xref: /openbmc/linux/drivers/gpu/drm/vmwgfx/vmwgfx_kms.c (revision 45cc842d5b75ba8f9a958f2dd12b95c6dd0452bd)
1 /**************************************************************************
2  *
3  * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_kms.h"
29 #include <drm/drm_plane_helper.h>
30 #include <drm/drm_atomic.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_rect.h>
33 
34 
35 /* Might need a hrtimer here? */
36 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
37 
38 void vmw_du_cleanup(struct vmw_display_unit *du)
39 {
40 	drm_plane_cleanup(&du->primary);
41 	drm_plane_cleanup(&du->cursor);
42 
43 	drm_connector_unregister(&du->connector);
44 	drm_crtc_cleanup(&du->crtc);
45 	drm_encoder_cleanup(&du->encoder);
46 	drm_connector_cleanup(&du->connector);
47 }
48 
49 /*
50  * Display Unit Cursor functions
51  */
52 
53 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
54 				   u32 *image, u32 width, u32 height,
55 				   u32 hotspotX, u32 hotspotY)
56 {
57 	struct {
58 		u32 cmd;
59 		SVGAFifoCmdDefineAlphaCursor cursor;
60 	} *cmd;
61 	u32 image_size = width * height * 4;
62 	u32 cmd_size = sizeof(*cmd) + image_size;
63 
64 	if (!image)
65 		return -EINVAL;
66 
67 	cmd = vmw_fifo_reserve(dev_priv, cmd_size);
68 	if (unlikely(cmd == NULL)) {
69 		DRM_ERROR("Fifo reserve failed.\n");
70 		return -ENOMEM;
71 	}
72 
73 	memset(cmd, 0, sizeof(*cmd));
74 
75 	memcpy(&cmd[1], image, image_size);
76 
77 	cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
78 	cmd->cursor.id = 0;
79 	cmd->cursor.width = width;
80 	cmd->cursor.height = height;
81 	cmd->cursor.hotspotX = hotspotX;
82 	cmd->cursor.hotspotY = hotspotY;
83 
84 	vmw_fifo_commit_flush(dev_priv, cmd_size);
85 
86 	return 0;
87 }
88 
89 static int vmw_cursor_update_dmabuf(struct vmw_private *dev_priv,
90 				    struct vmw_dma_buffer *dmabuf,
91 				    u32 width, u32 height,
92 				    u32 hotspotX, u32 hotspotY)
93 {
94 	struct ttm_bo_kmap_obj map;
95 	unsigned long kmap_offset;
96 	unsigned long kmap_num;
97 	void *virtual;
98 	bool dummy;
99 	int ret;
100 
101 	kmap_offset = 0;
102 	kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
103 
104 	ret = ttm_bo_reserve(&dmabuf->base, true, false, NULL);
105 	if (unlikely(ret != 0)) {
106 		DRM_ERROR("reserve failed\n");
107 		return -EINVAL;
108 	}
109 
110 	ret = ttm_bo_kmap(&dmabuf->base, kmap_offset, kmap_num, &map);
111 	if (unlikely(ret != 0))
112 		goto err_unreserve;
113 
114 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
115 	ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
116 				      hotspotX, hotspotY);
117 
118 	ttm_bo_kunmap(&map);
119 err_unreserve:
120 	ttm_bo_unreserve(&dmabuf->base);
121 
122 	return ret;
123 }
124 
125 
126 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
127 				       bool show, int x, int y)
128 {
129 	u32 *fifo_mem = dev_priv->mmio_virt;
130 	uint32_t count;
131 
132 	spin_lock(&dev_priv->cursor_lock);
133 	vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
134 	vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
135 	vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
136 	count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
137 	vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
138 	spin_unlock(&dev_priv->cursor_lock);
139 }
140 
141 
142 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
143 			  struct ttm_object_file *tfile,
144 			  struct ttm_buffer_object *bo,
145 			  SVGA3dCmdHeader *header)
146 {
147 	struct ttm_bo_kmap_obj map;
148 	unsigned long kmap_offset;
149 	unsigned long kmap_num;
150 	SVGA3dCopyBox *box;
151 	unsigned box_count;
152 	void *virtual;
153 	bool dummy;
154 	struct vmw_dma_cmd {
155 		SVGA3dCmdHeader header;
156 		SVGA3dCmdSurfaceDMA dma;
157 	} *cmd;
158 	int i, ret;
159 
160 	cmd = container_of(header, struct vmw_dma_cmd, header);
161 
162 	/* No snooper installed */
163 	if (!srf->snooper.image)
164 		return;
165 
166 	if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
167 		DRM_ERROR("face and mipmap for cursors should never != 0\n");
168 		return;
169 	}
170 
171 	if (cmd->header.size < 64) {
172 		DRM_ERROR("at least one full copy box must be given\n");
173 		return;
174 	}
175 
176 	box = (SVGA3dCopyBox *)&cmd[1];
177 	box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
178 			sizeof(SVGA3dCopyBox);
179 
180 	if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
181 	    box->x != 0    || box->y != 0    || box->z != 0    ||
182 	    box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
183 	    box->d != 1    || box_count != 1) {
184 		/* TODO handle none page aligned offsets */
185 		/* TODO handle more dst & src != 0 */
186 		/* TODO handle more then one copy */
187 		DRM_ERROR("Cant snoop dma request for cursor!\n");
188 		DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
189 			  box->srcx, box->srcy, box->srcz,
190 			  box->x, box->y, box->z,
191 			  box->w, box->h, box->d, box_count,
192 			  cmd->dma.guest.ptr.offset);
193 		return;
194 	}
195 
196 	kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
197 	kmap_num = (64*64*4) >> PAGE_SHIFT;
198 
199 	ret = ttm_bo_reserve(bo, true, false, NULL);
200 	if (unlikely(ret != 0)) {
201 		DRM_ERROR("reserve failed\n");
202 		return;
203 	}
204 
205 	ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
206 	if (unlikely(ret != 0))
207 		goto err_unreserve;
208 
209 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
210 
211 	if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
212 		memcpy(srf->snooper.image, virtual, 64*64*4);
213 	} else {
214 		/* Image is unsigned pointer. */
215 		for (i = 0; i < box->h; i++)
216 			memcpy(srf->snooper.image + i * 64,
217 			       virtual + i * cmd->dma.guest.pitch,
218 			       box->w * 4);
219 	}
220 
221 	srf->snooper.age++;
222 
223 	ttm_bo_kunmap(&map);
224 err_unreserve:
225 	ttm_bo_unreserve(bo);
226 }
227 
228 /**
229  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
230  *
231  * @dev_priv: Pointer to the device private struct.
232  *
233  * Clears all legacy hotspots.
234  */
235 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
236 {
237 	struct drm_device *dev = dev_priv->dev;
238 	struct vmw_display_unit *du;
239 	struct drm_crtc *crtc;
240 
241 	drm_modeset_lock_all(dev);
242 	drm_for_each_crtc(crtc, dev) {
243 		du = vmw_crtc_to_du(crtc);
244 
245 		du->hotspot_x = 0;
246 		du->hotspot_y = 0;
247 	}
248 	drm_modeset_unlock_all(dev);
249 }
250 
251 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
252 {
253 	struct drm_device *dev = dev_priv->dev;
254 	struct vmw_display_unit *du;
255 	struct drm_crtc *crtc;
256 
257 	mutex_lock(&dev->mode_config.mutex);
258 
259 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
260 		du = vmw_crtc_to_du(crtc);
261 		if (!du->cursor_surface ||
262 		    du->cursor_age == du->cursor_surface->snooper.age)
263 			continue;
264 
265 		du->cursor_age = du->cursor_surface->snooper.age;
266 		vmw_cursor_update_image(dev_priv,
267 					du->cursor_surface->snooper.image,
268 					64, 64,
269 					du->hotspot_x + du->core_hotspot_x,
270 					du->hotspot_y + du->core_hotspot_y);
271 	}
272 
273 	mutex_unlock(&dev->mode_config.mutex);
274 }
275 
276 
277 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
278 {
279 	vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
280 
281 	drm_plane_cleanup(plane);
282 }
283 
284 
285 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
286 {
287 	drm_plane_cleanup(plane);
288 
289 	/* Planes are static in our case so we don't free it */
290 }
291 
292 
293 /**
294  * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
295  *
296  * @vps: plane state associated with the display surface
297  * @unreference: true if we also want to unreference the display.
298  */
299 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
300 			     bool unreference)
301 {
302 	if (vps->surf) {
303 		if (vps->pinned) {
304 			vmw_resource_unpin(&vps->surf->res);
305 			vps->pinned--;
306 		}
307 
308 		if (unreference) {
309 			if (vps->pinned)
310 				DRM_ERROR("Surface still pinned\n");
311 			vmw_surface_unreference(&vps->surf);
312 		}
313 	}
314 }
315 
316 
317 /**
318  * vmw_du_plane_cleanup_fb - Unpins the cursor
319  *
320  * @plane:  display plane
321  * @old_state: Contains the FB to clean up
322  *
323  * Unpins the framebuffer surface
324  *
325  * Returns 0 on success
326  */
327 void
328 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
329 			struct drm_plane_state *old_state)
330 {
331 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
332 
333 	vmw_du_plane_unpin_surf(vps, false);
334 }
335 
336 
337 /**
338  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
339  *
340  * @plane:  display plane
341  * @new_state: info on the new plane state, including the FB
342  *
343  * Returns 0 on success
344  */
345 int
346 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
347 			       struct drm_plane_state *new_state)
348 {
349 	struct drm_framebuffer *fb = new_state->fb;
350 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
351 
352 
353 	if (vps->surf)
354 		vmw_surface_unreference(&vps->surf);
355 
356 	if (vps->dmabuf)
357 		vmw_dmabuf_unreference(&vps->dmabuf);
358 
359 	if (fb) {
360 		if (vmw_framebuffer_to_vfb(fb)->dmabuf) {
361 			vps->dmabuf = vmw_framebuffer_to_vfbd(fb)->buffer;
362 			vmw_dmabuf_reference(vps->dmabuf);
363 		} else {
364 			vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
365 			vmw_surface_reference(vps->surf);
366 		}
367 	}
368 
369 	return 0;
370 }
371 
372 
373 void
374 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
375 				  struct drm_plane_state *old_state)
376 {
377 	struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
378 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
379 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
380 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
381 	s32 hotspot_x, hotspot_y;
382 	int ret = 0;
383 
384 
385 	hotspot_x = du->hotspot_x;
386 	hotspot_y = du->hotspot_y;
387 
388 	if (plane->fb) {
389 		hotspot_x += plane->fb->hot_x;
390 		hotspot_y += plane->fb->hot_y;
391 	}
392 
393 	du->cursor_surface = vps->surf;
394 	du->cursor_dmabuf = vps->dmabuf;
395 
396 	/* setup new image */
397 	if (vps->surf) {
398 		du->cursor_age = du->cursor_surface->snooper.age;
399 
400 		ret = vmw_cursor_update_image(dev_priv,
401 					      vps->surf->snooper.image,
402 					      64, 64, hotspot_x, hotspot_y);
403 	} else if (vps->dmabuf) {
404 		ret = vmw_cursor_update_dmabuf(dev_priv, vps->dmabuf,
405 					       plane->state->crtc_w,
406 					       plane->state->crtc_h,
407 					       hotspot_x, hotspot_y);
408 	} else {
409 		vmw_cursor_update_position(dev_priv, false, 0, 0);
410 		return;
411 	}
412 
413 	if (!ret) {
414 		du->cursor_x = plane->state->crtc_x + du->set_gui_x;
415 		du->cursor_y = plane->state->crtc_y + du->set_gui_y;
416 
417 		vmw_cursor_update_position(dev_priv, true,
418 					   du->cursor_x + hotspot_x,
419 					   du->cursor_y + hotspot_y);
420 
421 		du->core_hotspot_x = hotspot_x - du->hotspot_x;
422 		du->core_hotspot_y = hotspot_y - du->hotspot_y;
423 	} else {
424 		DRM_ERROR("Failed to update cursor image\n");
425 	}
426 }
427 
428 
429 /**
430  * vmw_du_primary_plane_atomic_check - check if the new state is okay
431  *
432  * @plane: display plane
433  * @state: info on the new plane state, including the FB
434  *
435  * Check if the new state is settable given the current state.  Other
436  * than what the atomic helper checks, we care about crtc fitting
437  * the FB and maintaining one active framebuffer.
438  *
439  * Returns 0 on success
440  */
441 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
442 				      struct drm_plane_state *state)
443 {
444 	struct drm_crtc_state *crtc_state = NULL;
445 	struct drm_framebuffer *new_fb = state->fb;
446 	struct drm_rect clip = {};
447 	int ret;
448 
449 	if (state->crtc)
450 		crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc);
451 
452 	if (crtc_state && crtc_state->enable) {
453 		clip.x2 = crtc_state->adjusted_mode.hdisplay;
454 		clip.y2 = crtc_state->adjusted_mode.vdisplay;
455 	}
456 
457 	ret = drm_atomic_helper_check_plane_state(state, crtc_state, &clip,
458 						  DRM_PLANE_HELPER_NO_SCALING,
459 						  DRM_PLANE_HELPER_NO_SCALING,
460 						  false, true);
461 
462 	if (!ret && new_fb) {
463 		struct drm_crtc *crtc = state->crtc;
464 		struct vmw_connector_state *vcs;
465 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
466 		struct vmw_private *dev_priv = vmw_priv(crtc->dev);
467 		struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb);
468 
469 		vcs = vmw_connector_state_to_vcs(du->connector.state);
470 
471 		/* Only one active implicit framebuffer at a time. */
472 		mutex_lock(&dev_priv->global_kms_state_mutex);
473 		if (vcs->is_implicit && dev_priv->implicit_fb &&
474 		    !(dev_priv->num_implicit == 1 && du->active_implicit)
475 		    && dev_priv->implicit_fb != vfb) {
476 			DRM_ERROR("Multiple implicit framebuffers "
477 				  "not supported.\n");
478 			ret = -EINVAL;
479 		}
480 		mutex_unlock(&dev_priv->global_kms_state_mutex);
481 	}
482 
483 
484 	return ret;
485 }
486 
487 
488 /**
489  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
490  *
491  * @plane: cursor plane
492  * @state: info on the new plane state
493  *
494  * This is a chance to fail if the new cursor state does not fit
495  * our requirements.
496  *
497  * Returns 0 on success
498  */
499 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
500 				     struct drm_plane_state *new_state)
501 {
502 	int ret = 0;
503 	struct vmw_surface *surface = NULL;
504 	struct drm_framebuffer *fb = new_state->fb;
505 
506 
507 	/* Turning off */
508 	if (!fb)
509 		return ret;
510 
511 	/* A lot of the code assumes this */
512 	if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
513 		DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
514 			  new_state->crtc_w, new_state->crtc_h);
515 		ret = -EINVAL;
516 	}
517 
518 	if (!vmw_framebuffer_to_vfb(fb)->dmabuf)
519 		surface = vmw_framebuffer_to_vfbs(fb)->surface;
520 
521 	if (surface && !surface->snooper.image) {
522 		DRM_ERROR("surface not suitable for cursor\n");
523 		ret = -EINVAL;
524 	}
525 
526 	return ret;
527 }
528 
529 
530 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
531 			     struct drm_crtc_state *new_state)
532 {
533 	struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
534 	int connector_mask = 1 << drm_connector_index(&du->connector);
535 	bool has_primary = new_state->plane_mask &
536 			   BIT(drm_plane_index(crtc->primary));
537 
538 	/* We always want to have an active plane with an active CRTC */
539 	if (has_primary != new_state->enable)
540 		return -EINVAL;
541 
542 
543 	if (new_state->connector_mask != connector_mask &&
544 	    new_state->connector_mask != 0) {
545 		DRM_ERROR("Invalid connectors configuration\n");
546 		return -EINVAL;
547 	}
548 
549 	/*
550 	 * Our virtual device does not have a dot clock, so use the logical
551 	 * clock value as the dot clock.
552 	 */
553 	if (new_state->mode.crtc_clock == 0)
554 		new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
555 
556 	return 0;
557 }
558 
559 
560 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
561 			      struct drm_crtc_state *old_crtc_state)
562 {
563 }
564 
565 
566 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
567 			      struct drm_crtc_state *old_crtc_state)
568 {
569 	struct drm_pending_vblank_event *event = crtc->state->event;
570 
571 	if (event) {
572 		crtc->state->event = NULL;
573 
574 		spin_lock_irq(&crtc->dev->event_lock);
575 		if (drm_crtc_vblank_get(crtc) == 0)
576 			drm_crtc_arm_vblank_event(crtc, event);
577 		else
578 			drm_crtc_send_vblank_event(crtc, event);
579 		spin_unlock_irq(&crtc->dev->event_lock);
580 	}
581 
582 }
583 
584 
585 /**
586  * vmw_du_crtc_duplicate_state - duplicate crtc state
587  * @crtc: DRM crtc
588  *
589  * Allocates and returns a copy of the crtc state (both common and
590  * vmw-specific) for the specified crtc.
591  *
592  * Returns: The newly allocated crtc state, or NULL on failure.
593  */
594 struct drm_crtc_state *
595 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
596 {
597 	struct drm_crtc_state *state;
598 	struct vmw_crtc_state *vcs;
599 
600 	if (WARN_ON(!crtc->state))
601 		return NULL;
602 
603 	vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
604 
605 	if (!vcs)
606 		return NULL;
607 
608 	state = &vcs->base;
609 
610 	__drm_atomic_helper_crtc_duplicate_state(crtc, state);
611 
612 	return state;
613 }
614 
615 
616 /**
617  * vmw_du_crtc_reset - creates a blank vmw crtc state
618  * @crtc: DRM crtc
619  *
620  * Resets the atomic state for @crtc by freeing the state pointer (which
621  * might be NULL, e.g. at driver load time) and allocating a new empty state
622  * object.
623  */
624 void vmw_du_crtc_reset(struct drm_crtc *crtc)
625 {
626 	struct vmw_crtc_state *vcs;
627 
628 
629 	if (crtc->state) {
630 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
631 
632 		kfree(vmw_crtc_state_to_vcs(crtc->state));
633 	}
634 
635 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
636 
637 	if (!vcs) {
638 		DRM_ERROR("Cannot allocate vmw_crtc_state\n");
639 		return;
640 	}
641 
642 	crtc->state = &vcs->base;
643 	crtc->state->crtc = crtc;
644 }
645 
646 
647 /**
648  * vmw_du_crtc_destroy_state - destroy crtc state
649  * @crtc: DRM crtc
650  * @state: state object to destroy
651  *
652  * Destroys the crtc state (both common and vmw-specific) for the
653  * specified plane.
654  */
655 void
656 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
657 			  struct drm_crtc_state *state)
658 {
659 	drm_atomic_helper_crtc_destroy_state(crtc, state);
660 }
661 
662 
663 /**
664  * vmw_du_plane_duplicate_state - duplicate plane state
665  * @plane: drm plane
666  *
667  * Allocates and returns a copy of the plane state (both common and
668  * vmw-specific) for the specified plane.
669  *
670  * Returns: The newly allocated plane state, or NULL on failure.
671  */
672 struct drm_plane_state *
673 vmw_du_plane_duplicate_state(struct drm_plane *plane)
674 {
675 	struct drm_plane_state *state;
676 	struct vmw_plane_state *vps;
677 
678 	vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
679 
680 	if (!vps)
681 		return NULL;
682 
683 	vps->pinned = 0;
684 
685 	/* Mapping is managed by prepare_fb/cleanup_fb */
686 	memset(&vps->host_map, 0, sizeof(vps->host_map));
687 	vps->cpp = 0;
688 
689 	/* Each ref counted resource needs to be acquired again */
690 	if (vps->surf)
691 		(void) vmw_surface_reference(vps->surf);
692 
693 	if (vps->dmabuf)
694 		(void) vmw_dmabuf_reference(vps->dmabuf);
695 
696 	state = &vps->base;
697 
698 	__drm_atomic_helper_plane_duplicate_state(plane, state);
699 
700 	return state;
701 }
702 
703 
704 /**
705  * vmw_du_plane_reset - creates a blank vmw plane state
706  * @plane: drm plane
707  *
708  * Resets the atomic state for @plane by freeing the state pointer (which might
709  * be NULL, e.g. at driver load time) and allocating a new empty state object.
710  */
711 void vmw_du_plane_reset(struct drm_plane *plane)
712 {
713 	struct vmw_plane_state *vps;
714 
715 
716 	if (plane->state)
717 		vmw_du_plane_destroy_state(plane, plane->state);
718 
719 	vps = kzalloc(sizeof(*vps), GFP_KERNEL);
720 
721 	if (!vps) {
722 		DRM_ERROR("Cannot allocate vmw_plane_state\n");
723 		return;
724 	}
725 
726 	plane->state = &vps->base;
727 	plane->state->plane = plane;
728 	plane->state->rotation = DRM_MODE_ROTATE_0;
729 }
730 
731 
732 /**
733  * vmw_du_plane_destroy_state - destroy plane state
734  * @plane: DRM plane
735  * @state: state object to destroy
736  *
737  * Destroys the plane state (both common and vmw-specific) for the
738  * specified plane.
739  */
740 void
741 vmw_du_plane_destroy_state(struct drm_plane *plane,
742 			   struct drm_plane_state *state)
743 {
744 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
745 
746 
747 	/* Should have been freed by cleanup_fb */
748 	if (vps->host_map.virtual) {
749 		DRM_ERROR("Host mapping not freed\n");
750 		ttm_bo_kunmap(&vps->host_map);
751 	}
752 
753 	if (vps->surf)
754 		vmw_surface_unreference(&vps->surf);
755 
756 	if (vps->dmabuf)
757 		vmw_dmabuf_unreference(&vps->dmabuf);
758 
759 	drm_atomic_helper_plane_destroy_state(plane, state);
760 }
761 
762 
763 /**
764  * vmw_du_connector_duplicate_state - duplicate connector state
765  * @connector: DRM connector
766  *
767  * Allocates and returns a copy of the connector state (both common and
768  * vmw-specific) for the specified connector.
769  *
770  * Returns: The newly allocated connector state, or NULL on failure.
771  */
772 struct drm_connector_state *
773 vmw_du_connector_duplicate_state(struct drm_connector *connector)
774 {
775 	struct drm_connector_state *state;
776 	struct vmw_connector_state *vcs;
777 
778 	if (WARN_ON(!connector->state))
779 		return NULL;
780 
781 	vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
782 
783 	if (!vcs)
784 		return NULL;
785 
786 	state = &vcs->base;
787 
788 	__drm_atomic_helper_connector_duplicate_state(connector, state);
789 
790 	return state;
791 }
792 
793 
794 /**
795  * vmw_du_connector_reset - creates a blank vmw connector state
796  * @connector: DRM connector
797  *
798  * Resets the atomic state for @connector by freeing the state pointer (which
799  * might be NULL, e.g. at driver load time) and allocating a new empty state
800  * object.
801  */
802 void vmw_du_connector_reset(struct drm_connector *connector)
803 {
804 	struct vmw_connector_state *vcs;
805 
806 
807 	if (connector->state) {
808 		__drm_atomic_helper_connector_destroy_state(connector->state);
809 
810 		kfree(vmw_connector_state_to_vcs(connector->state));
811 	}
812 
813 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
814 
815 	if (!vcs) {
816 		DRM_ERROR("Cannot allocate vmw_connector_state\n");
817 		return;
818 	}
819 
820 	__drm_atomic_helper_connector_reset(connector, &vcs->base);
821 }
822 
823 
824 /**
825  * vmw_du_connector_destroy_state - destroy connector state
826  * @connector: DRM connector
827  * @state: state object to destroy
828  *
829  * Destroys the connector state (both common and vmw-specific) for the
830  * specified plane.
831  */
832 void
833 vmw_du_connector_destroy_state(struct drm_connector *connector,
834 			  struct drm_connector_state *state)
835 {
836 	drm_atomic_helper_connector_destroy_state(connector, state);
837 }
838 /*
839  * Generic framebuffer code
840  */
841 
842 /*
843  * Surface framebuffer code
844  */
845 
846 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
847 {
848 	struct vmw_framebuffer_surface *vfbs =
849 		vmw_framebuffer_to_vfbs(framebuffer);
850 
851 	drm_framebuffer_cleanup(framebuffer);
852 	vmw_surface_unreference(&vfbs->surface);
853 	if (vfbs->base.user_obj)
854 		ttm_base_object_unref(&vfbs->base.user_obj);
855 
856 	kfree(vfbs);
857 }
858 
859 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer,
860 				  struct drm_file *file_priv,
861 				  unsigned flags, unsigned color,
862 				  struct drm_clip_rect *clips,
863 				  unsigned num_clips)
864 {
865 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
866 	struct vmw_framebuffer_surface *vfbs =
867 		vmw_framebuffer_to_vfbs(framebuffer);
868 	struct drm_clip_rect norect;
869 	int ret, inc = 1;
870 
871 	/* Legacy Display Unit does not support 3D */
872 	if (dev_priv->active_display_unit == vmw_du_legacy)
873 		return -EINVAL;
874 
875 	drm_modeset_lock_all(dev_priv->dev);
876 
877 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
878 	if (unlikely(ret != 0)) {
879 		drm_modeset_unlock_all(dev_priv->dev);
880 		return ret;
881 	}
882 
883 	if (!num_clips) {
884 		num_clips = 1;
885 		clips = &norect;
886 		norect.x1 = norect.y1 = 0;
887 		norect.x2 = framebuffer->width;
888 		norect.y2 = framebuffer->height;
889 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
890 		num_clips /= 2;
891 		inc = 2; /* skip source rects */
892 	}
893 
894 	if (dev_priv->active_display_unit == vmw_du_screen_object)
895 		ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base,
896 						   clips, NULL, NULL, 0, 0,
897 						   num_clips, inc, NULL);
898 	else
899 		ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base,
900 						 clips, NULL, NULL, 0, 0,
901 						 num_clips, inc, NULL);
902 
903 	vmw_fifo_flush(dev_priv, false);
904 	ttm_read_unlock(&dev_priv->reservation_sem);
905 
906 	drm_modeset_unlock_all(dev_priv->dev);
907 
908 	return 0;
909 }
910 
911 /**
912  * vmw_kms_readback - Perform a readback from the screen system to
913  * a dma-buffer backed framebuffer.
914  *
915  * @dev_priv: Pointer to the device private structure.
916  * @file_priv: Pointer to a struct drm_file identifying the caller.
917  * Must be set to NULL if @user_fence_rep is NULL.
918  * @vfb: Pointer to the dma-buffer backed framebuffer.
919  * @user_fence_rep: User-space provided structure for fence information.
920  * Must be set to non-NULL if @file_priv is non-NULL.
921  * @vclips: Array of clip rects.
922  * @num_clips: Number of clip rects in @vclips.
923  *
924  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
925  * interrupted.
926  */
927 int vmw_kms_readback(struct vmw_private *dev_priv,
928 		     struct drm_file *file_priv,
929 		     struct vmw_framebuffer *vfb,
930 		     struct drm_vmw_fence_rep __user *user_fence_rep,
931 		     struct drm_vmw_rect *vclips,
932 		     uint32_t num_clips)
933 {
934 	switch (dev_priv->active_display_unit) {
935 	case vmw_du_screen_object:
936 		return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
937 					    user_fence_rep, vclips, num_clips);
938 	case vmw_du_screen_target:
939 		return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
940 					user_fence_rep, NULL, vclips, num_clips,
941 					1, false, true);
942 	default:
943 		WARN_ONCE(true,
944 			  "Readback called with invalid display system.\n");
945 }
946 
947 	return -ENOSYS;
948 }
949 
950 
951 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
952 	.destroy = vmw_framebuffer_surface_destroy,
953 	.dirty = vmw_framebuffer_surface_dirty,
954 };
955 
956 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
957 					   struct vmw_surface *surface,
958 					   struct vmw_framebuffer **out,
959 					   const struct drm_mode_fb_cmd2
960 					   *mode_cmd,
961 					   bool is_dmabuf_proxy)
962 
963 {
964 	struct drm_device *dev = dev_priv->dev;
965 	struct vmw_framebuffer_surface *vfbs;
966 	enum SVGA3dSurfaceFormat format;
967 	int ret;
968 	struct drm_format_name_buf format_name;
969 
970 	/* 3D is only supported on HWv8 and newer hosts */
971 	if (dev_priv->active_display_unit == vmw_du_legacy)
972 		return -ENOSYS;
973 
974 	/*
975 	 * Sanity checks.
976 	 */
977 
978 	/* Surface must be marked as a scanout. */
979 	if (unlikely(!surface->scanout))
980 		return -EINVAL;
981 
982 	if (unlikely(surface->mip_levels[0] != 1 ||
983 		     surface->num_sizes != 1 ||
984 		     surface->base_size.width < mode_cmd->width ||
985 		     surface->base_size.height < mode_cmd->height ||
986 		     surface->base_size.depth != 1)) {
987 		DRM_ERROR("Incompatible surface dimensions "
988 			  "for requested mode.\n");
989 		return -EINVAL;
990 	}
991 
992 	switch (mode_cmd->pixel_format) {
993 	case DRM_FORMAT_ARGB8888:
994 		format = SVGA3D_A8R8G8B8;
995 		break;
996 	case DRM_FORMAT_XRGB8888:
997 		format = SVGA3D_X8R8G8B8;
998 		break;
999 	case DRM_FORMAT_RGB565:
1000 		format = SVGA3D_R5G6B5;
1001 		break;
1002 	case DRM_FORMAT_XRGB1555:
1003 		format = SVGA3D_A1R5G5B5;
1004 		break;
1005 	default:
1006 		DRM_ERROR("Invalid pixel format: %s\n",
1007 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1008 		return -EINVAL;
1009 	}
1010 
1011 	/*
1012 	 * For DX, surface format validation is done when surface->scanout
1013 	 * is set.
1014 	 */
1015 	if (!dev_priv->has_dx && format != surface->format) {
1016 		DRM_ERROR("Invalid surface format for requested mode.\n");
1017 		return -EINVAL;
1018 	}
1019 
1020 	vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
1021 	if (!vfbs) {
1022 		ret = -ENOMEM;
1023 		goto out_err1;
1024 	}
1025 
1026 	drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
1027 	vfbs->surface = vmw_surface_reference(surface);
1028 	vfbs->base.user_handle = mode_cmd->handles[0];
1029 	vfbs->is_dmabuf_proxy = is_dmabuf_proxy;
1030 
1031 	*out = &vfbs->base;
1032 
1033 	ret = drm_framebuffer_init(dev, &vfbs->base.base,
1034 				   &vmw_framebuffer_surface_funcs);
1035 	if (ret)
1036 		goto out_err2;
1037 
1038 	return 0;
1039 
1040 out_err2:
1041 	vmw_surface_unreference(&surface);
1042 	kfree(vfbs);
1043 out_err1:
1044 	return ret;
1045 }
1046 
1047 /*
1048  * Dmabuf framebuffer code
1049  */
1050 
1051 static void vmw_framebuffer_dmabuf_destroy(struct drm_framebuffer *framebuffer)
1052 {
1053 	struct vmw_framebuffer_dmabuf *vfbd =
1054 		vmw_framebuffer_to_vfbd(framebuffer);
1055 
1056 	drm_framebuffer_cleanup(framebuffer);
1057 	vmw_dmabuf_unreference(&vfbd->buffer);
1058 	if (vfbd->base.user_obj)
1059 		ttm_base_object_unref(&vfbd->base.user_obj);
1060 
1061 	kfree(vfbd);
1062 }
1063 
1064 static int vmw_framebuffer_dmabuf_dirty(struct drm_framebuffer *framebuffer,
1065 				 struct drm_file *file_priv,
1066 				 unsigned flags, unsigned color,
1067 				 struct drm_clip_rect *clips,
1068 				 unsigned num_clips)
1069 {
1070 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1071 	struct vmw_framebuffer_dmabuf *vfbd =
1072 		vmw_framebuffer_to_vfbd(framebuffer);
1073 	struct drm_clip_rect norect;
1074 	int ret, increment = 1;
1075 
1076 	drm_modeset_lock_all(dev_priv->dev);
1077 
1078 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1079 	if (unlikely(ret != 0)) {
1080 		drm_modeset_unlock_all(dev_priv->dev);
1081 		return ret;
1082 	}
1083 
1084 	if (!num_clips) {
1085 		num_clips = 1;
1086 		clips = &norect;
1087 		norect.x1 = norect.y1 = 0;
1088 		norect.x2 = framebuffer->width;
1089 		norect.y2 = framebuffer->height;
1090 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1091 		num_clips /= 2;
1092 		increment = 2;
1093 	}
1094 
1095 	switch (dev_priv->active_display_unit) {
1096 	case vmw_du_screen_target:
1097 		ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL,
1098 				       clips, NULL, num_clips, increment,
1099 				       true, true);
1100 		break;
1101 	case vmw_du_screen_object:
1102 		ret = vmw_kms_sou_do_dmabuf_dirty(dev_priv, &vfbd->base,
1103 						  clips, NULL, num_clips,
1104 						  increment, true, NULL);
1105 		break;
1106 	case vmw_du_legacy:
1107 		ret = vmw_kms_ldu_do_dmabuf_dirty(dev_priv, &vfbd->base, 0, 0,
1108 						  clips, num_clips, increment);
1109 		break;
1110 	default:
1111 		ret = -EINVAL;
1112 		WARN_ONCE(true, "Dirty called with invalid display system.\n");
1113 		break;
1114 	}
1115 
1116 	vmw_fifo_flush(dev_priv, false);
1117 	ttm_read_unlock(&dev_priv->reservation_sem);
1118 
1119 	drm_modeset_unlock_all(dev_priv->dev);
1120 
1121 	return ret;
1122 }
1123 
1124 static const struct drm_framebuffer_funcs vmw_framebuffer_dmabuf_funcs = {
1125 	.destroy = vmw_framebuffer_dmabuf_destroy,
1126 	.dirty = vmw_framebuffer_dmabuf_dirty,
1127 };
1128 
1129 /**
1130  * Pin the dmabuffer to the start of vram.
1131  */
1132 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1133 {
1134 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1135 	struct vmw_dma_buffer *buf;
1136 	int ret;
1137 
1138 	buf = vfb->dmabuf ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1139 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1140 
1141 	if (!buf)
1142 		return 0;
1143 
1144 	switch (dev_priv->active_display_unit) {
1145 	case vmw_du_legacy:
1146 		vmw_overlay_pause_all(dev_priv);
1147 		ret = vmw_dmabuf_pin_in_start_of_vram(dev_priv, buf, false);
1148 		vmw_overlay_resume_all(dev_priv);
1149 		break;
1150 	case vmw_du_screen_object:
1151 	case vmw_du_screen_target:
1152 		if (vfb->dmabuf)
1153 			return vmw_dmabuf_pin_in_vram_or_gmr(dev_priv, buf,
1154 							     false);
1155 
1156 		return vmw_dmabuf_pin_in_placement(dev_priv, buf,
1157 						   &vmw_mob_placement, false);
1158 	default:
1159 		return -EINVAL;
1160 	}
1161 
1162 	return ret;
1163 }
1164 
1165 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1166 {
1167 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1168 	struct vmw_dma_buffer *buf;
1169 
1170 	buf = vfb->dmabuf ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1171 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1172 
1173 	if (WARN_ON(!buf))
1174 		return 0;
1175 
1176 	return vmw_dmabuf_unpin(dev_priv, buf, false);
1177 }
1178 
1179 /**
1180  * vmw_create_dmabuf_proxy - create a proxy surface for the DMA buf
1181  *
1182  * @dev: DRM device
1183  * @mode_cmd: parameters for the new surface
1184  * @dmabuf_mob: MOB backing the DMA buf
1185  * @srf_out: newly created surface
1186  *
1187  * When the content FB is a DMA buf, we create a surface as a proxy to the
1188  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1189  * This is a more efficient approach
1190  *
1191  * RETURNS:
1192  * 0 on success, error code otherwise
1193  */
1194 static int vmw_create_dmabuf_proxy(struct drm_device *dev,
1195 				   const struct drm_mode_fb_cmd2 *mode_cmd,
1196 				   struct vmw_dma_buffer *dmabuf_mob,
1197 				   struct vmw_surface **srf_out)
1198 {
1199 	uint32_t format;
1200 	struct drm_vmw_size content_base_size = {0};
1201 	struct vmw_resource *res;
1202 	unsigned int bytes_pp;
1203 	struct drm_format_name_buf format_name;
1204 	int ret;
1205 
1206 	switch (mode_cmd->pixel_format) {
1207 	case DRM_FORMAT_ARGB8888:
1208 	case DRM_FORMAT_XRGB8888:
1209 		format = SVGA3D_X8R8G8B8;
1210 		bytes_pp = 4;
1211 		break;
1212 
1213 	case DRM_FORMAT_RGB565:
1214 	case DRM_FORMAT_XRGB1555:
1215 		format = SVGA3D_R5G6B5;
1216 		bytes_pp = 2;
1217 		break;
1218 
1219 	case 8:
1220 		format = SVGA3D_P8;
1221 		bytes_pp = 1;
1222 		break;
1223 
1224 	default:
1225 		DRM_ERROR("Invalid framebuffer format %s\n",
1226 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1227 		return -EINVAL;
1228 	}
1229 
1230 	content_base_size.width  = mode_cmd->pitches[0] / bytes_pp;
1231 	content_base_size.height = mode_cmd->height;
1232 	content_base_size.depth  = 1;
1233 
1234 	ret = vmw_surface_gb_priv_define(dev,
1235 			0, /* kernel visible only */
1236 			0, /* flags */
1237 			format,
1238 			true, /* can be a scanout buffer */
1239 			1, /* num of mip levels */
1240 			0,
1241 			0,
1242 			content_base_size,
1243 			srf_out);
1244 	if (ret) {
1245 		DRM_ERROR("Failed to allocate proxy content buffer\n");
1246 		return ret;
1247 	}
1248 
1249 	res = &(*srf_out)->res;
1250 
1251 	/* Reserve and switch the backing mob. */
1252 	mutex_lock(&res->dev_priv->cmdbuf_mutex);
1253 	(void) vmw_resource_reserve(res, false, true);
1254 	vmw_dmabuf_unreference(&res->backup);
1255 	res->backup = vmw_dmabuf_reference(dmabuf_mob);
1256 	res->backup_offset = 0;
1257 	vmw_resource_unreserve(res, false, NULL, 0);
1258 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1259 
1260 	return 0;
1261 }
1262 
1263 
1264 
1265 static int vmw_kms_new_framebuffer_dmabuf(struct vmw_private *dev_priv,
1266 					  struct vmw_dma_buffer *dmabuf,
1267 					  struct vmw_framebuffer **out,
1268 					  const struct drm_mode_fb_cmd2
1269 					  *mode_cmd)
1270 
1271 {
1272 	struct drm_device *dev = dev_priv->dev;
1273 	struct vmw_framebuffer_dmabuf *vfbd;
1274 	unsigned int requested_size;
1275 	struct drm_format_name_buf format_name;
1276 	int ret;
1277 
1278 	requested_size = mode_cmd->height * mode_cmd->pitches[0];
1279 	if (unlikely(requested_size > dmabuf->base.num_pages * PAGE_SIZE)) {
1280 		DRM_ERROR("Screen buffer object size is too small "
1281 			  "for requested mode.\n");
1282 		return -EINVAL;
1283 	}
1284 
1285 	/* Limited framebuffer color depth support for screen objects */
1286 	if (dev_priv->active_display_unit == vmw_du_screen_object) {
1287 		switch (mode_cmd->pixel_format) {
1288 		case DRM_FORMAT_XRGB8888:
1289 		case DRM_FORMAT_ARGB8888:
1290 			break;
1291 		case DRM_FORMAT_XRGB1555:
1292 		case DRM_FORMAT_RGB565:
1293 			break;
1294 		default:
1295 			DRM_ERROR("Invalid pixel format: %s\n",
1296 				  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1297 			return -EINVAL;
1298 		}
1299 	}
1300 
1301 	vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1302 	if (!vfbd) {
1303 		ret = -ENOMEM;
1304 		goto out_err1;
1305 	}
1306 
1307 	drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1308 	vfbd->base.dmabuf = true;
1309 	vfbd->buffer = vmw_dmabuf_reference(dmabuf);
1310 	vfbd->base.user_handle = mode_cmd->handles[0];
1311 	*out = &vfbd->base;
1312 
1313 	ret = drm_framebuffer_init(dev, &vfbd->base.base,
1314 				   &vmw_framebuffer_dmabuf_funcs);
1315 	if (ret)
1316 		goto out_err2;
1317 
1318 	return 0;
1319 
1320 out_err2:
1321 	vmw_dmabuf_unreference(&dmabuf);
1322 	kfree(vfbd);
1323 out_err1:
1324 	return ret;
1325 }
1326 
1327 
1328 /**
1329  * vmw_kms_srf_ok - check if a surface can be created
1330  *
1331  * @width: requested width
1332  * @height: requested height
1333  *
1334  * Surfaces need to be less than texture size
1335  */
1336 static bool
1337 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1338 {
1339 	if (width  > dev_priv->texture_max_width ||
1340 	    height > dev_priv->texture_max_height)
1341 		return false;
1342 
1343 	return true;
1344 }
1345 
1346 /**
1347  * vmw_kms_new_framebuffer - Create a new framebuffer.
1348  *
1349  * @dev_priv: Pointer to device private struct.
1350  * @dmabuf: Pointer to dma buffer to wrap the kms framebuffer around.
1351  * Either @dmabuf or @surface must be NULL.
1352  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1353  * Either @dmabuf or @surface must be NULL.
1354  * @only_2d: No presents will occur to this dma buffer based framebuffer. This
1355  * Helps the code to do some important optimizations.
1356  * @mode_cmd: Frame-buffer metadata.
1357  */
1358 struct vmw_framebuffer *
1359 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1360 			struct vmw_dma_buffer *dmabuf,
1361 			struct vmw_surface *surface,
1362 			bool only_2d,
1363 			const struct drm_mode_fb_cmd2 *mode_cmd)
1364 {
1365 	struct vmw_framebuffer *vfb = NULL;
1366 	bool is_dmabuf_proxy = false;
1367 	int ret;
1368 
1369 	/*
1370 	 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1371 	 * therefore, wrap the DMA buf in a surface so we can use the
1372 	 * SurfaceCopy command.
1373 	 */
1374 	if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1375 	    dmabuf && only_2d &&
1376 	    mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1377 	    dev_priv->active_display_unit == vmw_du_screen_target) {
1378 		ret = vmw_create_dmabuf_proxy(dev_priv->dev, mode_cmd,
1379 					      dmabuf, &surface);
1380 		if (ret)
1381 			return ERR_PTR(ret);
1382 
1383 		is_dmabuf_proxy = true;
1384 	}
1385 
1386 	/* Create the new framebuffer depending one what we have */
1387 	if (surface) {
1388 		ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1389 						      mode_cmd,
1390 						      is_dmabuf_proxy);
1391 
1392 		/*
1393 		 * vmw_create_dmabuf_proxy() adds a reference that is no longer
1394 		 * needed
1395 		 */
1396 		if (is_dmabuf_proxy)
1397 			vmw_surface_unreference(&surface);
1398 	} else if (dmabuf) {
1399 		ret = vmw_kms_new_framebuffer_dmabuf(dev_priv, dmabuf, &vfb,
1400 						     mode_cmd);
1401 	} else {
1402 		BUG();
1403 	}
1404 
1405 	if (ret)
1406 		return ERR_PTR(ret);
1407 
1408 	vfb->pin = vmw_framebuffer_pin;
1409 	vfb->unpin = vmw_framebuffer_unpin;
1410 
1411 	return vfb;
1412 }
1413 
1414 /*
1415  * Generic Kernel modesetting functions
1416  */
1417 
1418 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1419 						 struct drm_file *file_priv,
1420 						 const struct drm_mode_fb_cmd2 *mode_cmd)
1421 {
1422 	struct vmw_private *dev_priv = vmw_priv(dev);
1423 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1424 	struct vmw_framebuffer *vfb = NULL;
1425 	struct vmw_surface *surface = NULL;
1426 	struct vmw_dma_buffer *bo = NULL;
1427 	struct ttm_base_object *user_obj;
1428 	int ret;
1429 
1430 	/**
1431 	 * This code should be conditioned on Screen Objects not being used.
1432 	 * If screen objects are used, we can allocate a GMR to hold the
1433 	 * requested framebuffer.
1434 	 */
1435 
1436 	if (!vmw_kms_validate_mode_vram(dev_priv,
1437 					mode_cmd->pitches[0],
1438 					mode_cmd->height)) {
1439 		DRM_ERROR("Requested mode exceed bounding box limit.\n");
1440 		return ERR_PTR(-ENOMEM);
1441 	}
1442 
1443 	/*
1444 	 * Take a reference on the user object of the resource
1445 	 * backing the kms fb. This ensures that user-space handle
1446 	 * lookups on that resource will always work as long as
1447 	 * it's registered with a kms framebuffer. This is important,
1448 	 * since vmw_execbuf_process identifies resources in the
1449 	 * command stream using user-space handles.
1450 	 */
1451 
1452 	user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1453 	if (unlikely(user_obj == NULL)) {
1454 		DRM_ERROR("Could not locate requested kms frame buffer.\n");
1455 		return ERR_PTR(-ENOENT);
1456 	}
1457 
1458 	/**
1459 	 * End conditioned code.
1460 	 */
1461 
1462 	/* returns either a dmabuf or surface */
1463 	ret = vmw_user_lookup_handle(dev_priv, tfile,
1464 				     mode_cmd->handles[0],
1465 				     &surface, &bo);
1466 	if (ret)
1467 		goto err_out;
1468 
1469 
1470 	if (!bo &&
1471 	    !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1472 		DRM_ERROR("Surface size cannot exceed %dx%d",
1473 			dev_priv->texture_max_width,
1474 			dev_priv->texture_max_height);
1475 		goto err_out;
1476 	}
1477 
1478 
1479 	vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1480 				      !(dev_priv->capabilities & SVGA_CAP_3D),
1481 				      mode_cmd);
1482 	if (IS_ERR(vfb)) {
1483 		ret = PTR_ERR(vfb);
1484 		goto err_out;
1485  	}
1486 
1487 err_out:
1488 	/* vmw_user_lookup_handle takes one ref so does new_fb */
1489 	if (bo)
1490 		vmw_dmabuf_unreference(&bo);
1491 	if (surface)
1492 		vmw_surface_unreference(&surface);
1493 
1494 	if (ret) {
1495 		DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1496 		ttm_base_object_unref(&user_obj);
1497 		return ERR_PTR(ret);
1498 	} else
1499 		vfb->user_obj = user_obj;
1500 
1501 	return &vfb->base;
1502 }
1503 
1504 
1505 
1506 /**
1507  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1508  *
1509  * @dev: DRM device
1510  * @state: the driver state object
1511  *
1512  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1513  * us to assign a value to mode->crtc_clock so that
1514  * drm_calc_timestamping_constants() won't throw an error message
1515  *
1516  * RETURNS
1517  * Zero for success or -errno
1518  */
1519 static int
1520 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1521 			     struct drm_atomic_state *state)
1522 {
1523 	struct drm_crtc_state *crtc_state;
1524 	struct drm_crtc *crtc;
1525 	struct vmw_private *dev_priv = vmw_priv(dev);
1526 	int i;
1527 
1528 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1529 		unsigned long requested_bb_mem = 0;
1530 
1531 		if (dev_priv->active_display_unit == vmw_du_screen_target) {
1532 			if (crtc->primary->fb) {
1533 				int cpp = crtc->primary->fb->pitches[0] /
1534 					  crtc->primary->fb->width;
1535 
1536 				requested_bb_mem += crtc->mode.hdisplay * cpp *
1537 						    crtc->mode.vdisplay;
1538 			}
1539 
1540 			if (requested_bb_mem > dev_priv->prim_bb_mem)
1541 				return -EINVAL;
1542 		}
1543 	}
1544 
1545 	return drm_atomic_helper_check(dev, state);
1546 }
1547 
1548 
1549 /**
1550  * vmw_kms_atomic_commit - Perform an atomic state commit
1551  *
1552  * @dev: DRM device
1553  * @state: the driver state object
1554  * @nonblock: Whether nonblocking behaviour is requested
1555  *
1556  * This is a simple wrapper around drm_atomic_helper_commit() for
1557  * us to clear the nonblocking value.
1558  *
1559  * Nonblocking commits currently cause synchronization issues
1560  * for vmwgfx.
1561  *
1562  * RETURNS
1563  * Zero for success or negative error code on failure.
1564  */
1565 int vmw_kms_atomic_commit(struct drm_device *dev,
1566 			  struct drm_atomic_state *state,
1567 			  bool nonblock)
1568 {
1569 	return drm_atomic_helper_commit(dev, state, false);
1570 }
1571 
1572 
1573 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1574 	.fb_create = vmw_kms_fb_create,
1575 	.atomic_check = vmw_kms_atomic_check_modeset,
1576 	.atomic_commit = vmw_kms_atomic_commit,
1577 };
1578 
1579 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1580 				   struct drm_file *file_priv,
1581 				   struct vmw_framebuffer *vfb,
1582 				   struct vmw_surface *surface,
1583 				   uint32_t sid,
1584 				   int32_t destX, int32_t destY,
1585 				   struct drm_vmw_rect *clips,
1586 				   uint32_t num_clips)
1587 {
1588 	return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1589 					    &surface->res, destX, destY,
1590 					    num_clips, 1, NULL);
1591 }
1592 
1593 
1594 int vmw_kms_present(struct vmw_private *dev_priv,
1595 		    struct drm_file *file_priv,
1596 		    struct vmw_framebuffer *vfb,
1597 		    struct vmw_surface *surface,
1598 		    uint32_t sid,
1599 		    int32_t destX, int32_t destY,
1600 		    struct drm_vmw_rect *clips,
1601 		    uint32_t num_clips)
1602 {
1603 	int ret;
1604 
1605 	switch (dev_priv->active_display_unit) {
1606 	case vmw_du_screen_target:
1607 		ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1608 						 &surface->res, destX, destY,
1609 						 num_clips, 1, NULL);
1610 		break;
1611 	case vmw_du_screen_object:
1612 		ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1613 					      sid, destX, destY, clips,
1614 					      num_clips);
1615 		break;
1616 	default:
1617 		WARN_ONCE(true,
1618 			  "Present called with invalid display system.\n");
1619 		ret = -ENOSYS;
1620 		break;
1621 	}
1622 	if (ret)
1623 		return ret;
1624 
1625 	vmw_fifo_flush(dev_priv, false);
1626 
1627 	return 0;
1628 }
1629 
1630 static void
1631 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1632 {
1633 	if (dev_priv->hotplug_mode_update_property)
1634 		return;
1635 
1636 	dev_priv->hotplug_mode_update_property =
1637 		drm_property_create_range(dev_priv->dev,
1638 					  DRM_MODE_PROP_IMMUTABLE,
1639 					  "hotplug_mode_update", 0, 1);
1640 
1641 	if (!dev_priv->hotplug_mode_update_property)
1642 		return;
1643 
1644 }
1645 
1646 int vmw_kms_init(struct vmw_private *dev_priv)
1647 {
1648 	struct drm_device *dev = dev_priv->dev;
1649 	int ret;
1650 
1651 	drm_mode_config_init(dev);
1652 	dev->mode_config.funcs = &vmw_kms_funcs;
1653 	dev->mode_config.min_width = 1;
1654 	dev->mode_config.min_height = 1;
1655 	dev->mode_config.max_width = dev_priv->texture_max_width;
1656 	dev->mode_config.max_height = dev_priv->texture_max_height;
1657 
1658 	drm_mode_create_suggested_offset_properties(dev);
1659 	vmw_kms_create_hotplug_mode_update_property(dev_priv);
1660 
1661 	ret = vmw_kms_stdu_init_display(dev_priv);
1662 	if (ret) {
1663 		ret = vmw_kms_sou_init_display(dev_priv);
1664 		if (ret) /* Fallback */
1665 			ret = vmw_kms_ldu_init_display(dev_priv);
1666 	}
1667 
1668 	return ret;
1669 }
1670 
1671 int vmw_kms_close(struct vmw_private *dev_priv)
1672 {
1673 	int ret = 0;
1674 
1675 	/*
1676 	 * Docs says we should take the lock before calling this function
1677 	 * but since it destroys encoders and our destructor calls
1678 	 * drm_encoder_cleanup which takes the lock we deadlock.
1679 	 */
1680 	drm_mode_config_cleanup(dev_priv->dev);
1681 	if (dev_priv->active_display_unit == vmw_du_legacy)
1682 		ret = vmw_kms_ldu_close_display(dev_priv);
1683 
1684 	return ret;
1685 }
1686 
1687 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1688 				struct drm_file *file_priv)
1689 {
1690 	struct drm_vmw_cursor_bypass_arg *arg = data;
1691 	struct vmw_display_unit *du;
1692 	struct drm_crtc *crtc;
1693 	int ret = 0;
1694 
1695 
1696 	mutex_lock(&dev->mode_config.mutex);
1697 	if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1698 
1699 		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1700 			du = vmw_crtc_to_du(crtc);
1701 			du->hotspot_x = arg->xhot;
1702 			du->hotspot_y = arg->yhot;
1703 		}
1704 
1705 		mutex_unlock(&dev->mode_config.mutex);
1706 		return 0;
1707 	}
1708 
1709 	crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
1710 	if (!crtc) {
1711 		ret = -ENOENT;
1712 		goto out;
1713 	}
1714 
1715 	du = vmw_crtc_to_du(crtc);
1716 
1717 	du->hotspot_x = arg->xhot;
1718 	du->hotspot_y = arg->yhot;
1719 
1720 out:
1721 	mutex_unlock(&dev->mode_config.mutex);
1722 
1723 	return ret;
1724 }
1725 
1726 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1727 			unsigned width, unsigned height, unsigned pitch,
1728 			unsigned bpp, unsigned depth)
1729 {
1730 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1731 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1732 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1733 		vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1734 			       SVGA_FIFO_PITCHLOCK);
1735 	vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1736 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1737 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1738 
1739 	if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1740 		DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1741 			  depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1742 		return -EINVAL;
1743 	}
1744 
1745 	return 0;
1746 }
1747 
1748 int vmw_kms_save_vga(struct vmw_private *vmw_priv)
1749 {
1750 	struct vmw_vga_topology_state *save;
1751 	uint32_t i;
1752 
1753 	vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH);
1754 	vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT);
1755 	vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL);
1756 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1757 		vmw_priv->vga_pitchlock =
1758 		  vmw_read(vmw_priv, SVGA_REG_PITCHLOCK);
1759 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1760 		vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt +
1761 							SVGA_FIFO_PITCHLOCK);
1762 
1763 	if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1764 		return 0;
1765 
1766 	vmw_priv->num_displays = vmw_read(vmw_priv,
1767 					  SVGA_REG_NUM_GUEST_DISPLAYS);
1768 
1769 	if (vmw_priv->num_displays == 0)
1770 		vmw_priv->num_displays = 1;
1771 
1772 	for (i = 0; i < vmw_priv->num_displays; ++i) {
1773 		save = &vmw_priv->vga_save[i];
1774 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1775 		save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY);
1776 		save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X);
1777 		save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y);
1778 		save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH);
1779 		save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT);
1780 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1781 		if (i == 0 && vmw_priv->num_displays == 1 &&
1782 		    save->width == 0 && save->height == 0) {
1783 
1784 			/*
1785 			 * It should be fairly safe to assume that these
1786 			 * values are uninitialized.
1787 			 */
1788 
1789 			save->width = vmw_priv->vga_width - save->pos_x;
1790 			save->height = vmw_priv->vga_height - save->pos_y;
1791 		}
1792 	}
1793 
1794 	return 0;
1795 }
1796 
1797 int vmw_kms_restore_vga(struct vmw_private *vmw_priv)
1798 {
1799 	struct vmw_vga_topology_state *save;
1800 	uint32_t i;
1801 
1802 	vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width);
1803 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height);
1804 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp);
1805 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1806 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK,
1807 			  vmw_priv->vga_pitchlock);
1808 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1809 		vmw_mmio_write(vmw_priv->vga_pitchlock,
1810 			       vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK);
1811 
1812 	if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1813 		return 0;
1814 
1815 	for (i = 0; i < vmw_priv->num_displays; ++i) {
1816 		save = &vmw_priv->vga_save[i];
1817 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1818 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary);
1819 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x);
1820 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y);
1821 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width);
1822 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height);
1823 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1824 	}
1825 
1826 	return 0;
1827 }
1828 
1829 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1830 				uint32_t pitch,
1831 				uint32_t height)
1832 {
1833 	return ((u64) pitch * (u64) height) < (u64)
1834 		((dev_priv->active_display_unit == vmw_du_screen_target) ?
1835 		 dev_priv->prim_bb_mem : dev_priv->vram_size);
1836 }
1837 
1838 
1839 /**
1840  * Function called by DRM code called with vbl_lock held.
1841  */
1842 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
1843 {
1844 	return 0;
1845 }
1846 
1847 /**
1848  * Function called by DRM code called with vbl_lock held.
1849  */
1850 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe)
1851 {
1852 	return -EINVAL;
1853 }
1854 
1855 /**
1856  * Function called by DRM code called with vbl_lock held.
1857  */
1858 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe)
1859 {
1860 }
1861 
1862 
1863 /*
1864  * Small shared kms functions.
1865  */
1866 
1867 static int vmw_du_update_layout(struct vmw_private *dev_priv, unsigned num,
1868 			 struct drm_vmw_rect *rects)
1869 {
1870 	struct drm_device *dev = dev_priv->dev;
1871 	struct vmw_display_unit *du;
1872 	struct drm_connector *con;
1873 
1874 	mutex_lock(&dev->mode_config.mutex);
1875 
1876 #if 0
1877 	{
1878 		unsigned int i;
1879 
1880 		DRM_INFO("%s: new layout ", __func__);
1881 		for (i = 0; i < num; i++)
1882 			DRM_INFO("(%i, %i %ux%u) ", rects[i].x, rects[i].y,
1883 				 rects[i].w, rects[i].h);
1884 		DRM_INFO("\n");
1885 	}
1886 #endif
1887 
1888 	list_for_each_entry(con, &dev->mode_config.connector_list, head) {
1889 		du = vmw_connector_to_du(con);
1890 		if (num > du->unit) {
1891 			du->pref_width = rects[du->unit].w;
1892 			du->pref_height = rects[du->unit].h;
1893 			du->pref_active = true;
1894 			du->gui_x = rects[du->unit].x;
1895 			du->gui_y = rects[du->unit].y;
1896 			drm_object_property_set_value
1897 			  (&con->base, dev->mode_config.suggested_x_property,
1898 			   du->gui_x);
1899 			drm_object_property_set_value
1900 			  (&con->base, dev->mode_config.suggested_y_property,
1901 			   du->gui_y);
1902 		} else {
1903 			du->pref_width = 800;
1904 			du->pref_height = 600;
1905 			du->pref_active = false;
1906 			drm_object_property_set_value
1907 			  (&con->base, dev->mode_config.suggested_x_property,
1908 			   0);
1909 			drm_object_property_set_value
1910 			  (&con->base, dev->mode_config.suggested_y_property,
1911 			   0);
1912 		}
1913 		con->status = vmw_du_connector_detect(con, true);
1914 	}
1915 
1916 	mutex_unlock(&dev->mode_config.mutex);
1917 	drm_sysfs_hotplug_event(dev);
1918 
1919 	return 0;
1920 }
1921 
1922 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
1923 			  u16 *r, u16 *g, u16 *b,
1924 			  uint32_t size,
1925 			  struct drm_modeset_acquire_ctx *ctx)
1926 {
1927 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
1928 	int i;
1929 
1930 	for (i = 0; i < size; i++) {
1931 		DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
1932 			  r[i], g[i], b[i]);
1933 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
1934 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
1935 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
1936 	}
1937 
1938 	return 0;
1939 }
1940 
1941 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
1942 {
1943 	return 0;
1944 }
1945 
1946 enum drm_connector_status
1947 vmw_du_connector_detect(struct drm_connector *connector, bool force)
1948 {
1949 	uint32_t num_displays;
1950 	struct drm_device *dev = connector->dev;
1951 	struct vmw_private *dev_priv = vmw_priv(dev);
1952 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
1953 
1954 	num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
1955 
1956 	return ((vmw_connector_to_du(connector)->unit < num_displays &&
1957 		 du->pref_active) ?
1958 		connector_status_connected : connector_status_disconnected);
1959 }
1960 
1961 static struct drm_display_mode vmw_kms_connector_builtin[] = {
1962 	/* 640x480@60Hz */
1963 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
1964 		   752, 800, 0, 480, 489, 492, 525, 0,
1965 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1966 	/* 800x600@60Hz */
1967 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
1968 		   968, 1056, 0, 600, 601, 605, 628, 0,
1969 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1970 	/* 1024x768@60Hz */
1971 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1972 		   1184, 1344, 0, 768, 771, 777, 806, 0,
1973 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1974 	/* 1152x864@75Hz */
1975 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1976 		   1344, 1600, 0, 864, 865, 868, 900, 0,
1977 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1978 	/* 1280x768@60Hz */
1979 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
1980 		   1472, 1664, 0, 768, 771, 778, 798, 0,
1981 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1982 	/* 1280x800@60Hz */
1983 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
1984 		   1480, 1680, 0, 800, 803, 809, 831, 0,
1985 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1986 	/* 1280x960@60Hz */
1987 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
1988 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
1989 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1990 	/* 1280x1024@60Hz */
1991 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
1992 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
1993 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1994 	/* 1360x768@60Hz */
1995 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
1996 		   1536, 1792, 0, 768, 771, 777, 795, 0,
1997 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1998 	/* 1440x1050@60Hz */
1999 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2000 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2001 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2002 	/* 1440x900@60Hz */
2003 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2004 		   1672, 1904, 0, 900, 903, 909, 934, 0,
2005 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2006 	/* 1600x1200@60Hz */
2007 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2008 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2009 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2010 	/* 1680x1050@60Hz */
2011 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2012 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2013 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2014 	/* 1792x1344@60Hz */
2015 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2016 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2017 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2018 	/* 1853x1392@60Hz */
2019 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2020 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2021 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2022 	/* 1920x1200@60Hz */
2023 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2024 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2025 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2026 	/* 1920x1440@60Hz */
2027 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2028 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2029 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2030 	/* 2560x1600@60Hz */
2031 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2032 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2033 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2034 	/* Terminate */
2035 	{ DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2036 };
2037 
2038 /**
2039  * vmw_guess_mode_timing - Provide fake timings for a
2040  * 60Hz vrefresh mode.
2041  *
2042  * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2043  * members filled in.
2044  */
2045 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2046 {
2047 	mode->hsync_start = mode->hdisplay + 50;
2048 	mode->hsync_end = mode->hsync_start + 50;
2049 	mode->htotal = mode->hsync_end + 50;
2050 
2051 	mode->vsync_start = mode->vdisplay + 50;
2052 	mode->vsync_end = mode->vsync_start + 50;
2053 	mode->vtotal = mode->vsync_end + 50;
2054 
2055 	mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2056 	mode->vrefresh = drm_mode_vrefresh(mode);
2057 }
2058 
2059 
2060 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2061 				uint32_t max_width, uint32_t max_height)
2062 {
2063 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2064 	struct drm_device *dev = connector->dev;
2065 	struct vmw_private *dev_priv = vmw_priv(dev);
2066 	struct drm_display_mode *mode = NULL;
2067 	struct drm_display_mode *bmode;
2068 	struct drm_display_mode prefmode = { DRM_MODE("preferred",
2069 		DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2070 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2071 		DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2072 	};
2073 	int i;
2074 	u32 assumed_bpp = 4;
2075 
2076 	if (dev_priv->assume_16bpp)
2077 		assumed_bpp = 2;
2078 
2079 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2080 		max_width  = min(max_width,  dev_priv->stdu_max_width);
2081 		max_width  = min(max_width,  dev_priv->texture_max_width);
2082 
2083 		max_height = min(max_height, dev_priv->stdu_max_height);
2084 		max_height = min(max_height, dev_priv->texture_max_height);
2085 	}
2086 
2087 	/* Add preferred mode */
2088 	mode = drm_mode_duplicate(dev, &prefmode);
2089 	if (!mode)
2090 		return 0;
2091 	mode->hdisplay = du->pref_width;
2092 	mode->vdisplay = du->pref_height;
2093 	vmw_guess_mode_timing(mode);
2094 
2095 	if (vmw_kms_validate_mode_vram(dev_priv,
2096 					mode->hdisplay * assumed_bpp,
2097 					mode->vdisplay)) {
2098 		drm_mode_probed_add(connector, mode);
2099 	} else {
2100 		drm_mode_destroy(dev, mode);
2101 		mode = NULL;
2102 	}
2103 
2104 	if (du->pref_mode) {
2105 		list_del_init(&du->pref_mode->head);
2106 		drm_mode_destroy(dev, du->pref_mode);
2107 	}
2108 
2109 	/* mode might be null here, this is intended */
2110 	du->pref_mode = mode;
2111 
2112 	for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2113 		bmode = &vmw_kms_connector_builtin[i];
2114 		if (bmode->hdisplay > max_width ||
2115 		    bmode->vdisplay > max_height)
2116 			continue;
2117 
2118 		if (!vmw_kms_validate_mode_vram(dev_priv,
2119 						bmode->hdisplay * assumed_bpp,
2120 						bmode->vdisplay))
2121 			continue;
2122 
2123 		mode = drm_mode_duplicate(dev, bmode);
2124 		if (!mode)
2125 			return 0;
2126 		mode->vrefresh = drm_mode_vrefresh(mode);
2127 
2128 		drm_mode_probed_add(connector, mode);
2129 	}
2130 
2131 	drm_mode_connector_list_update(connector);
2132 	/* Move the prefered mode first, help apps pick the right mode. */
2133 	drm_mode_sort(&connector->modes);
2134 
2135 	return 1;
2136 }
2137 
2138 int vmw_du_connector_set_property(struct drm_connector *connector,
2139 				  struct drm_property *property,
2140 				  uint64_t val)
2141 {
2142 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2143 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2144 
2145 	if (property == dev_priv->implicit_placement_property)
2146 		du->is_implicit = val;
2147 
2148 	return 0;
2149 }
2150 
2151 
2152 
2153 /**
2154  * vmw_du_connector_atomic_set_property - Atomic version of get property
2155  *
2156  * @crtc - crtc the property is associated with
2157  *
2158  * Returns:
2159  * Zero on success, negative errno on failure.
2160  */
2161 int
2162 vmw_du_connector_atomic_set_property(struct drm_connector *connector,
2163 				     struct drm_connector_state *state,
2164 				     struct drm_property *property,
2165 				     uint64_t val)
2166 {
2167 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2168 	struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2169 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2170 
2171 
2172 	if (property == dev_priv->implicit_placement_property) {
2173 		vcs->is_implicit = val;
2174 
2175 		/*
2176 		 * We should really be doing a drm_atomic_commit() to
2177 		 * commit the new state, but since this doesn't cause
2178 		 * an immedate state change, this is probably ok
2179 		 */
2180 		du->is_implicit = vcs->is_implicit;
2181 	} else {
2182 		return -EINVAL;
2183 	}
2184 
2185 	return 0;
2186 }
2187 
2188 
2189 /**
2190  * vmw_du_connector_atomic_get_property - Atomic version of get property
2191  *
2192  * @connector - connector the property is associated with
2193  *
2194  * Returns:
2195  * Zero on success, negative errno on failure.
2196  */
2197 int
2198 vmw_du_connector_atomic_get_property(struct drm_connector *connector,
2199 				     const struct drm_connector_state *state,
2200 				     struct drm_property *property,
2201 				     uint64_t *val)
2202 {
2203 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2204 	struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2205 
2206 	if (property == dev_priv->implicit_placement_property)
2207 		*val = vcs->is_implicit;
2208 	else {
2209 		DRM_ERROR("Invalid Property %s\n", property->name);
2210 		return -EINVAL;
2211 	}
2212 
2213 	return 0;
2214 }
2215 
2216 
2217 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2218 				struct drm_file *file_priv)
2219 {
2220 	struct vmw_private *dev_priv = vmw_priv(dev);
2221 	struct drm_vmw_update_layout_arg *arg =
2222 		(struct drm_vmw_update_layout_arg *)data;
2223 	void __user *user_rects;
2224 	struct drm_vmw_rect *rects;
2225 	unsigned rects_size;
2226 	int ret;
2227 	int i;
2228 	u64 total_pixels = 0;
2229 	struct drm_mode_config *mode_config = &dev->mode_config;
2230 	struct drm_vmw_rect bounding_box = {0};
2231 
2232 	if (!arg->num_outputs) {
2233 		struct drm_vmw_rect def_rect = {0, 0, 800, 600};
2234 		vmw_du_update_layout(dev_priv, 1, &def_rect);
2235 		return 0;
2236 	}
2237 
2238 	rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2239 	rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2240 			GFP_KERNEL);
2241 	if (unlikely(!rects))
2242 		return -ENOMEM;
2243 
2244 	user_rects = (void __user *)(unsigned long)arg->rects;
2245 	ret = copy_from_user(rects, user_rects, rects_size);
2246 	if (unlikely(ret != 0)) {
2247 		DRM_ERROR("Failed to get rects.\n");
2248 		ret = -EFAULT;
2249 		goto out_free;
2250 	}
2251 
2252 	for (i = 0; i < arg->num_outputs; ++i) {
2253 		if (rects[i].x < 0 ||
2254 		    rects[i].y < 0 ||
2255 		    rects[i].x + rects[i].w > mode_config->max_width ||
2256 		    rects[i].y + rects[i].h > mode_config->max_height) {
2257 			DRM_ERROR("Invalid GUI layout.\n");
2258 			ret = -EINVAL;
2259 			goto out_free;
2260 		}
2261 
2262 		/*
2263 		 * bounding_box.w and bunding_box.h are used as
2264 		 * lower-right coordinates
2265 		 */
2266 		if (rects[i].x + rects[i].w > bounding_box.w)
2267 			bounding_box.w = rects[i].x + rects[i].w;
2268 
2269 		if (rects[i].y + rects[i].h > bounding_box.h)
2270 			bounding_box.h = rects[i].y + rects[i].h;
2271 
2272 		total_pixels += (u64) rects[i].w * (u64) rects[i].h;
2273 	}
2274 
2275 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2276 		/*
2277 		 * For Screen Targets, the limits for a toplogy are:
2278 		 *	1. Bounding box (assuming 32bpp) must be < prim_bb_mem
2279 		 *      2. Total pixels (assuming 32bpp) must be < prim_bb_mem
2280 		 */
2281 		u64 bb_mem    = (u64) bounding_box.w * bounding_box.h * 4;
2282 		u64 pixel_mem = total_pixels * 4;
2283 
2284 		if (bb_mem > dev_priv->prim_bb_mem) {
2285 			DRM_ERROR("Topology is beyond supported limits.\n");
2286 			ret = -EINVAL;
2287 			goto out_free;
2288 		}
2289 
2290 		if (pixel_mem > dev_priv->prim_bb_mem) {
2291 			DRM_ERROR("Combined output size too large\n");
2292 			ret = -EINVAL;
2293 			goto out_free;
2294 		}
2295 	}
2296 
2297 	vmw_du_update_layout(dev_priv, arg->num_outputs, rects);
2298 
2299 out_free:
2300 	kfree(rects);
2301 	return ret;
2302 }
2303 
2304 /**
2305  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2306  * on a set of cliprects and a set of display units.
2307  *
2308  * @dev_priv: Pointer to a device private structure.
2309  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2310  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2311  * Cliprects are given in framebuffer coordinates.
2312  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2313  * be NULL. Cliprects are given in source coordinates.
2314  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2315  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2316  * @num_clips: Number of cliprects in the @clips or @vclips array.
2317  * @increment: Integer with which to increment the clip counter when looping.
2318  * Used to skip a predetermined number of clip rects.
2319  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2320  */
2321 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2322 			 struct vmw_framebuffer *framebuffer,
2323 			 const struct drm_clip_rect *clips,
2324 			 const struct drm_vmw_rect *vclips,
2325 			 s32 dest_x, s32 dest_y,
2326 			 int num_clips,
2327 			 int increment,
2328 			 struct vmw_kms_dirty *dirty)
2329 {
2330 	struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2331 	struct drm_crtc *crtc;
2332 	u32 num_units = 0;
2333 	u32 i, k;
2334 
2335 	dirty->dev_priv = dev_priv;
2336 
2337 	list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, head) {
2338 		if (crtc->primary->fb != &framebuffer->base)
2339 			continue;
2340 		units[num_units++] = vmw_crtc_to_du(crtc);
2341 	}
2342 
2343 	for (k = 0; k < num_units; k++) {
2344 		struct vmw_display_unit *unit = units[k];
2345 		s32 crtc_x = unit->crtc.x;
2346 		s32 crtc_y = unit->crtc.y;
2347 		s32 crtc_width = unit->crtc.mode.hdisplay;
2348 		s32 crtc_height = unit->crtc.mode.vdisplay;
2349 		const struct drm_clip_rect *clips_ptr = clips;
2350 		const struct drm_vmw_rect *vclips_ptr = vclips;
2351 
2352 		dirty->unit = unit;
2353 		if (dirty->fifo_reserve_size > 0) {
2354 			dirty->cmd = vmw_fifo_reserve(dev_priv,
2355 						      dirty->fifo_reserve_size);
2356 			if (!dirty->cmd) {
2357 				DRM_ERROR("Couldn't reserve fifo space "
2358 					  "for dirty blits.\n");
2359 				return -ENOMEM;
2360 			}
2361 			memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2362 		}
2363 		dirty->num_hits = 0;
2364 		for (i = 0; i < num_clips; i++, clips_ptr += increment,
2365 		       vclips_ptr += increment) {
2366 			s32 clip_left;
2367 			s32 clip_top;
2368 
2369 			/*
2370 			 * Select clip array type. Note that integer type
2371 			 * in @clips is unsigned short, whereas in @vclips
2372 			 * it's 32-bit.
2373 			 */
2374 			if (clips) {
2375 				dirty->fb_x = (s32) clips_ptr->x1;
2376 				dirty->fb_y = (s32) clips_ptr->y1;
2377 				dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2378 					crtc_x;
2379 				dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2380 					crtc_y;
2381 			} else {
2382 				dirty->fb_x = vclips_ptr->x;
2383 				dirty->fb_y = vclips_ptr->y;
2384 				dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2385 					dest_x - crtc_x;
2386 				dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2387 					dest_y - crtc_y;
2388 			}
2389 
2390 			dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2391 			dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2392 
2393 			/* Skip this clip if it's outside the crtc region */
2394 			if (dirty->unit_x1 >= crtc_width ||
2395 			    dirty->unit_y1 >= crtc_height ||
2396 			    dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2397 				continue;
2398 
2399 			/* Clip right and bottom to crtc limits */
2400 			dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2401 					       crtc_width);
2402 			dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2403 					       crtc_height);
2404 
2405 			/* Clip left and top to crtc limits */
2406 			clip_left = min_t(s32, dirty->unit_x1, 0);
2407 			clip_top = min_t(s32, dirty->unit_y1, 0);
2408 			dirty->unit_x1 -= clip_left;
2409 			dirty->unit_y1 -= clip_top;
2410 			dirty->fb_x -= clip_left;
2411 			dirty->fb_y -= clip_top;
2412 
2413 			dirty->clip(dirty);
2414 		}
2415 
2416 		dirty->fifo_commit(dirty);
2417 	}
2418 
2419 	return 0;
2420 }
2421 
2422 /**
2423  * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before
2424  * command submission.
2425  *
2426  * @dev_priv. Pointer to a device private structure.
2427  * @buf: The buffer object
2428  * @interruptible: Whether to perform waits as interruptible.
2429  * @validate_as_mob: Whether the buffer should be validated as a MOB. If false,
2430  * The buffer will be validated as a GMR. Already pinned buffers will not be
2431  * validated.
2432  *
2433  * Returns 0 on success, negative error code on failure, -ERESTARTSYS if
2434  * interrupted by a signal.
2435  */
2436 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv,
2437 				  struct vmw_dma_buffer *buf,
2438 				  bool interruptible,
2439 				  bool validate_as_mob)
2440 {
2441 	struct ttm_buffer_object *bo = &buf->base;
2442 	int ret;
2443 
2444 	ttm_bo_reserve(bo, false, false, NULL);
2445 	ret = vmw_validate_single_buffer(dev_priv, bo, interruptible,
2446 					 validate_as_mob);
2447 	if (ret)
2448 		ttm_bo_unreserve(bo);
2449 
2450 	return ret;
2451 }
2452 
2453 /**
2454  * vmw_kms_helper_buffer_revert - Undo the actions of
2455  * vmw_kms_helper_buffer_prepare.
2456  *
2457  * @res: Pointer to the buffer object.
2458  *
2459  * Helper to be used if an error forces the caller to undo the actions of
2460  * vmw_kms_helper_buffer_prepare.
2461  */
2462 void vmw_kms_helper_buffer_revert(struct vmw_dma_buffer *buf)
2463 {
2464 	if (buf)
2465 		ttm_bo_unreserve(&buf->base);
2466 }
2467 
2468 /**
2469  * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after
2470  * kms command submission.
2471  *
2472  * @dev_priv: Pointer to a device private structure.
2473  * @file_priv: Pointer to a struct drm_file representing the caller's
2474  * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely
2475  * if non-NULL, @user_fence_rep must be non-NULL.
2476  * @buf: The buffer object.
2477  * @out_fence:  Optional pointer to a fence pointer. If non-NULL, a
2478  * ref-counted fence pointer is returned here.
2479  * @user_fence_rep: Optional pointer to a user-space provided struct
2480  * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the
2481  * function copies fence data to user-space in a fail-safe manner.
2482  */
2483 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv,
2484 				  struct drm_file *file_priv,
2485 				  struct vmw_dma_buffer *buf,
2486 				  struct vmw_fence_obj **out_fence,
2487 				  struct drm_vmw_fence_rep __user *
2488 				  user_fence_rep)
2489 {
2490 	struct vmw_fence_obj *fence;
2491 	uint32_t handle;
2492 	int ret;
2493 
2494 	ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2495 					 file_priv ? &handle : NULL);
2496 	if (buf)
2497 		vmw_fence_single_bo(&buf->base, fence);
2498 	if (file_priv)
2499 		vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2500 					    ret, user_fence_rep, fence,
2501 					    handle, -1, NULL);
2502 	if (out_fence)
2503 		*out_fence = fence;
2504 	else
2505 		vmw_fence_obj_unreference(&fence);
2506 
2507 	vmw_kms_helper_buffer_revert(buf);
2508 }
2509 
2510 
2511 /**
2512  * vmw_kms_helper_resource_revert - Undo the actions of
2513  * vmw_kms_helper_resource_prepare.
2514  *
2515  * @res: Pointer to the resource. Typically a surface.
2516  *
2517  * Helper to be used if an error forces the caller to undo the actions of
2518  * vmw_kms_helper_resource_prepare.
2519  */
2520 void vmw_kms_helper_resource_revert(struct vmw_resource *res)
2521 {
2522 	vmw_kms_helper_buffer_revert(res->backup);
2523 	vmw_resource_unreserve(res, false, NULL, 0);
2524 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2525 }
2526 
2527 /**
2528  * vmw_kms_helper_resource_prepare - Reserve and validate a resource before
2529  * command submission.
2530  *
2531  * @res: Pointer to the resource. Typically a surface.
2532  * @interruptible: Whether to perform waits as interruptible.
2533  *
2534  * Reserves and validates also the backup buffer if a guest-backed resource.
2535  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
2536  * interrupted by a signal.
2537  */
2538 int vmw_kms_helper_resource_prepare(struct vmw_resource *res,
2539 				    bool interruptible)
2540 {
2541 	int ret = 0;
2542 
2543 	if (interruptible)
2544 		ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex);
2545 	else
2546 		mutex_lock(&res->dev_priv->cmdbuf_mutex);
2547 
2548 	if (unlikely(ret != 0))
2549 		return -ERESTARTSYS;
2550 
2551 	ret = vmw_resource_reserve(res, interruptible, false);
2552 	if (ret)
2553 		goto out_unlock;
2554 
2555 	if (res->backup) {
2556 		ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup,
2557 						    interruptible,
2558 						    res->dev_priv->has_mob);
2559 		if (ret)
2560 			goto out_unreserve;
2561 	}
2562 	ret = vmw_resource_validate(res);
2563 	if (ret)
2564 		goto out_revert;
2565 	return 0;
2566 
2567 out_revert:
2568 	vmw_kms_helper_buffer_revert(res->backup);
2569 out_unreserve:
2570 	vmw_resource_unreserve(res, false, NULL, 0);
2571 out_unlock:
2572 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2573 	return ret;
2574 }
2575 
2576 /**
2577  * vmw_kms_helper_resource_finish - Unreserve and fence a resource after
2578  * kms command submission.
2579  *
2580  * @res: Pointer to the resource. Typically a surface.
2581  * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2582  * ref-counted fence pointer is returned here.
2583  */
2584 void vmw_kms_helper_resource_finish(struct vmw_resource *res,
2585 			     struct vmw_fence_obj **out_fence)
2586 {
2587 	if (res->backup || out_fence)
2588 		vmw_kms_helper_buffer_finish(res->dev_priv, NULL, res->backup,
2589 					     out_fence, NULL);
2590 
2591 	vmw_resource_unreserve(res, false, NULL, 0);
2592 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2593 }
2594 
2595 /**
2596  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2597  * its backing MOB.
2598  *
2599  * @res: Pointer to the surface resource
2600  * @clips: Clip rects in framebuffer (surface) space.
2601  * @num_clips: Number of clips in @clips.
2602  * @increment: Integer with which to increment the clip counter when looping.
2603  * Used to skip a predetermined number of clip rects.
2604  *
2605  * This function makes sure the proxy surface is updated from its backing MOB
2606  * using the region given by @clips. The surface resource @res and its backing
2607  * MOB needs to be reserved and validated on call.
2608  */
2609 int vmw_kms_update_proxy(struct vmw_resource *res,
2610 			 const struct drm_clip_rect *clips,
2611 			 unsigned num_clips,
2612 			 int increment)
2613 {
2614 	struct vmw_private *dev_priv = res->dev_priv;
2615 	struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size;
2616 	struct {
2617 		SVGA3dCmdHeader header;
2618 		SVGA3dCmdUpdateGBImage body;
2619 	} *cmd;
2620 	SVGA3dBox *box;
2621 	size_t copy_size = 0;
2622 	int i;
2623 
2624 	if (!clips)
2625 		return 0;
2626 
2627 	cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips);
2628 	if (!cmd) {
2629 		DRM_ERROR("Couldn't reserve fifo space for proxy surface "
2630 			  "update.\n");
2631 		return -ENOMEM;
2632 	}
2633 
2634 	for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2635 		box = &cmd->body.box;
2636 
2637 		cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2638 		cmd->header.size = sizeof(cmd->body);
2639 		cmd->body.image.sid = res->id;
2640 		cmd->body.image.face = 0;
2641 		cmd->body.image.mipmap = 0;
2642 
2643 		if (clips->x1 > size->width || clips->x2 > size->width ||
2644 		    clips->y1 > size->height || clips->y2 > size->height) {
2645 			DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2646 			return -EINVAL;
2647 		}
2648 
2649 		box->x = clips->x1;
2650 		box->y = clips->y1;
2651 		box->z = 0;
2652 		box->w = clips->x2 - clips->x1;
2653 		box->h = clips->y2 - clips->y1;
2654 		box->d = 1;
2655 
2656 		copy_size += sizeof(*cmd);
2657 	}
2658 
2659 	vmw_fifo_commit(dev_priv, copy_size);
2660 
2661 	return 0;
2662 }
2663 
2664 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2665 			    unsigned unit,
2666 			    u32 max_width,
2667 			    u32 max_height,
2668 			    struct drm_connector **p_con,
2669 			    struct drm_crtc **p_crtc,
2670 			    struct drm_display_mode **p_mode)
2671 {
2672 	struct drm_connector *con;
2673 	struct vmw_display_unit *du;
2674 	struct drm_display_mode *mode;
2675 	int i = 0;
2676 
2677 	list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2678 			    head) {
2679 		if (i == unit)
2680 			break;
2681 
2682 		++i;
2683 	}
2684 
2685 	if (i != unit) {
2686 		DRM_ERROR("Could not find initial display unit.\n");
2687 		return -EINVAL;
2688 	}
2689 
2690 	if (list_empty(&con->modes))
2691 		(void) vmw_du_connector_fill_modes(con, max_width, max_height);
2692 
2693 	if (list_empty(&con->modes)) {
2694 		DRM_ERROR("Could not find initial display mode.\n");
2695 		return -EINVAL;
2696 	}
2697 
2698 	du = vmw_connector_to_du(con);
2699 	*p_con = con;
2700 	*p_crtc = &du->crtc;
2701 
2702 	list_for_each_entry(mode, &con->modes, head) {
2703 		if (mode->type & DRM_MODE_TYPE_PREFERRED)
2704 			break;
2705 	}
2706 
2707 	if (mode->type & DRM_MODE_TYPE_PREFERRED)
2708 		*p_mode = mode;
2709 	else {
2710 		WARN_ONCE(true, "Could not find initial preferred mode.\n");
2711 		*p_mode = list_first_entry(&con->modes,
2712 					   struct drm_display_mode,
2713 					   head);
2714 	}
2715 
2716 	return 0;
2717 }
2718 
2719 /**
2720  * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer
2721  *
2722  * @dev_priv: Pointer to a device private struct.
2723  * @du: The display unit of the crtc.
2724  */
2725 void vmw_kms_del_active(struct vmw_private *dev_priv,
2726 			struct vmw_display_unit *du)
2727 {
2728 	mutex_lock(&dev_priv->global_kms_state_mutex);
2729 	if (du->active_implicit) {
2730 		if (--(dev_priv->num_implicit) == 0)
2731 			dev_priv->implicit_fb = NULL;
2732 		du->active_implicit = false;
2733 	}
2734 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2735 }
2736 
2737 /**
2738  * vmw_kms_add_active - register a crtc binding to an implicit framebuffer
2739  *
2740  * @vmw_priv: Pointer to a device private struct.
2741  * @du: The display unit of the crtc.
2742  * @vfb: The implicit framebuffer
2743  *
2744  * Registers a binding to an implicit framebuffer.
2745  */
2746 void vmw_kms_add_active(struct vmw_private *dev_priv,
2747 			struct vmw_display_unit *du,
2748 			struct vmw_framebuffer *vfb)
2749 {
2750 	mutex_lock(&dev_priv->global_kms_state_mutex);
2751 	WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb);
2752 
2753 	if (!du->active_implicit && du->is_implicit) {
2754 		dev_priv->implicit_fb = vfb;
2755 		du->active_implicit = true;
2756 		dev_priv->num_implicit++;
2757 	}
2758 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2759 }
2760 
2761 /**
2762  * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc.
2763  *
2764  * @dev_priv: Pointer to device-private struct.
2765  * @crtc: The crtc we want to flip.
2766  *
2767  * Returns true or false depending whether it's OK to flip this crtc
2768  * based on the criterion that we must not have more than one implicit
2769  * frame-buffer at any one time.
2770  */
2771 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv,
2772 			    struct drm_crtc *crtc)
2773 {
2774 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2775 	bool ret;
2776 
2777 	mutex_lock(&dev_priv->global_kms_state_mutex);
2778 	ret = !du->is_implicit || dev_priv->num_implicit == 1;
2779 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2780 
2781 	return ret;
2782 }
2783 
2784 /**
2785  * vmw_kms_update_implicit_fb - Update the implicit fb.
2786  *
2787  * @dev_priv: Pointer to device-private struct.
2788  * @crtc: The crtc the new implicit frame-buffer is bound to.
2789  */
2790 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv,
2791 				struct drm_crtc *crtc)
2792 {
2793 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2794 	struct vmw_framebuffer *vfb;
2795 
2796 	mutex_lock(&dev_priv->global_kms_state_mutex);
2797 
2798 	if (!du->is_implicit)
2799 		goto out_unlock;
2800 
2801 	vfb = vmw_framebuffer_to_vfb(crtc->primary->fb);
2802 	WARN_ON_ONCE(dev_priv->num_implicit != 1 &&
2803 		     dev_priv->implicit_fb != vfb);
2804 
2805 	dev_priv->implicit_fb = vfb;
2806 out_unlock:
2807 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2808 }
2809 
2810 /**
2811  * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2812  * property.
2813  *
2814  * @dev_priv: Pointer to a device private struct.
2815  * @immutable: Whether the property is immutable.
2816  *
2817  * Sets up the implicit placement property unless it's already set up.
2818  */
2819 void
2820 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv,
2821 					   bool immutable)
2822 {
2823 	if (dev_priv->implicit_placement_property)
2824 		return;
2825 
2826 	dev_priv->implicit_placement_property =
2827 		drm_property_create_range(dev_priv->dev,
2828 					  immutable ?
2829 					  DRM_MODE_PROP_IMMUTABLE : 0,
2830 					  "implicit_placement", 0, 1);
2831 
2832 }
2833 
2834 
2835 /**
2836  * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config
2837  *
2838  * @set: The configuration to set.
2839  *
2840  * The vmwgfx Xorg driver doesn't assign the mode::type member, which
2841  * when drm_mode_set_crtcinfo is called as part of the configuration setting
2842  * causes it to return incorrect crtc dimensions causing severe problems in
2843  * the vmwgfx modesetting. So explicitly clear that member before calling
2844  * into drm_atomic_helper_set_config.
2845  */
2846 int vmw_kms_set_config(struct drm_mode_set *set,
2847 		       struct drm_modeset_acquire_ctx *ctx)
2848 {
2849 	if (set && set->mode)
2850 		set->mode->type = 0;
2851 
2852 	return drm_atomic_helper_set_config(set, ctx);
2853 }
2854