1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /************************************************************************** 3 * 4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include <drm/drm_atomic.h> 29 #include <drm/drm_atomic_helper.h> 30 #include <drm/drm_damage_helper.h> 31 #include <drm/drm_fourcc.h> 32 #include <drm/drm_plane_helper.h> 33 #include <drm/drm_rect.h> 34 #include <drm/drm_sysfs.h> 35 #include <drm/drm_vblank.h> 36 37 #include "vmwgfx_kms.h" 38 39 /* Might need a hrtimer here? */ 40 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1) 41 42 void vmw_du_cleanup(struct vmw_display_unit *du) 43 { 44 drm_plane_cleanup(&du->primary); 45 drm_plane_cleanup(&du->cursor); 46 47 drm_connector_unregister(&du->connector); 48 drm_crtc_cleanup(&du->crtc); 49 drm_encoder_cleanup(&du->encoder); 50 drm_connector_cleanup(&du->connector); 51 } 52 53 /* 54 * Display Unit Cursor functions 55 */ 56 57 static int vmw_cursor_update_image(struct vmw_private *dev_priv, 58 u32 *image, u32 width, u32 height, 59 u32 hotspotX, u32 hotspotY) 60 { 61 struct { 62 u32 cmd; 63 SVGAFifoCmdDefineAlphaCursor cursor; 64 } *cmd; 65 u32 image_size = width * height * 4; 66 u32 cmd_size = sizeof(*cmd) + image_size; 67 68 if (!image) 69 return -EINVAL; 70 71 cmd = VMW_FIFO_RESERVE(dev_priv, cmd_size); 72 if (unlikely(cmd == NULL)) 73 return -ENOMEM; 74 75 memset(cmd, 0, sizeof(*cmd)); 76 77 memcpy(&cmd[1], image, image_size); 78 79 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR; 80 cmd->cursor.id = 0; 81 cmd->cursor.width = width; 82 cmd->cursor.height = height; 83 cmd->cursor.hotspotX = hotspotX; 84 cmd->cursor.hotspotY = hotspotY; 85 86 vmw_fifo_commit_flush(dev_priv, cmd_size); 87 88 return 0; 89 } 90 91 static int vmw_cursor_update_bo(struct vmw_private *dev_priv, 92 struct vmw_buffer_object *bo, 93 u32 width, u32 height, 94 u32 hotspotX, u32 hotspotY) 95 { 96 struct ttm_bo_kmap_obj map; 97 unsigned long kmap_offset; 98 unsigned long kmap_num; 99 void *virtual; 100 bool dummy; 101 int ret; 102 103 kmap_offset = 0; 104 kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT; 105 106 ret = ttm_bo_reserve(&bo->base, true, false, NULL); 107 if (unlikely(ret != 0)) { 108 DRM_ERROR("reserve failed\n"); 109 return -EINVAL; 110 } 111 112 ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map); 113 if (unlikely(ret != 0)) 114 goto err_unreserve; 115 116 virtual = ttm_kmap_obj_virtual(&map, &dummy); 117 ret = vmw_cursor_update_image(dev_priv, virtual, width, height, 118 hotspotX, hotspotY); 119 120 ttm_bo_kunmap(&map); 121 err_unreserve: 122 ttm_bo_unreserve(&bo->base); 123 124 return ret; 125 } 126 127 128 static void vmw_cursor_update_position(struct vmw_private *dev_priv, 129 bool show, int x, int y) 130 { 131 u32 *fifo_mem = dev_priv->mmio_virt; 132 uint32_t count; 133 134 spin_lock(&dev_priv->cursor_lock); 135 vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON); 136 vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X); 137 vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y); 138 count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT); 139 vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT); 140 spin_unlock(&dev_priv->cursor_lock); 141 } 142 143 144 void vmw_kms_cursor_snoop(struct vmw_surface *srf, 145 struct ttm_object_file *tfile, 146 struct ttm_buffer_object *bo, 147 SVGA3dCmdHeader *header) 148 { 149 struct ttm_bo_kmap_obj map; 150 unsigned long kmap_offset; 151 unsigned long kmap_num; 152 SVGA3dCopyBox *box; 153 unsigned box_count; 154 void *virtual; 155 bool dummy; 156 struct vmw_dma_cmd { 157 SVGA3dCmdHeader header; 158 SVGA3dCmdSurfaceDMA dma; 159 } *cmd; 160 int i, ret; 161 162 cmd = container_of(header, struct vmw_dma_cmd, header); 163 164 /* No snooper installed */ 165 if (!srf->snooper.image) 166 return; 167 168 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) { 169 DRM_ERROR("face and mipmap for cursors should never != 0\n"); 170 return; 171 } 172 173 if (cmd->header.size < 64) { 174 DRM_ERROR("at least one full copy box must be given\n"); 175 return; 176 } 177 178 box = (SVGA3dCopyBox *)&cmd[1]; 179 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) / 180 sizeof(SVGA3dCopyBox); 181 182 if (cmd->dma.guest.ptr.offset % PAGE_SIZE || 183 box->x != 0 || box->y != 0 || box->z != 0 || 184 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 || 185 box->d != 1 || box_count != 1) { 186 /* TODO handle none page aligned offsets */ 187 /* TODO handle more dst & src != 0 */ 188 /* TODO handle more then one copy */ 189 DRM_ERROR("Can't snoop dma request for cursor!\n"); 190 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n", 191 box->srcx, box->srcy, box->srcz, 192 box->x, box->y, box->z, 193 box->w, box->h, box->d, box_count, 194 cmd->dma.guest.ptr.offset); 195 return; 196 } 197 198 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT; 199 kmap_num = (64*64*4) >> PAGE_SHIFT; 200 201 ret = ttm_bo_reserve(bo, true, false, NULL); 202 if (unlikely(ret != 0)) { 203 DRM_ERROR("reserve failed\n"); 204 return; 205 } 206 207 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map); 208 if (unlikely(ret != 0)) 209 goto err_unreserve; 210 211 virtual = ttm_kmap_obj_virtual(&map, &dummy); 212 213 if (box->w == 64 && cmd->dma.guest.pitch == 64*4) { 214 memcpy(srf->snooper.image, virtual, 64*64*4); 215 } else { 216 /* Image is unsigned pointer. */ 217 for (i = 0; i < box->h; i++) 218 memcpy(srf->snooper.image + i * 64, 219 virtual + i * cmd->dma.guest.pitch, 220 box->w * 4); 221 } 222 223 srf->snooper.age++; 224 225 ttm_bo_kunmap(&map); 226 err_unreserve: 227 ttm_bo_unreserve(bo); 228 } 229 230 /** 231 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots 232 * 233 * @dev_priv: Pointer to the device private struct. 234 * 235 * Clears all legacy hotspots. 236 */ 237 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv) 238 { 239 struct drm_device *dev = dev_priv->dev; 240 struct vmw_display_unit *du; 241 struct drm_crtc *crtc; 242 243 drm_modeset_lock_all(dev); 244 drm_for_each_crtc(crtc, dev) { 245 du = vmw_crtc_to_du(crtc); 246 247 du->hotspot_x = 0; 248 du->hotspot_y = 0; 249 } 250 drm_modeset_unlock_all(dev); 251 } 252 253 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv) 254 { 255 struct drm_device *dev = dev_priv->dev; 256 struct vmw_display_unit *du; 257 struct drm_crtc *crtc; 258 259 mutex_lock(&dev->mode_config.mutex); 260 261 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 262 du = vmw_crtc_to_du(crtc); 263 if (!du->cursor_surface || 264 du->cursor_age == du->cursor_surface->snooper.age) 265 continue; 266 267 du->cursor_age = du->cursor_surface->snooper.age; 268 vmw_cursor_update_image(dev_priv, 269 du->cursor_surface->snooper.image, 270 64, 64, 271 du->hotspot_x + du->core_hotspot_x, 272 du->hotspot_y + du->core_hotspot_y); 273 } 274 275 mutex_unlock(&dev->mode_config.mutex); 276 } 277 278 279 void vmw_du_cursor_plane_destroy(struct drm_plane *plane) 280 { 281 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0); 282 283 drm_plane_cleanup(plane); 284 } 285 286 287 void vmw_du_primary_plane_destroy(struct drm_plane *plane) 288 { 289 drm_plane_cleanup(plane); 290 291 /* Planes are static in our case so we don't free it */ 292 } 293 294 295 /** 296 * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface 297 * 298 * @vps: plane state associated with the display surface 299 * @unreference: true if we also want to unreference the display. 300 */ 301 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps, 302 bool unreference) 303 { 304 if (vps->surf) { 305 if (vps->pinned) { 306 vmw_resource_unpin(&vps->surf->res); 307 vps->pinned--; 308 } 309 310 if (unreference) { 311 if (vps->pinned) 312 DRM_ERROR("Surface still pinned\n"); 313 vmw_surface_unreference(&vps->surf); 314 } 315 } 316 } 317 318 319 /** 320 * vmw_du_plane_cleanup_fb - Unpins the cursor 321 * 322 * @plane: display plane 323 * @old_state: Contains the FB to clean up 324 * 325 * Unpins the framebuffer surface 326 * 327 * Returns 0 on success 328 */ 329 void 330 vmw_du_plane_cleanup_fb(struct drm_plane *plane, 331 struct drm_plane_state *old_state) 332 { 333 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); 334 335 vmw_du_plane_unpin_surf(vps, false); 336 } 337 338 339 /** 340 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it 341 * 342 * @plane: display plane 343 * @new_state: info on the new plane state, including the FB 344 * 345 * Returns 0 on success 346 */ 347 int 348 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane, 349 struct drm_plane_state *new_state) 350 { 351 struct drm_framebuffer *fb = new_state->fb; 352 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); 353 354 355 if (vps->surf) 356 vmw_surface_unreference(&vps->surf); 357 358 if (vps->bo) 359 vmw_bo_unreference(&vps->bo); 360 361 if (fb) { 362 if (vmw_framebuffer_to_vfb(fb)->bo) { 363 vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer; 364 vmw_bo_reference(vps->bo); 365 } else { 366 vps->surf = vmw_framebuffer_to_vfbs(fb)->surface; 367 vmw_surface_reference(vps->surf); 368 } 369 } 370 371 return 0; 372 } 373 374 375 void 376 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane, 377 struct drm_plane_state *old_state) 378 { 379 struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc; 380 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 381 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 382 struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state); 383 s32 hotspot_x, hotspot_y; 384 int ret = 0; 385 386 387 hotspot_x = du->hotspot_x; 388 hotspot_y = du->hotspot_y; 389 390 if (plane->state->fb) { 391 hotspot_x += plane->state->fb->hot_x; 392 hotspot_y += plane->state->fb->hot_y; 393 } 394 395 du->cursor_surface = vps->surf; 396 du->cursor_bo = vps->bo; 397 398 if (vps->surf) { 399 du->cursor_age = du->cursor_surface->snooper.age; 400 401 ret = vmw_cursor_update_image(dev_priv, 402 vps->surf->snooper.image, 403 64, 64, hotspot_x, 404 hotspot_y); 405 } else if (vps->bo) { 406 ret = vmw_cursor_update_bo(dev_priv, vps->bo, 407 plane->state->crtc_w, 408 plane->state->crtc_h, 409 hotspot_x, hotspot_y); 410 } else { 411 vmw_cursor_update_position(dev_priv, false, 0, 0); 412 return; 413 } 414 415 if (!ret) { 416 du->cursor_x = plane->state->crtc_x + du->set_gui_x; 417 du->cursor_y = plane->state->crtc_y + du->set_gui_y; 418 419 vmw_cursor_update_position(dev_priv, true, 420 du->cursor_x + hotspot_x, 421 du->cursor_y + hotspot_y); 422 423 du->core_hotspot_x = hotspot_x - du->hotspot_x; 424 du->core_hotspot_y = hotspot_y - du->hotspot_y; 425 } else { 426 DRM_ERROR("Failed to update cursor image\n"); 427 } 428 } 429 430 431 /** 432 * vmw_du_primary_plane_atomic_check - check if the new state is okay 433 * 434 * @plane: display plane 435 * @state: info on the new plane state, including the FB 436 * 437 * Check if the new state is settable given the current state. Other 438 * than what the atomic helper checks, we care about crtc fitting 439 * the FB and maintaining one active framebuffer. 440 * 441 * Returns 0 on success 442 */ 443 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane, 444 struct drm_plane_state *state) 445 { 446 struct drm_crtc_state *crtc_state = NULL; 447 struct drm_framebuffer *new_fb = state->fb; 448 int ret; 449 450 if (state->crtc) 451 crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc); 452 453 ret = drm_atomic_helper_check_plane_state(state, crtc_state, 454 DRM_PLANE_HELPER_NO_SCALING, 455 DRM_PLANE_HELPER_NO_SCALING, 456 false, true); 457 458 if (!ret && new_fb) { 459 struct drm_crtc *crtc = state->crtc; 460 struct vmw_connector_state *vcs; 461 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 462 463 vcs = vmw_connector_state_to_vcs(du->connector.state); 464 } 465 466 467 return ret; 468 } 469 470 471 /** 472 * vmw_du_cursor_plane_atomic_check - check if the new state is okay 473 * 474 * @plane: cursor plane 475 * @state: info on the new plane state 476 * 477 * This is a chance to fail if the new cursor state does not fit 478 * our requirements. 479 * 480 * Returns 0 on success 481 */ 482 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane, 483 struct drm_plane_state *new_state) 484 { 485 int ret = 0; 486 struct drm_crtc_state *crtc_state = NULL; 487 struct vmw_surface *surface = NULL; 488 struct drm_framebuffer *fb = new_state->fb; 489 490 if (new_state->crtc) 491 crtc_state = drm_atomic_get_new_crtc_state(new_state->state, 492 new_state->crtc); 493 494 ret = drm_atomic_helper_check_plane_state(new_state, crtc_state, 495 DRM_PLANE_HELPER_NO_SCALING, 496 DRM_PLANE_HELPER_NO_SCALING, 497 true, true); 498 if (ret) 499 return ret; 500 501 /* Turning off */ 502 if (!fb) 503 return 0; 504 505 /* A lot of the code assumes this */ 506 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) { 507 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n", 508 new_state->crtc_w, new_state->crtc_h); 509 ret = -EINVAL; 510 } 511 512 if (!vmw_framebuffer_to_vfb(fb)->bo) 513 surface = vmw_framebuffer_to_vfbs(fb)->surface; 514 515 if (surface && !surface->snooper.image) { 516 DRM_ERROR("surface not suitable for cursor\n"); 517 ret = -EINVAL; 518 } 519 520 return ret; 521 } 522 523 524 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc, 525 struct drm_crtc_state *new_state) 526 { 527 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc); 528 int connector_mask = drm_connector_mask(&du->connector); 529 bool has_primary = new_state->plane_mask & 530 drm_plane_mask(crtc->primary); 531 532 /* We always want to have an active plane with an active CRTC */ 533 if (has_primary != new_state->enable) 534 return -EINVAL; 535 536 537 if (new_state->connector_mask != connector_mask && 538 new_state->connector_mask != 0) { 539 DRM_ERROR("Invalid connectors configuration\n"); 540 return -EINVAL; 541 } 542 543 /* 544 * Our virtual device does not have a dot clock, so use the logical 545 * clock value as the dot clock. 546 */ 547 if (new_state->mode.crtc_clock == 0) 548 new_state->adjusted_mode.crtc_clock = new_state->mode.clock; 549 550 return 0; 551 } 552 553 554 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc, 555 struct drm_crtc_state *old_crtc_state) 556 { 557 } 558 559 560 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc, 561 struct drm_crtc_state *old_crtc_state) 562 { 563 struct drm_pending_vblank_event *event = crtc->state->event; 564 565 if (event) { 566 crtc->state->event = NULL; 567 568 spin_lock_irq(&crtc->dev->event_lock); 569 drm_crtc_send_vblank_event(crtc, event); 570 spin_unlock_irq(&crtc->dev->event_lock); 571 } 572 } 573 574 575 /** 576 * vmw_du_crtc_duplicate_state - duplicate crtc state 577 * @crtc: DRM crtc 578 * 579 * Allocates and returns a copy of the crtc state (both common and 580 * vmw-specific) for the specified crtc. 581 * 582 * Returns: The newly allocated crtc state, or NULL on failure. 583 */ 584 struct drm_crtc_state * 585 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc) 586 { 587 struct drm_crtc_state *state; 588 struct vmw_crtc_state *vcs; 589 590 if (WARN_ON(!crtc->state)) 591 return NULL; 592 593 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL); 594 595 if (!vcs) 596 return NULL; 597 598 state = &vcs->base; 599 600 __drm_atomic_helper_crtc_duplicate_state(crtc, state); 601 602 return state; 603 } 604 605 606 /** 607 * vmw_du_crtc_reset - creates a blank vmw crtc state 608 * @crtc: DRM crtc 609 * 610 * Resets the atomic state for @crtc by freeing the state pointer (which 611 * might be NULL, e.g. at driver load time) and allocating a new empty state 612 * object. 613 */ 614 void vmw_du_crtc_reset(struct drm_crtc *crtc) 615 { 616 struct vmw_crtc_state *vcs; 617 618 619 if (crtc->state) { 620 __drm_atomic_helper_crtc_destroy_state(crtc->state); 621 622 kfree(vmw_crtc_state_to_vcs(crtc->state)); 623 } 624 625 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 626 627 if (!vcs) { 628 DRM_ERROR("Cannot allocate vmw_crtc_state\n"); 629 return; 630 } 631 632 __drm_atomic_helper_crtc_reset(crtc, &vcs->base); 633 } 634 635 636 /** 637 * vmw_du_crtc_destroy_state - destroy crtc state 638 * @crtc: DRM crtc 639 * @state: state object to destroy 640 * 641 * Destroys the crtc state (both common and vmw-specific) for the 642 * specified plane. 643 */ 644 void 645 vmw_du_crtc_destroy_state(struct drm_crtc *crtc, 646 struct drm_crtc_state *state) 647 { 648 drm_atomic_helper_crtc_destroy_state(crtc, state); 649 } 650 651 652 /** 653 * vmw_du_plane_duplicate_state - duplicate plane state 654 * @plane: drm plane 655 * 656 * Allocates and returns a copy of the plane state (both common and 657 * vmw-specific) for the specified plane. 658 * 659 * Returns: The newly allocated plane state, or NULL on failure. 660 */ 661 struct drm_plane_state * 662 vmw_du_plane_duplicate_state(struct drm_plane *plane) 663 { 664 struct drm_plane_state *state; 665 struct vmw_plane_state *vps; 666 667 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL); 668 669 if (!vps) 670 return NULL; 671 672 vps->pinned = 0; 673 vps->cpp = 0; 674 675 /* Each ref counted resource needs to be acquired again */ 676 if (vps->surf) 677 (void) vmw_surface_reference(vps->surf); 678 679 if (vps->bo) 680 (void) vmw_bo_reference(vps->bo); 681 682 state = &vps->base; 683 684 __drm_atomic_helper_plane_duplicate_state(plane, state); 685 686 return state; 687 } 688 689 690 /** 691 * vmw_du_plane_reset - creates a blank vmw plane state 692 * @plane: drm plane 693 * 694 * Resets the atomic state for @plane by freeing the state pointer (which might 695 * be NULL, e.g. at driver load time) and allocating a new empty state object. 696 */ 697 void vmw_du_plane_reset(struct drm_plane *plane) 698 { 699 struct vmw_plane_state *vps; 700 701 702 if (plane->state) 703 vmw_du_plane_destroy_state(plane, plane->state); 704 705 vps = kzalloc(sizeof(*vps), GFP_KERNEL); 706 707 if (!vps) { 708 DRM_ERROR("Cannot allocate vmw_plane_state\n"); 709 return; 710 } 711 712 __drm_atomic_helper_plane_reset(plane, &vps->base); 713 } 714 715 716 /** 717 * vmw_du_plane_destroy_state - destroy plane state 718 * @plane: DRM plane 719 * @state: state object to destroy 720 * 721 * Destroys the plane state (both common and vmw-specific) for the 722 * specified plane. 723 */ 724 void 725 vmw_du_plane_destroy_state(struct drm_plane *plane, 726 struct drm_plane_state *state) 727 { 728 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state); 729 730 731 /* Should have been freed by cleanup_fb */ 732 if (vps->surf) 733 vmw_surface_unreference(&vps->surf); 734 735 if (vps->bo) 736 vmw_bo_unreference(&vps->bo); 737 738 drm_atomic_helper_plane_destroy_state(plane, state); 739 } 740 741 742 /** 743 * vmw_du_connector_duplicate_state - duplicate connector state 744 * @connector: DRM connector 745 * 746 * Allocates and returns a copy of the connector state (both common and 747 * vmw-specific) for the specified connector. 748 * 749 * Returns: The newly allocated connector state, or NULL on failure. 750 */ 751 struct drm_connector_state * 752 vmw_du_connector_duplicate_state(struct drm_connector *connector) 753 { 754 struct drm_connector_state *state; 755 struct vmw_connector_state *vcs; 756 757 if (WARN_ON(!connector->state)) 758 return NULL; 759 760 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL); 761 762 if (!vcs) 763 return NULL; 764 765 state = &vcs->base; 766 767 __drm_atomic_helper_connector_duplicate_state(connector, state); 768 769 return state; 770 } 771 772 773 /** 774 * vmw_du_connector_reset - creates a blank vmw connector state 775 * @connector: DRM connector 776 * 777 * Resets the atomic state for @connector by freeing the state pointer (which 778 * might be NULL, e.g. at driver load time) and allocating a new empty state 779 * object. 780 */ 781 void vmw_du_connector_reset(struct drm_connector *connector) 782 { 783 struct vmw_connector_state *vcs; 784 785 786 if (connector->state) { 787 __drm_atomic_helper_connector_destroy_state(connector->state); 788 789 kfree(vmw_connector_state_to_vcs(connector->state)); 790 } 791 792 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 793 794 if (!vcs) { 795 DRM_ERROR("Cannot allocate vmw_connector_state\n"); 796 return; 797 } 798 799 __drm_atomic_helper_connector_reset(connector, &vcs->base); 800 } 801 802 803 /** 804 * vmw_du_connector_destroy_state - destroy connector state 805 * @connector: DRM connector 806 * @state: state object to destroy 807 * 808 * Destroys the connector state (both common and vmw-specific) for the 809 * specified plane. 810 */ 811 void 812 vmw_du_connector_destroy_state(struct drm_connector *connector, 813 struct drm_connector_state *state) 814 { 815 drm_atomic_helper_connector_destroy_state(connector, state); 816 } 817 /* 818 * Generic framebuffer code 819 */ 820 821 /* 822 * Surface framebuffer code 823 */ 824 825 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer) 826 { 827 struct vmw_framebuffer_surface *vfbs = 828 vmw_framebuffer_to_vfbs(framebuffer); 829 830 drm_framebuffer_cleanup(framebuffer); 831 vmw_surface_unreference(&vfbs->surface); 832 if (vfbs->base.user_obj) 833 ttm_base_object_unref(&vfbs->base.user_obj); 834 835 kfree(vfbs); 836 } 837 838 /** 839 * vmw_kms_readback - Perform a readback from the screen system to 840 * a buffer-object backed framebuffer. 841 * 842 * @dev_priv: Pointer to the device private structure. 843 * @file_priv: Pointer to a struct drm_file identifying the caller. 844 * Must be set to NULL if @user_fence_rep is NULL. 845 * @vfb: Pointer to the buffer-object backed framebuffer. 846 * @user_fence_rep: User-space provided structure for fence information. 847 * Must be set to non-NULL if @file_priv is non-NULL. 848 * @vclips: Array of clip rects. 849 * @num_clips: Number of clip rects in @vclips. 850 * 851 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 852 * interrupted. 853 */ 854 int vmw_kms_readback(struct vmw_private *dev_priv, 855 struct drm_file *file_priv, 856 struct vmw_framebuffer *vfb, 857 struct drm_vmw_fence_rep __user *user_fence_rep, 858 struct drm_vmw_rect *vclips, 859 uint32_t num_clips) 860 { 861 switch (dev_priv->active_display_unit) { 862 case vmw_du_screen_object: 863 return vmw_kms_sou_readback(dev_priv, file_priv, vfb, 864 user_fence_rep, vclips, num_clips, 865 NULL); 866 case vmw_du_screen_target: 867 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb, 868 user_fence_rep, NULL, vclips, num_clips, 869 1, false, true, NULL); 870 default: 871 WARN_ONCE(true, 872 "Readback called with invalid display system.\n"); 873 } 874 875 return -ENOSYS; 876 } 877 878 879 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = { 880 .destroy = vmw_framebuffer_surface_destroy, 881 .dirty = drm_atomic_helper_dirtyfb, 882 }; 883 884 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv, 885 struct vmw_surface *surface, 886 struct vmw_framebuffer **out, 887 const struct drm_mode_fb_cmd2 888 *mode_cmd, 889 bool is_bo_proxy) 890 891 { 892 struct drm_device *dev = dev_priv->dev; 893 struct vmw_framebuffer_surface *vfbs; 894 enum SVGA3dSurfaceFormat format; 895 int ret; 896 struct drm_format_name_buf format_name; 897 898 /* 3D is only supported on HWv8 and newer hosts */ 899 if (dev_priv->active_display_unit == vmw_du_legacy) 900 return -ENOSYS; 901 902 /* 903 * Sanity checks. 904 */ 905 906 /* Surface must be marked as a scanout. */ 907 if (unlikely(!surface->metadata.scanout)) 908 return -EINVAL; 909 910 if (unlikely(surface->metadata.mip_levels[0] != 1 || 911 surface->metadata.num_sizes != 1 || 912 surface->metadata.base_size.width < mode_cmd->width || 913 surface->metadata.base_size.height < mode_cmd->height || 914 surface->metadata.base_size.depth != 1)) { 915 DRM_ERROR("Incompatible surface dimensions " 916 "for requested mode.\n"); 917 return -EINVAL; 918 } 919 920 switch (mode_cmd->pixel_format) { 921 case DRM_FORMAT_ARGB8888: 922 format = SVGA3D_A8R8G8B8; 923 break; 924 case DRM_FORMAT_XRGB8888: 925 format = SVGA3D_X8R8G8B8; 926 break; 927 case DRM_FORMAT_RGB565: 928 format = SVGA3D_R5G6B5; 929 break; 930 case DRM_FORMAT_XRGB1555: 931 format = SVGA3D_A1R5G5B5; 932 break; 933 default: 934 DRM_ERROR("Invalid pixel format: %s\n", 935 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 936 return -EINVAL; 937 } 938 939 /* 940 * For DX, surface format validation is done when surface->scanout 941 * is set. 942 */ 943 if (!has_sm4_context(dev_priv) && format != surface->metadata.format) { 944 DRM_ERROR("Invalid surface format for requested mode.\n"); 945 return -EINVAL; 946 } 947 948 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL); 949 if (!vfbs) { 950 ret = -ENOMEM; 951 goto out_err1; 952 } 953 954 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd); 955 vfbs->surface = vmw_surface_reference(surface); 956 vfbs->base.user_handle = mode_cmd->handles[0]; 957 vfbs->is_bo_proxy = is_bo_proxy; 958 959 *out = &vfbs->base; 960 961 ret = drm_framebuffer_init(dev, &vfbs->base.base, 962 &vmw_framebuffer_surface_funcs); 963 if (ret) 964 goto out_err2; 965 966 return 0; 967 968 out_err2: 969 vmw_surface_unreference(&surface); 970 kfree(vfbs); 971 out_err1: 972 return ret; 973 } 974 975 /* 976 * Buffer-object framebuffer code 977 */ 978 979 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer) 980 { 981 struct vmw_framebuffer_bo *vfbd = 982 vmw_framebuffer_to_vfbd(framebuffer); 983 984 drm_framebuffer_cleanup(framebuffer); 985 vmw_bo_unreference(&vfbd->buffer); 986 if (vfbd->base.user_obj) 987 ttm_base_object_unref(&vfbd->base.user_obj); 988 989 kfree(vfbd); 990 } 991 992 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer, 993 struct drm_file *file_priv, 994 unsigned int flags, unsigned int color, 995 struct drm_clip_rect *clips, 996 unsigned int num_clips) 997 { 998 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 999 struct vmw_framebuffer_bo *vfbd = 1000 vmw_framebuffer_to_vfbd(framebuffer); 1001 struct drm_clip_rect norect; 1002 int ret, increment = 1; 1003 1004 drm_modeset_lock_all(dev_priv->dev); 1005 1006 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 1007 if (unlikely(ret != 0)) { 1008 drm_modeset_unlock_all(dev_priv->dev); 1009 return ret; 1010 } 1011 1012 if (!num_clips) { 1013 num_clips = 1; 1014 clips = &norect; 1015 norect.x1 = norect.y1 = 0; 1016 norect.x2 = framebuffer->width; 1017 norect.y2 = framebuffer->height; 1018 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 1019 num_clips /= 2; 1020 increment = 2; 1021 } 1022 1023 switch (dev_priv->active_display_unit) { 1024 case vmw_du_legacy: 1025 ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0, 1026 clips, num_clips, increment); 1027 break; 1028 default: 1029 ret = -EINVAL; 1030 WARN_ONCE(true, "Dirty called with invalid display system.\n"); 1031 break; 1032 } 1033 1034 vmw_fifo_flush(dev_priv, false); 1035 ttm_read_unlock(&dev_priv->reservation_sem); 1036 1037 drm_modeset_unlock_all(dev_priv->dev); 1038 1039 return ret; 1040 } 1041 1042 static int vmw_framebuffer_bo_dirty_ext(struct drm_framebuffer *framebuffer, 1043 struct drm_file *file_priv, 1044 unsigned int flags, unsigned int color, 1045 struct drm_clip_rect *clips, 1046 unsigned int num_clips) 1047 { 1048 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 1049 1050 if (dev_priv->active_display_unit == vmw_du_legacy) 1051 return vmw_framebuffer_bo_dirty(framebuffer, file_priv, flags, 1052 color, clips, num_clips); 1053 1054 return drm_atomic_helper_dirtyfb(framebuffer, file_priv, flags, color, 1055 clips, num_clips); 1056 } 1057 1058 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = { 1059 .destroy = vmw_framebuffer_bo_destroy, 1060 .dirty = vmw_framebuffer_bo_dirty_ext, 1061 }; 1062 1063 /** 1064 * Pin the bofer in a location suitable for access by the 1065 * display system. 1066 */ 1067 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb) 1068 { 1069 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1070 struct vmw_buffer_object *buf; 1071 struct ttm_placement *placement; 1072 int ret; 1073 1074 buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1075 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1076 1077 if (!buf) 1078 return 0; 1079 1080 switch (dev_priv->active_display_unit) { 1081 case vmw_du_legacy: 1082 vmw_overlay_pause_all(dev_priv); 1083 ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false); 1084 vmw_overlay_resume_all(dev_priv); 1085 break; 1086 case vmw_du_screen_object: 1087 case vmw_du_screen_target: 1088 if (vfb->bo) { 1089 if (dev_priv->capabilities & SVGA_CAP_3D) { 1090 /* 1091 * Use surface DMA to get content to 1092 * sreen target surface. 1093 */ 1094 placement = &vmw_vram_gmr_placement; 1095 } else { 1096 /* Use CPU blit. */ 1097 placement = &vmw_sys_placement; 1098 } 1099 } else { 1100 /* Use surface / image update */ 1101 placement = &vmw_mob_placement; 1102 } 1103 1104 return vmw_bo_pin_in_placement(dev_priv, buf, placement, false); 1105 default: 1106 return -EINVAL; 1107 } 1108 1109 return ret; 1110 } 1111 1112 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb) 1113 { 1114 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1115 struct vmw_buffer_object *buf; 1116 1117 buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1118 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1119 1120 if (WARN_ON(!buf)) 1121 return 0; 1122 1123 return vmw_bo_unpin(dev_priv, buf, false); 1124 } 1125 1126 /** 1127 * vmw_create_bo_proxy - create a proxy surface for the buffer object 1128 * 1129 * @dev: DRM device 1130 * @mode_cmd: parameters for the new surface 1131 * @bo_mob: MOB backing the buffer object 1132 * @srf_out: newly created surface 1133 * 1134 * When the content FB is a buffer object, we create a surface as a proxy to the 1135 * same buffer. This way we can do a surface copy rather than a surface DMA. 1136 * This is a more efficient approach 1137 * 1138 * RETURNS: 1139 * 0 on success, error code otherwise 1140 */ 1141 static int vmw_create_bo_proxy(struct drm_device *dev, 1142 const struct drm_mode_fb_cmd2 *mode_cmd, 1143 struct vmw_buffer_object *bo_mob, 1144 struct vmw_surface **srf_out) 1145 { 1146 struct vmw_surface_metadata metadata = {0}; 1147 uint32_t format; 1148 struct vmw_resource *res; 1149 unsigned int bytes_pp; 1150 struct drm_format_name_buf format_name; 1151 int ret; 1152 1153 switch (mode_cmd->pixel_format) { 1154 case DRM_FORMAT_ARGB8888: 1155 case DRM_FORMAT_XRGB8888: 1156 format = SVGA3D_X8R8G8B8; 1157 bytes_pp = 4; 1158 break; 1159 1160 case DRM_FORMAT_RGB565: 1161 case DRM_FORMAT_XRGB1555: 1162 format = SVGA3D_R5G6B5; 1163 bytes_pp = 2; 1164 break; 1165 1166 case 8: 1167 format = SVGA3D_P8; 1168 bytes_pp = 1; 1169 break; 1170 1171 default: 1172 DRM_ERROR("Invalid framebuffer format %s\n", 1173 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1174 return -EINVAL; 1175 } 1176 1177 metadata.format = format; 1178 metadata.mip_levels[0] = 1; 1179 metadata.num_sizes = 1; 1180 metadata.base_size.width = mode_cmd->pitches[0] / bytes_pp; 1181 metadata.base_size.height = mode_cmd->height; 1182 metadata.base_size.depth = 1; 1183 metadata.scanout = true; 1184 1185 ret = vmw_gb_surface_define(vmw_priv(dev), 0, &metadata, srf_out); 1186 if (ret) { 1187 DRM_ERROR("Failed to allocate proxy content buffer\n"); 1188 return ret; 1189 } 1190 1191 res = &(*srf_out)->res; 1192 1193 /* Reserve and switch the backing mob. */ 1194 mutex_lock(&res->dev_priv->cmdbuf_mutex); 1195 (void) vmw_resource_reserve(res, false, true); 1196 vmw_bo_unreference(&res->backup); 1197 res->backup = vmw_bo_reference(bo_mob); 1198 res->backup_offset = 0; 1199 vmw_resource_unreserve(res, false, false, false, NULL, 0); 1200 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 1201 1202 return 0; 1203 } 1204 1205 1206 1207 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv, 1208 struct vmw_buffer_object *bo, 1209 struct vmw_framebuffer **out, 1210 const struct drm_mode_fb_cmd2 1211 *mode_cmd) 1212 1213 { 1214 struct drm_device *dev = dev_priv->dev; 1215 struct vmw_framebuffer_bo *vfbd; 1216 unsigned int requested_size; 1217 struct drm_format_name_buf format_name; 1218 int ret; 1219 1220 requested_size = mode_cmd->height * mode_cmd->pitches[0]; 1221 if (unlikely(requested_size > bo->base.num_pages * PAGE_SIZE)) { 1222 DRM_ERROR("Screen buffer object size is too small " 1223 "for requested mode.\n"); 1224 return -EINVAL; 1225 } 1226 1227 /* Limited framebuffer color depth support for screen objects */ 1228 if (dev_priv->active_display_unit == vmw_du_screen_object) { 1229 switch (mode_cmd->pixel_format) { 1230 case DRM_FORMAT_XRGB8888: 1231 case DRM_FORMAT_ARGB8888: 1232 break; 1233 case DRM_FORMAT_XRGB1555: 1234 case DRM_FORMAT_RGB565: 1235 break; 1236 default: 1237 DRM_ERROR("Invalid pixel format: %s\n", 1238 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1239 return -EINVAL; 1240 } 1241 } 1242 1243 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL); 1244 if (!vfbd) { 1245 ret = -ENOMEM; 1246 goto out_err1; 1247 } 1248 1249 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd); 1250 vfbd->base.bo = true; 1251 vfbd->buffer = vmw_bo_reference(bo); 1252 vfbd->base.user_handle = mode_cmd->handles[0]; 1253 *out = &vfbd->base; 1254 1255 ret = drm_framebuffer_init(dev, &vfbd->base.base, 1256 &vmw_framebuffer_bo_funcs); 1257 if (ret) 1258 goto out_err2; 1259 1260 return 0; 1261 1262 out_err2: 1263 vmw_bo_unreference(&bo); 1264 kfree(vfbd); 1265 out_err1: 1266 return ret; 1267 } 1268 1269 1270 /** 1271 * vmw_kms_srf_ok - check if a surface can be created 1272 * 1273 * @width: requested width 1274 * @height: requested height 1275 * 1276 * Surfaces need to be less than texture size 1277 */ 1278 static bool 1279 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height) 1280 { 1281 if (width > dev_priv->texture_max_width || 1282 height > dev_priv->texture_max_height) 1283 return false; 1284 1285 return true; 1286 } 1287 1288 /** 1289 * vmw_kms_new_framebuffer - Create a new framebuffer. 1290 * 1291 * @dev_priv: Pointer to device private struct. 1292 * @bo: Pointer to buffer object to wrap the kms framebuffer around. 1293 * Either @bo or @surface must be NULL. 1294 * @surface: Pointer to a surface to wrap the kms framebuffer around. 1295 * Either @bo or @surface must be NULL. 1296 * @only_2d: No presents will occur to this buffer object based framebuffer. 1297 * This helps the code to do some important optimizations. 1298 * @mode_cmd: Frame-buffer metadata. 1299 */ 1300 struct vmw_framebuffer * 1301 vmw_kms_new_framebuffer(struct vmw_private *dev_priv, 1302 struct vmw_buffer_object *bo, 1303 struct vmw_surface *surface, 1304 bool only_2d, 1305 const struct drm_mode_fb_cmd2 *mode_cmd) 1306 { 1307 struct vmw_framebuffer *vfb = NULL; 1308 bool is_bo_proxy = false; 1309 int ret; 1310 1311 /* 1312 * We cannot use the SurfaceDMA command in an non-accelerated VM, 1313 * therefore, wrap the buffer object in a surface so we can use the 1314 * SurfaceCopy command. 1315 */ 1316 if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) && 1317 bo && only_2d && 1318 mode_cmd->width > 64 && /* Don't create a proxy for cursor */ 1319 dev_priv->active_display_unit == vmw_du_screen_target) { 1320 ret = vmw_create_bo_proxy(dev_priv->dev, mode_cmd, 1321 bo, &surface); 1322 if (ret) 1323 return ERR_PTR(ret); 1324 1325 is_bo_proxy = true; 1326 } 1327 1328 /* Create the new framebuffer depending one what we have */ 1329 if (surface) { 1330 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb, 1331 mode_cmd, 1332 is_bo_proxy); 1333 1334 /* 1335 * vmw_create_bo_proxy() adds a reference that is no longer 1336 * needed 1337 */ 1338 if (is_bo_proxy) 1339 vmw_surface_unreference(&surface); 1340 } else if (bo) { 1341 ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb, 1342 mode_cmd); 1343 } else { 1344 BUG(); 1345 } 1346 1347 if (ret) 1348 return ERR_PTR(ret); 1349 1350 vfb->pin = vmw_framebuffer_pin; 1351 vfb->unpin = vmw_framebuffer_unpin; 1352 1353 return vfb; 1354 } 1355 1356 /* 1357 * Generic Kernel modesetting functions 1358 */ 1359 1360 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev, 1361 struct drm_file *file_priv, 1362 const struct drm_mode_fb_cmd2 *mode_cmd) 1363 { 1364 struct vmw_private *dev_priv = vmw_priv(dev); 1365 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 1366 struct vmw_framebuffer *vfb = NULL; 1367 struct vmw_surface *surface = NULL; 1368 struct vmw_buffer_object *bo = NULL; 1369 struct ttm_base_object *user_obj; 1370 int ret; 1371 1372 /* 1373 * Take a reference on the user object of the resource 1374 * backing the kms fb. This ensures that user-space handle 1375 * lookups on that resource will always work as long as 1376 * it's registered with a kms framebuffer. This is important, 1377 * since vmw_execbuf_process identifies resources in the 1378 * command stream using user-space handles. 1379 */ 1380 1381 user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]); 1382 if (unlikely(user_obj == NULL)) { 1383 DRM_ERROR("Could not locate requested kms frame buffer.\n"); 1384 return ERR_PTR(-ENOENT); 1385 } 1386 1387 /** 1388 * End conditioned code. 1389 */ 1390 1391 /* returns either a bo or surface */ 1392 ret = vmw_user_lookup_handle(dev_priv, tfile, 1393 mode_cmd->handles[0], 1394 &surface, &bo); 1395 if (ret) 1396 goto err_out; 1397 1398 1399 if (!bo && 1400 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) { 1401 DRM_ERROR("Surface size cannot exceed %dx%d", 1402 dev_priv->texture_max_width, 1403 dev_priv->texture_max_height); 1404 goto err_out; 1405 } 1406 1407 1408 vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface, 1409 !(dev_priv->capabilities & SVGA_CAP_3D), 1410 mode_cmd); 1411 if (IS_ERR(vfb)) { 1412 ret = PTR_ERR(vfb); 1413 goto err_out; 1414 } 1415 1416 err_out: 1417 /* vmw_user_lookup_handle takes one ref so does new_fb */ 1418 if (bo) 1419 vmw_bo_unreference(&bo); 1420 if (surface) 1421 vmw_surface_unreference(&surface); 1422 1423 if (ret) { 1424 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret); 1425 ttm_base_object_unref(&user_obj); 1426 return ERR_PTR(ret); 1427 } else 1428 vfb->user_obj = user_obj; 1429 1430 return &vfb->base; 1431 } 1432 1433 /** 1434 * vmw_kms_check_display_memory - Validates display memory required for a 1435 * topology 1436 * @dev: DRM device 1437 * @num_rects: number of drm_rect in rects 1438 * @rects: array of drm_rect representing the topology to validate indexed by 1439 * crtc index. 1440 * 1441 * Returns: 1442 * 0 on success otherwise negative error code 1443 */ 1444 static int vmw_kms_check_display_memory(struct drm_device *dev, 1445 uint32_t num_rects, 1446 struct drm_rect *rects) 1447 { 1448 struct vmw_private *dev_priv = vmw_priv(dev); 1449 struct drm_rect bounding_box = {0}; 1450 u64 total_pixels = 0, pixel_mem, bb_mem; 1451 int i; 1452 1453 for (i = 0; i < num_rects; i++) { 1454 /* 1455 * For STDU only individual screen (screen target) is limited by 1456 * SCREENTARGET_MAX_WIDTH/HEIGHT registers. 1457 */ 1458 if (dev_priv->active_display_unit == vmw_du_screen_target && 1459 (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width || 1460 drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) { 1461 VMW_DEBUG_KMS("Screen size not supported.\n"); 1462 return -EINVAL; 1463 } 1464 1465 /* Bounding box upper left is at (0,0). */ 1466 if (rects[i].x2 > bounding_box.x2) 1467 bounding_box.x2 = rects[i].x2; 1468 1469 if (rects[i].y2 > bounding_box.y2) 1470 bounding_box.y2 = rects[i].y2; 1471 1472 total_pixels += (u64) drm_rect_width(&rects[i]) * 1473 (u64) drm_rect_height(&rects[i]); 1474 } 1475 1476 /* Virtual svga device primary limits are always in 32-bpp. */ 1477 pixel_mem = total_pixels * 4; 1478 1479 /* 1480 * For HV10 and below prim_bb_mem is vram size. When 1481 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is 1482 * limit on primary bounding box 1483 */ 1484 if (pixel_mem > dev_priv->prim_bb_mem) { 1485 VMW_DEBUG_KMS("Combined output size too large.\n"); 1486 return -EINVAL; 1487 } 1488 1489 /* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */ 1490 if (dev_priv->active_display_unit != vmw_du_screen_target || 1491 !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) { 1492 bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4; 1493 1494 if (bb_mem > dev_priv->prim_bb_mem) { 1495 VMW_DEBUG_KMS("Topology is beyond supported limits.\n"); 1496 return -EINVAL; 1497 } 1498 } 1499 1500 return 0; 1501 } 1502 1503 /** 1504 * vmw_crtc_state_and_lock - Return new or current crtc state with locked 1505 * crtc mutex 1506 * @state: The atomic state pointer containing the new atomic state 1507 * @crtc: The crtc 1508 * 1509 * This function returns the new crtc state if it's part of the state update. 1510 * Otherwise returns the current crtc state. It also makes sure that the 1511 * crtc mutex is locked. 1512 * 1513 * Returns: A valid crtc state pointer or NULL. It may also return a 1514 * pointer error, in particular -EDEADLK if locking needs to be rerun. 1515 */ 1516 static struct drm_crtc_state * 1517 vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc) 1518 { 1519 struct drm_crtc_state *crtc_state; 1520 1521 crtc_state = drm_atomic_get_new_crtc_state(state, crtc); 1522 if (crtc_state) { 1523 lockdep_assert_held(&crtc->mutex.mutex.base); 1524 } else { 1525 int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx); 1526 1527 if (ret != 0 && ret != -EALREADY) 1528 return ERR_PTR(ret); 1529 1530 crtc_state = crtc->state; 1531 } 1532 1533 return crtc_state; 1534 } 1535 1536 /** 1537 * vmw_kms_check_implicit - Verify that all implicit display units scan out 1538 * from the same fb after the new state is committed. 1539 * @dev: The drm_device. 1540 * @state: The new state to be checked. 1541 * 1542 * Returns: 1543 * Zero on success, 1544 * -EINVAL on invalid state, 1545 * -EDEADLK if modeset locking needs to be rerun. 1546 */ 1547 static int vmw_kms_check_implicit(struct drm_device *dev, 1548 struct drm_atomic_state *state) 1549 { 1550 struct drm_framebuffer *implicit_fb = NULL; 1551 struct drm_crtc *crtc; 1552 struct drm_crtc_state *crtc_state; 1553 struct drm_plane_state *plane_state; 1554 1555 drm_for_each_crtc(crtc, dev) { 1556 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1557 1558 if (!du->is_implicit) 1559 continue; 1560 1561 crtc_state = vmw_crtc_state_and_lock(state, crtc); 1562 if (IS_ERR(crtc_state)) 1563 return PTR_ERR(crtc_state); 1564 1565 if (!crtc_state || !crtc_state->enable) 1566 continue; 1567 1568 /* 1569 * Can't move primary planes across crtcs, so this is OK. 1570 * It also means we don't need to take the plane mutex. 1571 */ 1572 plane_state = du->primary.state; 1573 if (plane_state->crtc != crtc) 1574 continue; 1575 1576 if (!implicit_fb) 1577 implicit_fb = plane_state->fb; 1578 else if (implicit_fb != plane_state->fb) 1579 return -EINVAL; 1580 } 1581 1582 return 0; 1583 } 1584 1585 /** 1586 * vmw_kms_check_topology - Validates topology in drm_atomic_state 1587 * @dev: DRM device 1588 * @state: the driver state object 1589 * 1590 * Returns: 1591 * 0 on success otherwise negative error code 1592 */ 1593 static int vmw_kms_check_topology(struct drm_device *dev, 1594 struct drm_atomic_state *state) 1595 { 1596 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 1597 struct drm_rect *rects; 1598 struct drm_crtc *crtc; 1599 uint32_t i; 1600 int ret = 0; 1601 1602 rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect), 1603 GFP_KERNEL); 1604 if (!rects) 1605 return -ENOMEM; 1606 1607 drm_for_each_crtc(crtc, dev) { 1608 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1609 struct drm_crtc_state *crtc_state; 1610 1611 i = drm_crtc_index(crtc); 1612 1613 crtc_state = vmw_crtc_state_and_lock(state, crtc); 1614 if (IS_ERR(crtc_state)) { 1615 ret = PTR_ERR(crtc_state); 1616 goto clean; 1617 } 1618 1619 if (!crtc_state) 1620 continue; 1621 1622 if (crtc_state->enable) { 1623 rects[i].x1 = du->gui_x; 1624 rects[i].y1 = du->gui_y; 1625 rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay; 1626 rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay; 1627 } else { 1628 rects[i].x1 = 0; 1629 rects[i].y1 = 0; 1630 rects[i].x2 = 0; 1631 rects[i].y2 = 0; 1632 } 1633 } 1634 1635 /* Determine change to topology due to new atomic state */ 1636 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, 1637 new_crtc_state, i) { 1638 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1639 struct drm_connector *connector; 1640 struct drm_connector_state *conn_state; 1641 struct vmw_connector_state *vmw_conn_state; 1642 1643 if (!du->pref_active && new_crtc_state->enable) { 1644 VMW_DEBUG_KMS("Enabling a disabled display unit\n"); 1645 ret = -EINVAL; 1646 goto clean; 1647 } 1648 1649 /* 1650 * For vmwgfx each crtc has only one connector attached and it 1651 * is not changed so don't really need to check the 1652 * crtc->connector_mask and iterate over it. 1653 */ 1654 connector = &du->connector; 1655 conn_state = drm_atomic_get_connector_state(state, connector); 1656 if (IS_ERR(conn_state)) { 1657 ret = PTR_ERR(conn_state); 1658 goto clean; 1659 } 1660 1661 vmw_conn_state = vmw_connector_state_to_vcs(conn_state); 1662 vmw_conn_state->gui_x = du->gui_x; 1663 vmw_conn_state->gui_y = du->gui_y; 1664 } 1665 1666 ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc, 1667 rects); 1668 1669 clean: 1670 kfree(rects); 1671 return ret; 1672 } 1673 1674 /** 1675 * vmw_kms_atomic_check_modeset- validate state object for modeset changes 1676 * 1677 * @dev: DRM device 1678 * @state: the driver state object 1679 * 1680 * This is a simple wrapper around drm_atomic_helper_check_modeset() for 1681 * us to assign a value to mode->crtc_clock so that 1682 * drm_calc_timestamping_constants() won't throw an error message 1683 * 1684 * Returns: 1685 * Zero for success or -errno 1686 */ 1687 static int 1688 vmw_kms_atomic_check_modeset(struct drm_device *dev, 1689 struct drm_atomic_state *state) 1690 { 1691 struct drm_crtc *crtc; 1692 struct drm_crtc_state *crtc_state; 1693 bool need_modeset = false; 1694 int i, ret; 1695 1696 ret = drm_atomic_helper_check(dev, state); 1697 if (ret) 1698 return ret; 1699 1700 ret = vmw_kms_check_implicit(dev, state); 1701 if (ret) { 1702 VMW_DEBUG_KMS("Invalid implicit state\n"); 1703 return ret; 1704 } 1705 1706 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 1707 if (drm_atomic_crtc_needs_modeset(crtc_state)) 1708 need_modeset = true; 1709 } 1710 1711 if (need_modeset) 1712 return vmw_kms_check_topology(dev, state); 1713 1714 return ret; 1715 } 1716 1717 static const struct drm_mode_config_funcs vmw_kms_funcs = { 1718 .fb_create = vmw_kms_fb_create, 1719 .atomic_check = vmw_kms_atomic_check_modeset, 1720 .atomic_commit = drm_atomic_helper_commit, 1721 }; 1722 1723 static int vmw_kms_generic_present(struct vmw_private *dev_priv, 1724 struct drm_file *file_priv, 1725 struct vmw_framebuffer *vfb, 1726 struct vmw_surface *surface, 1727 uint32_t sid, 1728 int32_t destX, int32_t destY, 1729 struct drm_vmw_rect *clips, 1730 uint32_t num_clips) 1731 { 1732 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips, 1733 &surface->res, destX, destY, 1734 num_clips, 1, NULL, NULL); 1735 } 1736 1737 1738 int vmw_kms_present(struct vmw_private *dev_priv, 1739 struct drm_file *file_priv, 1740 struct vmw_framebuffer *vfb, 1741 struct vmw_surface *surface, 1742 uint32_t sid, 1743 int32_t destX, int32_t destY, 1744 struct drm_vmw_rect *clips, 1745 uint32_t num_clips) 1746 { 1747 int ret; 1748 1749 switch (dev_priv->active_display_unit) { 1750 case vmw_du_screen_target: 1751 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips, 1752 &surface->res, destX, destY, 1753 num_clips, 1, NULL, NULL); 1754 break; 1755 case vmw_du_screen_object: 1756 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface, 1757 sid, destX, destY, clips, 1758 num_clips); 1759 break; 1760 default: 1761 WARN_ONCE(true, 1762 "Present called with invalid display system.\n"); 1763 ret = -ENOSYS; 1764 break; 1765 } 1766 if (ret) 1767 return ret; 1768 1769 vmw_fifo_flush(dev_priv, false); 1770 1771 return 0; 1772 } 1773 1774 static void 1775 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv) 1776 { 1777 if (dev_priv->hotplug_mode_update_property) 1778 return; 1779 1780 dev_priv->hotplug_mode_update_property = 1781 drm_property_create_range(dev_priv->dev, 1782 DRM_MODE_PROP_IMMUTABLE, 1783 "hotplug_mode_update", 0, 1); 1784 1785 if (!dev_priv->hotplug_mode_update_property) 1786 return; 1787 1788 } 1789 1790 int vmw_kms_init(struct vmw_private *dev_priv) 1791 { 1792 struct drm_device *dev = dev_priv->dev; 1793 int ret; 1794 1795 drm_mode_config_init(dev); 1796 dev->mode_config.funcs = &vmw_kms_funcs; 1797 dev->mode_config.min_width = 1; 1798 dev->mode_config.min_height = 1; 1799 dev->mode_config.max_width = dev_priv->texture_max_width; 1800 dev->mode_config.max_height = dev_priv->texture_max_height; 1801 1802 drm_mode_create_suggested_offset_properties(dev); 1803 vmw_kms_create_hotplug_mode_update_property(dev_priv); 1804 1805 ret = vmw_kms_stdu_init_display(dev_priv); 1806 if (ret) { 1807 ret = vmw_kms_sou_init_display(dev_priv); 1808 if (ret) /* Fallback */ 1809 ret = vmw_kms_ldu_init_display(dev_priv); 1810 } 1811 1812 return ret; 1813 } 1814 1815 int vmw_kms_close(struct vmw_private *dev_priv) 1816 { 1817 int ret = 0; 1818 1819 /* 1820 * Docs says we should take the lock before calling this function 1821 * but since it destroys encoders and our destructor calls 1822 * drm_encoder_cleanup which takes the lock we deadlock. 1823 */ 1824 drm_mode_config_cleanup(dev_priv->dev); 1825 if (dev_priv->active_display_unit == vmw_du_legacy) 1826 ret = vmw_kms_ldu_close_display(dev_priv); 1827 1828 return ret; 1829 } 1830 1831 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data, 1832 struct drm_file *file_priv) 1833 { 1834 struct drm_vmw_cursor_bypass_arg *arg = data; 1835 struct vmw_display_unit *du; 1836 struct drm_crtc *crtc; 1837 int ret = 0; 1838 1839 1840 mutex_lock(&dev->mode_config.mutex); 1841 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) { 1842 1843 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 1844 du = vmw_crtc_to_du(crtc); 1845 du->hotspot_x = arg->xhot; 1846 du->hotspot_y = arg->yhot; 1847 } 1848 1849 mutex_unlock(&dev->mode_config.mutex); 1850 return 0; 1851 } 1852 1853 crtc = drm_crtc_find(dev, file_priv, arg->crtc_id); 1854 if (!crtc) { 1855 ret = -ENOENT; 1856 goto out; 1857 } 1858 1859 du = vmw_crtc_to_du(crtc); 1860 1861 du->hotspot_x = arg->xhot; 1862 du->hotspot_y = arg->yhot; 1863 1864 out: 1865 mutex_unlock(&dev->mode_config.mutex); 1866 1867 return ret; 1868 } 1869 1870 int vmw_kms_write_svga(struct vmw_private *vmw_priv, 1871 unsigned width, unsigned height, unsigned pitch, 1872 unsigned bpp, unsigned depth) 1873 { 1874 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1875 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch); 1876 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1877 vmw_mmio_write(pitch, vmw_priv->mmio_virt + 1878 SVGA_FIFO_PITCHLOCK); 1879 vmw_write(vmw_priv, SVGA_REG_WIDTH, width); 1880 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height); 1881 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp); 1882 1883 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) { 1884 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n", 1885 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH)); 1886 return -EINVAL; 1887 } 1888 1889 return 0; 1890 } 1891 1892 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv, 1893 uint32_t pitch, 1894 uint32_t height) 1895 { 1896 return ((u64) pitch * (u64) height) < (u64) 1897 ((dev_priv->active_display_unit == vmw_du_screen_target) ? 1898 dev_priv->prim_bb_mem : dev_priv->vram_size); 1899 } 1900 1901 1902 /** 1903 * Function called by DRM code called with vbl_lock held. 1904 */ 1905 u32 vmw_get_vblank_counter(struct drm_crtc *crtc) 1906 { 1907 return 0; 1908 } 1909 1910 /** 1911 * Function called by DRM code called with vbl_lock held. 1912 */ 1913 int vmw_enable_vblank(struct drm_crtc *crtc) 1914 { 1915 return -EINVAL; 1916 } 1917 1918 /** 1919 * Function called by DRM code called with vbl_lock held. 1920 */ 1921 void vmw_disable_vblank(struct drm_crtc *crtc) 1922 { 1923 } 1924 1925 /** 1926 * vmw_du_update_layout - Update the display unit with topology from resolution 1927 * plugin and generate DRM uevent 1928 * @dev_priv: device private 1929 * @num_rects: number of drm_rect in rects 1930 * @rects: toplogy to update 1931 */ 1932 static int vmw_du_update_layout(struct vmw_private *dev_priv, 1933 unsigned int num_rects, struct drm_rect *rects) 1934 { 1935 struct drm_device *dev = dev_priv->dev; 1936 struct vmw_display_unit *du; 1937 struct drm_connector *con; 1938 struct drm_connector_list_iter conn_iter; 1939 struct drm_modeset_acquire_ctx ctx; 1940 struct drm_crtc *crtc; 1941 int ret; 1942 1943 /* Currently gui_x/y is protected with the crtc mutex */ 1944 mutex_lock(&dev->mode_config.mutex); 1945 drm_modeset_acquire_init(&ctx, 0); 1946 retry: 1947 drm_for_each_crtc(crtc, dev) { 1948 ret = drm_modeset_lock(&crtc->mutex, &ctx); 1949 if (ret < 0) { 1950 if (ret == -EDEADLK) { 1951 drm_modeset_backoff(&ctx); 1952 goto retry; 1953 } 1954 goto out_fini; 1955 } 1956 } 1957 1958 drm_connector_list_iter_begin(dev, &conn_iter); 1959 drm_for_each_connector_iter(con, &conn_iter) { 1960 du = vmw_connector_to_du(con); 1961 if (num_rects > du->unit) { 1962 du->pref_width = drm_rect_width(&rects[du->unit]); 1963 du->pref_height = drm_rect_height(&rects[du->unit]); 1964 du->pref_active = true; 1965 du->gui_x = rects[du->unit].x1; 1966 du->gui_y = rects[du->unit].y1; 1967 } else { 1968 du->pref_width = 800; 1969 du->pref_height = 600; 1970 du->pref_active = false; 1971 du->gui_x = 0; 1972 du->gui_y = 0; 1973 } 1974 } 1975 drm_connector_list_iter_end(&conn_iter); 1976 1977 list_for_each_entry(con, &dev->mode_config.connector_list, head) { 1978 du = vmw_connector_to_du(con); 1979 if (num_rects > du->unit) { 1980 drm_object_property_set_value 1981 (&con->base, dev->mode_config.suggested_x_property, 1982 du->gui_x); 1983 drm_object_property_set_value 1984 (&con->base, dev->mode_config.suggested_y_property, 1985 du->gui_y); 1986 } else { 1987 drm_object_property_set_value 1988 (&con->base, dev->mode_config.suggested_x_property, 1989 0); 1990 drm_object_property_set_value 1991 (&con->base, dev->mode_config.suggested_y_property, 1992 0); 1993 } 1994 con->status = vmw_du_connector_detect(con, true); 1995 } 1996 1997 drm_sysfs_hotplug_event(dev); 1998 out_fini: 1999 drm_modeset_drop_locks(&ctx); 2000 drm_modeset_acquire_fini(&ctx); 2001 mutex_unlock(&dev->mode_config.mutex); 2002 2003 return 0; 2004 } 2005 2006 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc, 2007 u16 *r, u16 *g, u16 *b, 2008 uint32_t size, 2009 struct drm_modeset_acquire_ctx *ctx) 2010 { 2011 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 2012 int i; 2013 2014 for (i = 0; i < size; i++) { 2015 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i, 2016 r[i], g[i], b[i]); 2017 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8); 2018 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8); 2019 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8); 2020 } 2021 2022 return 0; 2023 } 2024 2025 int vmw_du_connector_dpms(struct drm_connector *connector, int mode) 2026 { 2027 return 0; 2028 } 2029 2030 enum drm_connector_status 2031 vmw_du_connector_detect(struct drm_connector *connector, bool force) 2032 { 2033 uint32_t num_displays; 2034 struct drm_device *dev = connector->dev; 2035 struct vmw_private *dev_priv = vmw_priv(dev); 2036 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2037 2038 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS); 2039 2040 return ((vmw_connector_to_du(connector)->unit < num_displays && 2041 du->pref_active) ? 2042 connector_status_connected : connector_status_disconnected); 2043 } 2044 2045 static struct drm_display_mode vmw_kms_connector_builtin[] = { 2046 /* 640x480@60Hz */ 2047 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 2048 752, 800, 0, 480, 489, 492, 525, 0, 2049 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2050 /* 800x600@60Hz */ 2051 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 2052 968, 1056, 0, 600, 601, 605, 628, 0, 2053 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2054 /* 1024x768@60Hz */ 2055 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 2056 1184, 1344, 0, 768, 771, 777, 806, 0, 2057 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2058 /* 1152x864@75Hz */ 2059 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 2060 1344, 1600, 0, 864, 865, 868, 900, 0, 2061 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2062 /* 1280x768@60Hz */ 2063 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 2064 1472, 1664, 0, 768, 771, 778, 798, 0, 2065 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2066 /* 1280x800@60Hz */ 2067 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 2068 1480, 1680, 0, 800, 803, 809, 831, 0, 2069 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2070 /* 1280x960@60Hz */ 2071 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 2072 1488, 1800, 0, 960, 961, 964, 1000, 0, 2073 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2074 /* 1280x1024@60Hz */ 2075 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 2076 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 2077 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2078 /* 1360x768@60Hz */ 2079 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 2080 1536, 1792, 0, 768, 771, 777, 795, 0, 2081 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2082 /* 1440x1050@60Hz */ 2083 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 2084 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, 2085 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2086 /* 1440x900@60Hz */ 2087 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 2088 1672, 1904, 0, 900, 903, 909, 934, 0, 2089 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2090 /* 1600x1200@60Hz */ 2091 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 2092 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 2093 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2094 /* 1680x1050@60Hz */ 2095 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 2096 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, 2097 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2098 /* 1792x1344@60Hz */ 2099 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 2100 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, 2101 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2102 /* 1853x1392@60Hz */ 2103 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 2104 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, 2105 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2106 /* 1920x1200@60Hz */ 2107 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 2108 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, 2109 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2110 /* 1920x1440@60Hz */ 2111 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 2112 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, 2113 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2114 /* 2560x1600@60Hz */ 2115 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 2116 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, 2117 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2118 /* Terminate */ 2119 { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) }, 2120 }; 2121 2122 /** 2123 * vmw_guess_mode_timing - Provide fake timings for a 2124 * 60Hz vrefresh mode. 2125 * 2126 * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay 2127 * members filled in. 2128 */ 2129 void vmw_guess_mode_timing(struct drm_display_mode *mode) 2130 { 2131 mode->hsync_start = mode->hdisplay + 50; 2132 mode->hsync_end = mode->hsync_start + 50; 2133 mode->htotal = mode->hsync_end + 50; 2134 2135 mode->vsync_start = mode->vdisplay + 50; 2136 mode->vsync_end = mode->vsync_start + 50; 2137 mode->vtotal = mode->vsync_end + 50; 2138 2139 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6; 2140 } 2141 2142 2143 int vmw_du_connector_fill_modes(struct drm_connector *connector, 2144 uint32_t max_width, uint32_t max_height) 2145 { 2146 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2147 struct drm_device *dev = connector->dev; 2148 struct vmw_private *dev_priv = vmw_priv(dev); 2149 struct drm_display_mode *mode = NULL; 2150 struct drm_display_mode *bmode; 2151 struct drm_display_mode prefmode = { DRM_MODE("preferred", 2152 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED, 2153 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2154 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) 2155 }; 2156 int i; 2157 u32 assumed_bpp = 4; 2158 2159 if (dev_priv->assume_16bpp) 2160 assumed_bpp = 2; 2161 2162 max_width = min(max_width, dev_priv->texture_max_width); 2163 max_height = min(max_height, dev_priv->texture_max_height); 2164 2165 /* 2166 * For STDU extra limit for a mode on SVGA_REG_SCREENTARGET_MAX_WIDTH/ 2167 * HEIGHT registers. 2168 */ 2169 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2170 max_width = min(max_width, dev_priv->stdu_max_width); 2171 max_height = min(max_height, dev_priv->stdu_max_height); 2172 } 2173 2174 /* Add preferred mode */ 2175 mode = drm_mode_duplicate(dev, &prefmode); 2176 if (!mode) 2177 return 0; 2178 mode->hdisplay = du->pref_width; 2179 mode->vdisplay = du->pref_height; 2180 vmw_guess_mode_timing(mode); 2181 2182 if (vmw_kms_validate_mode_vram(dev_priv, 2183 mode->hdisplay * assumed_bpp, 2184 mode->vdisplay)) { 2185 drm_mode_probed_add(connector, mode); 2186 } else { 2187 drm_mode_destroy(dev, mode); 2188 mode = NULL; 2189 } 2190 2191 if (du->pref_mode) { 2192 list_del_init(&du->pref_mode->head); 2193 drm_mode_destroy(dev, du->pref_mode); 2194 } 2195 2196 /* mode might be null here, this is intended */ 2197 du->pref_mode = mode; 2198 2199 for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) { 2200 bmode = &vmw_kms_connector_builtin[i]; 2201 if (bmode->hdisplay > max_width || 2202 bmode->vdisplay > max_height) 2203 continue; 2204 2205 if (!vmw_kms_validate_mode_vram(dev_priv, 2206 bmode->hdisplay * assumed_bpp, 2207 bmode->vdisplay)) 2208 continue; 2209 2210 mode = drm_mode_duplicate(dev, bmode); 2211 if (!mode) 2212 return 0; 2213 2214 drm_mode_probed_add(connector, mode); 2215 } 2216 2217 drm_connector_list_update(connector); 2218 /* Move the prefered mode first, help apps pick the right mode. */ 2219 drm_mode_sort(&connector->modes); 2220 2221 return 1; 2222 } 2223 2224 /** 2225 * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl 2226 * @dev: drm device for the ioctl 2227 * @data: data pointer for the ioctl 2228 * @file_priv: drm file for the ioctl call 2229 * 2230 * Update preferred topology of display unit as per ioctl request. The topology 2231 * is expressed as array of drm_vmw_rect. 2232 * e.g. 2233 * [0 0 640 480] [640 0 800 600] [0 480 640 480] 2234 * 2235 * NOTE: 2236 * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside 2237 * device limit on topology, x + w and y + h (lower right) cannot be greater 2238 * than INT_MAX. So topology beyond these limits will return with error. 2239 * 2240 * Returns: 2241 * Zero on success, negative errno on failure. 2242 */ 2243 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data, 2244 struct drm_file *file_priv) 2245 { 2246 struct vmw_private *dev_priv = vmw_priv(dev); 2247 struct drm_mode_config *mode_config = &dev->mode_config; 2248 struct drm_vmw_update_layout_arg *arg = 2249 (struct drm_vmw_update_layout_arg *)data; 2250 void __user *user_rects; 2251 struct drm_vmw_rect *rects; 2252 struct drm_rect *drm_rects; 2253 unsigned rects_size; 2254 int ret, i; 2255 2256 if (!arg->num_outputs) { 2257 struct drm_rect def_rect = {0, 0, 800, 600}; 2258 VMW_DEBUG_KMS("Default layout x1 = %d y1 = %d x2 = %d y2 = %d\n", 2259 def_rect.x1, def_rect.y1, 2260 def_rect.x2, def_rect.y2); 2261 vmw_du_update_layout(dev_priv, 1, &def_rect); 2262 return 0; 2263 } 2264 2265 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect); 2266 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect), 2267 GFP_KERNEL); 2268 if (unlikely(!rects)) 2269 return -ENOMEM; 2270 2271 user_rects = (void __user *)(unsigned long)arg->rects; 2272 ret = copy_from_user(rects, user_rects, rects_size); 2273 if (unlikely(ret != 0)) { 2274 DRM_ERROR("Failed to get rects.\n"); 2275 ret = -EFAULT; 2276 goto out_free; 2277 } 2278 2279 drm_rects = (struct drm_rect *)rects; 2280 2281 VMW_DEBUG_KMS("Layout count = %u\n", arg->num_outputs); 2282 for (i = 0; i < arg->num_outputs; i++) { 2283 struct drm_vmw_rect curr_rect; 2284 2285 /* Verify user-space for overflow as kernel use drm_rect */ 2286 if ((rects[i].x + rects[i].w > INT_MAX) || 2287 (rects[i].y + rects[i].h > INT_MAX)) { 2288 ret = -ERANGE; 2289 goto out_free; 2290 } 2291 2292 curr_rect = rects[i]; 2293 drm_rects[i].x1 = curr_rect.x; 2294 drm_rects[i].y1 = curr_rect.y; 2295 drm_rects[i].x2 = curr_rect.x + curr_rect.w; 2296 drm_rects[i].y2 = curr_rect.y + curr_rect.h; 2297 2298 VMW_DEBUG_KMS(" x1 = %d y1 = %d x2 = %d y2 = %d\n", 2299 drm_rects[i].x1, drm_rects[i].y1, 2300 drm_rects[i].x2, drm_rects[i].y2); 2301 2302 /* 2303 * Currently this check is limiting the topology within 2304 * mode_config->max (which actually is max texture size 2305 * supported by virtual device). This limit is here to address 2306 * window managers that create a big framebuffer for whole 2307 * topology. 2308 */ 2309 if (drm_rects[i].x1 < 0 || drm_rects[i].y1 < 0 || 2310 drm_rects[i].x2 > mode_config->max_width || 2311 drm_rects[i].y2 > mode_config->max_height) { 2312 VMW_DEBUG_KMS("Invalid layout %d %d %d %d\n", 2313 drm_rects[i].x1, drm_rects[i].y1, 2314 drm_rects[i].x2, drm_rects[i].y2); 2315 ret = -EINVAL; 2316 goto out_free; 2317 } 2318 } 2319 2320 ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects); 2321 2322 if (ret == 0) 2323 vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects); 2324 2325 out_free: 2326 kfree(rects); 2327 return ret; 2328 } 2329 2330 /** 2331 * vmw_kms_helper_dirty - Helper to build commands and perform actions based 2332 * on a set of cliprects and a set of display units. 2333 * 2334 * @dev_priv: Pointer to a device private structure. 2335 * @framebuffer: Pointer to the framebuffer on which to perform the actions. 2336 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL. 2337 * Cliprects are given in framebuffer coordinates. 2338 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must 2339 * be NULL. Cliprects are given in source coordinates. 2340 * @dest_x: X coordinate offset for the crtc / destination clip rects. 2341 * @dest_y: Y coordinate offset for the crtc / destination clip rects. 2342 * @num_clips: Number of cliprects in the @clips or @vclips array. 2343 * @increment: Integer with which to increment the clip counter when looping. 2344 * Used to skip a predetermined number of clip rects. 2345 * @dirty: Closure structure. See the description of struct vmw_kms_dirty. 2346 */ 2347 int vmw_kms_helper_dirty(struct vmw_private *dev_priv, 2348 struct vmw_framebuffer *framebuffer, 2349 const struct drm_clip_rect *clips, 2350 const struct drm_vmw_rect *vclips, 2351 s32 dest_x, s32 dest_y, 2352 int num_clips, 2353 int increment, 2354 struct vmw_kms_dirty *dirty) 2355 { 2356 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS]; 2357 struct drm_crtc *crtc; 2358 u32 num_units = 0; 2359 u32 i, k; 2360 2361 dirty->dev_priv = dev_priv; 2362 2363 /* If crtc is passed, no need to iterate over other display units */ 2364 if (dirty->crtc) { 2365 units[num_units++] = vmw_crtc_to_du(dirty->crtc); 2366 } else { 2367 list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, 2368 head) { 2369 struct drm_plane *plane = crtc->primary; 2370 2371 if (plane->state->fb == &framebuffer->base) 2372 units[num_units++] = vmw_crtc_to_du(crtc); 2373 } 2374 } 2375 2376 for (k = 0; k < num_units; k++) { 2377 struct vmw_display_unit *unit = units[k]; 2378 s32 crtc_x = unit->crtc.x; 2379 s32 crtc_y = unit->crtc.y; 2380 s32 crtc_width = unit->crtc.mode.hdisplay; 2381 s32 crtc_height = unit->crtc.mode.vdisplay; 2382 const struct drm_clip_rect *clips_ptr = clips; 2383 const struct drm_vmw_rect *vclips_ptr = vclips; 2384 2385 dirty->unit = unit; 2386 if (dirty->fifo_reserve_size > 0) { 2387 dirty->cmd = VMW_FIFO_RESERVE(dev_priv, 2388 dirty->fifo_reserve_size); 2389 if (!dirty->cmd) 2390 return -ENOMEM; 2391 2392 memset(dirty->cmd, 0, dirty->fifo_reserve_size); 2393 } 2394 dirty->num_hits = 0; 2395 for (i = 0; i < num_clips; i++, clips_ptr += increment, 2396 vclips_ptr += increment) { 2397 s32 clip_left; 2398 s32 clip_top; 2399 2400 /* 2401 * Select clip array type. Note that integer type 2402 * in @clips is unsigned short, whereas in @vclips 2403 * it's 32-bit. 2404 */ 2405 if (clips) { 2406 dirty->fb_x = (s32) clips_ptr->x1; 2407 dirty->fb_y = (s32) clips_ptr->y1; 2408 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x - 2409 crtc_x; 2410 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y - 2411 crtc_y; 2412 } else { 2413 dirty->fb_x = vclips_ptr->x; 2414 dirty->fb_y = vclips_ptr->y; 2415 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w + 2416 dest_x - crtc_x; 2417 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h + 2418 dest_y - crtc_y; 2419 } 2420 2421 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x; 2422 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y; 2423 2424 /* Skip this clip if it's outside the crtc region */ 2425 if (dirty->unit_x1 >= crtc_width || 2426 dirty->unit_y1 >= crtc_height || 2427 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0) 2428 continue; 2429 2430 /* Clip right and bottom to crtc limits */ 2431 dirty->unit_x2 = min_t(s32, dirty->unit_x2, 2432 crtc_width); 2433 dirty->unit_y2 = min_t(s32, dirty->unit_y2, 2434 crtc_height); 2435 2436 /* Clip left and top to crtc limits */ 2437 clip_left = min_t(s32, dirty->unit_x1, 0); 2438 clip_top = min_t(s32, dirty->unit_y1, 0); 2439 dirty->unit_x1 -= clip_left; 2440 dirty->unit_y1 -= clip_top; 2441 dirty->fb_x -= clip_left; 2442 dirty->fb_y -= clip_top; 2443 2444 dirty->clip(dirty); 2445 } 2446 2447 dirty->fifo_commit(dirty); 2448 } 2449 2450 return 0; 2451 } 2452 2453 /** 2454 * vmw_kms_helper_validation_finish - Helper for post KMS command submission 2455 * cleanup and fencing 2456 * @dev_priv: Pointer to the device-private struct 2457 * @file_priv: Pointer identifying the client when user-space fencing is used 2458 * @ctx: Pointer to the validation context 2459 * @out_fence: If non-NULL, returned refcounted fence-pointer 2460 * @user_fence_rep: If non-NULL, pointer to user-space address area 2461 * in which to copy user-space fence info 2462 */ 2463 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv, 2464 struct drm_file *file_priv, 2465 struct vmw_validation_context *ctx, 2466 struct vmw_fence_obj **out_fence, 2467 struct drm_vmw_fence_rep __user * 2468 user_fence_rep) 2469 { 2470 struct vmw_fence_obj *fence = NULL; 2471 uint32_t handle = 0; 2472 int ret = 0; 2473 2474 if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) || 2475 out_fence) 2476 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence, 2477 file_priv ? &handle : NULL); 2478 vmw_validation_done(ctx, fence); 2479 if (file_priv) 2480 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv), 2481 ret, user_fence_rep, fence, 2482 handle, -1, NULL); 2483 if (out_fence) 2484 *out_fence = fence; 2485 else 2486 vmw_fence_obj_unreference(&fence); 2487 } 2488 2489 /** 2490 * vmw_kms_update_proxy - Helper function to update a proxy surface from 2491 * its backing MOB. 2492 * 2493 * @res: Pointer to the surface resource 2494 * @clips: Clip rects in framebuffer (surface) space. 2495 * @num_clips: Number of clips in @clips. 2496 * @increment: Integer with which to increment the clip counter when looping. 2497 * Used to skip a predetermined number of clip rects. 2498 * 2499 * This function makes sure the proxy surface is updated from its backing MOB 2500 * using the region given by @clips. The surface resource @res and its backing 2501 * MOB needs to be reserved and validated on call. 2502 */ 2503 int vmw_kms_update_proxy(struct vmw_resource *res, 2504 const struct drm_clip_rect *clips, 2505 unsigned num_clips, 2506 int increment) 2507 { 2508 struct vmw_private *dev_priv = res->dev_priv; 2509 struct drm_vmw_size *size = &vmw_res_to_srf(res)->metadata.base_size; 2510 struct { 2511 SVGA3dCmdHeader header; 2512 SVGA3dCmdUpdateGBImage body; 2513 } *cmd; 2514 SVGA3dBox *box; 2515 size_t copy_size = 0; 2516 int i; 2517 2518 if (!clips) 2519 return 0; 2520 2521 cmd = VMW_FIFO_RESERVE(dev_priv, sizeof(*cmd) * num_clips); 2522 if (!cmd) 2523 return -ENOMEM; 2524 2525 for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) { 2526 box = &cmd->body.box; 2527 2528 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE; 2529 cmd->header.size = sizeof(cmd->body); 2530 cmd->body.image.sid = res->id; 2531 cmd->body.image.face = 0; 2532 cmd->body.image.mipmap = 0; 2533 2534 if (clips->x1 > size->width || clips->x2 > size->width || 2535 clips->y1 > size->height || clips->y2 > size->height) { 2536 DRM_ERROR("Invalid clips outsize of framebuffer.\n"); 2537 return -EINVAL; 2538 } 2539 2540 box->x = clips->x1; 2541 box->y = clips->y1; 2542 box->z = 0; 2543 box->w = clips->x2 - clips->x1; 2544 box->h = clips->y2 - clips->y1; 2545 box->d = 1; 2546 2547 copy_size += sizeof(*cmd); 2548 } 2549 2550 vmw_fifo_commit(dev_priv, copy_size); 2551 2552 return 0; 2553 } 2554 2555 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv, 2556 unsigned unit, 2557 u32 max_width, 2558 u32 max_height, 2559 struct drm_connector **p_con, 2560 struct drm_crtc **p_crtc, 2561 struct drm_display_mode **p_mode) 2562 { 2563 struct drm_connector *con; 2564 struct vmw_display_unit *du; 2565 struct drm_display_mode *mode; 2566 int i = 0; 2567 int ret = 0; 2568 2569 mutex_lock(&dev_priv->dev->mode_config.mutex); 2570 list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list, 2571 head) { 2572 if (i == unit) 2573 break; 2574 2575 ++i; 2576 } 2577 2578 if (&con->head == &dev_priv->dev->mode_config.connector_list) { 2579 DRM_ERROR("Could not find initial display unit.\n"); 2580 ret = -EINVAL; 2581 goto out_unlock; 2582 } 2583 2584 if (list_empty(&con->modes)) 2585 (void) vmw_du_connector_fill_modes(con, max_width, max_height); 2586 2587 if (list_empty(&con->modes)) { 2588 DRM_ERROR("Could not find initial display mode.\n"); 2589 ret = -EINVAL; 2590 goto out_unlock; 2591 } 2592 2593 du = vmw_connector_to_du(con); 2594 *p_con = con; 2595 *p_crtc = &du->crtc; 2596 2597 list_for_each_entry(mode, &con->modes, head) { 2598 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2599 break; 2600 } 2601 2602 if (&mode->head == &con->modes) { 2603 WARN_ONCE(true, "Could not find initial preferred mode.\n"); 2604 *p_mode = list_first_entry(&con->modes, 2605 struct drm_display_mode, 2606 head); 2607 } else { 2608 *p_mode = mode; 2609 } 2610 2611 out_unlock: 2612 mutex_unlock(&dev_priv->dev->mode_config.mutex); 2613 2614 return ret; 2615 } 2616 2617 /** 2618 * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement 2619 * property. 2620 * 2621 * @dev_priv: Pointer to a device private struct. 2622 * 2623 * Sets up the implicit placement property unless it's already set up. 2624 */ 2625 void 2626 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv) 2627 { 2628 if (dev_priv->implicit_placement_property) 2629 return; 2630 2631 dev_priv->implicit_placement_property = 2632 drm_property_create_range(dev_priv->dev, 2633 DRM_MODE_PROP_IMMUTABLE, 2634 "implicit_placement", 0, 1); 2635 } 2636 2637 /** 2638 * vmw_kms_suspend - Save modesetting state and turn modesetting off. 2639 * 2640 * @dev: Pointer to the drm device 2641 * Return: 0 on success. Negative error code on failure. 2642 */ 2643 int vmw_kms_suspend(struct drm_device *dev) 2644 { 2645 struct vmw_private *dev_priv = vmw_priv(dev); 2646 2647 dev_priv->suspend_state = drm_atomic_helper_suspend(dev); 2648 if (IS_ERR(dev_priv->suspend_state)) { 2649 int ret = PTR_ERR(dev_priv->suspend_state); 2650 2651 DRM_ERROR("Failed kms suspend: %d\n", ret); 2652 dev_priv->suspend_state = NULL; 2653 2654 return ret; 2655 } 2656 2657 return 0; 2658 } 2659 2660 2661 /** 2662 * vmw_kms_resume - Re-enable modesetting and restore state 2663 * 2664 * @dev: Pointer to the drm device 2665 * Return: 0 on success. Negative error code on failure. 2666 * 2667 * State is resumed from a previous vmw_kms_suspend(). It's illegal 2668 * to call this function without a previous vmw_kms_suspend(). 2669 */ 2670 int vmw_kms_resume(struct drm_device *dev) 2671 { 2672 struct vmw_private *dev_priv = vmw_priv(dev); 2673 int ret; 2674 2675 if (WARN_ON(!dev_priv->suspend_state)) 2676 return 0; 2677 2678 ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state); 2679 dev_priv->suspend_state = NULL; 2680 2681 return ret; 2682 } 2683 2684 /** 2685 * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost 2686 * 2687 * @dev: Pointer to the drm device 2688 */ 2689 void vmw_kms_lost_device(struct drm_device *dev) 2690 { 2691 drm_atomic_helper_shutdown(dev); 2692 } 2693 2694 /** 2695 * vmw_du_helper_plane_update - Helper to do plane update on a display unit. 2696 * @update: The closure structure. 2697 * 2698 * Call this helper after setting callbacks in &vmw_du_update_plane to do plane 2699 * update on display unit. 2700 * 2701 * Return: 0 on success or a negative error code on failure. 2702 */ 2703 int vmw_du_helper_plane_update(struct vmw_du_update_plane *update) 2704 { 2705 struct drm_plane_state *state = update->plane->state; 2706 struct drm_plane_state *old_state = update->old_state; 2707 struct drm_atomic_helper_damage_iter iter; 2708 struct drm_rect clip; 2709 struct drm_rect bb; 2710 DECLARE_VAL_CONTEXT(val_ctx, NULL, 0); 2711 uint32_t reserved_size = 0; 2712 uint32_t submit_size = 0; 2713 uint32_t curr_size = 0; 2714 uint32_t num_hits = 0; 2715 void *cmd_start; 2716 char *cmd_next; 2717 int ret; 2718 2719 /* 2720 * Iterate in advance to check if really need plane update and find the 2721 * number of clips that actually are in plane src for fifo allocation. 2722 */ 2723 drm_atomic_helper_damage_iter_init(&iter, old_state, state); 2724 drm_atomic_for_each_plane_damage(&iter, &clip) 2725 num_hits++; 2726 2727 if (num_hits == 0) 2728 return 0; 2729 2730 if (update->vfb->bo) { 2731 struct vmw_framebuffer_bo *vfbbo = 2732 container_of(update->vfb, typeof(*vfbbo), base); 2733 2734 ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer, false, 2735 update->cpu_blit); 2736 } else { 2737 struct vmw_framebuffer_surface *vfbs = 2738 container_of(update->vfb, typeof(*vfbs), base); 2739 2740 ret = vmw_validation_add_resource(&val_ctx, &vfbs->surface->res, 2741 0, VMW_RES_DIRTY_NONE, NULL, 2742 NULL); 2743 } 2744 2745 if (ret) 2746 return ret; 2747 2748 ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr); 2749 if (ret) 2750 goto out_unref; 2751 2752 reserved_size = update->calc_fifo_size(update, num_hits); 2753 cmd_start = VMW_FIFO_RESERVE(update->dev_priv, reserved_size); 2754 if (!cmd_start) { 2755 ret = -ENOMEM; 2756 goto out_revert; 2757 } 2758 2759 cmd_next = cmd_start; 2760 2761 if (update->post_prepare) { 2762 curr_size = update->post_prepare(update, cmd_next); 2763 cmd_next += curr_size; 2764 submit_size += curr_size; 2765 } 2766 2767 if (update->pre_clip) { 2768 curr_size = update->pre_clip(update, cmd_next, num_hits); 2769 cmd_next += curr_size; 2770 submit_size += curr_size; 2771 } 2772 2773 bb.x1 = INT_MAX; 2774 bb.y1 = INT_MAX; 2775 bb.x2 = INT_MIN; 2776 bb.y2 = INT_MIN; 2777 2778 drm_atomic_helper_damage_iter_init(&iter, old_state, state); 2779 drm_atomic_for_each_plane_damage(&iter, &clip) { 2780 uint32_t fb_x = clip.x1; 2781 uint32_t fb_y = clip.y1; 2782 2783 vmw_du_translate_to_crtc(state, &clip); 2784 if (update->clip) { 2785 curr_size = update->clip(update, cmd_next, &clip, fb_x, 2786 fb_y); 2787 cmd_next += curr_size; 2788 submit_size += curr_size; 2789 } 2790 bb.x1 = min_t(int, bb.x1, clip.x1); 2791 bb.y1 = min_t(int, bb.y1, clip.y1); 2792 bb.x2 = max_t(int, bb.x2, clip.x2); 2793 bb.y2 = max_t(int, bb.y2, clip.y2); 2794 } 2795 2796 curr_size = update->post_clip(update, cmd_next, &bb); 2797 submit_size += curr_size; 2798 2799 if (reserved_size < submit_size) 2800 submit_size = 0; 2801 2802 vmw_fifo_commit(update->dev_priv, submit_size); 2803 2804 vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx, 2805 update->out_fence, NULL); 2806 return ret; 2807 2808 out_revert: 2809 vmw_validation_revert(&val_ctx); 2810 2811 out_unref: 2812 vmw_validation_unref_lists(&val_ctx); 2813 return ret; 2814 } 2815