1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include <drm/drm_atomic.h>
29 #include <drm/drm_atomic_helper.h>
30 #include <drm/drm_damage_helper.h>
31 #include <drm/drm_fourcc.h>
32 #include <drm/drm_plane_helper.h>
33 #include <drm/drm_rect.h>
34 #include <drm/drm_sysfs.h>
35 #include <drm/drm_vblank.h>
36 
37 #include "vmwgfx_kms.h"
38 
39 /* Might need a hrtimer here? */
40 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
41 
42 void vmw_du_cleanup(struct vmw_display_unit *du)
43 {
44 	drm_plane_cleanup(&du->primary);
45 	drm_plane_cleanup(&du->cursor);
46 
47 	drm_connector_unregister(&du->connector);
48 	drm_crtc_cleanup(&du->crtc);
49 	drm_encoder_cleanup(&du->encoder);
50 	drm_connector_cleanup(&du->connector);
51 }
52 
53 /*
54  * Display Unit Cursor functions
55  */
56 
57 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
58 				   u32 *image, u32 width, u32 height,
59 				   u32 hotspotX, u32 hotspotY)
60 {
61 	struct {
62 		u32 cmd;
63 		SVGAFifoCmdDefineAlphaCursor cursor;
64 	} *cmd;
65 	u32 image_size = width * height * 4;
66 	u32 cmd_size = sizeof(*cmd) + image_size;
67 
68 	if (!image)
69 		return -EINVAL;
70 
71 	cmd = VMW_FIFO_RESERVE(dev_priv, cmd_size);
72 	if (unlikely(cmd == NULL))
73 		return -ENOMEM;
74 
75 	memset(cmd, 0, sizeof(*cmd));
76 
77 	memcpy(&cmd[1], image, image_size);
78 
79 	cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
80 	cmd->cursor.id = 0;
81 	cmd->cursor.width = width;
82 	cmd->cursor.height = height;
83 	cmd->cursor.hotspotX = hotspotX;
84 	cmd->cursor.hotspotY = hotspotY;
85 
86 	vmw_fifo_commit_flush(dev_priv, cmd_size);
87 
88 	return 0;
89 }
90 
91 static int vmw_cursor_update_bo(struct vmw_private *dev_priv,
92 				struct vmw_buffer_object *bo,
93 				u32 width, u32 height,
94 				u32 hotspotX, u32 hotspotY)
95 {
96 	struct ttm_bo_kmap_obj map;
97 	unsigned long kmap_offset;
98 	unsigned long kmap_num;
99 	void *virtual;
100 	bool dummy;
101 	int ret;
102 
103 	kmap_offset = 0;
104 	kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
105 
106 	ret = ttm_bo_reserve(&bo->base, true, false, NULL);
107 	if (unlikely(ret != 0)) {
108 		DRM_ERROR("reserve failed\n");
109 		return -EINVAL;
110 	}
111 
112 	ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map);
113 	if (unlikely(ret != 0))
114 		goto err_unreserve;
115 
116 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
117 	ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
118 				      hotspotX, hotspotY);
119 
120 	ttm_bo_kunmap(&map);
121 err_unreserve:
122 	ttm_bo_unreserve(&bo->base);
123 
124 	return ret;
125 }
126 
127 
128 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
129 				       bool show, int x, int y)
130 {
131 	u32 *fifo_mem = dev_priv->mmio_virt;
132 	uint32_t count;
133 
134 	spin_lock(&dev_priv->cursor_lock);
135 	vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
136 	vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
137 	vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
138 	count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
139 	vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
140 	spin_unlock(&dev_priv->cursor_lock);
141 }
142 
143 
144 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
145 			  struct ttm_object_file *tfile,
146 			  struct ttm_buffer_object *bo,
147 			  SVGA3dCmdHeader *header)
148 {
149 	struct ttm_bo_kmap_obj map;
150 	unsigned long kmap_offset;
151 	unsigned long kmap_num;
152 	SVGA3dCopyBox *box;
153 	unsigned box_count;
154 	void *virtual;
155 	bool dummy;
156 	struct vmw_dma_cmd {
157 		SVGA3dCmdHeader header;
158 		SVGA3dCmdSurfaceDMA dma;
159 	} *cmd;
160 	int i, ret;
161 
162 	cmd = container_of(header, struct vmw_dma_cmd, header);
163 
164 	/* No snooper installed */
165 	if (!srf->snooper.image)
166 		return;
167 
168 	if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
169 		DRM_ERROR("face and mipmap for cursors should never != 0\n");
170 		return;
171 	}
172 
173 	if (cmd->header.size < 64) {
174 		DRM_ERROR("at least one full copy box must be given\n");
175 		return;
176 	}
177 
178 	box = (SVGA3dCopyBox *)&cmd[1];
179 	box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
180 			sizeof(SVGA3dCopyBox);
181 
182 	if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
183 	    box->x != 0    || box->y != 0    || box->z != 0    ||
184 	    box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
185 	    box->d != 1    || box_count != 1) {
186 		/* TODO handle none page aligned offsets */
187 		/* TODO handle more dst & src != 0 */
188 		/* TODO handle more then one copy */
189 		DRM_ERROR("Can't snoop dma request for cursor!\n");
190 		DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
191 			  box->srcx, box->srcy, box->srcz,
192 			  box->x, box->y, box->z,
193 			  box->w, box->h, box->d, box_count,
194 			  cmd->dma.guest.ptr.offset);
195 		return;
196 	}
197 
198 	kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
199 	kmap_num = (64*64*4) >> PAGE_SHIFT;
200 
201 	ret = ttm_bo_reserve(bo, true, false, NULL);
202 	if (unlikely(ret != 0)) {
203 		DRM_ERROR("reserve failed\n");
204 		return;
205 	}
206 
207 	ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
208 	if (unlikely(ret != 0))
209 		goto err_unreserve;
210 
211 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
212 
213 	if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
214 		memcpy(srf->snooper.image, virtual, 64*64*4);
215 	} else {
216 		/* Image is unsigned pointer. */
217 		for (i = 0; i < box->h; i++)
218 			memcpy(srf->snooper.image + i * 64,
219 			       virtual + i * cmd->dma.guest.pitch,
220 			       box->w * 4);
221 	}
222 
223 	srf->snooper.age++;
224 
225 	ttm_bo_kunmap(&map);
226 err_unreserve:
227 	ttm_bo_unreserve(bo);
228 }
229 
230 /**
231  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
232  *
233  * @dev_priv: Pointer to the device private struct.
234  *
235  * Clears all legacy hotspots.
236  */
237 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
238 {
239 	struct drm_device *dev = dev_priv->dev;
240 	struct vmw_display_unit *du;
241 	struct drm_crtc *crtc;
242 
243 	drm_modeset_lock_all(dev);
244 	drm_for_each_crtc(crtc, dev) {
245 		du = vmw_crtc_to_du(crtc);
246 
247 		du->hotspot_x = 0;
248 		du->hotspot_y = 0;
249 	}
250 	drm_modeset_unlock_all(dev);
251 }
252 
253 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
254 {
255 	struct drm_device *dev = dev_priv->dev;
256 	struct vmw_display_unit *du;
257 	struct drm_crtc *crtc;
258 
259 	mutex_lock(&dev->mode_config.mutex);
260 
261 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
262 		du = vmw_crtc_to_du(crtc);
263 		if (!du->cursor_surface ||
264 		    du->cursor_age == du->cursor_surface->snooper.age)
265 			continue;
266 
267 		du->cursor_age = du->cursor_surface->snooper.age;
268 		vmw_cursor_update_image(dev_priv,
269 					du->cursor_surface->snooper.image,
270 					64, 64,
271 					du->hotspot_x + du->core_hotspot_x,
272 					du->hotspot_y + du->core_hotspot_y);
273 	}
274 
275 	mutex_unlock(&dev->mode_config.mutex);
276 }
277 
278 
279 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
280 {
281 	vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
282 
283 	drm_plane_cleanup(plane);
284 }
285 
286 
287 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
288 {
289 	drm_plane_cleanup(plane);
290 
291 	/* Planes are static in our case so we don't free it */
292 }
293 
294 
295 /**
296  * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
297  *
298  * @vps: plane state associated with the display surface
299  * @unreference: true if we also want to unreference the display.
300  */
301 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
302 			     bool unreference)
303 {
304 	if (vps->surf) {
305 		if (vps->pinned) {
306 			vmw_resource_unpin(&vps->surf->res);
307 			vps->pinned--;
308 		}
309 
310 		if (unreference) {
311 			if (vps->pinned)
312 				DRM_ERROR("Surface still pinned\n");
313 			vmw_surface_unreference(&vps->surf);
314 		}
315 	}
316 }
317 
318 
319 /**
320  * vmw_du_plane_cleanup_fb - Unpins the cursor
321  *
322  * @plane:  display plane
323  * @old_state: Contains the FB to clean up
324  *
325  * Unpins the framebuffer surface
326  *
327  * Returns 0 on success
328  */
329 void
330 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
331 			struct drm_plane_state *old_state)
332 {
333 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
334 
335 	vmw_du_plane_unpin_surf(vps, false);
336 }
337 
338 
339 /**
340  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
341  *
342  * @plane:  display plane
343  * @new_state: info on the new plane state, including the FB
344  *
345  * Returns 0 on success
346  */
347 int
348 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
349 			       struct drm_plane_state *new_state)
350 {
351 	struct drm_framebuffer *fb = new_state->fb;
352 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
353 
354 
355 	if (vps->surf)
356 		vmw_surface_unreference(&vps->surf);
357 
358 	if (vps->bo)
359 		vmw_bo_unreference(&vps->bo);
360 
361 	if (fb) {
362 		if (vmw_framebuffer_to_vfb(fb)->bo) {
363 			vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer;
364 			vmw_bo_reference(vps->bo);
365 		} else {
366 			vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
367 			vmw_surface_reference(vps->surf);
368 		}
369 	}
370 
371 	return 0;
372 }
373 
374 
375 void
376 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
377 				  struct drm_plane_state *old_state)
378 {
379 	struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
380 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
381 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
382 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
383 	s32 hotspot_x, hotspot_y;
384 	int ret = 0;
385 
386 
387 	hotspot_x = du->hotspot_x;
388 	hotspot_y = du->hotspot_y;
389 
390 	if (plane->state->fb) {
391 		hotspot_x += plane->state->fb->hot_x;
392 		hotspot_y += plane->state->fb->hot_y;
393 	}
394 
395 	du->cursor_surface = vps->surf;
396 	du->cursor_bo = vps->bo;
397 
398 	if (vps->surf) {
399 		du->cursor_age = du->cursor_surface->snooper.age;
400 
401 		ret = vmw_cursor_update_image(dev_priv,
402 					      vps->surf->snooper.image,
403 					      64, 64, hotspot_x,
404 					      hotspot_y);
405 	} else if (vps->bo) {
406 		ret = vmw_cursor_update_bo(dev_priv, vps->bo,
407 					   plane->state->crtc_w,
408 					   plane->state->crtc_h,
409 					   hotspot_x, hotspot_y);
410 	} else {
411 		vmw_cursor_update_position(dev_priv, false, 0, 0);
412 		return;
413 	}
414 
415 	if (!ret) {
416 		du->cursor_x = plane->state->crtc_x + du->set_gui_x;
417 		du->cursor_y = plane->state->crtc_y + du->set_gui_y;
418 
419 		vmw_cursor_update_position(dev_priv, true,
420 					   du->cursor_x + hotspot_x,
421 					   du->cursor_y + hotspot_y);
422 
423 		du->core_hotspot_x = hotspot_x - du->hotspot_x;
424 		du->core_hotspot_y = hotspot_y - du->hotspot_y;
425 	} else {
426 		DRM_ERROR("Failed to update cursor image\n");
427 	}
428 }
429 
430 
431 /**
432  * vmw_du_primary_plane_atomic_check - check if the new state is okay
433  *
434  * @plane: display plane
435  * @state: info on the new plane state, including the FB
436  *
437  * Check if the new state is settable given the current state.  Other
438  * than what the atomic helper checks, we care about crtc fitting
439  * the FB and maintaining one active framebuffer.
440  *
441  * Returns 0 on success
442  */
443 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
444 				      struct drm_plane_state *state)
445 {
446 	struct drm_crtc_state *crtc_state = NULL;
447 	struct drm_framebuffer *new_fb = state->fb;
448 	int ret;
449 
450 	if (state->crtc)
451 		crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc);
452 
453 	ret = drm_atomic_helper_check_plane_state(state, crtc_state,
454 						  DRM_PLANE_HELPER_NO_SCALING,
455 						  DRM_PLANE_HELPER_NO_SCALING,
456 						  false, true);
457 
458 	if (!ret && new_fb) {
459 		struct drm_crtc *crtc = state->crtc;
460 		struct vmw_connector_state *vcs;
461 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
462 
463 		vcs = vmw_connector_state_to_vcs(du->connector.state);
464 	}
465 
466 
467 	return ret;
468 }
469 
470 
471 /**
472  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
473  *
474  * @plane: cursor plane
475  * @state: info on the new plane state
476  *
477  * This is a chance to fail if the new cursor state does not fit
478  * our requirements.
479  *
480  * Returns 0 on success
481  */
482 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
483 				     struct drm_plane_state *new_state)
484 {
485 	int ret = 0;
486 	struct drm_crtc_state *crtc_state = NULL;
487 	struct vmw_surface *surface = NULL;
488 	struct drm_framebuffer *fb = new_state->fb;
489 
490 	if (new_state->crtc)
491 		crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
492 							   new_state->crtc);
493 
494 	ret = drm_atomic_helper_check_plane_state(new_state, crtc_state,
495 						  DRM_PLANE_HELPER_NO_SCALING,
496 						  DRM_PLANE_HELPER_NO_SCALING,
497 						  true, true);
498 	if (ret)
499 		return ret;
500 
501 	/* Turning off */
502 	if (!fb)
503 		return 0;
504 
505 	/* A lot of the code assumes this */
506 	if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
507 		DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
508 			  new_state->crtc_w, new_state->crtc_h);
509 		ret = -EINVAL;
510 	}
511 
512 	if (!vmw_framebuffer_to_vfb(fb)->bo)
513 		surface = vmw_framebuffer_to_vfbs(fb)->surface;
514 
515 	if (surface && !surface->snooper.image) {
516 		DRM_ERROR("surface not suitable for cursor\n");
517 		ret = -EINVAL;
518 	}
519 
520 	return ret;
521 }
522 
523 
524 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
525 			     struct drm_crtc_state *new_state)
526 {
527 	struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
528 	int connector_mask = drm_connector_mask(&du->connector);
529 	bool has_primary = new_state->plane_mask &
530 			   drm_plane_mask(crtc->primary);
531 
532 	/* We always want to have an active plane with an active CRTC */
533 	if (has_primary != new_state->enable)
534 		return -EINVAL;
535 
536 
537 	if (new_state->connector_mask != connector_mask &&
538 	    new_state->connector_mask != 0) {
539 		DRM_ERROR("Invalid connectors configuration\n");
540 		return -EINVAL;
541 	}
542 
543 	/*
544 	 * Our virtual device does not have a dot clock, so use the logical
545 	 * clock value as the dot clock.
546 	 */
547 	if (new_state->mode.crtc_clock == 0)
548 		new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
549 
550 	return 0;
551 }
552 
553 
554 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
555 			      struct drm_crtc_state *old_crtc_state)
556 {
557 }
558 
559 
560 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
561 			      struct drm_crtc_state *old_crtc_state)
562 {
563 	struct drm_pending_vblank_event *event = crtc->state->event;
564 
565 	if (event) {
566 		crtc->state->event = NULL;
567 
568 		spin_lock_irq(&crtc->dev->event_lock);
569 		drm_crtc_send_vblank_event(crtc, event);
570 		spin_unlock_irq(&crtc->dev->event_lock);
571 	}
572 }
573 
574 
575 /**
576  * vmw_du_crtc_duplicate_state - duplicate crtc state
577  * @crtc: DRM crtc
578  *
579  * Allocates and returns a copy of the crtc state (both common and
580  * vmw-specific) for the specified crtc.
581  *
582  * Returns: The newly allocated crtc state, or NULL on failure.
583  */
584 struct drm_crtc_state *
585 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
586 {
587 	struct drm_crtc_state *state;
588 	struct vmw_crtc_state *vcs;
589 
590 	if (WARN_ON(!crtc->state))
591 		return NULL;
592 
593 	vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
594 
595 	if (!vcs)
596 		return NULL;
597 
598 	state = &vcs->base;
599 
600 	__drm_atomic_helper_crtc_duplicate_state(crtc, state);
601 
602 	return state;
603 }
604 
605 
606 /**
607  * vmw_du_crtc_reset - creates a blank vmw crtc state
608  * @crtc: DRM crtc
609  *
610  * Resets the atomic state for @crtc by freeing the state pointer (which
611  * might be NULL, e.g. at driver load time) and allocating a new empty state
612  * object.
613  */
614 void vmw_du_crtc_reset(struct drm_crtc *crtc)
615 {
616 	struct vmw_crtc_state *vcs;
617 
618 
619 	if (crtc->state) {
620 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
621 
622 		kfree(vmw_crtc_state_to_vcs(crtc->state));
623 	}
624 
625 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
626 
627 	if (!vcs) {
628 		DRM_ERROR("Cannot allocate vmw_crtc_state\n");
629 		return;
630 	}
631 
632 	__drm_atomic_helper_crtc_reset(crtc, &vcs->base);
633 }
634 
635 
636 /**
637  * vmw_du_crtc_destroy_state - destroy crtc state
638  * @crtc: DRM crtc
639  * @state: state object to destroy
640  *
641  * Destroys the crtc state (both common and vmw-specific) for the
642  * specified plane.
643  */
644 void
645 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
646 			  struct drm_crtc_state *state)
647 {
648 	drm_atomic_helper_crtc_destroy_state(crtc, state);
649 }
650 
651 
652 /**
653  * vmw_du_plane_duplicate_state - duplicate plane state
654  * @plane: drm plane
655  *
656  * Allocates and returns a copy of the plane state (both common and
657  * vmw-specific) for the specified plane.
658  *
659  * Returns: The newly allocated plane state, or NULL on failure.
660  */
661 struct drm_plane_state *
662 vmw_du_plane_duplicate_state(struct drm_plane *plane)
663 {
664 	struct drm_plane_state *state;
665 	struct vmw_plane_state *vps;
666 
667 	vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
668 
669 	if (!vps)
670 		return NULL;
671 
672 	vps->pinned = 0;
673 	vps->cpp = 0;
674 
675 	/* Each ref counted resource needs to be acquired again */
676 	if (vps->surf)
677 		(void) vmw_surface_reference(vps->surf);
678 
679 	if (vps->bo)
680 		(void) vmw_bo_reference(vps->bo);
681 
682 	state = &vps->base;
683 
684 	__drm_atomic_helper_plane_duplicate_state(plane, state);
685 
686 	return state;
687 }
688 
689 
690 /**
691  * vmw_du_plane_reset - creates a blank vmw plane state
692  * @plane: drm plane
693  *
694  * Resets the atomic state for @plane by freeing the state pointer (which might
695  * be NULL, e.g. at driver load time) and allocating a new empty state object.
696  */
697 void vmw_du_plane_reset(struct drm_plane *plane)
698 {
699 	struct vmw_plane_state *vps;
700 
701 
702 	if (plane->state)
703 		vmw_du_plane_destroy_state(plane, plane->state);
704 
705 	vps = kzalloc(sizeof(*vps), GFP_KERNEL);
706 
707 	if (!vps) {
708 		DRM_ERROR("Cannot allocate vmw_plane_state\n");
709 		return;
710 	}
711 
712 	__drm_atomic_helper_plane_reset(plane, &vps->base);
713 }
714 
715 
716 /**
717  * vmw_du_plane_destroy_state - destroy plane state
718  * @plane: DRM plane
719  * @state: state object to destroy
720  *
721  * Destroys the plane state (both common and vmw-specific) for the
722  * specified plane.
723  */
724 void
725 vmw_du_plane_destroy_state(struct drm_plane *plane,
726 			   struct drm_plane_state *state)
727 {
728 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
729 
730 
731 	/* Should have been freed by cleanup_fb */
732 	if (vps->surf)
733 		vmw_surface_unreference(&vps->surf);
734 
735 	if (vps->bo)
736 		vmw_bo_unreference(&vps->bo);
737 
738 	drm_atomic_helper_plane_destroy_state(plane, state);
739 }
740 
741 
742 /**
743  * vmw_du_connector_duplicate_state - duplicate connector state
744  * @connector: DRM connector
745  *
746  * Allocates and returns a copy of the connector state (both common and
747  * vmw-specific) for the specified connector.
748  *
749  * Returns: The newly allocated connector state, or NULL on failure.
750  */
751 struct drm_connector_state *
752 vmw_du_connector_duplicate_state(struct drm_connector *connector)
753 {
754 	struct drm_connector_state *state;
755 	struct vmw_connector_state *vcs;
756 
757 	if (WARN_ON(!connector->state))
758 		return NULL;
759 
760 	vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
761 
762 	if (!vcs)
763 		return NULL;
764 
765 	state = &vcs->base;
766 
767 	__drm_atomic_helper_connector_duplicate_state(connector, state);
768 
769 	return state;
770 }
771 
772 
773 /**
774  * vmw_du_connector_reset - creates a blank vmw connector state
775  * @connector: DRM connector
776  *
777  * Resets the atomic state for @connector by freeing the state pointer (which
778  * might be NULL, e.g. at driver load time) and allocating a new empty state
779  * object.
780  */
781 void vmw_du_connector_reset(struct drm_connector *connector)
782 {
783 	struct vmw_connector_state *vcs;
784 
785 
786 	if (connector->state) {
787 		__drm_atomic_helper_connector_destroy_state(connector->state);
788 
789 		kfree(vmw_connector_state_to_vcs(connector->state));
790 	}
791 
792 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
793 
794 	if (!vcs) {
795 		DRM_ERROR("Cannot allocate vmw_connector_state\n");
796 		return;
797 	}
798 
799 	__drm_atomic_helper_connector_reset(connector, &vcs->base);
800 }
801 
802 
803 /**
804  * vmw_du_connector_destroy_state - destroy connector state
805  * @connector: DRM connector
806  * @state: state object to destroy
807  *
808  * Destroys the connector state (both common and vmw-specific) for the
809  * specified plane.
810  */
811 void
812 vmw_du_connector_destroy_state(struct drm_connector *connector,
813 			  struct drm_connector_state *state)
814 {
815 	drm_atomic_helper_connector_destroy_state(connector, state);
816 }
817 /*
818  * Generic framebuffer code
819  */
820 
821 /*
822  * Surface framebuffer code
823  */
824 
825 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
826 {
827 	struct vmw_framebuffer_surface *vfbs =
828 		vmw_framebuffer_to_vfbs(framebuffer);
829 
830 	drm_framebuffer_cleanup(framebuffer);
831 	vmw_surface_unreference(&vfbs->surface);
832 	if (vfbs->base.user_obj)
833 		ttm_base_object_unref(&vfbs->base.user_obj);
834 
835 	kfree(vfbs);
836 }
837 
838 /**
839  * vmw_kms_readback - Perform a readback from the screen system to
840  * a buffer-object backed framebuffer.
841  *
842  * @dev_priv: Pointer to the device private structure.
843  * @file_priv: Pointer to a struct drm_file identifying the caller.
844  * Must be set to NULL if @user_fence_rep is NULL.
845  * @vfb: Pointer to the buffer-object backed framebuffer.
846  * @user_fence_rep: User-space provided structure for fence information.
847  * Must be set to non-NULL if @file_priv is non-NULL.
848  * @vclips: Array of clip rects.
849  * @num_clips: Number of clip rects in @vclips.
850  *
851  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
852  * interrupted.
853  */
854 int vmw_kms_readback(struct vmw_private *dev_priv,
855 		     struct drm_file *file_priv,
856 		     struct vmw_framebuffer *vfb,
857 		     struct drm_vmw_fence_rep __user *user_fence_rep,
858 		     struct drm_vmw_rect *vclips,
859 		     uint32_t num_clips)
860 {
861 	switch (dev_priv->active_display_unit) {
862 	case vmw_du_screen_object:
863 		return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
864 					    user_fence_rep, vclips, num_clips,
865 					    NULL);
866 	case vmw_du_screen_target:
867 		return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
868 					user_fence_rep, NULL, vclips, num_clips,
869 					1, false, true, NULL);
870 	default:
871 		WARN_ONCE(true,
872 			  "Readback called with invalid display system.\n");
873 }
874 
875 	return -ENOSYS;
876 }
877 
878 
879 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
880 	.destroy = vmw_framebuffer_surface_destroy,
881 	.dirty = drm_atomic_helper_dirtyfb,
882 };
883 
884 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
885 					   struct vmw_surface *surface,
886 					   struct vmw_framebuffer **out,
887 					   const struct drm_mode_fb_cmd2
888 					   *mode_cmd,
889 					   bool is_bo_proxy)
890 
891 {
892 	struct drm_device *dev = dev_priv->dev;
893 	struct vmw_framebuffer_surface *vfbs;
894 	enum SVGA3dSurfaceFormat format;
895 	int ret;
896 	struct drm_format_name_buf format_name;
897 
898 	/* 3D is only supported on HWv8 and newer hosts */
899 	if (dev_priv->active_display_unit == vmw_du_legacy)
900 		return -ENOSYS;
901 
902 	/*
903 	 * Sanity checks.
904 	 */
905 
906 	/* Surface must be marked as a scanout. */
907 	if (unlikely(!surface->metadata.scanout))
908 		return -EINVAL;
909 
910 	if (unlikely(surface->metadata.mip_levels[0] != 1 ||
911 		     surface->metadata.num_sizes != 1 ||
912 		     surface->metadata.base_size.width < mode_cmd->width ||
913 		     surface->metadata.base_size.height < mode_cmd->height ||
914 		     surface->metadata.base_size.depth != 1)) {
915 		DRM_ERROR("Incompatible surface dimensions "
916 			  "for requested mode.\n");
917 		return -EINVAL;
918 	}
919 
920 	switch (mode_cmd->pixel_format) {
921 	case DRM_FORMAT_ARGB8888:
922 		format = SVGA3D_A8R8G8B8;
923 		break;
924 	case DRM_FORMAT_XRGB8888:
925 		format = SVGA3D_X8R8G8B8;
926 		break;
927 	case DRM_FORMAT_RGB565:
928 		format = SVGA3D_R5G6B5;
929 		break;
930 	case DRM_FORMAT_XRGB1555:
931 		format = SVGA3D_A1R5G5B5;
932 		break;
933 	default:
934 		DRM_ERROR("Invalid pixel format: %s\n",
935 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
936 		return -EINVAL;
937 	}
938 
939 	/*
940 	 * For DX, surface format validation is done when surface->scanout
941 	 * is set.
942 	 */
943 	if (!has_sm4_context(dev_priv) && format != surface->metadata.format) {
944 		DRM_ERROR("Invalid surface format for requested mode.\n");
945 		return -EINVAL;
946 	}
947 
948 	vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
949 	if (!vfbs) {
950 		ret = -ENOMEM;
951 		goto out_err1;
952 	}
953 
954 	drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
955 	vfbs->surface = vmw_surface_reference(surface);
956 	vfbs->base.user_handle = mode_cmd->handles[0];
957 	vfbs->is_bo_proxy = is_bo_proxy;
958 
959 	*out = &vfbs->base;
960 
961 	ret = drm_framebuffer_init(dev, &vfbs->base.base,
962 				   &vmw_framebuffer_surface_funcs);
963 	if (ret)
964 		goto out_err2;
965 
966 	return 0;
967 
968 out_err2:
969 	vmw_surface_unreference(&surface);
970 	kfree(vfbs);
971 out_err1:
972 	return ret;
973 }
974 
975 /*
976  * Buffer-object framebuffer code
977  */
978 
979 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer)
980 {
981 	struct vmw_framebuffer_bo *vfbd =
982 		vmw_framebuffer_to_vfbd(framebuffer);
983 
984 	drm_framebuffer_cleanup(framebuffer);
985 	vmw_bo_unreference(&vfbd->buffer);
986 	if (vfbd->base.user_obj)
987 		ttm_base_object_unref(&vfbd->base.user_obj);
988 
989 	kfree(vfbd);
990 }
991 
992 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer,
993 				    struct drm_file *file_priv,
994 				    unsigned int flags, unsigned int color,
995 				    struct drm_clip_rect *clips,
996 				    unsigned int num_clips)
997 {
998 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
999 	struct vmw_framebuffer_bo *vfbd =
1000 		vmw_framebuffer_to_vfbd(framebuffer);
1001 	struct drm_clip_rect norect;
1002 	int ret, increment = 1;
1003 
1004 	drm_modeset_lock_all(dev_priv->dev);
1005 
1006 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1007 	if (unlikely(ret != 0)) {
1008 		drm_modeset_unlock_all(dev_priv->dev);
1009 		return ret;
1010 	}
1011 
1012 	if (!num_clips) {
1013 		num_clips = 1;
1014 		clips = &norect;
1015 		norect.x1 = norect.y1 = 0;
1016 		norect.x2 = framebuffer->width;
1017 		norect.y2 = framebuffer->height;
1018 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1019 		num_clips /= 2;
1020 		increment = 2;
1021 	}
1022 
1023 	switch (dev_priv->active_display_unit) {
1024 	case vmw_du_legacy:
1025 		ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0,
1026 					      clips, num_clips, increment);
1027 		break;
1028 	default:
1029 		ret = -EINVAL;
1030 		WARN_ONCE(true, "Dirty called with invalid display system.\n");
1031 		break;
1032 	}
1033 
1034 	vmw_fifo_flush(dev_priv, false);
1035 	ttm_read_unlock(&dev_priv->reservation_sem);
1036 
1037 	drm_modeset_unlock_all(dev_priv->dev);
1038 
1039 	return ret;
1040 }
1041 
1042 static int vmw_framebuffer_bo_dirty_ext(struct drm_framebuffer *framebuffer,
1043 					struct drm_file *file_priv,
1044 					unsigned int flags, unsigned int color,
1045 					struct drm_clip_rect *clips,
1046 					unsigned int num_clips)
1047 {
1048 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1049 
1050 	if (dev_priv->active_display_unit == vmw_du_legacy)
1051 		return vmw_framebuffer_bo_dirty(framebuffer, file_priv, flags,
1052 						color, clips, num_clips);
1053 
1054 	return drm_atomic_helper_dirtyfb(framebuffer, file_priv, flags, color,
1055 					 clips, num_clips);
1056 }
1057 
1058 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = {
1059 	.destroy = vmw_framebuffer_bo_destroy,
1060 	.dirty = vmw_framebuffer_bo_dirty_ext,
1061 };
1062 
1063 /**
1064  * Pin the bofer in a location suitable for access by the
1065  * display system.
1066  */
1067 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1068 {
1069 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1070 	struct vmw_buffer_object *buf;
1071 	struct ttm_placement *placement;
1072 	int ret;
1073 
1074 	buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1075 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1076 
1077 	if (!buf)
1078 		return 0;
1079 
1080 	switch (dev_priv->active_display_unit) {
1081 	case vmw_du_legacy:
1082 		vmw_overlay_pause_all(dev_priv);
1083 		ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false);
1084 		vmw_overlay_resume_all(dev_priv);
1085 		break;
1086 	case vmw_du_screen_object:
1087 	case vmw_du_screen_target:
1088 		if (vfb->bo) {
1089 			if (dev_priv->capabilities & SVGA_CAP_3D) {
1090 				/*
1091 				 * Use surface DMA to get content to
1092 				 * sreen target surface.
1093 				 */
1094 				placement = &vmw_vram_gmr_placement;
1095 			} else {
1096 				/* Use CPU blit. */
1097 				placement = &vmw_sys_placement;
1098 			}
1099 		} else {
1100 			/* Use surface / image update */
1101 			placement = &vmw_mob_placement;
1102 		}
1103 
1104 		return vmw_bo_pin_in_placement(dev_priv, buf, placement, false);
1105 	default:
1106 		return -EINVAL;
1107 	}
1108 
1109 	return ret;
1110 }
1111 
1112 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1113 {
1114 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1115 	struct vmw_buffer_object *buf;
1116 
1117 	buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1118 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1119 
1120 	if (WARN_ON(!buf))
1121 		return 0;
1122 
1123 	return vmw_bo_unpin(dev_priv, buf, false);
1124 }
1125 
1126 /**
1127  * vmw_create_bo_proxy - create a proxy surface for the buffer object
1128  *
1129  * @dev: DRM device
1130  * @mode_cmd: parameters for the new surface
1131  * @bo_mob: MOB backing the buffer object
1132  * @srf_out: newly created surface
1133  *
1134  * When the content FB is a buffer object, we create a surface as a proxy to the
1135  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1136  * This is a more efficient approach
1137  *
1138  * RETURNS:
1139  * 0 on success, error code otherwise
1140  */
1141 static int vmw_create_bo_proxy(struct drm_device *dev,
1142 			       const struct drm_mode_fb_cmd2 *mode_cmd,
1143 			       struct vmw_buffer_object *bo_mob,
1144 			       struct vmw_surface **srf_out)
1145 {
1146 	struct vmw_surface_metadata metadata = {0};
1147 	uint32_t format;
1148 	struct vmw_resource *res;
1149 	unsigned int bytes_pp;
1150 	struct drm_format_name_buf format_name;
1151 	int ret;
1152 
1153 	switch (mode_cmd->pixel_format) {
1154 	case DRM_FORMAT_ARGB8888:
1155 	case DRM_FORMAT_XRGB8888:
1156 		format = SVGA3D_X8R8G8B8;
1157 		bytes_pp = 4;
1158 		break;
1159 
1160 	case DRM_FORMAT_RGB565:
1161 	case DRM_FORMAT_XRGB1555:
1162 		format = SVGA3D_R5G6B5;
1163 		bytes_pp = 2;
1164 		break;
1165 
1166 	case 8:
1167 		format = SVGA3D_P8;
1168 		bytes_pp = 1;
1169 		break;
1170 
1171 	default:
1172 		DRM_ERROR("Invalid framebuffer format %s\n",
1173 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1174 		return -EINVAL;
1175 	}
1176 
1177 	metadata.format = format;
1178 	metadata.mip_levels[0] = 1;
1179 	metadata.num_sizes = 1;
1180 	metadata.base_size.width = mode_cmd->pitches[0] / bytes_pp;
1181 	metadata.base_size.height =  mode_cmd->height;
1182 	metadata.base_size.depth = 1;
1183 	metadata.scanout = true;
1184 
1185 	ret = vmw_gb_surface_define(vmw_priv(dev), 0, &metadata, srf_out);
1186 	if (ret) {
1187 		DRM_ERROR("Failed to allocate proxy content buffer\n");
1188 		return ret;
1189 	}
1190 
1191 	res = &(*srf_out)->res;
1192 
1193 	/* Reserve and switch the backing mob. */
1194 	mutex_lock(&res->dev_priv->cmdbuf_mutex);
1195 	(void) vmw_resource_reserve(res, false, true);
1196 	vmw_bo_unreference(&res->backup);
1197 	res->backup = vmw_bo_reference(bo_mob);
1198 	res->backup_offset = 0;
1199 	vmw_resource_unreserve(res, false, false, false, NULL, 0);
1200 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1201 
1202 	return 0;
1203 }
1204 
1205 
1206 
1207 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv,
1208 				      struct vmw_buffer_object *bo,
1209 				      struct vmw_framebuffer **out,
1210 				      const struct drm_mode_fb_cmd2
1211 				      *mode_cmd)
1212 
1213 {
1214 	struct drm_device *dev = dev_priv->dev;
1215 	struct vmw_framebuffer_bo *vfbd;
1216 	unsigned int requested_size;
1217 	struct drm_format_name_buf format_name;
1218 	int ret;
1219 
1220 	requested_size = mode_cmd->height * mode_cmd->pitches[0];
1221 	if (unlikely(requested_size > bo->base.num_pages * PAGE_SIZE)) {
1222 		DRM_ERROR("Screen buffer object size is too small "
1223 			  "for requested mode.\n");
1224 		return -EINVAL;
1225 	}
1226 
1227 	/* Limited framebuffer color depth support for screen objects */
1228 	if (dev_priv->active_display_unit == vmw_du_screen_object) {
1229 		switch (mode_cmd->pixel_format) {
1230 		case DRM_FORMAT_XRGB8888:
1231 		case DRM_FORMAT_ARGB8888:
1232 			break;
1233 		case DRM_FORMAT_XRGB1555:
1234 		case DRM_FORMAT_RGB565:
1235 			break;
1236 		default:
1237 			DRM_ERROR("Invalid pixel format: %s\n",
1238 				  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1239 			return -EINVAL;
1240 		}
1241 	}
1242 
1243 	vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1244 	if (!vfbd) {
1245 		ret = -ENOMEM;
1246 		goto out_err1;
1247 	}
1248 
1249 	drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1250 	vfbd->base.bo = true;
1251 	vfbd->buffer = vmw_bo_reference(bo);
1252 	vfbd->base.user_handle = mode_cmd->handles[0];
1253 	*out = &vfbd->base;
1254 
1255 	ret = drm_framebuffer_init(dev, &vfbd->base.base,
1256 				   &vmw_framebuffer_bo_funcs);
1257 	if (ret)
1258 		goto out_err2;
1259 
1260 	return 0;
1261 
1262 out_err2:
1263 	vmw_bo_unreference(&bo);
1264 	kfree(vfbd);
1265 out_err1:
1266 	return ret;
1267 }
1268 
1269 
1270 /**
1271  * vmw_kms_srf_ok - check if a surface can be created
1272  *
1273  * @width: requested width
1274  * @height: requested height
1275  *
1276  * Surfaces need to be less than texture size
1277  */
1278 static bool
1279 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1280 {
1281 	if (width  > dev_priv->texture_max_width ||
1282 	    height > dev_priv->texture_max_height)
1283 		return false;
1284 
1285 	return true;
1286 }
1287 
1288 /**
1289  * vmw_kms_new_framebuffer - Create a new framebuffer.
1290  *
1291  * @dev_priv: Pointer to device private struct.
1292  * @bo: Pointer to buffer object to wrap the kms framebuffer around.
1293  * Either @bo or @surface must be NULL.
1294  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1295  * Either @bo or @surface must be NULL.
1296  * @only_2d: No presents will occur to this buffer object based framebuffer.
1297  * This helps the code to do some important optimizations.
1298  * @mode_cmd: Frame-buffer metadata.
1299  */
1300 struct vmw_framebuffer *
1301 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1302 			struct vmw_buffer_object *bo,
1303 			struct vmw_surface *surface,
1304 			bool only_2d,
1305 			const struct drm_mode_fb_cmd2 *mode_cmd)
1306 {
1307 	struct vmw_framebuffer *vfb = NULL;
1308 	bool is_bo_proxy = false;
1309 	int ret;
1310 
1311 	/*
1312 	 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1313 	 * therefore, wrap the buffer object in a surface so we can use the
1314 	 * SurfaceCopy command.
1315 	 */
1316 	if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1317 	    bo && only_2d &&
1318 	    mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1319 	    dev_priv->active_display_unit == vmw_du_screen_target) {
1320 		ret = vmw_create_bo_proxy(dev_priv->dev, mode_cmd,
1321 					  bo, &surface);
1322 		if (ret)
1323 			return ERR_PTR(ret);
1324 
1325 		is_bo_proxy = true;
1326 	}
1327 
1328 	/* Create the new framebuffer depending one what we have */
1329 	if (surface) {
1330 		ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1331 						      mode_cmd,
1332 						      is_bo_proxy);
1333 
1334 		/*
1335 		 * vmw_create_bo_proxy() adds a reference that is no longer
1336 		 * needed
1337 		 */
1338 		if (is_bo_proxy)
1339 			vmw_surface_unreference(&surface);
1340 	} else if (bo) {
1341 		ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb,
1342 						 mode_cmd);
1343 	} else {
1344 		BUG();
1345 	}
1346 
1347 	if (ret)
1348 		return ERR_PTR(ret);
1349 
1350 	vfb->pin = vmw_framebuffer_pin;
1351 	vfb->unpin = vmw_framebuffer_unpin;
1352 
1353 	return vfb;
1354 }
1355 
1356 /*
1357  * Generic Kernel modesetting functions
1358  */
1359 
1360 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1361 						 struct drm_file *file_priv,
1362 						 const struct drm_mode_fb_cmd2 *mode_cmd)
1363 {
1364 	struct vmw_private *dev_priv = vmw_priv(dev);
1365 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1366 	struct vmw_framebuffer *vfb = NULL;
1367 	struct vmw_surface *surface = NULL;
1368 	struct vmw_buffer_object *bo = NULL;
1369 	struct ttm_base_object *user_obj;
1370 	int ret;
1371 
1372 	/*
1373 	 * Take a reference on the user object of the resource
1374 	 * backing the kms fb. This ensures that user-space handle
1375 	 * lookups on that resource will always work as long as
1376 	 * it's registered with a kms framebuffer. This is important,
1377 	 * since vmw_execbuf_process identifies resources in the
1378 	 * command stream using user-space handles.
1379 	 */
1380 
1381 	user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1382 	if (unlikely(user_obj == NULL)) {
1383 		DRM_ERROR("Could not locate requested kms frame buffer.\n");
1384 		return ERR_PTR(-ENOENT);
1385 	}
1386 
1387 	/**
1388 	 * End conditioned code.
1389 	 */
1390 
1391 	/* returns either a bo or surface */
1392 	ret = vmw_user_lookup_handle(dev_priv, tfile,
1393 				     mode_cmd->handles[0],
1394 				     &surface, &bo);
1395 	if (ret)
1396 		goto err_out;
1397 
1398 
1399 	if (!bo &&
1400 	    !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1401 		DRM_ERROR("Surface size cannot exceed %dx%d",
1402 			dev_priv->texture_max_width,
1403 			dev_priv->texture_max_height);
1404 		goto err_out;
1405 	}
1406 
1407 
1408 	vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1409 				      !(dev_priv->capabilities & SVGA_CAP_3D),
1410 				      mode_cmd);
1411 	if (IS_ERR(vfb)) {
1412 		ret = PTR_ERR(vfb);
1413 		goto err_out;
1414  	}
1415 
1416 err_out:
1417 	/* vmw_user_lookup_handle takes one ref so does new_fb */
1418 	if (bo)
1419 		vmw_bo_unreference(&bo);
1420 	if (surface)
1421 		vmw_surface_unreference(&surface);
1422 
1423 	if (ret) {
1424 		DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1425 		ttm_base_object_unref(&user_obj);
1426 		return ERR_PTR(ret);
1427 	} else
1428 		vfb->user_obj = user_obj;
1429 
1430 	return &vfb->base;
1431 }
1432 
1433 /**
1434  * vmw_kms_check_display_memory - Validates display memory required for a
1435  * topology
1436  * @dev: DRM device
1437  * @num_rects: number of drm_rect in rects
1438  * @rects: array of drm_rect representing the topology to validate indexed by
1439  * crtc index.
1440  *
1441  * Returns:
1442  * 0 on success otherwise negative error code
1443  */
1444 static int vmw_kms_check_display_memory(struct drm_device *dev,
1445 					uint32_t num_rects,
1446 					struct drm_rect *rects)
1447 {
1448 	struct vmw_private *dev_priv = vmw_priv(dev);
1449 	struct drm_rect bounding_box = {0};
1450 	u64 total_pixels = 0, pixel_mem, bb_mem;
1451 	int i;
1452 
1453 	for (i = 0; i < num_rects; i++) {
1454 		/*
1455 		 * For STDU only individual screen (screen target) is limited by
1456 		 * SCREENTARGET_MAX_WIDTH/HEIGHT registers.
1457 		 */
1458 		if (dev_priv->active_display_unit == vmw_du_screen_target &&
1459 		    (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width ||
1460 		     drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) {
1461 			VMW_DEBUG_KMS("Screen size not supported.\n");
1462 			return -EINVAL;
1463 		}
1464 
1465 		/* Bounding box upper left is at (0,0). */
1466 		if (rects[i].x2 > bounding_box.x2)
1467 			bounding_box.x2 = rects[i].x2;
1468 
1469 		if (rects[i].y2 > bounding_box.y2)
1470 			bounding_box.y2 = rects[i].y2;
1471 
1472 		total_pixels += (u64) drm_rect_width(&rects[i]) *
1473 			(u64) drm_rect_height(&rects[i]);
1474 	}
1475 
1476 	/* Virtual svga device primary limits are always in 32-bpp. */
1477 	pixel_mem = total_pixels * 4;
1478 
1479 	/*
1480 	 * For HV10 and below prim_bb_mem is vram size. When
1481 	 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is
1482 	 * limit on primary bounding box
1483 	 */
1484 	if (pixel_mem > dev_priv->prim_bb_mem) {
1485 		VMW_DEBUG_KMS("Combined output size too large.\n");
1486 		return -EINVAL;
1487 	}
1488 
1489 	/* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */
1490 	if (dev_priv->active_display_unit != vmw_du_screen_target ||
1491 	    !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) {
1492 		bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4;
1493 
1494 		if (bb_mem > dev_priv->prim_bb_mem) {
1495 			VMW_DEBUG_KMS("Topology is beyond supported limits.\n");
1496 			return -EINVAL;
1497 		}
1498 	}
1499 
1500 	return 0;
1501 }
1502 
1503 /**
1504  * vmw_crtc_state_and_lock - Return new or current crtc state with locked
1505  * crtc mutex
1506  * @state: The atomic state pointer containing the new atomic state
1507  * @crtc: The crtc
1508  *
1509  * This function returns the new crtc state if it's part of the state update.
1510  * Otherwise returns the current crtc state. It also makes sure that the
1511  * crtc mutex is locked.
1512  *
1513  * Returns: A valid crtc state pointer or NULL. It may also return a
1514  * pointer error, in particular -EDEADLK if locking needs to be rerun.
1515  */
1516 static struct drm_crtc_state *
1517 vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc)
1518 {
1519 	struct drm_crtc_state *crtc_state;
1520 
1521 	crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
1522 	if (crtc_state) {
1523 		lockdep_assert_held(&crtc->mutex.mutex.base);
1524 	} else {
1525 		int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx);
1526 
1527 		if (ret != 0 && ret != -EALREADY)
1528 			return ERR_PTR(ret);
1529 
1530 		crtc_state = crtc->state;
1531 	}
1532 
1533 	return crtc_state;
1534 }
1535 
1536 /**
1537  * vmw_kms_check_implicit - Verify that all implicit display units scan out
1538  * from the same fb after the new state is committed.
1539  * @dev: The drm_device.
1540  * @state: The new state to be checked.
1541  *
1542  * Returns:
1543  *   Zero on success,
1544  *   -EINVAL on invalid state,
1545  *   -EDEADLK if modeset locking needs to be rerun.
1546  */
1547 static int vmw_kms_check_implicit(struct drm_device *dev,
1548 				  struct drm_atomic_state *state)
1549 {
1550 	struct drm_framebuffer *implicit_fb = NULL;
1551 	struct drm_crtc *crtc;
1552 	struct drm_crtc_state *crtc_state;
1553 	struct drm_plane_state *plane_state;
1554 
1555 	drm_for_each_crtc(crtc, dev) {
1556 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1557 
1558 		if (!du->is_implicit)
1559 			continue;
1560 
1561 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
1562 		if (IS_ERR(crtc_state))
1563 			return PTR_ERR(crtc_state);
1564 
1565 		if (!crtc_state || !crtc_state->enable)
1566 			continue;
1567 
1568 		/*
1569 		 * Can't move primary planes across crtcs, so this is OK.
1570 		 * It also means we don't need to take the plane mutex.
1571 		 */
1572 		plane_state = du->primary.state;
1573 		if (plane_state->crtc != crtc)
1574 			continue;
1575 
1576 		if (!implicit_fb)
1577 			implicit_fb = plane_state->fb;
1578 		else if (implicit_fb != plane_state->fb)
1579 			return -EINVAL;
1580 	}
1581 
1582 	return 0;
1583 }
1584 
1585 /**
1586  * vmw_kms_check_topology - Validates topology in drm_atomic_state
1587  * @dev: DRM device
1588  * @state: the driver state object
1589  *
1590  * Returns:
1591  * 0 on success otherwise negative error code
1592  */
1593 static int vmw_kms_check_topology(struct drm_device *dev,
1594 				  struct drm_atomic_state *state)
1595 {
1596 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
1597 	struct drm_rect *rects;
1598 	struct drm_crtc *crtc;
1599 	uint32_t i;
1600 	int ret = 0;
1601 
1602 	rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect),
1603 			GFP_KERNEL);
1604 	if (!rects)
1605 		return -ENOMEM;
1606 
1607 	drm_for_each_crtc(crtc, dev) {
1608 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1609 		struct drm_crtc_state *crtc_state;
1610 
1611 		i = drm_crtc_index(crtc);
1612 
1613 		crtc_state = vmw_crtc_state_and_lock(state, crtc);
1614 		if (IS_ERR(crtc_state)) {
1615 			ret = PTR_ERR(crtc_state);
1616 			goto clean;
1617 		}
1618 
1619 		if (!crtc_state)
1620 			continue;
1621 
1622 		if (crtc_state->enable) {
1623 			rects[i].x1 = du->gui_x;
1624 			rects[i].y1 = du->gui_y;
1625 			rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay;
1626 			rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay;
1627 		} else {
1628 			rects[i].x1 = 0;
1629 			rects[i].y1 = 0;
1630 			rects[i].x2 = 0;
1631 			rects[i].y2 = 0;
1632 		}
1633 	}
1634 
1635 	/* Determine change to topology due to new atomic state */
1636 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
1637 				      new_crtc_state, i) {
1638 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1639 		struct drm_connector *connector;
1640 		struct drm_connector_state *conn_state;
1641 		struct vmw_connector_state *vmw_conn_state;
1642 
1643 		if (!du->pref_active && new_crtc_state->enable) {
1644 			VMW_DEBUG_KMS("Enabling a disabled display unit\n");
1645 			ret = -EINVAL;
1646 			goto clean;
1647 		}
1648 
1649 		/*
1650 		 * For vmwgfx each crtc has only one connector attached and it
1651 		 * is not changed so don't really need to check the
1652 		 * crtc->connector_mask and iterate over it.
1653 		 */
1654 		connector = &du->connector;
1655 		conn_state = drm_atomic_get_connector_state(state, connector);
1656 		if (IS_ERR(conn_state)) {
1657 			ret = PTR_ERR(conn_state);
1658 			goto clean;
1659 		}
1660 
1661 		vmw_conn_state = vmw_connector_state_to_vcs(conn_state);
1662 		vmw_conn_state->gui_x = du->gui_x;
1663 		vmw_conn_state->gui_y = du->gui_y;
1664 	}
1665 
1666 	ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc,
1667 					   rects);
1668 
1669 clean:
1670 	kfree(rects);
1671 	return ret;
1672 }
1673 
1674 /**
1675  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1676  *
1677  * @dev: DRM device
1678  * @state: the driver state object
1679  *
1680  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1681  * us to assign a value to mode->crtc_clock so that
1682  * drm_calc_timestamping_constants() won't throw an error message
1683  *
1684  * Returns:
1685  * Zero for success or -errno
1686  */
1687 static int
1688 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1689 			     struct drm_atomic_state *state)
1690 {
1691 	struct drm_crtc *crtc;
1692 	struct drm_crtc_state *crtc_state;
1693 	bool need_modeset = false;
1694 	int i, ret;
1695 
1696 	ret = drm_atomic_helper_check(dev, state);
1697 	if (ret)
1698 		return ret;
1699 
1700 	ret = vmw_kms_check_implicit(dev, state);
1701 	if (ret) {
1702 		VMW_DEBUG_KMS("Invalid implicit state\n");
1703 		return ret;
1704 	}
1705 
1706 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1707 		if (drm_atomic_crtc_needs_modeset(crtc_state))
1708 			need_modeset = true;
1709 	}
1710 
1711 	if (need_modeset)
1712 		return vmw_kms_check_topology(dev, state);
1713 
1714 	return ret;
1715 }
1716 
1717 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1718 	.fb_create = vmw_kms_fb_create,
1719 	.atomic_check = vmw_kms_atomic_check_modeset,
1720 	.atomic_commit = drm_atomic_helper_commit,
1721 };
1722 
1723 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1724 				   struct drm_file *file_priv,
1725 				   struct vmw_framebuffer *vfb,
1726 				   struct vmw_surface *surface,
1727 				   uint32_t sid,
1728 				   int32_t destX, int32_t destY,
1729 				   struct drm_vmw_rect *clips,
1730 				   uint32_t num_clips)
1731 {
1732 	return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1733 					    &surface->res, destX, destY,
1734 					    num_clips, 1, NULL, NULL);
1735 }
1736 
1737 
1738 int vmw_kms_present(struct vmw_private *dev_priv,
1739 		    struct drm_file *file_priv,
1740 		    struct vmw_framebuffer *vfb,
1741 		    struct vmw_surface *surface,
1742 		    uint32_t sid,
1743 		    int32_t destX, int32_t destY,
1744 		    struct drm_vmw_rect *clips,
1745 		    uint32_t num_clips)
1746 {
1747 	int ret;
1748 
1749 	switch (dev_priv->active_display_unit) {
1750 	case vmw_du_screen_target:
1751 		ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1752 						 &surface->res, destX, destY,
1753 						 num_clips, 1, NULL, NULL);
1754 		break;
1755 	case vmw_du_screen_object:
1756 		ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1757 					      sid, destX, destY, clips,
1758 					      num_clips);
1759 		break;
1760 	default:
1761 		WARN_ONCE(true,
1762 			  "Present called with invalid display system.\n");
1763 		ret = -ENOSYS;
1764 		break;
1765 	}
1766 	if (ret)
1767 		return ret;
1768 
1769 	vmw_fifo_flush(dev_priv, false);
1770 
1771 	return 0;
1772 }
1773 
1774 static void
1775 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1776 {
1777 	if (dev_priv->hotplug_mode_update_property)
1778 		return;
1779 
1780 	dev_priv->hotplug_mode_update_property =
1781 		drm_property_create_range(dev_priv->dev,
1782 					  DRM_MODE_PROP_IMMUTABLE,
1783 					  "hotplug_mode_update", 0, 1);
1784 
1785 	if (!dev_priv->hotplug_mode_update_property)
1786 		return;
1787 
1788 }
1789 
1790 int vmw_kms_init(struct vmw_private *dev_priv)
1791 {
1792 	struct drm_device *dev = dev_priv->dev;
1793 	int ret;
1794 
1795 	drm_mode_config_init(dev);
1796 	dev->mode_config.funcs = &vmw_kms_funcs;
1797 	dev->mode_config.min_width = 1;
1798 	dev->mode_config.min_height = 1;
1799 	dev->mode_config.max_width = dev_priv->texture_max_width;
1800 	dev->mode_config.max_height = dev_priv->texture_max_height;
1801 
1802 	drm_mode_create_suggested_offset_properties(dev);
1803 	vmw_kms_create_hotplug_mode_update_property(dev_priv);
1804 
1805 	ret = vmw_kms_stdu_init_display(dev_priv);
1806 	if (ret) {
1807 		ret = vmw_kms_sou_init_display(dev_priv);
1808 		if (ret) /* Fallback */
1809 			ret = vmw_kms_ldu_init_display(dev_priv);
1810 	}
1811 
1812 	return ret;
1813 }
1814 
1815 int vmw_kms_close(struct vmw_private *dev_priv)
1816 {
1817 	int ret = 0;
1818 
1819 	/*
1820 	 * Docs says we should take the lock before calling this function
1821 	 * but since it destroys encoders and our destructor calls
1822 	 * drm_encoder_cleanup which takes the lock we deadlock.
1823 	 */
1824 	drm_mode_config_cleanup(dev_priv->dev);
1825 	if (dev_priv->active_display_unit == vmw_du_legacy)
1826 		ret = vmw_kms_ldu_close_display(dev_priv);
1827 
1828 	return ret;
1829 }
1830 
1831 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1832 				struct drm_file *file_priv)
1833 {
1834 	struct drm_vmw_cursor_bypass_arg *arg = data;
1835 	struct vmw_display_unit *du;
1836 	struct drm_crtc *crtc;
1837 	int ret = 0;
1838 
1839 
1840 	mutex_lock(&dev->mode_config.mutex);
1841 	if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1842 
1843 		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1844 			du = vmw_crtc_to_du(crtc);
1845 			du->hotspot_x = arg->xhot;
1846 			du->hotspot_y = arg->yhot;
1847 		}
1848 
1849 		mutex_unlock(&dev->mode_config.mutex);
1850 		return 0;
1851 	}
1852 
1853 	crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
1854 	if (!crtc) {
1855 		ret = -ENOENT;
1856 		goto out;
1857 	}
1858 
1859 	du = vmw_crtc_to_du(crtc);
1860 
1861 	du->hotspot_x = arg->xhot;
1862 	du->hotspot_y = arg->yhot;
1863 
1864 out:
1865 	mutex_unlock(&dev->mode_config.mutex);
1866 
1867 	return ret;
1868 }
1869 
1870 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1871 			unsigned width, unsigned height, unsigned pitch,
1872 			unsigned bpp, unsigned depth)
1873 {
1874 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1875 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1876 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1877 		vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1878 			       SVGA_FIFO_PITCHLOCK);
1879 	vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1880 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1881 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1882 
1883 	if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1884 		DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1885 			  depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1886 		return -EINVAL;
1887 	}
1888 
1889 	return 0;
1890 }
1891 
1892 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1893 				uint32_t pitch,
1894 				uint32_t height)
1895 {
1896 	return ((u64) pitch * (u64) height) < (u64)
1897 		((dev_priv->active_display_unit == vmw_du_screen_target) ?
1898 		 dev_priv->prim_bb_mem : dev_priv->vram_size);
1899 }
1900 
1901 
1902 /**
1903  * Function called by DRM code called with vbl_lock held.
1904  */
1905 u32 vmw_get_vblank_counter(struct drm_crtc *crtc)
1906 {
1907 	return 0;
1908 }
1909 
1910 /**
1911  * Function called by DRM code called with vbl_lock held.
1912  */
1913 int vmw_enable_vblank(struct drm_crtc *crtc)
1914 {
1915 	return -EINVAL;
1916 }
1917 
1918 /**
1919  * Function called by DRM code called with vbl_lock held.
1920  */
1921 void vmw_disable_vblank(struct drm_crtc *crtc)
1922 {
1923 }
1924 
1925 /**
1926  * vmw_du_update_layout - Update the display unit with topology from resolution
1927  * plugin and generate DRM uevent
1928  * @dev_priv: device private
1929  * @num_rects: number of drm_rect in rects
1930  * @rects: toplogy to update
1931  */
1932 static int vmw_du_update_layout(struct vmw_private *dev_priv,
1933 				unsigned int num_rects, struct drm_rect *rects)
1934 {
1935 	struct drm_device *dev = dev_priv->dev;
1936 	struct vmw_display_unit *du;
1937 	struct drm_connector *con;
1938 	struct drm_connector_list_iter conn_iter;
1939 	struct drm_modeset_acquire_ctx ctx;
1940 	struct drm_crtc *crtc;
1941 	int ret;
1942 
1943 	/* Currently gui_x/y is protected with the crtc mutex */
1944 	mutex_lock(&dev->mode_config.mutex);
1945 	drm_modeset_acquire_init(&ctx, 0);
1946 retry:
1947 	drm_for_each_crtc(crtc, dev) {
1948 		ret = drm_modeset_lock(&crtc->mutex, &ctx);
1949 		if (ret < 0) {
1950 			if (ret == -EDEADLK) {
1951 				drm_modeset_backoff(&ctx);
1952 				goto retry;
1953       		}
1954 			goto out_fini;
1955 		}
1956 	}
1957 
1958 	drm_connector_list_iter_begin(dev, &conn_iter);
1959 	drm_for_each_connector_iter(con, &conn_iter) {
1960 		du = vmw_connector_to_du(con);
1961 		if (num_rects > du->unit) {
1962 			du->pref_width = drm_rect_width(&rects[du->unit]);
1963 			du->pref_height = drm_rect_height(&rects[du->unit]);
1964 			du->pref_active = true;
1965 			du->gui_x = rects[du->unit].x1;
1966 			du->gui_y = rects[du->unit].y1;
1967 		} else {
1968 			du->pref_width = 800;
1969 			du->pref_height = 600;
1970 			du->pref_active = false;
1971 			du->gui_x = 0;
1972 			du->gui_y = 0;
1973 		}
1974 	}
1975 	drm_connector_list_iter_end(&conn_iter);
1976 
1977 	list_for_each_entry(con, &dev->mode_config.connector_list, head) {
1978 		du = vmw_connector_to_du(con);
1979 		if (num_rects > du->unit) {
1980 			drm_object_property_set_value
1981 			  (&con->base, dev->mode_config.suggested_x_property,
1982 			   du->gui_x);
1983 			drm_object_property_set_value
1984 			  (&con->base, dev->mode_config.suggested_y_property,
1985 			   du->gui_y);
1986 		} else {
1987 			drm_object_property_set_value
1988 			  (&con->base, dev->mode_config.suggested_x_property,
1989 			   0);
1990 			drm_object_property_set_value
1991 			  (&con->base, dev->mode_config.suggested_y_property,
1992 			   0);
1993 		}
1994 		con->status = vmw_du_connector_detect(con, true);
1995 	}
1996 
1997 	drm_sysfs_hotplug_event(dev);
1998 out_fini:
1999 	drm_modeset_drop_locks(&ctx);
2000 	drm_modeset_acquire_fini(&ctx);
2001 	mutex_unlock(&dev->mode_config.mutex);
2002 
2003 	return 0;
2004 }
2005 
2006 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
2007 			  u16 *r, u16 *g, u16 *b,
2008 			  uint32_t size,
2009 			  struct drm_modeset_acquire_ctx *ctx)
2010 {
2011 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
2012 	int i;
2013 
2014 	for (i = 0; i < size; i++) {
2015 		DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
2016 			  r[i], g[i], b[i]);
2017 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
2018 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
2019 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
2020 	}
2021 
2022 	return 0;
2023 }
2024 
2025 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
2026 {
2027 	return 0;
2028 }
2029 
2030 enum drm_connector_status
2031 vmw_du_connector_detect(struct drm_connector *connector, bool force)
2032 {
2033 	uint32_t num_displays;
2034 	struct drm_device *dev = connector->dev;
2035 	struct vmw_private *dev_priv = vmw_priv(dev);
2036 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2037 
2038 	num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
2039 
2040 	return ((vmw_connector_to_du(connector)->unit < num_displays &&
2041 		 du->pref_active) ?
2042 		connector_status_connected : connector_status_disconnected);
2043 }
2044 
2045 static struct drm_display_mode vmw_kms_connector_builtin[] = {
2046 	/* 640x480@60Hz */
2047 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
2048 		   752, 800, 0, 480, 489, 492, 525, 0,
2049 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2050 	/* 800x600@60Hz */
2051 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
2052 		   968, 1056, 0, 600, 601, 605, 628, 0,
2053 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2054 	/* 1024x768@60Hz */
2055 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
2056 		   1184, 1344, 0, 768, 771, 777, 806, 0,
2057 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2058 	/* 1152x864@75Hz */
2059 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
2060 		   1344, 1600, 0, 864, 865, 868, 900, 0,
2061 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2062 	/* 1280x768@60Hz */
2063 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
2064 		   1472, 1664, 0, 768, 771, 778, 798, 0,
2065 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2066 	/* 1280x800@60Hz */
2067 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
2068 		   1480, 1680, 0, 800, 803, 809, 831, 0,
2069 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2070 	/* 1280x960@60Hz */
2071 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
2072 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
2073 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2074 	/* 1280x1024@60Hz */
2075 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
2076 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
2077 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2078 	/* 1360x768@60Hz */
2079 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2080 		   1536, 1792, 0, 768, 771, 777, 795, 0,
2081 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2082 	/* 1440x1050@60Hz */
2083 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2084 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2085 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2086 	/* 1440x900@60Hz */
2087 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2088 		   1672, 1904, 0, 900, 903, 909, 934, 0,
2089 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2090 	/* 1600x1200@60Hz */
2091 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2092 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2093 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2094 	/* 1680x1050@60Hz */
2095 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2096 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2097 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2098 	/* 1792x1344@60Hz */
2099 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2100 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2101 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2102 	/* 1853x1392@60Hz */
2103 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2104 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2105 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2106 	/* 1920x1200@60Hz */
2107 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2108 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2109 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2110 	/* 1920x1440@60Hz */
2111 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2112 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2113 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2114 	/* 2560x1600@60Hz */
2115 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2116 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2117 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2118 	/* Terminate */
2119 	{ DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2120 };
2121 
2122 /**
2123  * vmw_guess_mode_timing - Provide fake timings for a
2124  * 60Hz vrefresh mode.
2125  *
2126  * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2127  * members filled in.
2128  */
2129 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2130 {
2131 	mode->hsync_start = mode->hdisplay + 50;
2132 	mode->hsync_end = mode->hsync_start + 50;
2133 	mode->htotal = mode->hsync_end + 50;
2134 
2135 	mode->vsync_start = mode->vdisplay + 50;
2136 	mode->vsync_end = mode->vsync_start + 50;
2137 	mode->vtotal = mode->vsync_end + 50;
2138 
2139 	mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2140 }
2141 
2142 
2143 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2144 				uint32_t max_width, uint32_t max_height)
2145 {
2146 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2147 	struct drm_device *dev = connector->dev;
2148 	struct vmw_private *dev_priv = vmw_priv(dev);
2149 	struct drm_display_mode *mode = NULL;
2150 	struct drm_display_mode *bmode;
2151 	struct drm_display_mode prefmode = { DRM_MODE("preferred",
2152 		DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2153 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2154 		DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2155 	};
2156 	int i;
2157 	u32 assumed_bpp = 4;
2158 
2159 	if (dev_priv->assume_16bpp)
2160 		assumed_bpp = 2;
2161 
2162 	max_width  = min(max_width,  dev_priv->texture_max_width);
2163 	max_height = min(max_height, dev_priv->texture_max_height);
2164 
2165 	/*
2166 	 * For STDU extra limit for a mode on SVGA_REG_SCREENTARGET_MAX_WIDTH/
2167 	 * HEIGHT registers.
2168 	 */
2169 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2170 		max_width  = min(max_width,  dev_priv->stdu_max_width);
2171 		max_height = min(max_height, dev_priv->stdu_max_height);
2172 	}
2173 
2174 	/* Add preferred mode */
2175 	mode = drm_mode_duplicate(dev, &prefmode);
2176 	if (!mode)
2177 		return 0;
2178 	mode->hdisplay = du->pref_width;
2179 	mode->vdisplay = du->pref_height;
2180 	vmw_guess_mode_timing(mode);
2181 
2182 	if (vmw_kms_validate_mode_vram(dev_priv,
2183 					mode->hdisplay * assumed_bpp,
2184 					mode->vdisplay)) {
2185 		drm_mode_probed_add(connector, mode);
2186 	} else {
2187 		drm_mode_destroy(dev, mode);
2188 		mode = NULL;
2189 	}
2190 
2191 	if (du->pref_mode) {
2192 		list_del_init(&du->pref_mode->head);
2193 		drm_mode_destroy(dev, du->pref_mode);
2194 	}
2195 
2196 	/* mode might be null here, this is intended */
2197 	du->pref_mode = mode;
2198 
2199 	for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2200 		bmode = &vmw_kms_connector_builtin[i];
2201 		if (bmode->hdisplay > max_width ||
2202 		    bmode->vdisplay > max_height)
2203 			continue;
2204 
2205 		if (!vmw_kms_validate_mode_vram(dev_priv,
2206 						bmode->hdisplay * assumed_bpp,
2207 						bmode->vdisplay))
2208 			continue;
2209 
2210 		mode = drm_mode_duplicate(dev, bmode);
2211 		if (!mode)
2212 			return 0;
2213 
2214 		drm_mode_probed_add(connector, mode);
2215 	}
2216 
2217 	drm_connector_list_update(connector);
2218 	/* Move the prefered mode first, help apps pick the right mode. */
2219 	drm_mode_sort(&connector->modes);
2220 
2221 	return 1;
2222 }
2223 
2224 /**
2225  * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl
2226  * @dev: drm device for the ioctl
2227  * @data: data pointer for the ioctl
2228  * @file_priv: drm file for the ioctl call
2229  *
2230  * Update preferred topology of display unit as per ioctl request. The topology
2231  * is expressed as array of drm_vmw_rect.
2232  * e.g.
2233  * [0 0 640 480] [640 0 800 600] [0 480 640 480]
2234  *
2235  * NOTE:
2236  * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside
2237  * device limit on topology, x + w and y + h (lower right) cannot be greater
2238  * than INT_MAX. So topology beyond these limits will return with error.
2239  *
2240  * Returns:
2241  * Zero on success, negative errno on failure.
2242  */
2243 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2244 				struct drm_file *file_priv)
2245 {
2246 	struct vmw_private *dev_priv = vmw_priv(dev);
2247 	struct drm_mode_config *mode_config = &dev->mode_config;
2248 	struct drm_vmw_update_layout_arg *arg =
2249 		(struct drm_vmw_update_layout_arg *)data;
2250 	void __user *user_rects;
2251 	struct drm_vmw_rect *rects;
2252 	struct drm_rect *drm_rects;
2253 	unsigned rects_size;
2254 	int ret, i;
2255 
2256 	if (!arg->num_outputs) {
2257 		struct drm_rect def_rect = {0, 0, 800, 600};
2258 		VMW_DEBUG_KMS("Default layout x1 = %d y1 = %d x2 = %d y2 = %d\n",
2259 			      def_rect.x1, def_rect.y1,
2260 			      def_rect.x2, def_rect.y2);
2261 		vmw_du_update_layout(dev_priv, 1, &def_rect);
2262 		return 0;
2263 	}
2264 
2265 	rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2266 	rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2267 			GFP_KERNEL);
2268 	if (unlikely(!rects))
2269 		return -ENOMEM;
2270 
2271 	user_rects = (void __user *)(unsigned long)arg->rects;
2272 	ret = copy_from_user(rects, user_rects, rects_size);
2273 	if (unlikely(ret != 0)) {
2274 		DRM_ERROR("Failed to get rects.\n");
2275 		ret = -EFAULT;
2276 		goto out_free;
2277 	}
2278 
2279 	drm_rects = (struct drm_rect *)rects;
2280 
2281 	VMW_DEBUG_KMS("Layout count = %u\n", arg->num_outputs);
2282 	for (i = 0; i < arg->num_outputs; i++) {
2283 		struct drm_vmw_rect curr_rect;
2284 
2285 		/* Verify user-space for overflow as kernel use drm_rect */
2286 		if ((rects[i].x + rects[i].w > INT_MAX) ||
2287 		    (rects[i].y + rects[i].h > INT_MAX)) {
2288 			ret = -ERANGE;
2289 			goto out_free;
2290 		}
2291 
2292 		curr_rect = rects[i];
2293 		drm_rects[i].x1 = curr_rect.x;
2294 		drm_rects[i].y1 = curr_rect.y;
2295 		drm_rects[i].x2 = curr_rect.x + curr_rect.w;
2296 		drm_rects[i].y2 = curr_rect.y + curr_rect.h;
2297 
2298 		VMW_DEBUG_KMS("  x1 = %d y1 = %d x2 = %d y2 = %d\n",
2299 			      drm_rects[i].x1, drm_rects[i].y1,
2300 			      drm_rects[i].x2, drm_rects[i].y2);
2301 
2302 		/*
2303 		 * Currently this check is limiting the topology within
2304 		 * mode_config->max (which actually is max texture size
2305 		 * supported by virtual device). This limit is here to address
2306 		 * window managers that create a big framebuffer for whole
2307 		 * topology.
2308 		 */
2309 		if (drm_rects[i].x1 < 0 ||  drm_rects[i].y1 < 0 ||
2310 		    drm_rects[i].x2 > mode_config->max_width ||
2311 		    drm_rects[i].y2 > mode_config->max_height) {
2312 			VMW_DEBUG_KMS("Invalid layout %d %d %d %d\n",
2313 				      drm_rects[i].x1, drm_rects[i].y1,
2314 				      drm_rects[i].x2, drm_rects[i].y2);
2315 			ret = -EINVAL;
2316 			goto out_free;
2317 		}
2318 	}
2319 
2320 	ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects);
2321 
2322 	if (ret == 0)
2323 		vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects);
2324 
2325 out_free:
2326 	kfree(rects);
2327 	return ret;
2328 }
2329 
2330 /**
2331  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2332  * on a set of cliprects and a set of display units.
2333  *
2334  * @dev_priv: Pointer to a device private structure.
2335  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2336  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2337  * Cliprects are given in framebuffer coordinates.
2338  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2339  * be NULL. Cliprects are given in source coordinates.
2340  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2341  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2342  * @num_clips: Number of cliprects in the @clips or @vclips array.
2343  * @increment: Integer with which to increment the clip counter when looping.
2344  * Used to skip a predetermined number of clip rects.
2345  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2346  */
2347 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2348 			 struct vmw_framebuffer *framebuffer,
2349 			 const struct drm_clip_rect *clips,
2350 			 const struct drm_vmw_rect *vclips,
2351 			 s32 dest_x, s32 dest_y,
2352 			 int num_clips,
2353 			 int increment,
2354 			 struct vmw_kms_dirty *dirty)
2355 {
2356 	struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2357 	struct drm_crtc *crtc;
2358 	u32 num_units = 0;
2359 	u32 i, k;
2360 
2361 	dirty->dev_priv = dev_priv;
2362 
2363 	/* If crtc is passed, no need to iterate over other display units */
2364 	if (dirty->crtc) {
2365 		units[num_units++] = vmw_crtc_to_du(dirty->crtc);
2366 	} else {
2367 		list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list,
2368 				    head) {
2369 			struct drm_plane *plane = crtc->primary;
2370 
2371 			if (plane->state->fb == &framebuffer->base)
2372 				units[num_units++] = vmw_crtc_to_du(crtc);
2373 		}
2374 	}
2375 
2376 	for (k = 0; k < num_units; k++) {
2377 		struct vmw_display_unit *unit = units[k];
2378 		s32 crtc_x = unit->crtc.x;
2379 		s32 crtc_y = unit->crtc.y;
2380 		s32 crtc_width = unit->crtc.mode.hdisplay;
2381 		s32 crtc_height = unit->crtc.mode.vdisplay;
2382 		const struct drm_clip_rect *clips_ptr = clips;
2383 		const struct drm_vmw_rect *vclips_ptr = vclips;
2384 
2385 		dirty->unit = unit;
2386 		if (dirty->fifo_reserve_size > 0) {
2387 			dirty->cmd = VMW_FIFO_RESERVE(dev_priv,
2388 						      dirty->fifo_reserve_size);
2389 			if (!dirty->cmd)
2390 				return -ENOMEM;
2391 
2392 			memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2393 		}
2394 		dirty->num_hits = 0;
2395 		for (i = 0; i < num_clips; i++, clips_ptr += increment,
2396 		       vclips_ptr += increment) {
2397 			s32 clip_left;
2398 			s32 clip_top;
2399 
2400 			/*
2401 			 * Select clip array type. Note that integer type
2402 			 * in @clips is unsigned short, whereas in @vclips
2403 			 * it's 32-bit.
2404 			 */
2405 			if (clips) {
2406 				dirty->fb_x = (s32) clips_ptr->x1;
2407 				dirty->fb_y = (s32) clips_ptr->y1;
2408 				dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2409 					crtc_x;
2410 				dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2411 					crtc_y;
2412 			} else {
2413 				dirty->fb_x = vclips_ptr->x;
2414 				dirty->fb_y = vclips_ptr->y;
2415 				dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2416 					dest_x - crtc_x;
2417 				dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2418 					dest_y - crtc_y;
2419 			}
2420 
2421 			dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2422 			dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2423 
2424 			/* Skip this clip if it's outside the crtc region */
2425 			if (dirty->unit_x1 >= crtc_width ||
2426 			    dirty->unit_y1 >= crtc_height ||
2427 			    dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2428 				continue;
2429 
2430 			/* Clip right and bottom to crtc limits */
2431 			dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2432 					       crtc_width);
2433 			dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2434 					       crtc_height);
2435 
2436 			/* Clip left and top to crtc limits */
2437 			clip_left = min_t(s32, dirty->unit_x1, 0);
2438 			clip_top = min_t(s32, dirty->unit_y1, 0);
2439 			dirty->unit_x1 -= clip_left;
2440 			dirty->unit_y1 -= clip_top;
2441 			dirty->fb_x -= clip_left;
2442 			dirty->fb_y -= clip_top;
2443 
2444 			dirty->clip(dirty);
2445 		}
2446 
2447 		dirty->fifo_commit(dirty);
2448 	}
2449 
2450 	return 0;
2451 }
2452 
2453 /**
2454  * vmw_kms_helper_validation_finish - Helper for post KMS command submission
2455  * cleanup and fencing
2456  * @dev_priv: Pointer to the device-private struct
2457  * @file_priv: Pointer identifying the client when user-space fencing is used
2458  * @ctx: Pointer to the validation context
2459  * @out_fence: If non-NULL, returned refcounted fence-pointer
2460  * @user_fence_rep: If non-NULL, pointer to user-space address area
2461  * in which to copy user-space fence info
2462  */
2463 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv,
2464 				      struct drm_file *file_priv,
2465 				      struct vmw_validation_context *ctx,
2466 				      struct vmw_fence_obj **out_fence,
2467 				      struct drm_vmw_fence_rep __user *
2468 				      user_fence_rep)
2469 {
2470 	struct vmw_fence_obj *fence = NULL;
2471 	uint32_t handle = 0;
2472 	int ret = 0;
2473 
2474 	if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) ||
2475 	    out_fence)
2476 		ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2477 						 file_priv ? &handle : NULL);
2478 	vmw_validation_done(ctx, fence);
2479 	if (file_priv)
2480 		vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2481 					    ret, user_fence_rep, fence,
2482 					    handle, -1, NULL);
2483 	if (out_fence)
2484 		*out_fence = fence;
2485 	else
2486 		vmw_fence_obj_unreference(&fence);
2487 }
2488 
2489 /**
2490  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2491  * its backing MOB.
2492  *
2493  * @res: Pointer to the surface resource
2494  * @clips: Clip rects in framebuffer (surface) space.
2495  * @num_clips: Number of clips in @clips.
2496  * @increment: Integer with which to increment the clip counter when looping.
2497  * Used to skip a predetermined number of clip rects.
2498  *
2499  * This function makes sure the proxy surface is updated from its backing MOB
2500  * using the region given by @clips. The surface resource @res and its backing
2501  * MOB needs to be reserved and validated on call.
2502  */
2503 int vmw_kms_update_proxy(struct vmw_resource *res,
2504 			 const struct drm_clip_rect *clips,
2505 			 unsigned num_clips,
2506 			 int increment)
2507 {
2508 	struct vmw_private *dev_priv = res->dev_priv;
2509 	struct drm_vmw_size *size = &vmw_res_to_srf(res)->metadata.base_size;
2510 	struct {
2511 		SVGA3dCmdHeader header;
2512 		SVGA3dCmdUpdateGBImage body;
2513 	} *cmd;
2514 	SVGA3dBox *box;
2515 	size_t copy_size = 0;
2516 	int i;
2517 
2518 	if (!clips)
2519 		return 0;
2520 
2521 	cmd = VMW_FIFO_RESERVE(dev_priv, sizeof(*cmd) * num_clips);
2522 	if (!cmd)
2523 		return -ENOMEM;
2524 
2525 	for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2526 		box = &cmd->body.box;
2527 
2528 		cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2529 		cmd->header.size = sizeof(cmd->body);
2530 		cmd->body.image.sid = res->id;
2531 		cmd->body.image.face = 0;
2532 		cmd->body.image.mipmap = 0;
2533 
2534 		if (clips->x1 > size->width || clips->x2 > size->width ||
2535 		    clips->y1 > size->height || clips->y2 > size->height) {
2536 			DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2537 			return -EINVAL;
2538 		}
2539 
2540 		box->x = clips->x1;
2541 		box->y = clips->y1;
2542 		box->z = 0;
2543 		box->w = clips->x2 - clips->x1;
2544 		box->h = clips->y2 - clips->y1;
2545 		box->d = 1;
2546 
2547 		copy_size += sizeof(*cmd);
2548 	}
2549 
2550 	vmw_fifo_commit(dev_priv, copy_size);
2551 
2552 	return 0;
2553 }
2554 
2555 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2556 			    unsigned unit,
2557 			    u32 max_width,
2558 			    u32 max_height,
2559 			    struct drm_connector **p_con,
2560 			    struct drm_crtc **p_crtc,
2561 			    struct drm_display_mode **p_mode)
2562 {
2563 	struct drm_connector *con;
2564 	struct vmw_display_unit *du;
2565 	struct drm_display_mode *mode;
2566 	int i = 0;
2567 	int ret = 0;
2568 
2569 	mutex_lock(&dev_priv->dev->mode_config.mutex);
2570 	list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2571 			    head) {
2572 		if (i == unit)
2573 			break;
2574 
2575 		++i;
2576 	}
2577 
2578 	if (&con->head == &dev_priv->dev->mode_config.connector_list) {
2579 		DRM_ERROR("Could not find initial display unit.\n");
2580 		ret = -EINVAL;
2581 		goto out_unlock;
2582 	}
2583 
2584 	if (list_empty(&con->modes))
2585 		(void) vmw_du_connector_fill_modes(con, max_width, max_height);
2586 
2587 	if (list_empty(&con->modes)) {
2588 		DRM_ERROR("Could not find initial display mode.\n");
2589 		ret = -EINVAL;
2590 		goto out_unlock;
2591 	}
2592 
2593 	du = vmw_connector_to_du(con);
2594 	*p_con = con;
2595 	*p_crtc = &du->crtc;
2596 
2597 	list_for_each_entry(mode, &con->modes, head) {
2598 		if (mode->type & DRM_MODE_TYPE_PREFERRED)
2599 			break;
2600 	}
2601 
2602 	if (&mode->head == &con->modes) {
2603 		WARN_ONCE(true, "Could not find initial preferred mode.\n");
2604 		*p_mode = list_first_entry(&con->modes,
2605 					   struct drm_display_mode,
2606 					   head);
2607 	} else {
2608 		*p_mode = mode;
2609 	}
2610 
2611  out_unlock:
2612 	mutex_unlock(&dev_priv->dev->mode_config.mutex);
2613 
2614 	return ret;
2615 }
2616 
2617 /**
2618  * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2619  * property.
2620  *
2621  * @dev_priv: Pointer to a device private struct.
2622  *
2623  * Sets up the implicit placement property unless it's already set up.
2624  */
2625 void
2626 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv)
2627 {
2628 	if (dev_priv->implicit_placement_property)
2629 		return;
2630 
2631 	dev_priv->implicit_placement_property =
2632 		drm_property_create_range(dev_priv->dev,
2633 					  DRM_MODE_PROP_IMMUTABLE,
2634 					  "implicit_placement", 0, 1);
2635 }
2636 
2637 /**
2638  * vmw_kms_suspend - Save modesetting state and turn modesetting off.
2639  *
2640  * @dev: Pointer to the drm device
2641  * Return: 0 on success. Negative error code on failure.
2642  */
2643 int vmw_kms_suspend(struct drm_device *dev)
2644 {
2645 	struct vmw_private *dev_priv = vmw_priv(dev);
2646 
2647 	dev_priv->suspend_state = drm_atomic_helper_suspend(dev);
2648 	if (IS_ERR(dev_priv->suspend_state)) {
2649 		int ret = PTR_ERR(dev_priv->suspend_state);
2650 
2651 		DRM_ERROR("Failed kms suspend: %d\n", ret);
2652 		dev_priv->suspend_state = NULL;
2653 
2654 		return ret;
2655 	}
2656 
2657 	return 0;
2658 }
2659 
2660 
2661 /**
2662  * vmw_kms_resume - Re-enable modesetting and restore state
2663  *
2664  * @dev: Pointer to the drm device
2665  * Return: 0 on success. Negative error code on failure.
2666  *
2667  * State is resumed from a previous vmw_kms_suspend(). It's illegal
2668  * to call this function without a previous vmw_kms_suspend().
2669  */
2670 int vmw_kms_resume(struct drm_device *dev)
2671 {
2672 	struct vmw_private *dev_priv = vmw_priv(dev);
2673 	int ret;
2674 
2675 	if (WARN_ON(!dev_priv->suspend_state))
2676 		return 0;
2677 
2678 	ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state);
2679 	dev_priv->suspend_state = NULL;
2680 
2681 	return ret;
2682 }
2683 
2684 /**
2685  * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost
2686  *
2687  * @dev: Pointer to the drm device
2688  */
2689 void vmw_kms_lost_device(struct drm_device *dev)
2690 {
2691 	drm_atomic_helper_shutdown(dev);
2692 }
2693 
2694 /**
2695  * vmw_du_helper_plane_update - Helper to do plane update on a display unit.
2696  * @update: The closure structure.
2697  *
2698  * Call this helper after setting callbacks in &vmw_du_update_plane to do plane
2699  * update on display unit.
2700  *
2701  * Return: 0 on success or a negative error code on failure.
2702  */
2703 int vmw_du_helper_plane_update(struct vmw_du_update_plane *update)
2704 {
2705 	struct drm_plane_state *state = update->plane->state;
2706 	struct drm_plane_state *old_state = update->old_state;
2707 	struct drm_atomic_helper_damage_iter iter;
2708 	struct drm_rect clip;
2709 	struct drm_rect bb;
2710 	DECLARE_VAL_CONTEXT(val_ctx, NULL, 0);
2711 	uint32_t reserved_size = 0;
2712 	uint32_t submit_size = 0;
2713 	uint32_t curr_size = 0;
2714 	uint32_t num_hits = 0;
2715 	void *cmd_start;
2716 	char *cmd_next;
2717 	int ret;
2718 
2719 	/*
2720 	 * Iterate in advance to check if really need plane update and find the
2721 	 * number of clips that actually are in plane src for fifo allocation.
2722 	 */
2723 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
2724 	drm_atomic_for_each_plane_damage(&iter, &clip)
2725 		num_hits++;
2726 
2727 	if (num_hits == 0)
2728 		return 0;
2729 
2730 	if (update->vfb->bo) {
2731 		struct vmw_framebuffer_bo *vfbbo =
2732 			container_of(update->vfb, typeof(*vfbbo), base);
2733 
2734 		ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer, false,
2735 					    update->cpu_blit);
2736 	} else {
2737 		struct vmw_framebuffer_surface *vfbs =
2738 			container_of(update->vfb, typeof(*vfbs), base);
2739 
2740 		ret = vmw_validation_add_resource(&val_ctx, &vfbs->surface->res,
2741 						  0, VMW_RES_DIRTY_NONE, NULL,
2742 						  NULL);
2743 	}
2744 
2745 	if (ret)
2746 		return ret;
2747 
2748 	ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr);
2749 	if (ret)
2750 		goto out_unref;
2751 
2752 	reserved_size = update->calc_fifo_size(update, num_hits);
2753 	cmd_start = VMW_FIFO_RESERVE(update->dev_priv, reserved_size);
2754 	if (!cmd_start) {
2755 		ret = -ENOMEM;
2756 		goto out_revert;
2757 	}
2758 
2759 	cmd_next = cmd_start;
2760 
2761 	if (update->post_prepare) {
2762 		curr_size = update->post_prepare(update, cmd_next);
2763 		cmd_next += curr_size;
2764 		submit_size += curr_size;
2765 	}
2766 
2767 	if (update->pre_clip) {
2768 		curr_size = update->pre_clip(update, cmd_next, num_hits);
2769 		cmd_next += curr_size;
2770 		submit_size += curr_size;
2771 	}
2772 
2773 	bb.x1 = INT_MAX;
2774 	bb.y1 = INT_MAX;
2775 	bb.x2 = INT_MIN;
2776 	bb.y2 = INT_MIN;
2777 
2778 	drm_atomic_helper_damage_iter_init(&iter, old_state, state);
2779 	drm_atomic_for_each_plane_damage(&iter, &clip) {
2780 		uint32_t fb_x = clip.x1;
2781 		uint32_t fb_y = clip.y1;
2782 
2783 		vmw_du_translate_to_crtc(state, &clip);
2784 		if (update->clip) {
2785 			curr_size = update->clip(update, cmd_next, &clip, fb_x,
2786 						 fb_y);
2787 			cmd_next += curr_size;
2788 			submit_size += curr_size;
2789 		}
2790 		bb.x1 = min_t(int, bb.x1, clip.x1);
2791 		bb.y1 = min_t(int, bb.y1, clip.y1);
2792 		bb.x2 = max_t(int, bb.x2, clip.x2);
2793 		bb.y2 = max_t(int, bb.y2, clip.y2);
2794 	}
2795 
2796 	curr_size = update->post_clip(update, cmd_next, &bb);
2797 	submit_size += curr_size;
2798 
2799 	if (reserved_size < submit_size)
2800 		submit_size = 0;
2801 
2802 	vmw_fifo_commit(update->dev_priv, submit_size);
2803 
2804 	vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx,
2805 					 update->out_fence, NULL);
2806 	return ret;
2807 
2808 out_revert:
2809 	vmw_validation_revert(&val_ctx);
2810 
2811 out_unref:
2812 	vmw_validation_unref_lists(&val_ctx);
2813 	return ret;
2814 }
2815