086 
1087 	drm_modeset_lock_all(dev_priv->dev);
1088 
1089 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1090 	if (unlikely(ret != 0)) {
1091 		drm_modeset_unlock_all(dev_priv->dev);
1092 		return ret;
1093 	}
1094 
1095 	if (!num_clips) {
1096 		num_clips = 1;
1097 		clips = &norect;
1098 		norect.x1 = norect.y1 = 0;
1099 		norect.x2 = framebuffer->width;
1100 		norect.y2 = framebuffer->height;
1101 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1102 		num_clips /= 2;
1103 		increment = 2;
1104 	}
1105 
1106 	switch (dev_priv->active_display_unit) {
1107 	case vmw_du_screen_target:
1108 		ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL,
1109 				       clips, NULL, num_clips, increment,
1110 				       true, true);
1111 		break;
1112 	case vmw_du_screen_object:
1113 		ret = vmw_kms_sou_do_dmabuf_dirty(dev_priv, &vfbd->base,
1114 						  clips, NULL, num_clips,
1115 						  increment, true, NULL);
1116 		break;
1117 	case vmw_du_legacy:
1118 		ret = vmw_kms_ldu_do_dmabuf_dirty(dev_priv, &vfbd->base, 0, 0,
1119 						  clips, num_clips, increment);
1120 		break;
1121 	default:
1122 		ret = -EINVAL;
1123 		WARN_ONCE(true, "Dirty called with invalid display system.\n");
1124 		break;
1125 	}
1126 
1127 	vmw_fifo_flush(dev_priv, false);
1128 	ttm_read_unlock(&dev_priv->reservation_sem);
1129 
1130 	drm_modeset_unlock_all(dev_priv->dev);
1131 
1132 	return ret;
1133 }
1134 
1135 static const struct drm_framebuffer_funcs vmw_framebuffer_dmabuf_funcs = {
1136 	.destroy = vmw_framebuffer_dmabuf_destroy,
1137 	.dirty = vmw_framebuffer_dmabuf_dirty,
1138 };
1139 
1140 /**
1141  * Pin the dmabuffer to the start of vram.
1142  */
1143 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1144 {
1145 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1146 	struct vmw_dma_buffer *buf;
1147 	int ret;
1148 
1149 	buf = vfb->dmabuf ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1150 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1151 
1152 	if (!buf)
1153 		return 0;
1154 
1155 	switch (dev_priv->active_display_unit) {
1156 	case vmw_du_legacy:
1157 		vmw_overlay_pause_all(dev_priv);
1158 		ret = vmw_dmabuf_pin_in_start_of_vram(dev_priv, buf, false);
1159 		vmw_overlay_resume_all(dev_priv);
1160 		break;
1161 	case vmw_du_screen_object:
1162 	case vmw_du_screen_target:
1163 		if (vfb->dmabuf)
1164 			return vmw_dmabuf_pin_in_vram_or_gmr(dev_priv, buf,
1165 							     false);
1166 
1167 		return vmw_dmabuf_pin_in_placement(dev_priv, buf,
1168 						   &vmw_mob_placement, false);
1169 	default:
1170 		return -EINVAL;
1171 	}
1172 
1173 	return ret;
1174 }
1175 
1176 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1177 {
1178 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1179 	struct vmw_dma_buffer *buf;
1180 
1181 	buf = vfb->dmabuf ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1182 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1183 
1184 	if (WARN_ON(!buf))
1185 		return 0;
1186 
1187 	return vmw_dmabuf_unpin(dev_priv, buf, false);
1188 }
1189 
1190 /**
1191  * vmw_create_dmabuf_proxy - create a proxy surface for the DMA buf
1192  *
1193  * @dev: DRM device
1194  * @mode_cmd: parameters for the new surface
1195  * @dmabuf_mob: MOB backing the DMA buf
1196  * @srf_out: newly created surface
1197  *
1198  * When the content FB is a DMA buf, we create a surface as a proxy to the
1199  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1200  * This is a more efficient approach
1201  *
1202  * RETURNS:
1203  * 0 on success, error code otherwise
1204  */
1205 static int vmw_create_dmabuf_proxy(struct drm_device *dev,
1206 				   const struct drm_mode_fb_cmd2 *mode_cmd,
1207 				   struct vmw_dma_buffer *dmabuf_mob,
1208 				   struct vmw_surface **srf_out)
1209 {
1210 	uint32_t format;
1211 	struct drm_vmw_size content_base_size = {0};
1212 	struct vmw_resource *res;
1213 	unsigned int bytes_pp;
1214 	struct drm_format_name_buf format_name;
1215 	int ret;
1216 
1217 	switch (mode_cmd->pixel_format) {
1218 	case DRM_FORMAT_ARGB8888:
1219 	case DRM_FORMAT_XRGB8888:
1220 		format = SVGA3D_X8R8G8B8;
1221 		bytes_pp = 4;
1222 		break;
1223 
1224 	case DRM_FORMAT_RGB565:
1225 	case DRM_FORMAT_XRGB1555:
1226 		format = SVGA3D_R5G6B5;
1227 		bytes_pp = 2;
1228 		break;
1229 
1230 	case 8:
1231 		format = SVGA3D_P8;
1232 		bytes_pp = 1;
1233 		break;
1234 
1235 	default:
1236 		DRM_ERROR("Invalid framebuffer format %s\n",
1237 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1238 		return -EINVAL;
1239 	}
1240 
1241 	content_base_size.width  = mode_cmd->pitches[0] / bytes_pp;
1242 	content_base_size.height = mode_cmd->height;
1243 	content_base_size.depth  = 1;
1244 
1245 	ret = vmw_surface_gb_priv_define(dev,
1246 			0, /* kernel visible only */
1247 			0, /* flags */
1248 			format,
1249 			true, /* can be a scanout buffer */
1250 			1, /* num of mip levels */
1251 			0,
1252 			0,
1253 			content_base_size,
1254 			srf_out);
1255 	if (ret) {
1256 		DRM_ERROR("Failed to allocate proxy content buffer\n");
1257 		return ret;
1258 	}
1259 
1260 	res = &(*srf_out)->res;
1261 
1262 	/* Reserve and switch the backing mob. */
1263 	mutex_lock(&res->dev_priv->cmdbuf_mutex);
1264 	(void) vmw_resource_reserve(res, false, true);
1265 	vmw_dmabuf_unreference(&res->backup);
1266 	res->backup = vmw_dmabuf_reference(dmabuf_mob);
1267 	res->backup_offset = 0;
1268 	vmw_resource_unreserve(res, false, NULL, 0);
1269 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1270 
1271 	return 0;
1272 }
1273 
1274 
1275 
1276 static int vmw_kms_new_framebuffer_dmabuf(struct vmw_private *dev_priv,
1277 					  struct vmw_dma_buffer *dmabuf,
1278 					  struct vmw_framebuffer **out,
1279 					  const struct drm_mode_fb_cmd2
1280 					  *mode_cmd)
1281 
1282 {
1283 	struct drm_device *dev = dev_priv->dev;
1284 	struct vmw_framebuffer_dmabuf *vfbd;
1285 	unsigned int requested_size;
1286 	struct drm_format_name_buf format_name;
1287 	int ret;
1288 
1289 	requested_size = mode_cmd->height * mode_cmd->pitches[0];
1290 	if (unlikely(requested_size > dmabuf->base.num_pages * PAGE_SIZE)) {
1291 		DRM_ERROR("Screen buffer object size is too small "
1292 			  "for requested mode.\n");
1293 		return -EINVAL;
1294 	}
1295 
1296 	/* Limited framebuffer color depth support for screen objects */
1297 	if (dev_priv->active_display_unit == vmw_du_screen_object) {
1298 		switch (mode_cmd->pixel_format) {
1299 		case DRM_FORMAT_XRGB8888:
1300 		case DRM_FORMAT_ARGB8888:
1301 			break;
1302 		case DRM_FORMAT_XRGB1555:
1303 		case DRM_FORMAT_RGB565:
1304 			break;
1305 		default:
1306 			DRM_ERROR("Invalid pixel format: %s\n",
1307 				  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1308 			return -EINVAL;
1309 		}
1310 	}
1311 
1312 	vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1313 	if (!vfbd) {
1314 		ret = -ENOMEM;
1315 		goto out_err1;
1316 	}
1317 
1318 	drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1319 	vfbd->base.dmabuf = true;
1320 	vfbd->buffer = vmw_dmabuf_reference(dmabuf);
1321 	vfbd->base.user_handle = mode_cmd->handles[0];
1322 	*out = &vfbd->base;
1323 
1324 	ret = drm_framebuffer_init(dev, &vfbd->base.base,
1325 				   &vmw_framebuffer_dmabuf_funcs);
1326 	if (ret)
1327 		goto out_err2;
1328 
1329 	return 0;
1330 
1331 out_err2:
1332 	vmw_dmabuf_unreference(&dmabuf);
1333 	kfree(vfbd);
1334 out_err1:
1335 	return ret;
1336 }
1337 
1338 
1339 /**
1340  * vmw_kms_srf_ok - check if a surface can be created
1341  *
1342  * @width: requested width
1343  * @height: requested height
1344  *
1345  * Surfaces need to be less than texture size
1346  */
1347 static bool
1348 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1349 {
1350 	if (width  > dev_priv->texture_max_width ||
1351 	    height > dev_priv->texture_max_height)
1352 		return false;
1353 
1354 	return true;
1355 }
1356 
1357 /**
1358  * vmw_kms_new_framebuffer - Create a new framebuffer.
1359  *
1360  * @dev_priv: Pointer to device private struct.
1361  * @dmabuf: Pointer to dma buffer to wrap the kms framebuffer around.
1362  * Either @dmabuf or @surface must be NULL.
1363  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1364  * Either @dmabuf or @surface must be NULL.
1365  * @only_2d: No presents will occur to this dma buffer based framebuffer. This
1366  * Helps the code to do some important optimizations.
1367  * @mode_cmd: Frame-buffer metadata.
1368  */
1369 struct vmw_framebuffer *
1370 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1371 			struct vmw_dma_buffer *dmabuf,
1372 			struct vmw_surface *surface,
1373 			bool only_2d,
1374 			const struct drm_mode_fb_cmd2 *mode_cmd)
1375 {
1376 	struct vmw_framebuffer *vfb = NULL;
1377 	bool is_dmabuf_proxy = false;
1378 	int ret;
1379 
1380 	/*
1381 	 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1382 	 * therefore, wrap the DMA buf in a surface so we can use the
1383 	 * SurfaceCopy command.
1384 	 */
1385 	if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1386 	    dmabuf && only_2d &&
1387 	    mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1388 	    dev_priv->active_display_unit == vmw_du_screen_target) {
1389 		ret = vmw_create_dmabuf_proxy(dev_priv->dev, mode_cmd,
1390 					      dmabuf, &surface);
1391 		if (ret)
1392 			return ERR_PTR(ret);
1393 
1394 		is_dmabuf_proxy = true;
1395 	}
1396 
1397 	/* Create the new framebuffer depending one what we have */
1398 	if (surface) {
1399 		ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1400 						      mode_cmd,
1401 						      is_dmabuf_proxy);
1402 
1403 		/*
1404 		 * vmw_create_dmabuf_proxy() adds a reference that is no longer
1405 		 * needed
1406 		 */
1407 		if (is_dmabuf_proxy)
1408 			vmw_surface_unreference(&surface);
1409 	} else if (dmabuf) {
1410 		ret = vmw_kms_new_framebuffer_dmabuf(dev_priv, dmabuf, &vfb,
1411 						     mode_cmd);
1412 	} else {
1413 		BUG();
1414 	}
1415 
1416 	if (ret)
1417 		return ERR_PTR(ret);
1418 
1419 	vfb->pin = vmw_framebuffer_pin;
1420 	vfb->unpin = vmw_framebuffer_unpin;
1421 
1422 	return vfb;
1423 }
1424 
1425 /*
1426  * Generic Kernel modesetting functions
1427  */
1428 
1429 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1430 						 struct drm_file *file_priv,
1431 						 const struct drm_mode_fb_cmd2 *mode_cmd)
1432 {
1433 	struct vmw_private *dev_priv = vmw_priv(dev);
1434 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1435 	struct vmw_framebuffer *vfb = NULL;
1436 	struct vmw_surface *surface = NULL;
1437 	struct vmw_dma_buffer *bo = NULL;
1438 	struct ttm_base_object *user_obj;
1439 	int ret;
1440 
1441 	/**
1442 	 * This code should be conditioned on Screen Objects not being used.
1443 	 * If screen objects are used, we can allocate a GMR to hold the
1444 	 * requested framebuffer.
1445 	 */
1446 
1447 	if (!vmw_kms_validate_mode_vram(dev_priv,
1448 					mode_cmd->pitches[0],
1449 					mode_cmd->height)) {
1450 		DRM_ERROR("Requested mode exceed bounding box limit.\n");
1451 		return ERR_PTR(-ENOMEM);
1452 	}
1453 
1454 	/*
1455 	 * Take a reference on the user object of the resource
1456 	 * backing the kms fb. This ensures that user-space handle
1457 	 * lookups on that resource will always work as long as
1458 	 * it's registered with a kms framebuffer. This is important,
1459 	 * since vmw_execbuf_process identifies resources in the
1460 	 * command stream using user-space handles.
1461 	 */
1462 
1463 	user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1464 	if (unlikely(user_obj == NULL)) {
1465 		DRM_ERROR("Could not locate requested kms frame buffer.\n");
1466 		return ERR_PTR(-ENOENT);
1467 	}
1468 
1469 	/**
1470 	 * End conditioned code.
1471 	 */
1472 
1473 	/* returns either a dmabuf or surface */
1474 	ret = vmw_user_lookup_handle(dev_priv, tfile,
1475 				     mode_cmd->handles[0],
1476 				     &surface, &bo);
1477 	if (ret)
1478 		goto err_out;
1479 
1480 
1481 	if (!bo &&
1482 	    !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1483 		DRM_ERROR("Surface size cannot exceed %dx%d",
1484 			dev_priv->texture_max_width,
1485 			dev_priv->texture_max_height);
1486 		goto err_out;
1487 	}
1488 
1489 
1490 	vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1491 				      !(dev_priv->capabilities & SVGA_CAP_3D),
1492 				      mode_cmd);
1493 	if (IS_ERR(vfb)) {
1494 		ret = PTR_ERR(vfb);
1495 		goto err_out;
1496  	}
1497 
1498 err_out:
1499 	/* vmw_user_lookup_handle takes one ref so does new_fb */
1500 	if (bo)
1501 		vmw_dmabuf_unreference(&bo);
1502 	if (surface)
1503 		vmw_surface_unreference(&surface);
1504 
1505 	if (ret) {
1506 		DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1507 		ttm_base_object_unref(&user_obj);
1508 		return ERR_PTR(ret);
1509 	} else
1510 		vfb->user_obj = user_obj;
1511 
1512 	return &vfb->base;
1513 }
1514 
1515 
1516 
1517 /**
1518  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1519  *
1520  * @dev: DRM device
1521  * @state: the driver state object
1522  *
1523  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1524  * us to assign a value to mode->crtc_clock so that
1525  * drm_calc_timestamping_constants() won't throw an error message
1526  *
1527  * RETURNS
1528  * Zero for success or -errno
1529  */
1530 int
1531 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1532 			     struct drm_atomic_state *state)
1533 {
1534 	struct drm_crtc_state *crtc_state;
1535 	struct drm_crtc *crtc;
1536 	struct vmw_private *dev_priv = vmw_priv(dev);
1537 	int i;
1538 
1539 
1540 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
1541 		unsigned long requested_bb_mem = 0;
1542 
1543 		if (dev_priv->active_display_unit == vmw_du_screen_target) {
1544 			if (crtc->primary->fb) {
1545 				int cpp = crtc->primary->fb->pitches[0] /
1546 					  crtc->primary->fb->width;
1547 
1548 				requested_bb_mem += crtc->mode.hdisplay * cpp *
1549 						    crtc->mode.vdisplay;
1550 			}
1551 
1552 			if (requested_bb_mem > dev_priv->prim_bb_mem)
1553 				return -EINVAL;
1554 		}
1555 	}
1556 
1557 	return drm_atomic_helper_check(dev, state);
1558 }
1559 
1560 
1561 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1562 	.fb_create = vmw_kms_fb_create,
1563 	.atomic_check = vmw_kms_atomic_check_modeset,
1564 	.atomic_commit = drm_atomic_helper_commit,
1565 };
1566 
1567 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1568 				   struct drm_file *file_priv,
1569 				   struct vmw_framebuffer *vfb,
1570 				   struct vmw_surface *surface,
1571 				   uint32_t sid,
1572 				   int32_t destX, int32_t destY,
1573 				   struct drm_vmw_rect *clips,
1574 				   uint32_t num_clips)
1575 {
1576 	return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1577 					    &surface->res, destX, destY,
1578 					    num_clips, 1, NULL);
1579 }
1580 
1581 
1582 int vmw_kms_present(struct vmw_private *dev_priv,
1583 		    struct drm_file *file_priv,
1584 		    struct vmw_framebuffer *vfb,
1585 		    struct vmw_surface *surface,
1586 		    uint32_t sid,
1587 		    int32_t destX, int32_t destY,
1588 		    struct drm_vmw_rect *clips,
1589 		    uint32_t num_clips)
1590 {
1591 	int ret;
1592 
1593 	switch (dev_priv->active_display_unit) {
1594 	case vmw_du_screen_target:
1595 		ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1596 						 &surface->res, destX, destY,
1597 						 num_clips, 1, NULL);
1598 		break;
1599 	case vmw_du_screen_object:
1600 		ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1601 					      sid, destX, destY, clips,
1602 					      num_clips);
1603 		break;
1604 	default:
1605 		WARN_ONCE(true,
1606 			  "Present called with invalid display system.\n");
1607 		ret = -ENOSYS;
1608 		break;
1609 	}
1610 	if (ret)
1611 		return ret;
1612 
1613 	vmw_fifo_flush(dev_priv, false);
1614 
1615 	return 0;
1616 }
1617 
1618 static void
1619 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1620 {
1621 	if (dev_priv->hotplug_mode_update_property)
1622 		return;
1623 
1624 	dev_priv->hotplug_mode_update_property =
1625 		drm_property_create_range(dev_priv->dev,
1626 					  DRM_MODE_PROP_IMMUTABLE,
1627 					  "hotplug_mode_update", 0, 1);
1628 
1629 	if (!dev_priv->hotplug_mode_update_property)
1630 		return;
1631 
1632 }
1633 
1634 int vmw_kms_init(struct vmw_private *dev_priv)
1635 {
1636 	struct drm_device *dev = dev_priv->dev;
1637 	int ret;
1638 
1639 	drm_mode_config_init(dev);
1640 	dev->mode_config.funcs = &vmw_kms_funcs;
1641 	dev->mode_config.min_width = 1;
1642 	dev->mode_config.min_height = 1;
1643 	dev->mode_config.max_width = dev_priv->texture_max_width;
1644 	dev->mode_config.max_height = dev_priv->texture_max_height;
1645 
1646 	drm_mode_create_suggested_offset_properties(dev);
1647 	vmw_kms_create_hotplug_mode_update_property(dev_priv);
1648 
1649 	ret = vmw_kms_stdu_init_display(dev_priv);
1650 	if (ret) {
1651 		ret = vmw_kms_sou_init_display(dev_priv);
1652 		if (ret) /* Fallback */
1653 			ret = vmw_kms_ldu_init_display(dev_priv);
1654 	}
1655 
1656 	return ret;
1657 }
1658 
1659 int vmw_kms_close(struct vmw_private *dev_priv)
1660 {
1661 	int ret;
1662 
1663 	/*
1664 	 * Docs says we should take the lock before calling this function
1665 	 * but since it destroys encoders and our destructor calls
1666 	 * drm_encoder_cleanup which takes the lock we deadlock.
1667 	 */
1668 	drm_mode_config_cleanup(dev_priv->dev);
1669 	if (dev_priv->active_display_unit == vmw_du_screen_object)
1670 		ret = vmw_kms_sou_close_display(dev_priv);
1671 	else if (dev_priv->active_display_unit == vmw_du_screen_target)
1672 		ret = vmw_kms_stdu_close_display(dev_priv);
1673 	else
1674 		ret = vmw_kms_ldu_close_display(dev_priv);
1675 
1676 	return ret;
1677 }
1678 
1679 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1680 				struct drm_file *file_priv)
1681 {
1682 	struct drm_vmw_cursor_bypass_arg *arg = data;
1683 	struct vmw_display_unit *du;
1684 	struct drm_crtc *crtc;
1685 	int ret = 0;
1686 
1687 
1688 	mutex_lock(&dev->mode_config.mutex);
1689 	if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1690 
1691 		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1692 			du = vmw_crtc_to_du(crtc);
1693 			du->hotspot_x = arg->xhot;
1694 			du->hotspot_y = arg->yhot;
1695 		}
1696 
1697 		mutex_unlock(&dev->mode_config.mutex);
1698 		return 0;
1699 	}
1700 
1701 	crtc = drm_crtc_find(dev, arg->crtc_id);
1702 	if (!crtc) {
1703 		ret = -ENOENT;
1704 		goto out;
1705 	}
1706 
1707 	du = vmw_crtc_to_du(crtc);
1708 
1709 	du->hotspot_x = arg->xhot;
1710 	du->hotspot_y = arg->yhot;
1711 
1712 out:
1713 	mutex_unlock(&dev->mode_config.mutex);
1714 
1715 	return ret;
1716 }
1717 
1718 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1719 			unsigned width, unsigned height, unsigned pitch,
1720 			unsigned bpp, unsigned depth)
1721 {
1722 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1723 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1724 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1725 		vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1726 			       SVGA_FIFO_PITCHLOCK);
1727 	vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1728 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1729 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1730 
1731 	if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1732 		DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1733 			  depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1734 		return -EINVAL;
1735 	}
1736 
1737 	return 0;
1738 }
1739 
1740 int vmw_kms_save_vga(struct vmw_private *vmw_priv)
1741 {
1742 	struct vmw_vga_topology_state *save;
1743 	uint32_t i;
1744 
1745 	vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH);
1746 	vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT);
1747 	vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL);
1748 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1749 		vmw_priv->vga_pitchlock =
1750 		  vmw_read(vmw_priv, SVGA_REG_PITCHLOCK);
1751 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1752 		vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt +
1753 							SVGA_FIFO_PITCHLOCK);
1754 
1755 	if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1756 		return 0;
1757 
1758 	vmw_priv->num_displays = vmw_read(vmw_priv,
1759 					  SVGA_REG_NUM_GUEST_DISPLAYS);
1760 
1761 	if (vmw_priv->num_displays == 0)
1762 		vmw_priv->num_displays = 1;
1763 
1764 	for (i = 0; i < vmw_priv->num_displays; ++i) {
1765 		save = &vmw_priv->vga_save[i];
1766 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1767 		save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY);
1768 		save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X);
1769 		save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y);
1770 		save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH);
1771 		save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT);
1772 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1773 		if (i == 0 && vmw_priv->num_displays == 1 &&
1774 		    save->width == 0 && save->height == 0) {
1775 
1776 			/*
1777 			 * It should be fairly safe to assume that these
1778 			 * values are uninitialized.
1779 			 */
1780 
1781 			save->width = vmw_priv->vga_width - save->pos_x;
1782 			save->height = vmw_priv->vga_height - save->pos_y;
1783 		}
1784 	}
1785 
1786 	return 0;
1787 }
1788 
1789 int vmw_kms_restore_vga(struct vmw_private *vmw_priv)
1790 {
1791 	struct vmw_vga_topology_state *save;
1792 	uint32_t i;
1793 
1794 	vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width);
1795 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height);
1796 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp);
1797 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1798 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK,
1799 			  vmw_priv->vga_pitchlock);
1800 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1801 		vmw_mmio_write(vmw_priv->vga_pitchlock,
1802 			       vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK);
1803 
1804 	if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1805 		return 0;
1806 
1807 	for (i = 0; i < vmw_priv->num_displays; ++i) {
1808 		save = &vmw_priv->vga_save[i];
1809 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1810 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary);
1811 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x);
1812 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y);
1813 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width);
1814 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height);
1815 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1816 	}
1817 
1818 	return 0;
1819 }
1820 
1821 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1822 				uint32_t pitch,
1823 				uint32_t height)
1824 {
1825 	return ((u64) pitch * (u64) height) < (u64)
1826 		((dev_priv->active_display_unit == vmw_du_screen_target) ?
1827 		 dev_priv->prim_bb_mem : dev_priv->vram_size);
1828 }
1829 
1830 
1831 /**
1832  * Function called by DRM code called with vbl_lock held.
1833  */
1834 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
1835 {
1836 	return 0;
1837 }
1838 
1839 /**
1840  * Function called by DRM code called with vbl_lock held.
1841  */
1842 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe)
1843 {
1844 	return -ENOSYS;
1845 }
1846 
1847 /**
1848  * Function called by DRM code called with vbl_lock held.
1849  */
1850 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe)
1851 {
1852 }
1853 
1854 
1855 /*
1856  * Small shared kms functions.
1857  */
1858 
1859 static int vmw_du_update_layout(struct vmw_private *dev_priv, unsigned num,
1860 			 struct drm_vmw_rect *rects)
1861 {
1862 	struct drm_device *dev = dev_priv->dev;
1863 	struct vmw_display_unit *du;
1864 	struct drm_connector *con;
1865 
1866 	mutex_lock(&dev->mode_config.mutex);
1867 
1868 #if 0
1869 	{
1870 		unsigned int i;
1871 
1872 		DRM_INFO("%s: new layout ", __func__);
1873 		for (i = 0; i < num; i++)
1874 			DRM_INFO("(%i, %i %ux%u) ", rects[i].x, rects[i].y,
1875 				 rects[i].w, rects[i].h);
1876 		DRM_INFO("\n");
1877 	}
1878 #endif
1879 
1880 	list_for_each_entry(con, &dev->mode_config.connector_list, head) {
1881 		du = vmw_connector_to_du(con);
1882 		if (num > du->unit) {
1883 			du->pref_width = rects[du->unit].w;
1884 			du->pref_height = rects[du->unit].h;
1885 			du->pref_active = true;
1886 			du->gui_x = rects[du->unit].x;
1887 			du->gui_y = rects[du->unit].y;
1888 			drm_object_property_set_value
1889 			  (&con->base, dev->mode_config.suggested_x_property,
1890 			   du->gui_x);
1891 			drm_object_property_set_value
1892 			  (&con->base, dev->mode_config.suggested_y_property,
1893 			   du->gui_y);
1894 		} else {
1895 			du->pref_width = 800;
1896 			du->pref_height = 600;
1897 			du->pref_active = false;
1898 			drm_object_property_set_value
1899 			  (&con->base, dev->mode_config.suggested_x_property,
1900 			   0);
1901 			drm_object_property_set_value
1902 			  (&con->base, dev->mode_config.suggested_y_property,
1903 			   0);
1904 		}
1905 		con->status = vmw_du_connector_detect(con, true);
1906 	}
1907 
1908 	mutex_unlock(&dev->mode_config.mutex);
1909 	drm_sysfs_hotplug_event(dev);
1910 
1911 	return 0;
1912 }
1913 
1914 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
1915 			  u16 *r, u16 *g, u16 *b,
1916 			  uint32_t size,
1917 			  struct drm_modeset_acquire_ctx *ctx)
1918 {
1919 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
1920 	int i;
1921 
1922 	for (i = 0; i < size; i++) {
1923 		DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
1924 			  r[i], g[i], b[i]);
1925 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
1926 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
1927 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
1928 	}
1929 
1930 	return 0;
1931 }
1932 
1933 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
1934 {
1935 	return 0;
1936 }
1937 
1938 enum drm_connector_status
1939 vmw_du_connector_detect(struct drm_connector *connector, bool force)
1940 {
1941 	uint32_t num_displays;
1942 	struct drm_device *dev = connector->dev;
1943 	struct vmw_private *dev_priv = vmw_priv(dev);
1944 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
1945 
1946 	num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
1947 
1948 	return ((vmw_connector_to_du(connector)->unit < num_displays &&
1949 		 du->pref_active) ?
1950 		connector_status_connected : connector_status_disconnected);
1951 }
1952 
1953 static struct drm_display_mode vmw_kms_connector_builtin[] = {
1954 	/* 640x480@60Hz */
1955 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
1956 		   752, 800, 0, 480, 489, 492, 525, 0,
1957 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1958 	/* 800x600@60Hz */
1959 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
1960 		   968, 1056, 0, 600, 601, 605, 628, 0,
1961 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1962 	/* 1024x768@60Hz */
1963 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1964 		   1184, 1344, 0, 768, 771, 777, 806, 0,
1965 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1966 	/* 1152x864@75Hz */
1967 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1968 		   1344, 1600, 0, 864, 865, 868, 900, 0,
1969 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1970 	/* 1280x768@60Hz */
1971 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
1972 		   1472, 1664, 0, 768, 771, 778, 798, 0,
1973 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1974 	/* 1280x800@60Hz */
1975 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
1976 		   1480, 1680, 0, 800, 803, 809, 831, 0,
1977 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1978 	/* 1280x960@60Hz */
1979 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
1980 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
1981 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1982 	/* 1280x1024@60Hz */
1983 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
1984 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
1985 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1986 	/* 1360x768@60Hz */
1987 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
1988 		   1536, 1792, 0, 768, 771, 777, 795, 0,
1989 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1990 	/* 1440x1050@60Hz */
1991 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
1992 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
1993 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1994 	/* 1440x900@60Hz */
1995 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
1996 		   1672, 1904, 0, 900, 903, 909, 934, 0,
1997 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1998 	/* 1600x1200@60Hz */
1999 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2000 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2001 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2002 	/* 1680x1050@60Hz */
2003 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2004 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2005 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2006 	/* 1792x1344@60Hz */
2007 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2008 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2009 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2010 	/* 1853x1392@60Hz */
2011 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2012 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2013 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2014 	/* 1920x1200@60Hz */
2015 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2016 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2017 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2018 	/* 1920x1440@60Hz */
2019 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2020 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2021 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2022 	/* 2560x1600@60Hz */
2023 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2024 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2025 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2026 	/* Terminate */
2027 	{ DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2028 };
2029 
2030 /**
2031  * vmw_guess_mode_timing - Provide fake timings for a
2032  * 60Hz vrefresh mode.
2033  *
2034  * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2035  * members filled in.
2036  */
2037 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2038 {
2039 	mode->hsync_start = mode->hdisplay + 50;
2040 	mode->hsync_end = mode->hsync_start + 50;
2041 	mode->htotal = mode->hsync_end + 50;
2042 
2043 	mode->vsync_start = mode->vdisplay + 50;
2044 	mode->vsync_end = mode->vsync_start + 50;
2045 	mode->vtotal = mode->vsync_end + 50;
2046 
2047 	mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2048 	mode->vrefresh = drm_mode_vrefresh(mode);
2049 }
2050 
2051 
2052 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2053 				uint32_t max_width, uint32_t max_height)
2054 {
2055 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2056 	struct drm_device *dev = connector->dev;
2057 	struct vmw_private *dev_priv = vmw_priv(dev);
2058 	struct drm_display_mode *mode = NULL;
2059 	struct drm_display_mode *bmode;
2060 	struct drm_display_mode prefmode = { DRM_MODE("preferred",
2061 		DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2062 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2063 		DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2064 	};
2065 	int i;
2066 	u32 assumed_bpp = 4;
2067 
2068 	if (dev_priv->assume_16bpp)
2069 		assumed_bpp = 2;
2070 
2071 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2072 		max_width  = min(max_width,  dev_priv->stdu_max_width);
2073 		max_width  = min(max_width,  dev_priv->texture_max_width);
2074 
2075 		max_height = min(max_height, dev_priv->stdu_max_height);
2076 		max_height = min(max_height, dev_priv->texture_max_height);
2077 	}
2078 
2079 	/* Add preferred mode */
2080 	mode = drm_mode_duplicate(dev, &prefmode);
2081 	if (!mode)
2082 		return 0;
2083 	mode->hdisplay = du->pref_width;
2084 	mode->vdisplay = du->pref_height;
2085 	vmw_guess_mode_timing(mode);
2086 
2087 	if (vmw_kms_validate_mode_vram(dev_priv,
2088 					mode->hdisplay * assumed_bpp,
2089 					mode->vdisplay)) {
2090 		drm_mode_probed_add(connector, mode);
2091 	} else {
2092 		drm_mode_destroy(dev, mode);
2093 		mode = NULL;
2094 	}
2095 
2096 	if (du->pref_mode) {
2097 		list_del_init(&du->pref_mode->head);
2098 		drm_mode_destroy(dev, du->pref_mode);
2099 	}
2100 
2101 	/* mode might be null here, this is intended */
2102 	du->pref_mode = mode;
2103 
2104 	for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2105 		bmode = &vmw_kms_connector_builtin[i];
2106 		if (bmode->hdisplay > max_width ||
2107 		    bmode->vdisplay > max_height)
2108 			continue;
2109 
2110 		if (!vmw_kms_validate_mode_vram(dev_priv,
2111 						bmode->hdisplay * assumed_bpp,
2112 						bmode->vdisplay))
2113 			continue;
2114 
2115 		mode = drm_mode_duplicate(dev, bmode);
2116 		if (!mode)
2117 			return 0;
2118 		mode->vrefresh = drm_mode_vrefresh(mode);
2119 
2120 		drm_mode_probed_add(connector, mode);
2121 	}
2122 
2123 	drm_mode_connector_list_update(connector);
2124 	/* Move the prefered mode first, help apps pick the right mode. */
2125 	drm_mode_sort(&connector->modes);
2126 
2127 	return 1;
2128 }
2129 
2130 int vmw_du_connector_set_property(struct drm_connector *connector,
2131 				  struct drm_property *property,
2132 				  uint64_t val)
2133 {
2134 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2135 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2136 
2137 	if (property == dev_priv->implicit_placement_property)
2138 		du->is_implicit = val;
2139 
2140 	return 0;
2141 }
2142 
2143 
2144 
2145 /**
2146  * vmw_du_connector_atomic_set_property - Atomic version of get property
2147  *
2148  * @crtc - crtc the property is associated with
2149  *
2150  * Returns:
2151  * Zero on success, negative errno on failure.
2152  */
2153 int
2154 vmw_du_connector_atomic_set_property(struct drm_connector *connector,
2155 				     struct drm_connector_state *state,
2156 				     struct drm_property *property,
2157 				     uint64_t val)
2158 {
2159 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2160 	struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2161 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2162 
2163 
2164 	if (property == dev_priv->implicit_placement_property) {
2165 		vcs->is_implicit = val;
2166 
2167 		/*
2168 		 * We should really be doing a drm_atomic_commit() to
2169 		 * commit the new state, but since this doesn't cause
2170 		 * an immedate state change, this is probably ok
2171 		 */
2172 		du->is_implicit = vcs->is_implicit;
2173 	} else {
2174 		return -EINVAL;
2175 	}
2176 
2177 	return 0;
2178 }
2179 
2180 
2181 /**
2182  * vmw_du_connector_atomic_get_property - Atomic version of get property
2183  *
2184  * @connector - connector the property is associated with
2185  *
2186  * Returns:
2187  * Zero on success, negative errno on failure.
2188  */
2189 int
2190 vmw_du_connector_atomic_get_property(struct drm_connector *connector,
2191 				     const struct drm_connector_state *state,
2192 				     struct drm_property *property,
2193 				     uint64_t *val)
2194 {
2195 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2196 	struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2197 
2198 	if (property == dev_priv->implicit_placement_property)
2199 		*val = vcs->is_implicit;
2200 	else {
2201 		DRM_ERROR("Invalid Property %s\n", property->name);
2202 		return -EINVAL;
2203 	}
2204 
2205 	return 0;
2206 }
2207 
2208 
2209 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2210 				struct drm_file *file_priv)
2211 {
2212 	struct vmw_private *dev_priv = vmw_priv(dev);
2213 	struct drm_vmw_update_layout_arg *arg =
2214 		(struct drm_vmw_update_layout_arg *)data;
2215 	void __user *user_rects;
2216 	struct drm_vmw_rect *rects;
2217 	unsigned rects_size;
2218 	int ret;
2219 	int i;
2220 	u64 total_pixels = 0;
2221 	struct drm_mode_config *mode_config = &dev->mode_config;
2222 	struct drm_vmw_rect bounding_box = {0};
2223 
2224 	if (!arg->num_outputs) {
2225 		struct drm_vmw_rect def_rect = {0, 0, 800, 600};
2226 		vmw_du_update_layout(dev_priv, 1, &def_rect);
2227 		return 0;
2228 	}
2229 
2230 	rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2231 	rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2232 			GFP_KERNEL);
2233 	if (unlikely(!rects))
2234 		return -ENOMEM;
2235 
2236 	user_rects = (void __user *)(unsigned long)arg->rects;
2237 	ret = copy_from_user(rects, user_rects, rects_size);
2238 	if (unlikely(ret != 0)) {
2239 		DRM_ERROR("Failed to get rects.\n");
2240 		ret = -EFAULT;
2241 		goto out_free;
2242 	}
2243 
2244 	for (i = 0; i < arg->num_outputs; ++i) {
2245 		if (rects[i].x < 0 ||
2246 		    rects[i].y < 0 ||
2247 		    rects[i].x + rects[i].w > mode_config->max_width ||
2248 		    rects[i].y + rects[i].h > mode_config->max_height) {
2249 			DRM_ERROR("Invalid GUI layout.\n");
2250 			ret = -EINVAL;
2251 			goto out_free;
2252 		}
2253 
2254 		/*
2255 		 * bounding_box.w and bunding_box.h are used as
2256 		 * lower-right coordinates
2257 		 */
2258 		if (rects[i].x + rects[i].w > bounding_box.w)
2259 			bounding_box.w = rects[i].x + rects[i].w;
2260 
2261 		if (rects[i].y + rects[i].h > bounding_box.h)
2262 			bounding_box.h = rects[i].y + rects[i].h;
2263 
2264 		total_pixels += (u64) rects[i].w * (u64) rects[i].h;
2265 	}
2266 
2267 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2268 		/*
2269 		 * For Screen Targets, the limits for a toplogy are:
2270 		 *	1. Bounding box (assuming 32bpp) must be < prim_bb_mem
2271 		 *      2. Total pixels (assuming 32bpp) must be < prim_bb_mem
2272 		 */
2273 		u64 bb_mem    = (u64) bounding_box.w * bounding_box.h * 4;
2274 		u64 pixel_mem = total_pixels * 4;
2275 
2276 		if (bb_mem > dev_priv->prim_bb_mem) {
2277 			DRM_ERROR("Topology is beyond supported limits.\n");
2278 			ret = -EINVAL;
2279 			goto out_free;
2280 		}
2281 
2282 		if (pixel_mem > dev_priv->prim_bb_mem) {
2283 			DRM_ERROR("Combined output size too large\n");
2284 			ret = -EINVAL;
2285 			goto out_free;
2286 		}
2287 	}
2288 
2289 	vmw_du_update_layout(dev_priv, arg->num_outputs, rects);
2290 
2291 out_free:
2292 	kfree(rects);
2293 	return ret;
2294 }
2295 
2296 /**
2297  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2298  * on a set of cliprects and a set of display units.
2299  *
2300  * @dev_priv: Pointer to a device private structure.
2301  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2302  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2303  * Cliprects are given in framebuffer coordinates.
2304  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2305  * be NULL. Cliprects are given in source coordinates.
2306  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2307  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2308  * @num_clips: Number of cliprects in the @clips or @vclips array.
2309  * @increment: Integer with which to increment the clip counter when looping.
2310  * Used to skip a predetermined number of clip rects.
2311  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2312  */
2313 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2314 			 struct vmw_framebuffer *framebuffer,
2315 			 const struct drm_clip_rect *clips,
2316 			 const struct drm_vmw_rect *vclips,
2317 			 s32 dest_x, s32 dest_y,
2318 			 int num_clips,
2319 			 int increment,
2320 			 struct vmw_kms_dirty *dirty)
2321 {
2322 	struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2323 	struct drm_crtc *crtc;
2324 	u32 num_units = 0;
2325 	u32 i, k;
2326 
2327 	dirty->dev_priv = dev_priv;
2328 
2329 	list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, head) {
2330 		if (crtc->primary->fb != &framebuffer->base)
2331 			continue;
2332 		units[num_units++] = vmw_crtc_to_du(crtc);
2333 	}
2334 
2335 	for (k = 0; k < num_units; k++) {
2336 		struct vmw_display_unit *unit = units[k];
2337 		s32 crtc_x = unit->crtc.x;
2338 		s32 crtc_y = unit->crtc.y;
2339 		s32 crtc_width = unit->crtc.mode.hdisplay;
2340 		s32 crtc_height = unit->crtc.mode.vdisplay;
2341 		const struct drm_clip_rect *clips_ptr = clips;
2342 		const struct drm_vmw_rect *vclips_ptr = vclips;
2343 
2344 		dirty->unit = unit;
2345 		if (dirty->fifo_reserve_size > 0) {
2346 			dirty->cmd = vmw_fifo_reserve(dev_priv,
2347 						      dirty->fifo_reserve_size);
2348 			if (!dirty->cmd) {
2349 				DRM_ERROR("Couldn't reserve fifo space "
2350 					  "for dirty blits.\n");
2351 				return -ENOMEM;
2352 			}
2353 			memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2354 		}
2355 		dirty->num_hits = 0;
2356 		for (i = 0; i < num_clips; i++, clips_ptr += increment,
2357 		       vclips_ptr += increment) {
2358 			s32 clip_left;
2359 			s32 clip_top;
2360 
2361 			/*
2362 			 * Select clip array type. Note that integer type
2363 			 * in @clips is unsigned short, whereas in @vclips
2364 			 * it's 32-bit.
2365 			 */
2366 			if (clips) {
2367 				dirty->fb_x = (s32) clips_ptr->x1;
2368 				dirty->fb_y = (s32) clips_ptr->y1;
2369 				dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2370 					crtc_x;
2371 				dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2372 					crtc_y;
2373 			} else {
2374 				dirty->fb_x = vclips_ptr->x;
2375 				dirty->fb_y = vclips_ptr->y;
2376 				dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2377 					dest_x - crtc_x;
2378 				dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2379 					dest_y - crtc_y;
2380 			}
2381 
2382 			dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2383 			dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2384 
2385 			/* Skip this clip if it's outside the crtc region */
2386 			if (dirty->unit_x1 >= crtc_width ||
2387 			    dirty->unit_y1 >= crtc_height ||
2388 			    dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2389 				continue;
2390 
2391 			/* Clip right and bottom to crtc limits */
2392 			dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2393 					       crtc_width);
2394 			dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2395 					       crtc_height);
2396 
2397 			/* Clip left and top to crtc limits */
2398 			clip_left = min_t(s32, dirty->unit_x1, 0);
2399 			clip_top = min_t(s32, dirty->unit_y1, 0);
2400 			dirty->unit_x1 -= clip_left;
2401 			dirty->unit_y1 -= clip_top;
2402 			dirty->fb_x -= clip_left;
2403 			dirty->fb_y -= clip_top;
2404 
2405 			dirty->clip(dirty);
2406 		}
2407 
2408 		dirty->fifo_commit(dirty);
2409 	}
2410 
2411 	return 0;
2412 }
2413 
2414 /**
2415  * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before
2416  * command submission.
2417  *
2418  * @dev_priv. Pointer to a device private structure.
2419  * @buf: The buffer object
2420  * @interruptible: Whether to perform waits as interruptible.
2421  * @validate_as_mob: Whether the buffer should be validated as a MOB. If false,
2422  * The buffer will be validated as a GMR. Already pinned buffers will not be
2423  * validated.
2424  *
2425  * Returns 0 on success, negative error code on failure, -ERESTARTSYS if
2426  * interrupted by a signal.
2427  */
2428 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv,
2429 				  struct vmw_dma_buffer *buf,
2430 				  bool interruptible,
2431 				  bool validate_as_mob)
2432 {
2433 	struct ttm_buffer_object *bo = &buf->base;
2434 	int ret;
2435 
2436 	ttm_bo_reserve(bo, false, false, NULL);
2437 	ret = vmw_validate_single_buffer(dev_priv, bo, interruptible,
2438 					 validate_as_mob);
2439 	if (ret)
2440 		ttm_bo_unreserve(bo);
2441 
2442 	return ret;
2443 }
2444 
2445 /**
2446  * vmw_kms_helper_buffer_revert - Undo the actions of
2447  * vmw_kms_helper_buffer_prepare.
2448  *
2449  * @res: Pointer to the buffer object.
2450  *
2451  * Helper to be used if an error forces the caller to undo the actions of
2452  * vmw_kms_helper_buffer_prepare.
2453  */
2454 void vmw_kms_helper_buffer_revert(struct vmw_dma_buffer *buf)
2455 {
2456 	if (buf)
2457 		ttm_bo_unreserve(&buf->base);
2458 }
2459 
2460 /**
2461  * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after
2462  * kms command submission.
2463  *
2464  * @dev_priv: Pointer to a device private structure.
2465  * @file_priv: Pointer to a struct drm_file representing the caller's
2466  * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely
2467  * if non-NULL, @user_fence_rep must be non-NULL.
2468  * @buf: The buffer object.
2469  * @out_fence:  Optional pointer to a fence pointer. If non-NULL, a
2470  * ref-counted fence pointer is returned here.
2471  * @user_fence_rep: Optional pointer to a user-space provided struct
2472  * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the
2473  * function copies fence data to user-space in a fail-safe manner.
2474  */
2475 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv,
2476 				  struct drm_file *file_priv,
2477 				  struct vmw_dma_buffer *buf,
2478 				  struct vmw_fence_obj **out_fence,
2479 				  struct drm_vmw_fence_rep __user *
2480 				  user_fence_rep)
2481 {
2482 	struct vmw_fence_obj *fence;
2483 	uint32_t handle;
2484 	int ret;
2485 
2486 	ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2487 					 file_priv ? &handle : NULL);
2488 	if (buf)
2489 		vmw_fence_single_bo(&buf->base, fence);
2490 	if (file_priv)
2491 		vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2492 					    ret, user_fence_rep, fence,
2493 					    handle);
2494 	if (out_fence)
2495 		*out_fence = fence;
2496 	else
2497 		vmw_fence_obj_unreference(&fence);
2498 
2499 	vmw_kms_helper_buffer_revert(buf);
2500 }
2501 
2502 
2503 /**
2504  * vmw_kms_helper_resource_revert - Undo the actions of
2505  * vmw_kms_helper_resource_prepare.
2506  *
2507  * @res: Pointer to the resource. Typically a surface.
2508  *
2509  * Helper to be used if an error forces the caller to undo the actions of
2510  * vmw_kms_helper_resource_prepare.
2511  */
2512 void vmw_kms_helper_resource_revert(struct vmw_resource *res)
2513 {
2514 	vmw_kms_helper_buffer_revert(res->backup);
2515 	vmw_resource_unreserve(res, false, NULL, 0);
2516 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2517 }
2518 
2519 /**
2520  * vmw_kms_helper_resource_prepare - Reserve and validate a resource before
2521  * command submission.
2522  *
2523  * @res: Pointer to the resource. Typically a surface.
2524  * @interruptible: Whether to perform waits as interruptible.
2525  *
2526  * Reserves and validates also the backup buffer if a guest-backed resource.
2527  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
2528  * interrupted by a signal.
2529  */
2530 int vmw_kms_helper_resource_prepare(struct vmw_resource *res,
2531 				    bool interruptible)
2532 {
2533 	int ret = 0;
2534 
2535 	if (interruptible)
2536 		ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex);
2537 	else
2538 		mutex_lock(&res->dev_priv->cmdbuf_mutex);
2539 
2540 	if (unlikely(ret != 0))
2541 		return -ERESTARTSYS;
2542 
2543 	ret = vmw_resource_reserve(res, interruptible, false);
2544 	if (ret)
2545 		goto out_unlock;
2546 
2547 	if (res->backup) {
2548 		ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup,
2549 						    interruptible,
2550 						    res->dev_priv->has_mob);
2551 		if (ret)
2552 			goto out_unreserve;
2553 	}
2554 	ret = vmw_resource_validate(res);
2555 	if (ret)
2556 		goto out_revert;
2557 	return 0;
2558 
2559 out_revert:
2560 	vmw_kms_helper_buffer_revert(res->backup);
2561 out_unreserve:
2562 	vmw_resource_unreserve(res, false, NULL, 0);
2563 out_unlock:
2564 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2565 	return ret;
2566 }
2567 
2568 /**
2569  * vmw_kms_helper_resource_finish - Unreserve and fence a resource after
2570  * kms command submission.
2571  *
2572  * @res: Pointer to the resource. Typically a surface.
2573  * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2574  * ref-counted fence pointer is returned here.
2575  */
2576 void vmw_kms_helper_resource_finish(struct vmw_resource *res,
2577 			     struct vmw_fence_obj **out_fence)
2578 {
2579 	if (res->backup || out_fence)
2580 		vmw_kms_helper_buffer_finish(res->dev_priv, NULL, res->backup,
2581 					     out_fence, NULL);
2582 
2583 	vmw_resource_unreserve(res, false, NULL, 0);
2584 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2585 }
2586 
2587 /**
2588  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2589  * its backing MOB.
2590  *
2591  * @res: Pointer to the surface resource
2592  * @clips: Clip rects in framebuffer (surface) space.
2593  * @num_clips: Number of clips in @clips.
2594  * @increment: Integer with which to increment the clip counter when looping.
2595  * Used to skip a predetermined number of clip rects.
2596  *
2597  * This function makes sure the proxy surface is updated from its backing MOB
2598  * using the region given by @clips. The surface resource @res and its backing
2599  * MOB needs to be reserved and validated on call.
2600  */
2601 int vmw_kms_update_proxy(struct vmw_resource *res,
2602 			 const struct drm_clip_rect *clips,
2603 			 unsigned num_clips,
2604 			 int increment)
2605 {
2606 	struct vmw_private *dev_priv = res->dev_priv;
2607 	struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size;
2608 	struct {
2609 		SVGA3dCmdHeader header;
2610 		SVGA3dCmdUpdateGBImage body;
2611 	} *cmd;
2612 	SVGA3dBox *box;
2613 	size_t copy_size = 0;
2614 	int i;
2615 
2616 	if (!clips)
2617 		return 0;
2618 
2619 	cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips);
2620 	if (!cmd) {
2621 		DRM_ERROR("Couldn't reserve fifo space for proxy surface "
2622 			  "update.\n");
2623 		return -ENOMEM;
2624 	}
2625 
2626 	for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2627 		box = &cmd->body.box;
2628 
2629 		cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2630 		cmd->header.size = sizeof(cmd->body);
2631 		cmd->body.image.sid = res->id;
2632 		cmd->body.image.face = 0;
2633 		cmd->body.image.mipmap = 0;
2634 
2635 		if (clips->x1 > size->width || clips->x2 > size->width ||
2636 		    clips->y1 > size->height || clips->y2 > size->height) {
2637 			DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2638 			return -EINVAL;
2639 		}
2640 
2641 		box->x = clips->x1;
2642 		box->y = clips->y1;
2643 		box->z = 0;
2644 		box->w = clips->x2 - clips->x1;
2645 		box->h = clips->y2 - clips->y1;
2646 		box->d = 1;
2647 
2648 		copy_size += sizeof(*cmd);
2649 	}
2650 
2651 	vmw_fifo_commit(dev_priv, copy_size);
2652 
2653 	return 0;
2654 }
2655 
2656 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2657 			    unsigned unit,
2658 			    u32 max_width,
2659 			    u32 max_height,
2660 			    struct drm_connector **p_con,
2661 			    struct drm_crtc **p_crtc,
2662 			    struct drm_display_mode **p_mode)
2663 {
2664 	struct drm_connector *con;
2665 	struct vmw_display_unit *du;
2666 	struct drm_display_mode *mode;
2667 	int i = 0;
2668 
2669 	list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2670 			    head) {
2671 		if (i == unit)
2672 			break;
2673 
2674 		++i;
2675 	}
2676 
2677 	if (i != unit) {
2678 		DRM_ERROR("Could not find initial display unit.\n");
2679 		return -EINVAL;
2680 	}
2681 
2682 	if (list_empty(&con->modes))
2683 		(void) vmw_du_connector_fill_modes(con, max_width, max_height);
2684 
2685 	if (list_empty(&con->modes)) {
2686 		DRM_ERROR("Could not find initial display mode.\n");
2687 		return -EINVAL;
2688 	}
2689 
2690 	du = vmw_connector_to_du(con);
2691 	*p_con = con;
2692 	*p_crtc = &du->crtc;
2693 
2694 	list_for_each_entry(mode, &con->modes, head) {
2695 		if (mode->type & DRM_MODE_TYPE_PREFERRED)
2696 			break;
2697 	}
2698 
2699 	if (mode->type & DRM_MODE_TYPE_PREFERRED)
2700 		*p_mode = mode;
2701 	else {
2702 		WARN_ONCE(true, "Could not find initial preferred mode.\n");
2703 		*p_mode = list_first_entry(&con->modes,
2704 					   struct drm_display_mode,
2705 					   head);
2706 	}
2707 
2708 	return 0;
2709 }
2710 
2711 /**
2712  * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer
2713  *
2714  * @dev_priv: Pointer to a device private struct.
2715  * @du: The display unit of the crtc.
2716  */
2717 void vmw_kms_del_active(struct vmw_private *dev_priv,
2718 			struct vmw_display_unit *du)
2719 {
2720 	mutex_lock(&dev_priv->global_kms_state_mutex);
2721 	if (du->active_implicit) {
2722 		if (--(dev_priv->num_implicit) == 0)
2723 			dev_priv->implicit_fb = NULL;
2724 		du->active_implicit = false;
2725 	}
2726 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2727 }
2728 
2729 /**
2730  * vmw_kms_add_active - register a crtc binding to an implicit framebuffer
2731  *
2732  * @vmw_priv: Pointer to a device private struct.
2733  * @du: The display unit of the crtc.
2734  * @vfb: The implicit framebuffer
2735  *
2736  * Registers a binding to an implicit framebuffer.
2737  */
2738 void vmw_kms_add_active(struct vmw_private *dev_priv,
2739 			struct vmw_display_unit *du,
2740 			struct vmw_framebuffer *vfb)
2741 {
2742 	mutex_lock(&dev_priv->global_kms_state_mutex);
2743 	WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb);
2744 
2745 	if (!du->active_implicit && du->is_implicit) {
2746 		dev_priv->implicit_fb = vfb;
2747 		du->active_implicit = true;
2748 		dev_priv->num_implicit++;
2749 	}
2750 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2751 }
2752 
2753 /**
2754  * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc.
2755  *
2756  * @dev_priv: Pointer to device-private struct.
2757  * @crtc: The crtc we want to flip.
2758  *
2759  * Returns true or false depending whether it's OK to flip this crtc
2760  * based on the criterion that we must not have more than one implicit
2761  * frame-buffer at any one time.
2762  */
2763 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv,
2764 			    struct drm_crtc *crtc)
2765 {
2766 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2767 	bool ret;
2768 
2769 	mutex_lock(&dev_priv->global_kms_state_mutex);
2770 	ret = !du->is_implicit || dev_priv->num_implicit == 1;
2771 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2772 
2773 	return ret;
2774 }
2775 
2776 /**
2777  * vmw_kms_update_implicit_fb - Update the implicit fb.
2778  *
2779  * @dev_priv: Pointer to device-private struct.
2780  * @crtc: The crtc the new implicit frame-buffer is bound to.
2781  */
2782 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv,
2783 				struct drm_crtc *crtc)
2784 {
2785 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2786 	struct vmw_framebuffer *vfb;
2787 
2788 	mutex_lock(&dev_priv->global_kms_state_mutex);
2789 
2790 	if (!du->is_implicit)
2791 		goto out_unlock;
2792 
2793 	vfb = vmw_framebuffer_to_vfb(crtc->primary->fb);
2794 	WARN_ON_ONCE(dev_priv->num_implicit != 1 &&
2795 		     dev_priv->implicit_fb != vfb);
2796 
2797 	dev_priv->implicit_fb = vfb;
2798 out_unlock:
2799 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2800 }
2801 
2802 /**
2803  * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2804  * property.
2805  *
2806  * @dev_priv: Pointer to a device private struct.
2807  * @immutable: Whether the property is immutable.
2808  *
2809  * Sets up the implicit placement property unless it's already set up.
2810  */
2811 void
2812 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv,
2813 					   bool immutable)
2814 {
2815 	if (dev_priv->implicit_placement_property)
2816 		return;
2817 
2818 	dev_priv->implicit_placement_property =
2819 		drm_property_create_range(dev_priv->dev,
2820 					  immutable ?
2821 					  DRM_MODE_PROP_IMMUTABLE : 0,
2822 					  "implicit_placement", 0, 1);
2823 
2824 }
2825 
2826 
2827 /**
2828  * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config
2829  *
2830  * @set: The configuration to set.
2831  *
2832  * The vmwgfx Xorg driver doesn't assign the mode::type member, which
2833  * when drm_mode_set_crtcinfo is called as part of the configuration setting
2834  * causes it to return incorrect crtc dimensions causing severe problems in
2835  * the vmwgfx modesetting. So explicitly clear that member before calling
2836  * into drm_atomic_helper_set_config.
2837  */
2838 int vmw_kms_set_config(struct drm_mode_set *set,
2839 		       struct drm_modeset_acquire_ctx *ctx)
2840 {
2841 	if (set && set->mode)
2842 		set->mode->type = 0;
2843 
2844 	return drm_atomic_helper_set_config(set, ctx);
2845 }
2846