1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /************************************************************************** 3 * 4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include "vmwgfx_kms.h" 29 #include <drm/drm_plane_helper.h> 30 #include <drm/drm_atomic.h> 31 #include <drm/drm_atomic_helper.h> 32 #include <drm/drm_rect.h> 33 34 /* Might need a hrtimer here? */ 35 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1) 36 37 void vmw_du_cleanup(struct vmw_display_unit *du) 38 { 39 drm_plane_cleanup(&du->primary); 40 drm_plane_cleanup(&du->cursor); 41 42 drm_connector_unregister(&du->connector); 43 drm_crtc_cleanup(&du->crtc); 44 drm_encoder_cleanup(&du->encoder); 45 drm_connector_cleanup(&du->connector); 46 } 47 48 /* 49 * Display Unit Cursor functions 50 */ 51 52 static int vmw_cursor_update_image(struct vmw_private *dev_priv, 53 u32 *image, u32 width, u32 height, 54 u32 hotspotX, u32 hotspotY) 55 { 56 struct { 57 u32 cmd; 58 SVGAFifoCmdDefineAlphaCursor cursor; 59 } *cmd; 60 u32 image_size = width * height * 4; 61 u32 cmd_size = sizeof(*cmd) + image_size; 62 63 if (!image) 64 return -EINVAL; 65 66 cmd = vmw_fifo_reserve(dev_priv, cmd_size); 67 if (unlikely(cmd == NULL)) { 68 DRM_ERROR("Fifo reserve failed.\n"); 69 return -ENOMEM; 70 } 71 72 memset(cmd, 0, sizeof(*cmd)); 73 74 memcpy(&cmd[1], image, image_size); 75 76 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR; 77 cmd->cursor.id = 0; 78 cmd->cursor.width = width; 79 cmd->cursor.height = height; 80 cmd->cursor.hotspotX = hotspotX; 81 cmd->cursor.hotspotY = hotspotY; 82 83 vmw_fifo_commit_flush(dev_priv, cmd_size); 84 85 return 0; 86 } 87 88 static int vmw_cursor_update_bo(struct vmw_private *dev_priv, 89 struct vmw_buffer_object *bo, 90 u32 width, u32 height, 91 u32 hotspotX, u32 hotspotY) 92 { 93 struct ttm_bo_kmap_obj map; 94 unsigned long kmap_offset; 95 unsigned long kmap_num; 96 void *virtual; 97 bool dummy; 98 int ret; 99 100 kmap_offset = 0; 101 kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT; 102 103 ret = ttm_bo_reserve(&bo->base, true, false, NULL); 104 if (unlikely(ret != 0)) { 105 DRM_ERROR("reserve failed\n"); 106 return -EINVAL; 107 } 108 109 ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map); 110 if (unlikely(ret != 0)) 111 goto err_unreserve; 112 113 virtual = ttm_kmap_obj_virtual(&map, &dummy); 114 ret = vmw_cursor_update_image(dev_priv, virtual, width, height, 115 hotspotX, hotspotY); 116 117 ttm_bo_kunmap(&map); 118 err_unreserve: 119 ttm_bo_unreserve(&bo->base); 120 121 return ret; 122 } 123 124 125 static void vmw_cursor_update_position(struct vmw_private *dev_priv, 126 bool show, int x, int y) 127 { 128 u32 *fifo_mem = dev_priv->mmio_virt; 129 uint32_t count; 130 131 spin_lock(&dev_priv->cursor_lock); 132 vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON); 133 vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X); 134 vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y); 135 count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT); 136 vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT); 137 spin_unlock(&dev_priv->cursor_lock); 138 } 139 140 141 void vmw_kms_cursor_snoop(struct vmw_surface *srf, 142 struct ttm_object_file *tfile, 143 struct ttm_buffer_object *bo, 144 SVGA3dCmdHeader *header) 145 { 146 struct ttm_bo_kmap_obj map; 147 unsigned long kmap_offset; 148 unsigned long kmap_num; 149 SVGA3dCopyBox *box; 150 unsigned box_count; 151 void *virtual; 152 bool dummy; 153 struct vmw_dma_cmd { 154 SVGA3dCmdHeader header; 155 SVGA3dCmdSurfaceDMA dma; 156 } *cmd; 157 int i, ret; 158 159 cmd = container_of(header, struct vmw_dma_cmd, header); 160 161 /* No snooper installed */ 162 if (!srf->snooper.image) 163 return; 164 165 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) { 166 DRM_ERROR("face and mipmap for cursors should never != 0\n"); 167 return; 168 } 169 170 if (cmd->header.size < 64) { 171 DRM_ERROR("at least one full copy box must be given\n"); 172 return; 173 } 174 175 box = (SVGA3dCopyBox *)&cmd[1]; 176 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) / 177 sizeof(SVGA3dCopyBox); 178 179 if (cmd->dma.guest.ptr.offset % PAGE_SIZE || 180 box->x != 0 || box->y != 0 || box->z != 0 || 181 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 || 182 box->d != 1 || box_count != 1) { 183 /* TODO handle none page aligned offsets */ 184 /* TODO handle more dst & src != 0 */ 185 /* TODO handle more then one copy */ 186 DRM_ERROR("Cant snoop dma request for cursor!\n"); 187 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n", 188 box->srcx, box->srcy, box->srcz, 189 box->x, box->y, box->z, 190 box->w, box->h, box->d, box_count, 191 cmd->dma.guest.ptr.offset); 192 return; 193 } 194 195 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT; 196 kmap_num = (64*64*4) >> PAGE_SHIFT; 197 198 ret = ttm_bo_reserve(bo, true, false, NULL); 199 if (unlikely(ret != 0)) { 200 DRM_ERROR("reserve failed\n"); 201 return; 202 } 203 204 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map); 205 if (unlikely(ret != 0)) 206 goto err_unreserve; 207 208 virtual = ttm_kmap_obj_virtual(&map, &dummy); 209 210 if (box->w == 64 && cmd->dma.guest.pitch == 64*4) { 211 memcpy(srf->snooper.image, virtual, 64*64*4); 212 } else { 213 /* Image is unsigned pointer. */ 214 for (i = 0; i < box->h; i++) 215 memcpy(srf->snooper.image + i * 64, 216 virtual + i * cmd->dma.guest.pitch, 217 box->w * 4); 218 } 219 220 srf->snooper.age++; 221 222 ttm_bo_kunmap(&map); 223 err_unreserve: 224 ttm_bo_unreserve(bo); 225 } 226 227 /** 228 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots 229 * 230 * @dev_priv: Pointer to the device private struct. 231 * 232 * Clears all legacy hotspots. 233 */ 234 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv) 235 { 236 struct drm_device *dev = dev_priv->dev; 237 struct vmw_display_unit *du; 238 struct drm_crtc *crtc; 239 240 drm_modeset_lock_all(dev); 241 drm_for_each_crtc(crtc, dev) { 242 du = vmw_crtc_to_du(crtc); 243 244 du->hotspot_x = 0; 245 du->hotspot_y = 0; 246 } 247 drm_modeset_unlock_all(dev); 248 } 249 250 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv) 251 { 252 struct drm_device *dev = dev_priv->dev; 253 struct vmw_display_unit *du; 254 struct drm_crtc *crtc; 255 256 mutex_lock(&dev->mode_config.mutex); 257 258 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 259 du = vmw_crtc_to_du(crtc); 260 if (!du->cursor_surface || 261 du->cursor_age == du->cursor_surface->snooper.age) 262 continue; 263 264 du->cursor_age = du->cursor_surface->snooper.age; 265 vmw_cursor_update_image(dev_priv, 266 du->cursor_surface->snooper.image, 267 64, 64, 268 du->hotspot_x + du->core_hotspot_x, 269 du->hotspot_y + du->core_hotspot_y); 270 } 271 272 mutex_unlock(&dev->mode_config.mutex); 273 } 274 275 276 void vmw_du_cursor_plane_destroy(struct drm_plane *plane) 277 { 278 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0); 279 280 drm_plane_cleanup(plane); 281 } 282 283 284 void vmw_du_primary_plane_destroy(struct drm_plane *plane) 285 { 286 drm_plane_cleanup(plane); 287 288 /* Planes are static in our case so we don't free it */ 289 } 290 291 292 /** 293 * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface 294 * 295 * @vps: plane state associated with the display surface 296 * @unreference: true if we also want to unreference the display. 297 */ 298 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps, 299 bool unreference) 300 { 301 if (vps->surf) { 302 if (vps->pinned) { 303 vmw_resource_unpin(&vps->surf->res); 304 vps->pinned--; 305 } 306 307 if (unreference) { 308 if (vps->pinned) 309 DRM_ERROR("Surface still pinned\n"); 310 vmw_surface_unreference(&vps->surf); 311 } 312 } 313 } 314 315 316 /** 317 * vmw_du_plane_cleanup_fb - Unpins the cursor 318 * 319 * @plane: display plane 320 * @old_state: Contains the FB to clean up 321 * 322 * Unpins the framebuffer surface 323 * 324 * Returns 0 on success 325 */ 326 void 327 vmw_du_plane_cleanup_fb(struct drm_plane *plane, 328 struct drm_plane_state *old_state) 329 { 330 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); 331 332 vmw_du_plane_unpin_surf(vps, false); 333 } 334 335 336 /** 337 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it 338 * 339 * @plane: display plane 340 * @new_state: info on the new plane state, including the FB 341 * 342 * Returns 0 on success 343 */ 344 int 345 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane, 346 struct drm_plane_state *new_state) 347 { 348 struct drm_framebuffer *fb = new_state->fb; 349 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); 350 351 352 if (vps->surf) 353 vmw_surface_unreference(&vps->surf); 354 355 if (vps->bo) 356 vmw_bo_unreference(&vps->bo); 357 358 if (fb) { 359 if (vmw_framebuffer_to_vfb(fb)->bo) { 360 vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer; 361 vmw_bo_reference(vps->bo); 362 } else { 363 vps->surf = vmw_framebuffer_to_vfbs(fb)->surface; 364 vmw_surface_reference(vps->surf); 365 } 366 } 367 368 return 0; 369 } 370 371 372 void 373 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane, 374 struct drm_plane_state *old_state) 375 { 376 struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc; 377 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 378 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 379 struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state); 380 s32 hotspot_x, hotspot_y; 381 int ret = 0; 382 383 384 hotspot_x = du->hotspot_x; 385 hotspot_y = du->hotspot_y; 386 387 if (plane->state->fb) { 388 hotspot_x += plane->state->fb->hot_x; 389 hotspot_y += plane->state->fb->hot_y; 390 } 391 392 du->cursor_surface = vps->surf; 393 du->cursor_bo = vps->bo; 394 395 if (vps->surf) { 396 du->cursor_age = du->cursor_surface->snooper.age; 397 398 ret = vmw_cursor_update_image(dev_priv, 399 vps->surf->snooper.image, 400 64, 64, hotspot_x, 401 hotspot_y); 402 } else if (vps->bo) { 403 ret = vmw_cursor_update_bo(dev_priv, vps->bo, 404 plane->state->crtc_w, 405 plane->state->crtc_h, 406 hotspot_x, hotspot_y); 407 } else { 408 vmw_cursor_update_position(dev_priv, false, 0, 0); 409 return; 410 } 411 412 if (!ret) { 413 du->cursor_x = plane->state->crtc_x + du->set_gui_x; 414 du->cursor_y = plane->state->crtc_y + du->set_gui_y; 415 416 vmw_cursor_update_position(dev_priv, true, 417 du->cursor_x + hotspot_x, 418 du->cursor_y + hotspot_y); 419 420 du->core_hotspot_x = hotspot_x - du->hotspot_x; 421 du->core_hotspot_y = hotspot_y - du->hotspot_y; 422 } else { 423 DRM_ERROR("Failed to update cursor image\n"); 424 } 425 } 426 427 428 /** 429 * vmw_du_primary_plane_atomic_check - check if the new state is okay 430 * 431 * @plane: display plane 432 * @state: info on the new plane state, including the FB 433 * 434 * Check if the new state is settable given the current state. Other 435 * than what the atomic helper checks, we care about crtc fitting 436 * the FB and maintaining one active framebuffer. 437 * 438 * Returns 0 on success 439 */ 440 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane, 441 struct drm_plane_state *state) 442 { 443 struct drm_crtc_state *crtc_state = NULL; 444 struct drm_framebuffer *new_fb = state->fb; 445 int ret; 446 447 if (state->crtc) 448 crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc); 449 450 ret = drm_atomic_helper_check_plane_state(state, crtc_state, 451 DRM_PLANE_HELPER_NO_SCALING, 452 DRM_PLANE_HELPER_NO_SCALING, 453 false, true); 454 455 if (!ret && new_fb) { 456 struct drm_crtc *crtc = state->crtc; 457 struct vmw_connector_state *vcs; 458 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 459 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 460 struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb); 461 462 vcs = vmw_connector_state_to_vcs(du->connector.state); 463 464 /* Only one active implicit framebuffer at a time. */ 465 mutex_lock(&dev_priv->global_kms_state_mutex); 466 if (vcs->is_implicit && dev_priv->implicit_fb && 467 !(dev_priv->num_implicit == 1 && du->active_implicit) 468 && dev_priv->implicit_fb != vfb) { 469 DRM_ERROR("Multiple implicit framebuffers " 470 "not supported.\n"); 471 ret = -EINVAL; 472 } 473 mutex_unlock(&dev_priv->global_kms_state_mutex); 474 } 475 476 477 return ret; 478 } 479 480 481 /** 482 * vmw_du_cursor_plane_atomic_check - check if the new state is okay 483 * 484 * @plane: cursor plane 485 * @state: info on the new plane state 486 * 487 * This is a chance to fail if the new cursor state does not fit 488 * our requirements. 489 * 490 * Returns 0 on success 491 */ 492 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane, 493 struct drm_plane_state *new_state) 494 { 495 int ret = 0; 496 struct vmw_surface *surface = NULL; 497 struct drm_framebuffer *fb = new_state->fb; 498 499 struct drm_rect src = drm_plane_state_src(new_state); 500 struct drm_rect dest = drm_plane_state_dest(new_state); 501 502 /* Turning off */ 503 if (!fb) 504 return ret; 505 506 ret = drm_plane_helper_check_update(plane, new_state->crtc, fb, 507 &src, &dest, 508 DRM_MODE_ROTATE_0, 509 DRM_PLANE_HELPER_NO_SCALING, 510 DRM_PLANE_HELPER_NO_SCALING, 511 true, true, &new_state->visible); 512 if (!ret) 513 return ret; 514 515 /* A lot of the code assumes this */ 516 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) { 517 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n", 518 new_state->crtc_w, new_state->crtc_h); 519 ret = -EINVAL; 520 } 521 522 if (!vmw_framebuffer_to_vfb(fb)->bo) 523 surface = vmw_framebuffer_to_vfbs(fb)->surface; 524 525 if (surface && !surface->snooper.image) { 526 DRM_ERROR("surface not suitable for cursor\n"); 527 ret = -EINVAL; 528 } 529 530 return ret; 531 } 532 533 534 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc, 535 struct drm_crtc_state *new_state) 536 { 537 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc); 538 int connector_mask = drm_connector_mask(&du->connector); 539 bool has_primary = new_state->plane_mask & 540 drm_plane_mask(crtc->primary); 541 542 /* We always want to have an active plane with an active CRTC */ 543 if (has_primary != new_state->enable) 544 return -EINVAL; 545 546 547 if (new_state->connector_mask != connector_mask && 548 new_state->connector_mask != 0) { 549 DRM_ERROR("Invalid connectors configuration\n"); 550 return -EINVAL; 551 } 552 553 /* 554 * Our virtual device does not have a dot clock, so use the logical 555 * clock value as the dot clock. 556 */ 557 if (new_state->mode.crtc_clock == 0) 558 new_state->adjusted_mode.crtc_clock = new_state->mode.clock; 559 560 return 0; 561 } 562 563 564 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc, 565 struct drm_crtc_state *old_crtc_state) 566 { 567 } 568 569 570 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc, 571 struct drm_crtc_state *old_crtc_state) 572 { 573 struct drm_pending_vblank_event *event = crtc->state->event; 574 575 if (event) { 576 crtc->state->event = NULL; 577 578 spin_lock_irq(&crtc->dev->event_lock); 579 drm_crtc_send_vblank_event(crtc, event); 580 spin_unlock_irq(&crtc->dev->event_lock); 581 } 582 } 583 584 585 /** 586 * vmw_du_crtc_duplicate_state - duplicate crtc state 587 * @crtc: DRM crtc 588 * 589 * Allocates and returns a copy of the crtc state (both common and 590 * vmw-specific) for the specified crtc. 591 * 592 * Returns: The newly allocated crtc state, or NULL on failure. 593 */ 594 struct drm_crtc_state * 595 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc) 596 { 597 struct drm_crtc_state *state; 598 struct vmw_crtc_state *vcs; 599 600 if (WARN_ON(!crtc->state)) 601 return NULL; 602 603 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL); 604 605 if (!vcs) 606 return NULL; 607 608 state = &vcs->base; 609 610 __drm_atomic_helper_crtc_duplicate_state(crtc, state); 611 612 return state; 613 } 614 615 616 /** 617 * vmw_du_crtc_reset - creates a blank vmw crtc state 618 * @crtc: DRM crtc 619 * 620 * Resets the atomic state for @crtc by freeing the state pointer (which 621 * might be NULL, e.g. at driver load time) and allocating a new empty state 622 * object. 623 */ 624 void vmw_du_crtc_reset(struct drm_crtc *crtc) 625 { 626 struct vmw_crtc_state *vcs; 627 628 629 if (crtc->state) { 630 __drm_atomic_helper_crtc_destroy_state(crtc->state); 631 632 kfree(vmw_crtc_state_to_vcs(crtc->state)); 633 } 634 635 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 636 637 if (!vcs) { 638 DRM_ERROR("Cannot allocate vmw_crtc_state\n"); 639 return; 640 } 641 642 crtc->state = &vcs->base; 643 crtc->state->crtc = crtc; 644 } 645 646 647 /** 648 * vmw_du_crtc_destroy_state - destroy crtc state 649 * @crtc: DRM crtc 650 * @state: state object to destroy 651 * 652 * Destroys the crtc state (both common and vmw-specific) for the 653 * specified plane. 654 */ 655 void 656 vmw_du_crtc_destroy_state(struct drm_crtc *crtc, 657 struct drm_crtc_state *state) 658 { 659 drm_atomic_helper_crtc_destroy_state(crtc, state); 660 } 661 662 663 /** 664 * vmw_du_plane_duplicate_state - duplicate plane state 665 * @plane: drm plane 666 * 667 * Allocates and returns a copy of the plane state (both common and 668 * vmw-specific) for the specified plane. 669 * 670 * Returns: The newly allocated plane state, or NULL on failure. 671 */ 672 struct drm_plane_state * 673 vmw_du_plane_duplicate_state(struct drm_plane *plane) 674 { 675 struct drm_plane_state *state; 676 struct vmw_plane_state *vps; 677 678 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL); 679 680 if (!vps) 681 return NULL; 682 683 vps->pinned = 0; 684 vps->cpp = 0; 685 686 /* Each ref counted resource needs to be acquired again */ 687 if (vps->surf) 688 (void) vmw_surface_reference(vps->surf); 689 690 if (vps->bo) 691 (void) vmw_bo_reference(vps->bo); 692 693 state = &vps->base; 694 695 __drm_atomic_helper_plane_duplicate_state(plane, state); 696 697 return state; 698 } 699 700 701 /** 702 * vmw_du_plane_reset - creates a blank vmw plane state 703 * @plane: drm plane 704 * 705 * Resets the atomic state for @plane by freeing the state pointer (which might 706 * be NULL, e.g. at driver load time) and allocating a new empty state object. 707 */ 708 void vmw_du_plane_reset(struct drm_plane *plane) 709 { 710 struct vmw_plane_state *vps; 711 712 713 if (plane->state) 714 vmw_du_plane_destroy_state(plane, plane->state); 715 716 vps = kzalloc(sizeof(*vps), GFP_KERNEL); 717 718 if (!vps) { 719 DRM_ERROR("Cannot allocate vmw_plane_state\n"); 720 return; 721 } 722 723 plane->state = &vps->base; 724 plane->state->plane = plane; 725 plane->state->rotation = DRM_MODE_ROTATE_0; 726 } 727 728 729 /** 730 * vmw_du_plane_destroy_state - destroy plane state 731 * @plane: DRM plane 732 * @state: state object to destroy 733 * 734 * Destroys the plane state (both common and vmw-specific) for the 735 * specified plane. 736 */ 737 void 738 vmw_du_plane_destroy_state(struct drm_plane *plane, 739 struct drm_plane_state *state) 740 { 741 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state); 742 743 744 /* Should have been freed by cleanup_fb */ 745 if (vps->surf) 746 vmw_surface_unreference(&vps->surf); 747 748 if (vps->bo) 749 vmw_bo_unreference(&vps->bo); 750 751 drm_atomic_helper_plane_destroy_state(plane, state); 752 } 753 754 755 /** 756 * vmw_du_connector_duplicate_state - duplicate connector state 757 * @connector: DRM connector 758 * 759 * Allocates and returns a copy of the connector state (both common and 760 * vmw-specific) for the specified connector. 761 * 762 * Returns: The newly allocated connector state, or NULL on failure. 763 */ 764 struct drm_connector_state * 765 vmw_du_connector_duplicate_state(struct drm_connector *connector) 766 { 767 struct drm_connector_state *state; 768 struct vmw_connector_state *vcs; 769 770 if (WARN_ON(!connector->state)) 771 return NULL; 772 773 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL); 774 775 if (!vcs) 776 return NULL; 777 778 state = &vcs->base; 779 780 __drm_atomic_helper_connector_duplicate_state(connector, state); 781 782 return state; 783 } 784 785 786 /** 787 * vmw_du_connector_reset - creates a blank vmw connector state 788 * @connector: DRM connector 789 * 790 * Resets the atomic state for @connector by freeing the state pointer (which 791 * might be NULL, e.g. at driver load time) and allocating a new empty state 792 * object. 793 */ 794 void vmw_du_connector_reset(struct drm_connector *connector) 795 { 796 struct vmw_connector_state *vcs; 797 798 799 if (connector->state) { 800 __drm_atomic_helper_connector_destroy_state(connector->state); 801 802 kfree(vmw_connector_state_to_vcs(connector->state)); 803 } 804 805 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 806 807 if (!vcs) { 808 DRM_ERROR("Cannot allocate vmw_connector_state\n"); 809 return; 810 } 811 812 __drm_atomic_helper_connector_reset(connector, &vcs->base); 813 } 814 815 816 /** 817 * vmw_du_connector_destroy_state - destroy connector state 818 * @connector: DRM connector 819 * @state: state object to destroy 820 * 821 * Destroys the connector state (both common and vmw-specific) for the 822 * specified plane. 823 */ 824 void 825 vmw_du_connector_destroy_state(struct drm_connector *connector, 826 struct drm_connector_state *state) 827 { 828 drm_atomic_helper_connector_destroy_state(connector, state); 829 } 830 /* 831 * Generic framebuffer code 832 */ 833 834 /* 835 * Surface framebuffer code 836 */ 837 838 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer) 839 { 840 struct vmw_framebuffer_surface *vfbs = 841 vmw_framebuffer_to_vfbs(framebuffer); 842 843 drm_framebuffer_cleanup(framebuffer); 844 vmw_surface_unreference(&vfbs->surface); 845 if (vfbs->base.user_obj) 846 ttm_base_object_unref(&vfbs->base.user_obj); 847 848 kfree(vfbs); 849 } 850 851 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer, 852 struct drm_file *file_priv, 853 unsigned flags, unsigned color, 854 struct drm_clip_rect *clips, 855 unsigned num_clips) 856 { 857 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 858 struct vmw_framebuffer_surface *vfbs = 859 vmw_framebuffer_to_vfbs(framebuffer); 860 struct drm_clip_rect norect; 861 int ret, inc = 1; 862 863 /* Legacy Display Unit does not support 3D */ 864 if (dev_priv->active_display_unit == vmw_du_legacy) 865 return -EINVAL; 866 867 drm_modeset_lock_all(dev_priv->dev); 868 869 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 870 if (unlikely(ret != 0)) { 871 drm_modeset_unlock_all(dev_priv->dev); 872 return ret; 873 } 874 875 if (!num_clips) { 876 num_clips = 1; 877 clips = &norect; 878 norect.x1 = norect.y1 = 0; 879 norect.x2 = framebuffer->width; 880 norect.y2 = framebuffer->height; 881 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 882 num_clips /= 2; 883 inc = 2; /* skip source rects */ 884 } 885 886 if (dev_priv->active_display_unit == vmw_du_screen_object) 887 ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base, 888 clips, NULL, NULL, 0, 0, 889 num_clips, inc, NULL, NULL); 890 else 891 ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base, 892 clips, NULL, NULL, 0, 0, 893 num_clips, inc, NULL, NULL); 894 895 vmw_fifo_flush(dev_priv, false); 896 ttm_read_unlock(&dev_priv->reservation_sem); 897 898 drm_modeset_unlock_all(dev_priv->dev); 899 900 return 0; 901 } 902 903 /** 904 * vmw_kms_readback - Perform a readback from the screen system to 905 * a buffer-object backed framebuffer. 906 * 907 * @dev_priv: Pointer to the device private structure. 908 * @file_priv: Pointer to a struct drm_file identifying the caller. 909 * Must be set to NULL if @user_fence_rep is NULL. 910 * @vfb: Pointer to the buffer-object backed framebuffer. 911 * @user_fence_rep: User-space provided structure for fence information. 912 * Must be set to non-NULL if @file_priv is non-NULL. 913 * @vclips: Array of clip rects. 914 * @num_clips: Number of clip rects in @vclips. 915 * 916 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 917 * interrupted. 918 */ 919 int vmw_kms_readback(struct vmw_private *dev_priv, 920 struct drm_file *file_priv, 921 struct vmw_framebuffer *vfb, 922 struct drm_vmw_fence_rep __user *user_fence_rep, 923 struct drm_vmw_rect *vclips, 924 uint32_t num_clips) 925 { 926 switch (dev_priv->active_display_unit) { 927 case vmw_du_screen_object: 928 return vmw_kms_sou_readback(dev_priv, file_priv, vfb, 929 user_fence_rep, vclips, num_clips, 930 NULL); 931 case vmw_du_screen_target: 932 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb, 933 user_fence_rep, NULL, vclips, num_clips, 934 1, false, true, NULL); 935 default: 936 WARN_ONCE(true, 937 "Readback called with invalid display system.\n"); 938 } 939 940 return -ENOSYS; 941 } 942 943 944 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = { 945 .destroy = vmw_framebuffer_surface_destroy, 946 .dirty = vmw_framebuffer_surface_dirty, 947 }; 948 949 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv, 950 struct vmw_surface *surface, 951 struct vmw_framebuffer **out, 952 const struct drm_mode_fb_cmd2 953 *mode_cmd, 954 bool is_bo_proxy) 955 956 { 957 struct drm_device *dev = dev_priv->dev; 958 struct vmw_framebuffer_surface *vfbs; 959 enum SVGA3dSurfaceFormat format; 960 int ret; 961 struct drm_format_name_buf format_name; 962 963 /* 3D is only supported on HWv8 and newer hosts */ 964 if (dev_priv->active_display_unit == vmw_du_legacy) 965 return -ENOSYS; 966 967 /* 968 * Sanity checks. 969 */ 970 971 /* Surface must be marked as a scanout. */ 972 if (unlikely(!surface->scanout)) 973 return -EINVAL; 974 975 if (unlikely(surface->mip_levels[0] != 1 || 976 surface->num_sizes != 1 || 977 surface->base_size.width < mode_cmd->width || 978 surface->base_size.height < mode_cmd->height || 979 surface->base_size.depth != 1)) { 980 DRM_ERROR("Incompatible surface dimensions " 981 "for requested mode.\n"); 982 return -EINVAL; 983 } 984 985 switch (mode_cmd->pixel_format) { 986 case DRM_FORMAT_ARGB8888: 987 format = SVGA3D_A8R8G8B8; 988 break; 989 case DRM_FORMAT_XRGB8888: 990 format = SVGA3D_X8R8G8B8; 991 break; 992 case DRM_FORMAT_RGB565: 993 format = SVGA3D_R5G6B5; 994 break; 995 case DRM_FORMAT_XRGB1555: 996 format = SVGA3D_A1R5G5B5; 997 break; 998 default: 999 DRM_ERROR("Invalid pixel format: %s\n", 1000 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1001 return -EINVAL; 1002 } 1003 1004 /* 1005 * For DX, surface format validation is done when surface->scanout 1006 * is set. 1007 */ 1008 if (!dev_priv->has_dx && format != surface->format) { 1009 DRM_ERROR("Invalid surface format for requested mode.\n"); 1010 return -EINVAL; 1011 } 1012 1013 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL); 1014 if (!vfbs) { 1015 ret = -ENOMEM; 1016 goto out_err1; 1017 } 1018 1019 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd); 1020 vfbs->surface = vmw_surface_reference(surface); 1021 vfbs->base.user_handle = mode_cmd->handles[0]; 1022 vfbs->is_bo_proxy = is_bo_proxy; 1023 1024 *out = &vfbs->base; 1025 1026 ret = drm_framebuffer_init(dev, &vfbs->base.base, 1027 &vmw_framebuffer_surface_funcs); 1028 if (ret) 1029 goto out_err2; 1030 1031 return 0; 1032 1033 out_err2: 1034 vmw_surface_unreference(&surface); 1035 kfree(vfbs); 1036 out_err1: 1037 return ret; 1038 } 1039 1040 /* 1041 * Buffer-object framebuffer code 1042 */ 1043 1044 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer) 1045 { 1046 struct vmw_framebuffer_bo *vfbd = 1047 vmw_framebuffer_to_vfbd(framebuffer); 1048 1049 drm_framebuffer_cleanup(framebuffer); 1050 vmw_bo_unreference(&vfbd->buffer); 1051 if (vfbd->base.user_obj) 1052 ttm_base_object_unref(&vfbd->base.user_obj); 1053 1054 kfree(vfbd); 1055 } 1056 1057 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer, 1058 struct drm_file *file_priv, 1059 unsigned int flags, unsigned int color, 1060 struct drm_clip_rect *clips, 1061 unsigned int num_clips) 1062 { 1063 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 1064 struct vmw_framebuffer_bo *vfbd = 1065 vmw_framebuffer_to_vfbd(framebuffer); 1066 struct drm_clip_rect norect; 1067 int ret, increment = 1; 1068 1069 drm_modeset_lock_all(dev_priv->dev); 1070 1071 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 1072 if (unlikely(ret != 0)) { 1073 drm_modeset_unlock_all(dev_priv->dev); 1074 return ret; 1075 } 1076 1077 if (!num_clips) { 1078 num_clips = 1; 1079 clips = &norect; 1080 norect.x1 = norect.y1 = 0; 1081 norect.x2 = framebuffer->width; 1082 norect.y2 = framebuffer->height; 1083 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 1084 num_clips /= 2; 1085 increment = 2; 1086 } 1087 1088 switch (dev_priv->active_display_unit) { 1089 case vmw_du_screen_target: 1090 ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL, 1091 clips, NULL, num_clips, increment, 1092 true, true, NULL); 1093 break; 1094 case vmw_du_screen_object: 1095 ret = vmw_kms_sou_do_bo_dirty(dev_priv, &vfbd->base, 1096 clips, NULL, num_clips, 1097 increment, true, NULL, NULL); 1098 break; 1099 case vmw_du_legacy: 1100 ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0, 1101 clips, num_clips, increment); 1102 break; 1103 default: 1104 ret = -EINVAL; 1105 WARN_ONCE(true, "Dirty called with invalid display system.\n"); 1106 break; 1107 } 1108 1109 vmw_fifo_flush(dev_priv, false); 1110 ttm_read_unlock(&dev_priv->reservation_sem); 1111 1112 drm_modeset_unlock_all(dev_priv->dev); 1113 1114 return ret; 1115 } 1116 1117 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = { 1118 .destroy = vmw_framebuffer_bo_destroy, 1119 .dirty = vmw_framebuffer_bo_dirty, 1120 }; 1121 1122 /** 1123 * Pin the bofer in a location suitable for access by the 1124 * display system. 1125 */ 1126 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb) 1127 { 1128 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1129 struct vmw_buffer_object *buf; 1130 struct ttm_placement *placement; 1131 int ret; 1132 1133 buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1134 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1135 1136 if (!buf) 1137 return 0; 1138 1139 switch (dev_priv->active_display_unit) { 1140 case vmw_du_legacy: 1141 vmw_overlay_pause_all(dev_priv); 1142 ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false); 1143 vmw_overlay_resume_all(dev_priv); 1144 break; 1145 case vmw_du_screen_object: 1146 case vmw_du_screen_target: 1147 if (vfb->bo) { 1148 if (dev_priv->capabilities & SVGA_CAP_3D) { 1149 /* 1150 * Use surface DMA to get content to 1151 * sreen target surface. 1152 */ 1153 placement = &vmw_vram_gmr_placement; 1154 } else { 1155 /* Use CPU blit. */ 1156 placement = &vmw_sys_placement; 1157 } 1158 } else { 1159 /* Use surface / image update */ 1160 placement = &vmw_mob_placement; 1161 } 1162 1163 return vmw_bo_pin_in_placement(dev_priv, buf, placement, false); 1164 default: 1165 return -EINVAL; 1166 } 1167 1168 return ret; 1169 } 1170 1171 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb) 1172 { 1173 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1174 struct vmw_buffer_object *buf; 1175 1176 buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1177 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1178 1179 if (WARN_ON(!buf)) 1180 return 0; 1181 1182 return vmw_bo_unpin(dev_priv, buf, false); 1183 } 1184 1185 /** 1186 * vmw_create_bo_proxy - create a proxy surface for the buffer object 1187 * 1188 * @dev: DRM device 1189 * @mode_cmd: parameters for the new surface 1190 * @bo_mob: MOB backing the buffer object 1191 * @srf_out: newly created surface 1192 * 1193 * When the content FB is a buffer object, we create a surface as a proxy to the 1194 * same buffer. This way we can do a surface copy rather than a surface DMA. 1195 * This is a more efficient approach 1196 * 1197 * RETURNS: 1198 * 0 on success, error code otherwise 1199 */ 1200 static int vmw_create_bo_proxy(struct drm_device *dev, 1201 const struct drm_mode_fb_cmd2 *mode_cmd, 1202 struct vmw_buffer_object *bo_mob, 1203 struct vmw_surface **srf_out) 1204 { 1205 uint32_t format; 1206 struct drm_vmw_size content_base_size = {0}; 1207 struct vmw_resource *res; 1208 unsigned int bytes_pp; 1209 struct drm_format_name_buf format_name; 1210 int ret; 1211 1212 switch (mode_cmd->pixel_format) { 1213 case DRM_FORMAT_ARGB8888: 1214 case DRM_FORMAT_XRGB8888: 1215 format = SVGA3D_X8R8G8B8; 1216 bytes_pp = 4; 1217 break; 1218 1219 case DRM_FORMAT_RGB565: 1220 case DRM_FORMAT_XRGB1555: 1221 format = SVGA3D_R5G6B5; 1222 bytes_pp = 2; 1223 break; 1224 1225 case 8: 1226 format = SVGA3D_P8; 1227 bytes_pp = 1; 1228 break; 1229 1230 default: 1231 DRM_ERROR("Invalid framebuffer format %s\n", 1232 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1233 return -EINVAL; 1234 } 1235 1236 content_base_size.width = mode_cmd->pitches[0] / bytes_pp; 1237 content_base_size.height = mode_cmd->height; 1238 content_base_size.depth = 1; 1239 1240 ret = vmw_surface_gb_priv_define(dev, 1241 0, /* kernel visible only */ 1242 0, /* flags */ 1243 format, 1244 true, /* can be a scanout buffer */ 1245 1, /* num of mip levels */ 1246 0, 1247 0, 1248 content_base_size, 1249 SVGA3D_MS_PATTERN_NONE, 1250 SVGA3D_MS_QUALITY_NONE, 1251 srf_out); 1252 if (ret) { 1253 DRM_ERROR("Failed to allocate proxy content buffer\n"); 1254 return ret; 1255 } 1256 1257 res = &(*srf_out)->res; 1258 1259 /* Reserve and switch the backing mob. */ 1260 mutex_lock(&res->dev_priv->cmdbuf_mutex); 1261 (void) vmw_resource_reserve(res, false, true); 1262 vmw_bo_unreference(&res->backup); 1263 res->backup = vmw_bo_reference(bo_mob); 1264 res->backup_offset = 0; 1265 vmw_resource_unreserve(res, false, NULL, 0); 1266 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 1267 1268 return 0; 1269 } 1270 1271 1272 1273 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv, 1274 struct vmw_buffer_object *bo, 1275 struct vmw_framebuffer **out, 1276 const struct drm_mode_fb_cmd2 1277 *mode_cmd) 1278 1279 { 1280 struct drm_device *dev = dev_priv->dev; 1281 struct vmw_framebuffer_bo *vfbd; 1282 unsigned int requested_size; 1283 struct drm_format_name_buf format_name; 1284 int ret; 1285 1286 requested_size = mode_cmd->height * mode_cmd->pitches[0]; 1287 if (unlikely(requested_size > bo->base.num_pages * PAGE_SIZE)) { 1288 DRM_ERROR("Screen buffer object size is too small " 1289 "for requested mode.\n"); 1290 return -EINVAL; 1291 } 1292 1293 /* Limited framebuffer color depth support for screen objects */ 1294 if (dev_priv->active_display_unit == vmw_du_screen_object) { 1295 switch (mode_cmd->pixel_format) { 1296 case DRM_FORMAT_XRGB8888: 1297 case DRM_FORMAT_ARGB8888: 1298 break; 1299 case DRM_FORMAT_XRGB1555: 1300 case DRM_FORMAT_RGB565: 1301 break; 1302 default: 1303 DRM_ERROR("Invalid pixel format: %s\n", 1304 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1305 return -EINVAL; 1306 } 1307 } 1308 1309 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL); 1310 if (!vfbd) { 1311 ret = -ENOMEM; 1312 goto out_err1; 1313 } 1314 1315 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd); 1316 vfbd->base.bo = true; 1317 vfbd->buffer = vmw_bo_reference(bo); 1318 vfbd->base.user_handle = mode_cmd->handles[0]; 1319 *out = &vfbd->base; 1320 1321 ret = drm_framebuffer_init(dev, &vfbd->base.base, 1322 &vmw_framebuffer_bo_funcs); 1323 if (ret) 1324 goto out_err2; 1325 1326 return 0; 1327 1328 out_err2: 1329 vmw_bo_unreference(&bo); 1330 kfree(vfbd); 1331 out_err1: 1332 return ret; 1333 } 1334 1335 1336 /** 1337 * vmw_kms_srf_ok - check if a surface can be created 1338 * 1339 * @width: requested width 1340 * @height: requested height 1341 * 1342 * Surfaces need to be less than texture size 1343 */ 1344 static bool 1345 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height) 1346 { 1347 if (width > dev_priv->texture_max_width || 1348 height > dev_priv->texture_max_height) 1349 return false; 1350 1351 return true; 1352 } 1353 1354 /** 1355 * vmw_kms_new_framebuffer - Create a new framebuffer. 1356 * 1357 * @dev_priv: Pointer to device private struct. 1358 * @bo: Pointer to buffer object to wrap the kms framebuffer around. 1359 * Either @bo or @surface must be NULL. 1360 * @surface: Pointer to a surface to wrap the kms framebuffer around. 1361 * Either @bo or @surface must be NULL. 1362 * @only_2d: No presents will occur to this buffer object based framebuffer. 1363 * This helps the code to do some important optimizations. 1364 * @mode_cmd: Frame-buffer metadata. 1365 */ 1366 struct vmw_framebuffer * 1367 vmw_kms_new_framebuffer(struct vmw_private *dev_priv, 1368 struct vmw_buffer_object *bo, 1369 struct vmw_surface *surface, 1370 bool only_2d, 1371 const struct drm_mode_fb_cmd2 *mode_cmd) 1372 { 1373 struct vmw_framebuffer *vfb = NULL; 1374 bool is_bo_proxy = false; 1375 int ret; 1376 1377 /* 1378 * We cannot use the SurfaceDMA command in an non-accelerated VM, 1379 * therefore, wrap the buffer object in a surface so we can use the 1380 * SurfaceCopy command. 1381 */ 1382 if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) && 1383 bo && only_2d && 1384 mode_cmd->width > 64 && /* Don't create a proxy for cursor */ 1385 dev_priv->active_display_unit == vmw_du_screen_target) { 1386 ret = vmw_create_bo_proxy(dev_priv->dev, mode_cmd, 1387 bo, &surface); 1388 if (ret) 1389 return ERR_PTR(ret); 1390 1391 is_bo_proxy = true; 1392 } 1393 1394 /* Create the new framebuffer depending one what we have */ 1395 if (surface) { 1396 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb, 1397 mode_cmd, 1398 is_bo_proxy); 1399 1400 /* 1401 * vmw_create_bo_proxy() adds a reference that is no longer 1402 * needed 1403 */ 1404 if (is_bo_proxy) 1405 vmw_surface_unreference(&surface); 1406 } else if (bo) { 1407 ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb, 1408 mode_cmd); 1409 } else { 1410 BUG(); 1411 } 1412 1413 if (ret) 1414 return ERR_PTR(ret); 1415 1416 vfb->pin = vmw_framebuffer_pin; 1417 vfb->unpin = vmw_framebuffer_unpin; 1418 1419 return vfb; 1420 } 1421 1422 /* 1423 * Generic Kernel modesetting functions 1424 */ 1425 1426 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev, 1427 struct drm_file *file_priv, 1428 const struct drm_mode_fb_cmd2 *mode_cmd) 1429 { 1430 struct vmw_private *dev_priv = vmw_priv(dev); 1431 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 1432 struct vmw_framebuffer *vfb = NULL; 1433 struct vmw_surface *surface = NULL; 1434 struct vmw_buffer_object *bo = NULL; 1435 struct ttm_base_object *user_obj; 1436 int ret; 1437 1438 /* 1439 * Take a reference on the user object of the resource 1440 * backing the kms fb. This ensures that user-space handle 1441 * lookups on that resource will always work as long as 1442 * it's registered with a kms framebuffer. This is important, 1443 * since vmw_execbuf_process identifies resources in the 1444 * command stream using user-space handles. 1445 */ 1446 1447 user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]); 1448 if (unlikely(user_obj == NULL)) { 1449 DRM_ERROR("Could not locate requested kms frame buffer.\n"); 1450 return ERR_PTR(-ENOENT); 1451 } 1452 1453 /** 1454 * End conditioned code. 1455 */ 1456 1457 /* returns either a bo or surface */ 1458 ret = vmw_user_lookup_handle(dev_priv, tfile, 1459 mode_cmd->handles[0], 1460 &surface, &bo); 1461 if (ret) 1462 goto err_out; 1463 1464 1465 if (!bo && 1466 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) { 1467 DRM_ERROR("Surface size cannot exceed %dx%d", 1468 dev_priv->texture_max_width, 1469 dev_priv->texture_max_height); 1470 goto err_out; 1471 } 1472 1473 1474 vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface, 1475 !(dev_priv->capabilities & SVGA_CAP_3D), 1476 mode_cmd); 1477 if (IS_ERR(vfb)) { 1478 ret = PTR_ERR(vfb); 1479 goto err_out; 1480 } 1481 1482 err_out: 1483 /* vmw_user_lookup_handle takes one ref so does new_fb */ 1484 if (bo) 1485 vmw_bo_unreference(&bo); 1486 if (surface) 1487 vmw_surface_unreference(&surface); 1488 1489 if (ret) { 1490 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret); 1491 ttm_base_object_unref(&user_obj); 1492 return ERR_PTR(ret); 1493 } else 1494 vfb->user_obj = user_obj; 1495 1496 return &vfb->base; 1497 } 1498 1499 /** 1500 * vmw_kms_check_display_memory - Validates display memory required for a 1501 * topology 1502 * @dev: DRM device 1503 * @num_rects: number of drm_rect in rects 1504 * @rects: array of drm_rect representing the topology to validate indexed by 1505 * crtc index. 1506 * 1507 * Returns: 1508 * 0 on success otherwise negative error code 1509 */ 1510 static int vmw_kms_check_display_memory(struct drm_device *dev, 1511 uint32_t num_rects, 1512 struct drm_rect *rects) 1513 { 1514 struct vmw_private *dev_priv = vmw_priv(dev); 1515 struct drm_rect bounding_box = {0}; 1516 u64 total_pixels = 0, pixel_mem, bb_mem; 1517 int i; 1518 1519 for (i = 0; i < num_rects; i++) { 1520 /* 1521 * For STDU only individual screen (screen target) is limited by 1522 * SCREENTARGET_MAX_WIDTH/HEIGHT registers. 1523 */ 1524 if (dev_priv->active_display_unit == vmw_du_screen_target && 1525 (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width || 1526 drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) { 1527 DRM_ERROR("Screen size not supported.\n"); 1528 return -EINVAL; 1529 } 1530 1531 /* Bounding box upper left is at (0,0). */ 1532 if (rects[i].x2 > bounding_box.x2) 1533 bounding_box.x2 = rects[i].x2; 1534 1535 if (rects[i].y2 > bounding_box.y2) 1536 bounding_box.y2 = rects[i].y2; 1537 1538 total_pixels += (u64) drm_rect_width(&rects[i]) * 1539 (u64) drm_rect_height(&rects[i]); 1540 } 1541 1542 /* Virtual svga device primary limits are always in 32-bpp. */ 1543 pixel_mem = total_pixels * 4; 1544 1545 /* 1546 * For HV10 and below prim_bb_mem is vram size. When 1547 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is 1548 * limit on primary bounding box 1549 */ 1550 if (pixel_mem > dev_priv->prim_bb_mem) { 1551 DRM_ERROR("Combined output size too large.\n"); 1552 return -EINVAL; 1553 } 1554 1555 /* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */ 1556 if (dev_priv->active_display_unit != vmw_du_screen_target || 1557 !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) { 1558 bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4; 1559 1560 if (bb_mem > dev_priv->prim_bb_mem) { 1561 DRM_ERROR("Topology is beyond supported limits.\n"); 1562 return -EINVAL; 1563 } 1564 } 1565 1566 return 0; 1567 } 1568 1569 /** 1570 * vmw_kms_check_topology - Validates topology in drm_atomic_state 1571 * @dev: DRM device 1572 * @state: the driver state object 1573 * 1574 * Returns: 1575 * 0 on success otherwise negative error code 1576 */ 1577 static int vmw_kms_check_topology(struct drm_device *dev, 1578 struct drm_atomic_state *state) 1579 { 1580 struct vmw_private *dev_priv = vmw_priv(dev); 1581 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 1582 struct drm_rect *rects; 1583 struct drm_crtc *crtc; 1584 uint32_t i; 1585 int ret = 0; 1586 1587 rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect), 1588 GFP_KERNEL); 1589 if (!rects) 1590 return -ENOMEM; 1591 1592 mutex_lock(&dev_priv->requested_layout_mutex); 1593 1594 drm_for_each_crtc(crtc, dev) { 1595 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1596 struct drm_crtc_state *crtc_state = crtc->state; 1597 1598 i = drm_crtc_index(crtc); 1599 1600 if (crtc_state && crtc_state->enable) { 1601 rects[i].x1 = du->gui_x; 1602 rects[i].y1 = du->gui_y; 1603 rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay; 1604 rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay; 1605 } 1606 } 1607 1608 /* Determine change to topology due to new atomic state */ 1609 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, 1610 new_crtc_state, i) { 1611 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1612 struct drm_connector *connector; 1613 struct drm_connector_state *conn_state; 1614 struct vmw_connector_state *vmw_conn_state; 1615 1616 if (!new_crtc_state->enable) { 1617 rects[i].x1 = 0; 1618 rects[i].y1 = 0; 1619 rects[i].x2 = 0; 1620 rects[i].y2 = 0; 1621 continue; 1622 } 1623 1624 if (!du->pref_active) { 1625 ret = -EINVAL; 1626 goto clean; 1627 } 1628 1629 /* 1630 * For vmwgfx each crtc has only one connector attached and it 1631 * is not changed so don't really need to check the 1632 * crtc->connector_mask and iterate over it. 1633 */ 1634 connector = &du->connector; 1635 conn_state = drm_atomic_get_connector_state(state, connector); 1636 if (IS_ERR(conn_state)) { 1637 ret = PTR_ERR(conn_state); 1638 goto clean; 1639 } 1640 1641 vmw_conn_state = vmw_connector_state_to_vcs(conn_state); 1642 vmw_conn_state->gui_x = du->gui_x; 1643 vmw_conn_state->gui_y = du->gui_y; 1644 1645 rects[i].x1 = du->gui_x; 1646 rects[i].y1 = du->gui_y; 1647 rects[i].x2 = du->gui_x + new_crtc_state->mode.hdisplay; 1648 rects[i].y2 = du->gui_y + new_crtc_state->mode.vdisplay; 1649 } 1650 1651 ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc, 1652 rects); 1653 1654 clean: 1655 mutex_unlock(&dev_priv->requested_layout_mutex); 1656 kfree(rects); 1657 return ret; 1658 } 1659 1660 /** 1661 * vmw_kms_atomic_check_modeset- validate state object for modeset changes 1662 * 1663 * @dev: DRM device 1664 * @state: the driver state object 1665 * 1666 * This is a simple wrapper around drm_atomic_helper_check_modeset() for 1667 * us to assign a value to mode->crtc_clock so that 1668 * drm_calc_timestamping_constants() won't throw an error message 1669 * 1670 * Returns: 1671 * Zero for success or -errno 1672 */ 1673 static int 1674 vmw_kms_atomic_check_modeset(struct drm_device *dev, 1675 struct drm_atomic_state *state) 1676 { 1677 struct drm_crtc *crtc; 1678 struct drm_crtc_state *crtc_state; 1679 bool need_modeset = false; 1680 int i, ret; 1681 1682 ret = drm_atomic_helper_check(dev, state); 1683 if (ret) 1684 return ret; 1685 1686 if (!state->allow_modeset) 1687 return ret; 1688 1689 /* 1690 * Legacy path do not set allow_modeset properly like 1691 * @drm_atomic_helper_update_plane, This will result in unnecessary call 1692 * to vmw_kms_check_topology. So extra set of check. 1693 */ 1694 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 1695 if (drm_atomic_crtc_needs_modeset(crtc_state)) 1696 need_modeset = true; 1697 } 1698 1699 if (need_modeset) 1700 return vmw_kms_check_topology(dev, state); 1701 1702 return ret; 1703 } 1704 1705 static const struct drm_mode_config_funcs vmw_kms_funcs = { 1706 .fb_create = vmw_kms_fb_create, 1707 .atomic_check = vmw_kms_atomic_check_modeset, 1708 .atomic_commit = drm_atomic_helper_commit, 1709 }; 1710 1711 static int vmw_kms_generic_present(struct vmw_private *dev_priv, 1712 struct drm_file *file_priv, 1713 struct vmw_framebuffer *vfb, 1714 struct vmw_surface *surface, 1715 uint32_t sid, 1716 int32_t destX, int32_t destY, 1717 struct drm_vmw_rect *clips, 1718 uint32_t num_clips) 1719 { 1720 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips, 1721 &surface->res, destX, destY, 1722 num_clips, 1, NULL, NULL); 1723 } 1724 1725 1726 int vmw_kms_present(struct vmw_private *dev_priv, 1727 struct drm_file *file_priv, 1728 struct vmw_framebuffer *vfb, 1729 struct vmw_surface *surface, 1730 uint32_t sid, 1731 int32_t destX, int32_t destY, 1732 struct drm_vmw_rect *clips, 1733 uint32_t num_clips) 1734 { 1735 int ret; 1736 1737 switch (dev_priv->active_display_unit) { 1738 case vmw_du_screen_target: 1739 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips, 1740 &surface->res, destX, destY, 1741 num_clips, 1, NULL, NULL); 1742 break; 1743 case vmw_du_screen_object: 1744 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface, 1745 sid, destX, destY, clips, 1746 num_clips); 1747 break; 1748 default: 1749 WARN_ONCE(true, 1750 "Present called with invalid display system.\n"); 1751 ret = -ENOSYS; 1752 break; 1753 } 1754 if (ret) 1755 return ret; 1756 1757 vmw_fifo_flush(dev_priv, false); 1758 1759 return 0; 1760 } 1761 1762 static void 1763 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv) 1764 { 1765 if (dev_priv->hotplug_mode_update_property) 1766 return; 1767 1768 dev_priv->hotplug_mode_update_property = 1769 drm_property_create_range(dev_priv->dev, 1770 DRM_MODE_PROP_IMMUTABLE, 1771 "hotplug_mode_update", 0, 1); 1772 1773 if (!dev_priv->hotplug_mode_update_property) 1774 return; 1775 1776 } 1777 1778 int vmw_kms_init(struct vmw_private *dev_priv) 1779 { 1780 struct drm_device *dev = dev_priv->dev; 1781 int ret; 1782 1783 drm_mode_config_init(dev); 1784 dev->mode_config.funcs = &vmw_kms_funcs; 1785 dev->mode_config.min_width = 1; 1786 dev->mode_config.min_height = 1; 1787 dev->mode_config.max_width = dev_priv->texture_max_width; 1788 dev->mode_config.max_height = dev_priv->texture_max_height; 1789 1790 drm_mode_create_suggested_offset_properties(dev); 1791 vmw_kms_create_hotplug_mode_update_property(dev_priv); 1792 1793 ret = vmw_kms_stdu_init_display(dev_priv); 1794 if (ret) { 1795 ret = vmw_kms_sou_init_display(dev_priv); 1796 if (ret) /* Fallback */ 1797 ret = vmw_kms_ldu_init_display(dev_priv); 1798 } 1799 1800 return ret; 1801 } 1802 1803 int vmw_kms_close(struct vmw_private *dev_priv) 1804 { 1805 int ret = 0; 1806 1807 /* 1808 * Docs says we should take the lock before calling this function 1809 * but since it destroys encoders and our destructor calls 1810 * drm_encoder_cleanup which takes the lock we deadlock. 1811 */ 1812 drm_mode_config_cleanup(dev_priv->dev); 1813 if (dev_priv->active_display_unit == vmw_du_legacy) 1814 ret = vmw_kms_ldu_close_display(dev_priv); 1815 1816 return ret; 1817 } 1818 1819 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data, 1820 struct drm_file *file_priv) 1821 { 1822 struct drm_vmw_cursor_bypass_arg *arg = data; 1823 struct vmw_display_unit *du; 1824 struct drm_crtc *crtc; 1825 int ret = 0; 1826 1827 1828 mutex_lock(&dev->mode_config.mutex); 1829 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) { 1830 1831 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 1832 du = vmw_crtc_to_du(crtc); 1833 du->hotspot_x = arg->xhot; 1834 du->hotspot_y = arg->yhot; 1835 } 1836 1837 mutex_unlock(&dev->mode_config.mutex); 1838 return 0; 1839 } 1840 1841 crtc = drm_crtc_find(dev, file_priv, arg->crtc_id); 1842 if (!crtc) { 1843 ret = -ENOENT; 1844 goto out; 1845 } 1846 1847 du = vmw_crtc_to_du(crtc); 1848 1849 du->hotspot_x = arg->xhot; 1850 du->hotspot_y = arg->yhot; 1851 1852 out: 1853 mutex_unlock(&dev->mode_config.mutex); 1854 1855 return ret; 1856 } 1857 1858 int vmw_kms_write_svga(struct vmw_private *vmw_priv, 1859 unsigned width, unsigned height, unsigned pitch, 1860 unsigned bpp, unsigned depth) 1861 { 1862 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1863 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch); 1864 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1865 vmw_mmio_write(pitch, vmw_priv->mmio_virt + 1866 SVGA_FIFO_PITCHLOCK); 1867 vmw_write(vmw_priv, SVGA_REG_WIDTH, width); 1868 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height); 1869 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp); 1870 1871 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) { 1872 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n", 1873 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH)); 1874 return -EINVAL; 1875 } 1876 1877 return 0; 1878 } 1879 1880 int vmw_kms_save_vga(struct vmw_private *vmw_priv) 1881 { 1882 struct vmw_vga_topology_state *save; 1883 uint32_t i; 1884 1885 vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH); 1886 vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT); 1887 vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL); 1888 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1889 vmw_priv->vga_pitchlock = 1890 vmw_read(vmw_priv, SVGA_REG_PITCHLOCK); 1891 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1892 vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt + 1893 SVGA_FIFO_PITCHLOCK); 1894 1895 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY)) 1896 return 0; 1897 1898 vmw_priv->num_displays = vmw_read(vmw_priv, 1899 SVGA_REG_NUM_GUEST_DISPLAYS); 1900 1901 if (vmw_priv->num_displays == 0) 1902 vmw_priv->num_displays = 1; 1903 1904 for (i = 0; i < vmw_priv->num_displays; ++i) { 1905 save = &vmw_priv->vga_save[i]; 1906 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i); 1907 save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY); 1908 save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X); 1909 save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y); 1910 save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH); 1911 save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT); 1912 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID); 1913 if (i == 0 && vmw_priv->num_displays == 1 && 1914 save->width == 0 && save->height == 0) { 1915 1916 /* 1917 * It should be fairly safe to assume that these 1918 * values are uninitialized. 1919 */ 1920 1921 save->width = vmw_priv->vga_width - save->pos_x; 1922 save->height = vmw_priv->vga_height - save->pos_y; 1923 } 1924 } 1925 1926 return 0; 1927 } 1928 1929 int vmw_kms_restore_vga(struct vmw_private *vmw_priv) 1930 { 1931 struct vmw_vga_topology_state *save; 1932 uint32_t i; 1933 1934 vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width); 1935 vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height); 1936 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp); 1937 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1938 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, 1939 vmw_priv->vga_pitchlock); 1940 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1941 vmw_mmio_write(vmw_priv->vga_pitchlock, 1942 vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK); 1943 1944 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY)) 1945 return 0; 1946 1947 for (i = 0; i < vmw_priv->num_displays; ++i) { 1948 save = &vmw_priv->vga_save[i]; 1949 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i); 1950 vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary); 1951 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x); 1952 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y); 1953 vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width); 1954 vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height); 1955 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID); 1956 } 1957 1958 return 0; 1959 } 1960 1961 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv, 1962 uint32_t pitch, 1963 uint32_t height) 1964 { 1965 return ((u64) pitch * (u64) height) < (u64) 1966 ((dev_priv->active_display_unit == vmw_du_screen_target) ? 1967 dev_priv->prim_bb_mem : dev_priv->vram_size); 1968 } 1969 1970 1971 /** 1972 * Function called by DRM code called with vbl_lock held. 1973 */ 1974 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 1975 { 1976 return 0; 1977 } 1978 1979 /** 1980 * Function called by DRM code called with vbl_lock held. 1981 */ 1982 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe) 1983 { 1984 return -EINVAL; 1985 } 1986 1987 /** 1988 * Function called by DRM code called with vbl_lock held. 1989 */ 1990 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe) 1991 { 1992 } 1993 1994 /** 1995 * vmw_du_update_layout - Update the display unit with topology from resolution 1996 * plugin and generate DRM uevent 1997 * @dev_priv: device private 1998 * @num_rects: number of drm_rect in rects 1999 * @rects: toplogy to update 2000 */ 2001 static int vmw_du_update_layout(struct vmw_private *dev_priv, 2002 unsigned int num_rects, struct drm_rect *rects) 2003 { 2004 struct drm_device *dev = dev_priv->dev; 2005 struct vmw_display_unit *du; 2006 struct drm_connector *con; 2007 struct drm_connector_list_iter conn_iter; 2008 2009 /* 2010 * Currently only gui_x/y is protected with requested_layout_mutex. 2011 */ 2012 mutex_lock(&dev_priv->requested_layout_mutex); 2013 drm_connector_list_iter_begin(dev, &conn_iter); 2014 drm_for_each_connector_iter(con, &conn_iter) { 2015 du = vmw_connector_to_du(con); 2016 if (num_rects > du->unit) { 2017 du->pref_width = drm_rect_width(&rects[du->unit]); 2018 du->pref_height = drm_rect_height(&rects[du->unit]); 2019 du->pref_active = true; 2020 du->gui_x = rects[du->unit].x1; 2021 du->gui_y = rects[du->unit].y1; 2022 } else { 2023 du->pref_width = 800; 2024 du->pref_height = 600; 2025 du->pref_active = false; 2026 du->gui_x = 0; 2027 du->gui_y = 0; 2028 } 2029 } 2030 drm_connector_list_iter_end(&conn_iter); 2031 mutex_unlock(&dev_priv->requested_layout_mutex); 2032 2033 mutex_lock(&dev->mode_config.mutex); 2034 list_for_each_entry(con, &dev->mode_config.connector_list, head) { 2035 du = vmw_connector_to_du(con); 2036 if (num_rects > du->unit) { 2037 drm_object_property_set_value 2038 (&con->base, dev->mode_config.suggested_x_property, 2039 du->gui_x); 2040 drm_object_property_set_value 2041 (&con->base, dev->mode_config.suggested_y_property, 2042 du->gui_y); 2043 } else { 2044 drm_object_property_set_value 2045 (&con->base, dev->mode_config.suggested_x_property, 2046 0); 2047 drm_object_property_set_value 2048 (&con->base, dev->mode_config.suggested_y_property, 2049 0); 2050 } 2051 con->status = vmw_du_connector_detect(con, true); 2052 } 2053 mutex_unlock(&dev->mode_config.mutex); 2054 2055 drm_sysfs_hotplug_event(dev); 2056 2057 return 0; 2058 } 2059 2060 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc, 2061 u16 *r, u16 *g, u16 *b, 2062 uint32_t size, 2063 struct drm_modeset_acquire_ctx *ctx) 2064 { 2065 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 2066 int i; 2067 2068 for (i = 0; i < size; i++) { 2069 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i, 2070 r[i], g[i], b[i]); 2071 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8); 2072 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8); 2073 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8); 2074 } 2075 2076 return 0; 2077 } 2078 2079 int vmw_du_connector_dpms(struct drm_connector *connector, int mode) 2080 { 2081 return 0; 2082 } 2083 2084 enum drm_connector_status 2085 vmw_du_connector_detect(struct drm_connector *connector, bool force) 2086 { 2087 uint32_t num_displays; 2088 struct drm_device *dev = connector->dev; 2089 struct vmw_private *dev_priv = vmw_priv(dev); 2090 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2091 2092 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS); 2093 2094 return ((vmw_connector_to_du(connector)->unit < num_displays && 2095 du->pref_active) ? 2096 connector_status_connected : connector_status_disconnected); 2097 } 2098 2099 static struct drm_display_mode vmw_kms_connector_builtin[] = { 2100 /* 640x480@60Hz */ 2101 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 2102 752, 800, 0, 480, 489, 492, 525, 0, 2103 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2104 /* 800x600@60Hz */ 2105 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 2106 968, 1056, 0, 600, 601, 605, 628, 0, 2107 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2108 /* 1024x768@60Hz */ 2109 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 2110 1184, 1344, 0, 768, 771, 777, 806, 0, 2111 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2112 /* 1152x864@75Hz */ 2113 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 2114 1344, 1600, 0, 864, 865, 868, 900, 0, 2115 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2116 /* 1280x768@60Hz */ 2117 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 2118 1472, 1664, 0, 768, 771, 778, 798, 0, 2119 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2120 /* 1280x800@60Hz */ 2121 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 2122 1480, 1680, 0, 800, 803, 809, 831, 0, 2123 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2124 /* 1280x960@60Hz */ 2125 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 2126 1488, 1800, 0, 960, 961, 964, 1000, 0, 2127 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2128 /* 1280x1024@60Hz */ 2129 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 2130 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 2131 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2132 /* 1360x768@60Hz */ 2133 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 2134 1536, 1792, 0, 768, 771, 777, 795, 0, 2135 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2136 /* 1440x1050@60Hz */ 2137 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 2138 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, 2139 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2140 /* 1440x900@60Hz */ 2141 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 2142 1672, 1904, 0, 900, 903, 909, 934, 0, 2143 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2144 /* 1600x1200@60Hz */ 2145 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 2146 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 2147 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2148 /* 1680x1050@60Hz */ 2149 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 2150 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, 2151 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2152 /* 1792x1344@60Hz */ 2153 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 2154 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, 2155 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2156 /* 1853x1392@60Hz */ 2157 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 2158 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, 2159 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2160 /* 1920x1200@60Hz */ 2161 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 2162 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, 2163 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2164 /* 1920x1440@60Hz */ 2165 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 2166 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, 2167 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2168 /* 2560x1600@60Hz */ 2169 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 2170 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, 2171 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2172 /* Terminate */ 2173 { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) }, 2174 }; 2175 2176 /** 2177 * vmw_guess_mode_timing - Provide fake timings for a 2178 * 60Hz vrefresh mode. 2179 * 2180 * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay 2181 * members filled in. 2182 */ 2183 void vmw_guess_mode_timing(struct drm_display_mode *mode) 2184 { 2185 mode->hsync_start = mode->hdisplay + 50; 2186 mode->hsync_end = mode->hsync_start + 50; 2187 mode->htotal = mode->hsync_end + 50; 2188 2189 mode->vsync_start = mode->vdisplay + 50; 2190 mode->vsync_end = mode->vsync_start + 50; 2191 mode->vtotal = mode->vsync_end + 50; 2192 2193 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6; 2194 mode->vrefresh = drm_mode_vrefresh(mode); 2195 } 2196 2197 2198 int vmw_du_connector_fill_modes(struct drm_connector *connector, 2199 uint32_t max_width, uint32_t max_height) 2200 { 2201 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2202 struct drm_device *dev = connector->dev; 2203 struct vmw_private *dev_priv = vmw_priv(dev); 2204 struct drm_display_mode *mode = NULL; 2205 struct drm_display_mode *bmode; 2206 struct drm_display_mode prefmode = { DRM_MODE("preferred", 2207 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED, 2208 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2209 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) 2210 }; 2211 int i; 2212 u32 assumed_bpp = 4; 2213 2214 if (dev_priv->assume_16bpp) 2215 assumed_bpp = 2; 2216 2217 max_width = min(max_width, dev_priv->texture_max_width); 2218 max_height = min(max_height, dev_priv->texture_max_height); 2219 2220 /* 2221 * For STDU extra limit for a mode on SVGA_REG_SCREENTARGET_MAX_WIDTH/ 2222 * HEIGHT registers. 2223 */ 2224 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2225 max_width = min(max_width, dev_priv->stdu_max_width); 2226 max_height = min(max_height, dev_priv->stdu_max_height); 2227 } 2228 2229 /* Add preferred mode */ 2230 mode = drm_mode_duplicate(dev, &prefmode); 2231 if (!mode) 2232 return 0; 2233 mode->hdisplay = du->pref_width; 2234 mode->vdisplay = du->pref_height; 2235 vmw_guess_mode_timing(mode); 2236 2237 if (vmw_kms_validate_mode_vram(dev_priv, 2238 mode->hdisplay * assumed_bpp, 2239 mode->vdisplay)) { 2240 drm_mode_probed_add(connector, mode); 2241 } else { 2242 drm_mode_destroy(dev, mode); 2243 mode = NULL; 2244 } 2245 2246 if (du->pref_mode) { 2247 list_del_init(&du->pref_mode->head); 2248 drm_mode_destroy(dev, du->pref_mode); 2249 } 2250 2251 /* mode might be null here, this is intended */ 2252 du->pref_mode = mode; 2253 2254 for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) { 2255 bmode = &vmw_kms_connector_builtin[i]; 2256 if (bmode->hdisplay > max_width || 2257 bmode->vdisplay > max_height) 2258 continue; 2259 2260 if (!vmw_kms_validate_mode_vram(dev_priv, 2261 bmode->hdisplay * assumed_bpp, 2262 bmode->vdisplay)) 2263 continue; 2264 2265 mode = drm_mode_duplicate(dev, bmode); 2266 if (!mode) 2267 return 0; 2268 mode->vrefresh = drm_mode_vrefresh(mode); 2269 2270 drm_mode_probed_add(connector, mode); 2271 } 2272 2273 drm_connector_list_update(connector); 2274 /* Move the prefered mode first, help apps pick the right mode. */ 2275 drm_mode_sort(&connector->modes); 2276 2277 return 1; 2278 } 2279 2280 int vmw_du_connector_set_property(struct drm_connector *connector, 2281 struct drm_property *property, 2282 uint64_t val) 2283 { 2284 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2285 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2286 2287 if (property == dev_priv->implicit_placement_property) 2288 du->is_implicit = val; 2289 2290 return 0; 2291 } 2292 2293 2294 2295 /** 2296 * vmw_du_connector_atomic_set_property - Atomic version of get property 2297 * 2298 * @crtc - crtc the property is associated with 2299 * 2300 * Returns: 2301 * Zero on success, negative errno on failure. 2302 */ 2303 int 2304 vmw_du_connector_atomic_set_property(struct drm_connector *connector, 2305 struct drm_connector_state *state, 2306 struct drm_property *property, 2307 uint64_t val) 2308 { 2309 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2310 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state); 2311 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2312 2313 2314 if (property == dev_priv->implicit_placement_property) { 2315 vcs->is_implicit = val; 2316 2317 /* 2318 * We should really be doing a drm_atomic_commit() to 2319 * commit the new state, but since this doesn't cause 2320 * an immedate state change, this is probably ok 2321 */ 2322 du->is_implicit = vcs->is_implicit; 2323 } else { 2324 return -EINVAL; 2325 } 2326 2327 return 0; 2328 } 2329 2330 2331 /** 2332 * vmw_du_connector_atomic_get_property - Atomic version of get property 2333 * 2334 * @connector - connector the property is associated with 2335 * 2336 * Returns: 2337 * Zero on success, negative errno on failure. 2338 */ 2339 int 2340 vmw_du_connector_atomic_get_property(struct drm_connector *connector, 2341 const struct drm_connector_state *state, 2342 struct drm_property *property, 2343 uint64_t *val) 2344 { 2345 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2346 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state); 2347 2348 if (property == dev_priv->implicit_placement_property) 2349 *val = vcs->is_implicit; 2350 else { 2351 DRM_ERROR("Invalid Property %s\n", property->name); 2352 return -EINVAL; 2353 } 2354 2355 return 0; 2356 } 2357 2358 /** 2359 * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl 2360 * @dev: drm device for the ioctl 2361 * @data: data pointer for the ioctl 2362 * @file_priv: drm file for the ioctl call 2363 * 2364 * Update preferred topology of display unit as per ioctl request. The topology 2365 * is expressed as array of drm_vmw_rect. 2366 * e.g. 2367 * [0 0 640 480] [640 0 800 600] [0 480 640 480] 2368 * 2369 * NOTE: 2370 * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside 2371 * device limit on topology, x + w and y + h (lower right) cannot be greater 2372 * than INT_MAX. So topology beyond these limits will return with error. 2373 * 2374 * Returns: 2375 * Zero on success, negative errno on failure. 2376 */ 2377 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data, 2378 struct drm_file *file_priv) 2379 { 2380 struct vmw_private *dev_priv = vmw_priv(dev); 2381 struct drm_mode_config *mode_config = &dev->mode_config; 2382 struct drm_vmw_update_layout_arg *arg = 2383 (struct drm_vmw_update_layout_arg *)data; 2384 void __user *user_rects; 2385 struct drm_vmw_rect *rects; 2386 struct drm_rect *drm_rects; 2387 unsigned rects_size; 2388 int ret, i; 2389 2390 if (!arg->num_outputs) { 2391 struct drm_rect def_rect = {0, 0, 800, 600}; 2392 vmw_du_update_layout(dev_priv, 1, &def_rect); 2393 return 0; 2394 } 2395 2396 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect); 2397 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect), 2398 GFP_KERNEL); 2399 if (unlikely(!rects)) 2400 return -ENOMEM; 2401 2402 user_rects = (void __user *)(unsigned long)arg->rects; 2403 ret = copy_from_user(rects, user_rects, rects_size); 2404 if (unlikely(ret != 0)) { 2405 DRM_ERROR("Failed to get rects.\n"); 2406 ret = -EFAULT; 2407 goto out_free; 2408 } 2409 2410 drm_rects = (struct drm_rect *)rects; 2411 2412 for (i = 0; i < arg->num_outputs; i++) { 2413 struct drm_vmw_rect curr_rect; 2414 2415 /* Verify user-space for overflow as kernel use drm_rect */ 2416 if ((rects[i].x + rects[i].w > INT_MAX) || 2417 (rects[i].y + rects[i].h > INT_MAX)) { 2418 ret = -ERANGE; 2419 goto out_free; 2420 } 2421 2422 curr_rect = rects[i]; 2423 drm_rects[i].x1 = curr_rect.x; 2424 drm_rects[i].y1 = curr_rect.y; 2425 drm_rects[i].x2 = curr_rect.x + curr_rect.w; 2426 drm_rects[i].y2 = curr_rect.y + curr_rect.h; 2427 2428 /* 2429 * Currently this check is limiting the topology within 2430 * mode_config->max (which actually is max texture size 2431 * supported by virtual device). This limit is here to address 2432 * window managers that create a big framebuffer for whole 2433 * topology. 2434 */ 2435 if (drm_rects[i].x1 < 0 || drm_rects[i].y1 < 0 || 2436 drm_rects[i].x2 > mode_config->max_width || 2437 drm_rects[i].y2 > mode_config->max_height) { 2438 DRM_ERROR("Invalid GUI layout.\n"); 2439 ret = -EINVAL; 2440 goto out_free; 2441 } 2442 } 2443 2444 ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects); 2445 2446 if (ret == 0) 2447 vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects); 2448 2449 out_free: 2450 kfree(rects); 2451 return ret; 2452 } 2453 2454 /** 2455 * vmw_kms_helper_dirty - Helper to build commands and perform actions based 2456 * on a set of cliprects and a set of display units. 2457 * 2458 * @dev_priv: Pointer to a device private structure. 2459 * @framebuffer: Pointer to the framebuffer on which to perform the actions. 2460 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL. 2461 * Cliprects are given in framebuffer coordinates. 2462 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must 2463 * be NULL. Cliprects are given in source coordinates. 2464 * @dest_x: X coordinate offset for the crtc / destination clip rects. 2465 * @dest_y: Y coordinate offset for the crtc / destination clip rects. 2466 * @num_clips: Number of cliprects in the @clips or @vclips array. 2467 * @increment: Integer with which to increment the clip counter when looping. 2468 * Used to skip a predetermined number of clip rects. 2469 * @dirty: Closure structure. See the description of struct vmw_kms_dirty. 2470 */ 2471 int vmw_kms_helper_dirty(struct vmw_private *dev_priv, 2472 struct vmw_framebuffer *framebuffer, 2473 const struct drm_clip_rect *clips, 2474 const struct drm_vmw_rect *vclips, 2475 s32 dest_x, s32 dest_y, 2476 int num_clips, 2477 int increment, 2478 struct vmw_kms_dirty *dirty) 2479 { 2480 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS]; 2481 struct drm_crtc *crtc; 2482 u32 num_units = 0; 2483 u32 i, k; 2484 2485 dirty->dev_priv = dev_priv; 2486 2487 /* If crtc is passed, no need to iterate over other display units */ 2488 if (dirty->crtc) { 2489 units[num_units++] = vmw_crtc_to_du(dirty->crtc); 2490 } else { 2491 list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, 2492 head) { 2493 struct drm_plane *plane = crtc->primary; 2494 2495 if (plane->state->fb == &framebuffer->base) 2496 units[num_units++] = vmw_crtc_to_du(crtc); 2497 } 2498 } 2499 2500 for (k = 0; k < num_units; k++) { 2501 struct vmw_display_unit *unit = units[k]; 2502 s32 crtc_x = unit->crtc.x; 2503 s32 crtc_y = unit->crtc.y; 2504 s32 crtc_width = unit->crtc.mode.hdisplay; 2505 s32 crtc_height = unit->crtc.mode.vdisplay; 2506 const struct drm_clip_rect *clips_ptr = clips; 2507 const struct drm_vmw_rect *vclips_ptr = vclips; 2508 2509 dirty->unit = unit; 2510 if (dirty->fifo_reserve_size > 0) { 2511 dirty->cmd = vmw_fifo_reserve(dev_priv, 2512 dirty->fifo_reserve_size); 2513 if (!dirty->cmd) { 2514 DRM_ERROR("Couldn't reserve fifo space " 2515 "for dirty blits.\n"); 2516 return -ENOMEM; 2517 } 2518 memset(dirty->cmd, 0, dirty->fifo_reserve_size); 2519 } 2520 dirty->num_hits = 0; 2521 for (i = 0; i < num_clips; i++, clips_ptr += increment, 2522 vclips_ptr += increment) { 2523 s32 clip_left; 2524 s32 clip_top; 2525 2526 /* 2527 * Select clip array type. Note that integer type 2528 * in @clips is unsigned short, whereas in @vclips 2529 * it's 32-bit. 2530 */ 2531 if (clips) { 2532 dirty->fb_x = (s32) clips_ptr->x1; 2533 dirty->fb_y = (s32) clips_ptr->y1; 2534 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x - 2535 crtc_x; 2536 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y - 2537 crtc_y; 2538 } else { 2539 dirty->fb_x = vclips_ptr->x; 2540 dirty->fb_y = vclips_ptr->y; 2541 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w + 2542 dest_x - crtc_x; 2543 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h + 2544 dest_y - crtc_y; 2545 } 2546 2547 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x; 2548 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y; 2549 2550 /* Skip this clip if it's outside the crtc region */ 2551 if (dirty->unit_x1 >= crtc_width || 2552 dirty->unit_y1 >= crtc_height || 2553 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0) 2554 continue; 2555 2556 /* Clip right and bottom to crtc limits */ 2557 dirty->unit_x2 = min_t(s32, dirty->unit_x2, 2558 crtc_width); 2559 dirty->unit_y2 = min_t(s32, dirty->unit_y2, 2560 crtc_height); 2561 2562 /* Clip left and top to crtc limits */ 2563 clip_left = min_t(s32, dirty->unit_x1, 0); 2564 clip_top = min_t(s32, dirty->unit_y1, 0); 2565 dirty->unit_x1 -= clip_left; 2566 dirty->unit_y1 -= clip_top; 2567 dirty->fb_x -= clip_left; 2568 dirty->fb_y -= clip_top; 2569 2570 dirty->clip(dirty); 2571 } 2572 2573 dirty->fifo_commit(dirty); 2574 } 2575 2576 return 0; 2577 } 2578 2579 /** 2580 * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before 2581 * command submission. 2582 * 2583 * @dev_priv. Pointer to a device private structure. 2584 * @buf: The buffer object 2585 * @interruptible: Whether to perform waits as interruptible. 2586 * @validate_as_mob: Whether the buffer should be validated as a MOB. If false, 2587 * The buffer will be validated as a GMR. Already pinned buffers will not be 2588 * validated. 2589 * 2590 * Returns 0 on success, negative error code on failure, -ERESTARTSYS if 2591 * interrupted by a signal. 2592 */ 2593 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv, 2594 struct vmw_buffer_object *buf, 2595 bool interruptible, 2596 bool validate_as_mob, 2597 bool for_cpu_blit) 2598 { 2599 struct ttm_operation_ctx ctx = { 2600 .interruptible = interruptible, 2601 .no_wait_gpu = false}; 2602 struct ttm_buffer_object *bo = &buf->base; 2603 int ret; 2604 2605 ttm_bo_reserve(bo, false, false, NULL); 2606 if (for_cpu_blit) 2607 ret = ttm_bo_validate(bo, &vmw_nonfixed_placement, &ctx); 2608 else 2609 ret = vmw_validate_single_buffer(dev_priv, bo, interruptible, 2610 validate_as_mob); 2611 if (ret) 2612 ttm_bo_unreserve(bo); 2613 2614 return ret; 2615 } 2616 2617 /** 2618 * vmw_kms_helper_buffer_revert - Undo the actions of 2619 * vmw_kms_helper_buffer_prepare. 2620 * 2621 * @res: Pointer to the buffer object. 2622 * 2623 * Helper to be used if an error forces the caller to undo the actions of 2624 * vmw_kms_helper_buffer_prepare. 2625 */ 2626 void vmw_kms_helper_buffer_revert(struct vmw_buffer_object *buf) 2627 { 2628 if (buf) 2629 ttm_bo_unreserve(&buf->base); 2630 } 2631 2632 /** 2633 * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after 2634 * kms command submission. 2635 * 2636 * @dev_priv: Pointer to a device private structure. 2637 * @file_priv: Pointer to a struct drm_file representing the caller's 2638 * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely 2639 * if non-NULL, @user_fence_rep must be non-NULL. 2640 * @buf: The buffer object. 2641 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a 2642 * ref-counted fence pointer is returned here. 2643 * @user_fence_rep: Optional pointer to a user-space provided struct 2644 * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the 2645 * function copies fence data to user-space in a fail-safe manner. 2646 */ 2647 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv, 2648 struct drm_file *file_priv, 2649 struct vmw_buffer_object *buf, 2650 struct vmw_fence_obj **out_fence, 2651 struct drm_vmw_fence_rep __user * 2652 user_fence_rep) 2653 { 2654 struct vmw_fence_obj *fence; 2655 uint32_t handle; 2656 int ret; 2657 2658 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence, 2659 file_priv ? &handle : NULL); 2660 if (buf) 2661 vmw_bo_fence_single(&buf->base, fence); 2662 if (file_priv) 2663 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv), 2664 ret, user_fence_rep, fence, 2665 handle, -1, NULL); 2666 if (out_fence) 2667 *out_fence = fence; 2668 else 2669 vmw_fence_obj_unreference(&fence); 2670 2671 vmw_kms_helper_buffer_revert(buf); 2672 } 2673 2674 2675 /** 2676 * vmw_kms_helper_resource_revert - Undo the actions of 2677 * vmw_kms_helper_resource_prepare. 2678 * 2679 * @res: Pointer to the resource. Typically a surface. 2680 * 2681 * Helper to be used if an error forces the caller to undo the actions of 2682 * vmw_kms_helper_resource_prepare. 2683 */ 2684 void vmw_kms_helper_resource_revert(struct vmw_validation_ctx *ctx) 2685 { 2686 struct vmw_resource *res = ctx->res; 2687 2688 vmw_kms_helper_buffer_revert(ctx->buf); 2689 vmw_bo_unreference(&ctx->buf); 2690 vmw_resource_unreserve(res, false, NULL, 0); 2691 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2692 } 2693 2694 /** 2695 * vmw_kms_helper_resource_prepare - Reserve and validate a resource before 2696 * command submission. 2697 * 2698 * @res: Pointer to the resource. Typically a surface. 2699 * @interruptible: Whether to perform waits as interruptible. 2700 * 2701 * Reserves and validates also the backup buffer if a guest-backed resource. 2702 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 2703 * interrupted by a signal. 2704 */ 2705 int vmw_kms_helper_resource_prepare(struct vmw_resource *res, 2706 bool interruptible, 2707 struct vmw_validation_ctx *ctx) 2708 { 2709 int ret = 0; 2710 2711 ctx->buf = NULL; 2712 ctx->res = res; 2713 2714 if (interruptible) 2715 ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex); 2716 else 2717 mutex_lock(&res->dev_priv->cmdbuf_mutex); 2718 2719 if (unlikely(ret != 0)) 2720 return -ERESTARTSYS; 2721 2722 ret = vmw_resource_reserve(res, interruptible, false); 2723 if (ret) 2724 goto out_unlock; 2725 2726 if (res->backup) { 2727 ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup, 2728 interruptible, 2729 res->dev_priv->has_mob, 2730 false); 2731 if (ret) 2732 goto out_unreserve; 2733 2734 ctx->buf = vmw_bo_reference(res->backup); 2735 } 2736 ret = vmw_resource_validate(res); 2737 if (ret) 2738 goto out_revert; 2739 return 0; 2740 2741 out_revert: 2742 vmw_kms_helper_buffer_revert(ctx->buf); 2743 out_unreserve: 2744 vmw_resource_unreserve(res, false, NULL, 0); 2745 out_unlock: 2746 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2747 return ret; 2748 } 2749 2750 /** 2751 * vmw_kms_helper_resource_finish - Unreserve and fence a resource after 2752 * kms command submission. 2753 * 2754 * @res: Pointer to the resource. Typically a surface. 2755 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a 2756 * ref-counted fence pointer is returned here. 2757 */ 2758 void vmw_kms_helper_resource_finish(struct vmw_validation_ctx *ctx, 2759 struct vmw_fence_obj **out_fence) 2760 { 2761 struct vmw_resource *res = ctx->res; 2762 2763 if (ctx->buf || out_fence) 2764 vmw_kms_helper_buffer_finish(res->dev_priv, NULL, ctx->buf, 2765 out_fence, NULL); 2766 2767 vmw_bo_unreference(&ctx->buf); 2768 vmw_resource_unreserve(res, false, NULL, 0); 2769 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2770 } 2771 2772 /** 2773 * vmw_kms_update_proxy - Helper function to update a proxy surface from 2774 * its backing MOB. 2775 * 2776 * @res: Pointer to the surface resource 2777 * @clips: Clip rects in framebuffer (surface) space. 2778 * @num_clips: Number of clips in @clips. 2779 * @increment: Integer with which to increment the clip counter when looping. 2780 * Used to skip a predetermined number of clip rects. 2781 * 2782 * This function makes sure the proxy surface is updated from its backing MOB 2783 * using the region given by @clips. The surface resource @res and its backing 2784 * MOB needs to be reserved and validated on call. 2785 */ 2786 int vmw_kms_update_proxy(struct vmw_resource *res, 2787 const struct drm_clip_rect *clips, 2788 unsigned num_clips, 2789 int increment) 2790 { 2791 struct vmw_private *dev_priv = res->dev_priv; 2792 struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size; 2793 struct { 2794 SVGA3dCmdHeader header; 2795 SVGA3dCmdUpdateGBImage body; 2796 } *cmd; 2797 SVGA3dBox *box; 2798 size_t copy_size = 0; 2799 int i; 2800 2801 if (!clips) 2802 return 0; 2803 2804 cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips); 2805 if (!cmd) { 2806 DRM_ERROR("Couldn't reserve fifo space for proxy surface " 2807 "update.\n"); 2808 return -ENOMEM; 2809 } 2810 2811 for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) { 2812 box = &cmd->body.box; 2813 2814 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE; 2815 cmd->header.size = sizeof(cmd->body); 2816 cmd->body.image.sid = res->id; 2817 cmd->body.image.face = 0; 2818 cmd->body.image.mipmap = 0; 2819 2820 if (clips->x1 > size->width || clips->x2 > size->width || 2821 clips->y1 > size->height || clips->y2 > size->height) { 2822 DRM_ERROR("Invalid clips outsize of framebuffer.\n"); 2823 return -EINVAL; 2824 } 2825 2826 box->x = clips->x1; 2827 box->y = clips->y1; 2828 box->z = 0; 2829 box->w = clips->x2 - clips->x1; 2830 box->h = clips->y2 - clips->y1; 2831 box->d = 1; 2832 2833 copy_size += sizeof(*cmd); 2834 } 2835 2836 vmw_fifo_commit(dev_priv, copy_size); 2837 2838 return 0; 2839 } 2840 2841 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv, 2842 unsigned unit, 2843 u32 max_width, 2844 u32 max_height, 2845 struct drm_connector **p_con, 2846 struct drm_crtc **p_crtc, 2847 struct drm_display_mode **p_mode) 2848 { 2849 struct drm_connector *con; 2850 struct vmw_display_unit *du; 2851 struct drm_display_mode *mode; 2852 int i = 0; 2853 int ret = 0; 2854 2855 mutex_lock(&dev_priv->dev->mode_config.mutex); 2856 list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list, 2857 head) { 2858 if (i == unit) 2859 break; 2860 2861 ++i; 2862 } 2863 2864 if (i != unit) { 2865 DRM_ERROR("Could not find initial display unit.\n"); 2866 ret = -EINVAL; 2867 goto out_unlock; 2868 } 2869 2870 if (list_empty(&con->modes)) 2871 (void) vmw_du_connector_fill_modes(con, max_width, max_height); 2872 2873 if (list_empty(&con->modes)) { 2874 DRM_ERROR("Could not find initial display mode.\n"); 2875 ret = -EINVAL; 2876 goto out_unlock; 2877 } 2878 2879 du = vmw_connector_to_du(con); 2880 *p_con = con; 2881 *p_crtc = &du->crtc; 2882 2883 list_for_each_entry(mode, &con->modes, head) { 2884 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2885 break; 2886 } 2887 2888 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2889 *p_mode = mode; 2890 else { 2891 WARN_ONCE(true, "Could not find initial preferred mode.\n"); 2892 *p_mode = list_first_entry(&con->modes, 2893 struct drm_display_mode, 2894 head); 2895 } 2896 2897 out_unlock: 2898 mutex_unlock(&dev_priv->dev->mode_config.mutex); 2899 2900 return ret; 2901 } 2902 2903 /** 2904 * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer 2905 * 2906 * @dev_priv: Pointer to a device private struct. 2907 * @du: The display unit of the crtc. 2908 */ 2909 void vmw_kms_del_active(struct vmw_private *dev_priv, 2910 struct vmw_display_unit *du) 2911 { 2912 mutex_lock(&dev_priv->global_kms_state_mutex); 2913 if (du->active_implicit) { 2914 if (--(dev_priv->num_implicit) == 0) 2915 dev_priv->implicit_fb = NULL; 2916 du->active_implicit = false; 2917 } 2918 mutex_unlock(&dev_priv->global_kms_state_mutex); 2919 } 2920 2921 /** 2922 * vmw_kms_add_active - register a crtc binding to an implicit framebuffer 2923 * 2924 * @vmw_priv: Pointer to a device private struct. 2925 * @du: The display unit of the crtc. 2926 * @vfb: The implicit framebuffer 2927 * 2928 * Registers a binding to an implicit framebuffer. 2929 */ 2930 void vmw_kms_add_active(struct vmw_private *dev_priv, 2931 struct vmw_display_unit *du, 2932 struct vmw_framebuffer *vfb) 2933 { 2934 mutex_lock(&dev_priv->global_kms_state_mutex); 2935 WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb); 2936 2937 if (!du->active_implicit && du->is_implicit) { 2938 dev_priv->implicit_fb = vfb; 2939 du->active_implicit = true; 2940 dev_priv->num_implicit++; 2941 } 2942 mutex_unlock(&dev_priv->global_kms_state_mutex); 2943 } 2944 2945 /** 2946 * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc. 2947 * 2948 * @dev_priv: Pointer to device-private struct. 2949 * @crtc: The crtc we want to flip. 2950 * 2951 * Returns true or false depending whether it's OK to flip this crtc 2952 * based on the criterion that we must not have more than one implicit 2953 * frame-buffer at any one time. 2954 */ 2955 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv, 2956 struct drm_crtc *crtc) 2957 { 2958 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 2959 bool ret; 2960 2961 mutex_lock(&dev_priv->global_kms_state_mutex); 2962 ret = !du->is_implicit || dev_priv->num_implicit == 1; 2963 mutex_unlock(&dev_priv->global_kms_state_mutex); 2964 2965 return ret; 2966 } 2967 2968 /** 2969 * vmw_kms_update_implicit_fb - Update the implicit fb. 2970 * 2971 * @dev_priv: Pointer to device-private struct. 2972 * @crtc: The crtc the new implicit frame-buffer is bound to. 2973 */ 2974 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv, 2975 struct drm_crtc *crtc) 2976 { 2977 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 2978 struct drm_plane *plane = crtc->primary; 2979 struct vmw_framebuffer *vfb; 2980 2981 mutex_lock(&dev_priv->global_kms_state_mutex); 2982 2983 if (!du->is_implicit) 2984 goto out_unlock; 2985 2986 vfb = vmw_framebuffer_to_vfb(plane->state->fb); 2987 WARN_ON_ONCE(dev_priv->num_implicit != 1 && 2988 dev_priv->implicit_fb != vfb); 2989 2990 dev_priv->implicit_fb = vfb; 2991 out_unlock: 2992 mutex_unlock(&dev_priv->global_kms_state_mutex); 2993 } 2994 2995 /** 2996 * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement 2997 * property. 2998 * 2999 * @dev_priv: Pointer to a device private struct. 3000 * @immutable: Whether the property is immutable. 3001 * 3002 * Sets up the implicit placement property unless it's already set up. 3003 */ 3004 void 3005 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv, 3006 bool immutable) 3007 { 3008 if (dev_priv->implicit_placement_property) 3009 return; 3010 3011 dev_priv->implicit_placement_property = 3012 drm_property_create_range(dev_priv->dev, 3013 immutable ? 3014 DRM_MODE_PROP_IMMUTABLE : 0, 3015 "implicit_placement", 0, 1); 3016 3017 } 3018 3019 3020 /** 3021 * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config 3022 * 3023 * @set: The configuration to set. 3024 * 3025 * The vmwgfx Xorg driver doesn't assign the mode::type member, which 3026 * when drm_mode_set_crtcinfo is called as part of the configuration setting 3027 * causes it to return incorrect crtc dimensions causing severe problems in 3028 * the vmwgfx modesetting. So explicitly clear that member before calling 3029 * into drm_atomic_helper_set_config. 3030 */ 3031 int vmw_kms_set_config(struct drm_mode_set *set, 3032 struct drm_modeset_acquire_ctx *ctx) 3033 { 3034 if (set && set->mode) 3035 set->mode->type = 0; 3036 3037 return drm_atomic_helper_set_config(set, ctx); 3038 } 3039 3040 3041 /** 3042 * vmw_kms_suspend - Save modesetting state and turn modesetting off. 3043 * 3044 * @dev: Pointer to the drm device 3045 * Return: 0 on success. Negative error code on failure. 3046 */ 3047 int vmw_kms_suspend(struct drm_device *dev) 3048 { 3049 struct vmw_private *dev_priv = vmw_priv(dev); 3050 3051 dev_priv->suspend_state = drm_atomic_helper_suspend(dev); 3052 if (IS_ERR(dev_priv->suspend_state)) { 3053 int ret = PTR_ERR(dev_priv->suspend_state); 3054 3055 DRM_ERROR("Failed kms suspend: %d\n", ret); 3056 dev_priv->suspend_state = NULL; 3057 3058 return ret; 3059 } 3060 3061 return 0; 3062 } 3063 3064 3065 /** 3066 * vmw_kms_resume - Re-enable modesetting and restore state 3067 * 3068 * @dev: Pointer to the drm device 3069 * Return: 0 on success. Negative error code on failure. 3070 * 3071 * State is resumed from a previous vmw_kms_suspend(). It's illegal 3072 * to call this function without a previous vmw_kms_suspend(). 3073 */ 3074 int vmw_kms_resume(struct drm_device *dev) 3075 { 3076 struct vmw_private *dev_priv = vmw_priv(dev); 3077 int ret; 3078 3079 if (WARN_ON(!dev_priv->suspend_state)) 3080 return 0; 3081 3082 ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state); 3083 dev_priv->suspend_state = NULL; 3084 3085 return ret; 3086 } 3087 3088 /** 3089 * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost 3090 * 3091 * @dev: Pointer to the drm device 3092 */ 3093 void vmw_kms_lost_device(struct drm_device *dev) 3094 { 3095 drm_atomic_helper_shutdown(dev); 3096 } 3097