1 /**************************************************************************
2  *
3  * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_kms.h"
29 #include <drm/drm_plane_helper.h>
30 #include <drm/drm_atomic.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_rect.h>
33 
34 /* Might need a hrtimer here? */
35 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
36 
37 void vmw_du_cleanup(struct vmw_display_unit *du)
38 {
39 	drm_plane_cleanup(&du->primary);
40 	drm_plane_cleanup(&du->cursor);
41 
42 	drm_connector_unregister(&du->connector);
43 	drm_crtc_cleanup(&du->crtc);
44 	drm_encoder_cleanup(&du->encoder);
45 	drm_connector_cleanup(&du->connector);
46 }
47 
48 /*
49  * Display Unit Cursor functions
50  */
51 
52 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
53 				   u32 *image, u32 width, u32 height,
54 				   u32 hotspotX, u32 hotspotY)
55 {
56 	struct {
57 		u32 cmd;
58 		SVGAFifoCmdDefineAlphaCursor cursor;
59 	} *cmd;
60 	u32 image_size = width * height * 4;
61 	u32 cmd_size = sizeof(*cmd) + image_size;
62 
63 	if (!image)
64 		return -EINVAL;
65 
66 	cmd = vmw_fifo_reserve(dev_priv, cmd_size);
67 	if (unlikely(cmd == NULL)) {
68 		DRM_ERROR("Fifo reserve failed.\n");
69 		return -ENOMEM;
70 	}
71 
72 	memset(cmd, 0, sizeof(*cmd));
73 
74 	memcpy(&cmd[1], image, image_size);
75 
76 	cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
77 	cmd->cursor.id = 0;
78 	cmd->cursor.width = width;
79 	cmd->cursor.height = height;
80 	cmd->cursor.hotspotX = hotspotX;
81 	cmd->cursor.hotspotY = hotspotY;
82 
83 	vmw_fifo_commit_flush(dev_priv, cmd_size);
84 
85 	return 0;
86 }
87 
88 static int vmw_cursor_update_dmabuf(struct vmw_private *dev_priv,
89 				    struct vmw_dma_buffer *dmabuf,
90 				    u32 width, u32 height,
91 				    u32 hotspotX, u32 hotspotY)
92 {
93 	struct ttm_bo_kmap_obj map;
94 	unsigned long kmap_offset;
95 	unsigned long kmap_num;
96 	void *virtual;
97 	bool dummy;
98 	int ret;
99 
100 	kmap_offset = 0;
101 	kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
102 
103 	ret = ttm_bo_reserve(&dmabuf->base, true, false, NULL);
104 	if (unlikely(ret != 0)) {
105 		DRM_ERROR("reserve failed\n");
106 		return -EINVAL;
107 	}
108 
109 	ret = ttm_bo_kmap(&dmabuf->base, kmap_offset, kmap_num, &map);
110 	if (unlikely(ret != 0))
111 		goto err_unreserve;
112 
113 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
114 	ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
115 				      hotspotX, hotspotY);
116 
117 	ttm_bo_kunmap(&map);
118 err_unreserve:
119 	ttm_bo_unreserve(&dmabuf->base);
120 
121 	return ret;
122 }
123 
124 
125 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
126 				       bool show, int x, int y)
127 {
128 	u32 *fifo_mem = dev_priv->mmio_virt;
129 	uint32_t count;
130 
131 	spin_lock(&dev_priv->cursor_lock);
132 	vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
133 	vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
134 	vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
135 	count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
136 	vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
137 	spin_unlock(&dev_priv->cursor_lock);
138 }
139 
140 
141 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
142 			  struct ttm_object_file *tfile,
143 			  struct ttm_buffer_object *bo,
144 			  SVGA3dCmdHeader *header)
145 {
146 	struct ttm_bo_kmap_obj map;
147 	unsigned long kmap_offset;
148 	unsigned long kmap_num;
149 	SVGA3dCopyBox *box;
150 	unsigned box_count;
151 	void *virtual;
152 	bool dummy;
153 	struct vmw_dma_cmd {
154 		SVGA3dCmdHeader header;
155 		SVGA3dCmdSurfaceDMA dma;
156 	} *cmd;
157 	int i, ret;
158 
159 	cmd = container_of(header, struct vmw_dma_cmd, header);
160 
161 	/* No snooper installed */
162 	if (!srf->snooper.image)
163 		return;
164 
165 	if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
166 		DRM_ERROR("face and mipmap for cursors should never != 0\n");
167 		return;
168 	}
169 
170 	if (cmd->header.size < 64) {
171 		DRM_ERROR("at least one full copy box must be given\n");
172 		return;
173 	}
174 
175 	box = (SVGA3dCopyBox *)&cmd[1];
176 	box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
177 			sizeof(SVGA3dCopyBox);
178 
179 	if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
180 	    box->x != 0    || box->y != 0    || box->z != 0    ||
181 	    box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
182 	    box->d != 1    || box_count != 1) {
183 		/* TODO handle none page aligned offsets */
184 		/* TODO handle more dst & src != 0 */
185 		/* TODO handle more then one copy */
186 		DRM_ERROR("Cant snoop dma request for cursor!\n");
187 		DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
188 			  box->srcx, box->srcy, box->srcz,
189 			  box->x, box->y, box->z,
190 			  box->w, box->h, box->d, box_count,
191 			  cmd->dma.guest.ptr.offset);
192 		return;
193 	}
194 
195 	kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
196 	kmap_num = (64*64*4) >> PAGE_SHIFT;
197 
198 	ret = ttm_bo_reserve(bo, true, false, NULL);
199 	if (unlikely(ret != 0)) {
200 		DRM_ERROR("reserve failed\n");
201 		return;
202 	}
203 
204 	ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
205 	if (unlikely(ret != 0))
206 		goto err_unreserve;
207 
208 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
209 
210 	if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
211 		memcpy(srf->snooper.image, virtual, 64*64*4);
212 	} else {
213 		/* Image is unsigned pointer. */
214 		for (i = 0; i < box->h; i++)
215 			memcpy(srf->snooper.image + i * 64,
216 			       virtual + i * cmd->dma.guest.pitch,
217 			       box->w * 4);
218 	}
219 
220 	srf->snooper.age++;
221 
222 	ttm_bo_kunmap(&map);
223 err_unreserve:
224 	ttm_bo_unreserve(bo);
225 }
226 
227 /**
228  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
229  *
230  * @dev_priv: Pointer to the device private struct.
231  *
232  * Clears all legacy hotspots.
233  */
234 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
235 {
236 	struct drm_device *dev = dev_priv->dev;
237 	struct vmw_display_unit *du;
238 	struct drm_crtc *crtc;
239 
240 	drm_modeset_lock_all(dev);
241 	drm_for_each_crtc(crtc, dev) {
242 		du = vmw_crtc_to_du(crtc);
243 
244 		du->hotspot_x = 0;
245 		du->hotspot_y = 0;
246 	}
247 	drm_modeset_unlock_all(dev);
248 }
249 
250 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
251 {
252 	struct drm_device *dev = dev_priv->dev;
253 	struct vmw_display_unit *du;
254 	struct drm_crtc *crtc;
255 
256 	mutex_lock(&dev->mode_config.mutex);
257 
258 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
259 		du = vmw_crtc_to_du(crtc);
260 		if (!du->cursor_surface ||
261 		    du->cursor_age == du->cursor_surface->snooper.age)
262 			continue;
263 
264 		du->cursor_age = du->cursor_surface->snooper.age;
265 		vmw_cursor_update_image(dev_priv,
266 					du->cursor_surface->snooper.image,
267 					64, 64,
268 					du->hotspot_x + du->core_hotspot_x,
269 					du->hotspot_y + du->core_hotspot_y);
270 	}
271 
272 	mutex_unlock(&dev->mode_config.mutex);
273 }
274 
275 
276 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
277 {
278 	vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
279 
280 	drm_plane_cleanup(plane);
281 }
282 
283 
284 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
285 {
286 	drm_plane_cleanup(plane);
287 
288 	/* Planes are static in our case so we don't free it */
289 }
290 
291 
292 /**
293  * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
294  *
295  * @vps: plane state associated with the display surface
296  * @unreference: true if we also want to unreference the display.
297  */
298 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
299 			     bool unreference)
300 {
301 	if (vps->surf) {
302 		if (vps->pinned) {
303 			vmw_resource_unpin(&vps->surf->res);
304 			vps->pinned--;
305 		}
306 
307 		if (unreference) {
308 			if (vps->pinned)
309 				DRM_ERROR("Surface still pinned\n");
310 			vmw_surface_unreference(&vps->surf);
311 		}
312 	}
313 }
314 
315 
316 /**
317  * vmw_du_plane_cleanup_fb - Unpins the cursor
318  *
319  * @plane:  display plane
320  * @old_state: Contains the FB to clean up
321  *
322  * Unpins the framebuffer surface
323  *
324  * Returns 0 on success
325  */
326 void
327 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
328 			struct drm_plane_state *old_state)
329 {
330 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
331 
332 	vmw_du_plane_unpin_surf(vps, false);
333 }
334 
335 
336 /**
337  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
338  *
339  * @plane:  display plane
340  * @new_state: info on the new plane state, including the FB
341  *
342  * Returns 0 on success
343  */
344 int
345 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
346 			       struct drm_plane_state *new_state)
347 {
348 	struct drm_framebuffer *fb = new_state->fb;
349 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
350 
351 
352 	if (vps->surf)
353 		vmw_surface_unreference(&vps->surf);
354 
355 	if (vps->dmabuf)
356 		vmw_dmabuf_unreference(&vps->dmabuf);
357 
358 	if (fb) {
359 		if (vmw_framebuffer_to_vfb(fb)->dmabuf) {
360 			vps->dmabuf = vmw_framebuffer_to_vfbd(fb)->buffer;
361 			vmw_dmabuf_reference(vps->dmabuf);
362 		} else {
363 			vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
364 			vmw_surface_reference(vps->surf);
365 		}
366 	}
367 
368 	return 0;
369 }
370 
371 
372 void
373 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
374 				  struct drm_plane_state *old_state)
375 {
376 	struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
377 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
378 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
379 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
380 	s32 hotspot_x, hotspot_y;
381 	int ret = 0;
382 
383 
384 	hotspot_x = du->hotspot_x;
385 	hotspot_y = du->hotspot_y;
386 
387 	if (plane->fb) {
388 		hotspot_x += plane->fb->hot_x;
389 		hotspot_y += plane->fb->hot_y;
390 	}
391 
392 	du->cursor_surface = vps->surf;
393 	du->cursor_dmabuf = vps->dmabuf;
394 
395 	if (vps->surf) {
396 		du->cursor_age = du->cursor_surface->snooper.age;
397 
398 		ret = vmw_cursor_update_image(dev_priv,
399 					      vps->surf->snooper.image,
400 					      64, 64, hotspot_x,
401 					      hotspot_y);
402 	} else if (vps->dmabuf) {
403 		ret = vmw_cursor_update_dmabuf(dev_priv, vps->dmabuf,
404 					       plane->state->crtc_w,
405 					       plane->state->crtc_h,
406 					       hotspot_x, hotspot_y);
407 	} else {
408 		vmw_cursor_update_position(dev_priv, false, 0, 0);
409 		return;
410 	}
411 
412 	if (!ret) {
413 		du->cursor_x = plane->state->crtc_x + du->set_gui_x;
414 		du->cursor_y = plane->state->crtc_y + du->set_gui_y;
415 
416 		vmw_cursor_update_position(dev_priv, true,
417 					   du->cursor_x + hotspot_x,
418 					   du->cursor_y + hotspot_y);
419 
420 		du->core_hotspot_x = hotspot_x - du->hotspot_x;
421 		du->core_hotspot_y = hotspot_y - du->hotspot_y;
422 	} else {
423 		DRM_ERROR("Failed to update cursor image\n");
424 	}
425 }
426 
427 
428 /**
429  * vmw_du_primary_plane_atomic_check - check if the new state is okay
430  *
431  * @plane: display plane
432  * @state: info on the new plane state, including the FB
433  *
434  * Check if the new state is settable given the current state.  Other
435  * than what the atomic helper checks, we care about crtc fitting
436  * the FB and maintaining one active framebuffer.
437  *
438  * Returns 0 on success
439  */
440 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
441 				      struct drm_plane_state *state)
442 {
443 	struct drm_crtc_state *crtc_state = NULL;
444 	struct drm_framebuffer *new_fb = state->fb;
445 	int ret;
446 
447 	if (state->crtc)
448 		crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc);
449 
450 	ret = drm_atomic_helper_check_plane_state(state, crtc_state,
451 						  DRM_PLANE_HELPER_NO_SCALING,
452 						  DRM_PLANE_HELPER_NO_SCALING,
453 						  false, true);
454 
455 	if (!ret && new_fb) {
456 		struct drm_crtc *crtc = state->crtc;
457 		struct vmw_connector_state *vcs;
458 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
459 		struct vmw_private *dev_priv = vmw_priv(crtc->dev);
460 		struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb);
461 
462 		vcs = vmw_connector_state_to_vcs(du->connector.state);
463 
464 		/* Only one active implicit framebuffer at a time. */
465 		mutex_lock(&dev_priv->global_kms_state_mutex);
466 		if (vcs->is_implicit && dev_priv->implicit_fb &&
467 		    !(dev_priv->num_implicit == 1 && du->active_implicit)
468 		    && dev_priv->implicit_fb != vfb) {
469 			DRM_ERROR("Multiple implicit framebuffers "
470 				  "not supported.\n");
471 			ret = -EINVAL;
472 		}
473 		mutex_unlock(&dev_priv->global_kms_state_mutex);
474 	}
475 
476 
477 	return ret;
478 }
479 
480 
481 /**
482  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
483  *
484  * @plane: cursor plane
485  * @state: info on the new plane state
486  *
487  * This is a chance to fail if the new cursor state does not fit
488  * our requirements.
489  *
490  * Returns 0 on success
491  */
492 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
493 				     struct drm_plane_state *new_state)
494 {
495 	int ret = 0;
496 	struct vmw_surface *surface = NULL;
497 	struct drm_framebuffer *fb = new_state->fb;
498 
499 	struct drm_rect src = drm_plane_state_src(new_state);
500 	struct drm_rect dest = drm_plane_state_dest(new_state);
501 
502 	/* Turning off */
503 	if (!fb)
504 		return ret;
505 
506 	ret = drm_plane_helper_check_update(plane, new_state->crtc, fb,
507 					    &src, &dest,
508 					    DRM_MODE_ROTATE_0,
509 					    DRM_PLANE_HELPER_NO_SCALING,
510 					    DRM_PLANE_HELPER_NO_SCALING,
511 					    true, true, &new_state->visible);
512 	if (!ret)
513 		return ret;
514 
515 	/* A lot of the code assumes this */
516 	if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
517 		DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
518 			  new_state->crtc_w, new_state->crtc_h);
519 		ret = -EINVAL;
520 	}
521 
522 	if (!vmw_framebuffer_to_vfb(fb)->dmabuf)
523 		surface = vmw_framebuffer_to_vfbs(fb)->surface;
524 
525 	if (surface && !surface->snooper.image) {
526 		DRM_ERROR("surface not suitable for cursor\n");
527 		ret = -EINVAL;
528 	}
529 
530 	return ret;
531 }
532 
533 
534 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
535 			     struct drm_crtc_state *new_state)
536 {
537 	struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
538 	int connector_mask = 1 << drm_connector_index(&du->connector);
539 	bool has_primary = new_state->plane_mask &
540 			   BIT(drm_plane_index(crtc->primary));
541 
542 	/* We always want to have an active plane with an active CRTC */
543 	if (has_primary != new_state->enable)
544 		return -EINVAL;
545 
546 
547 	if (new_state->connector_mask != connector_mask &&
548 	    new_state->connector_mask != 0) {
549 		DRM_ERROR("Invalid connectors configuration\n");
550 		return -EINVAL;
551 	}
552 
553 	/*
554 	 * Our virtual device does not have a dot clock, so use the logical
555 	 * clock value as the dot clock.
556 	 */
557 	if (new_state->mode.crtc_clock == 0)
558 		new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
559 
560 	return 0;
561 }
562 
563 
564 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
565 			      struct drm_crtc_state *old_crtc_state)
566 {
567 }
568 
569 
570 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
571 			      struct drm_crtc_state *old_crtc_state)
572 {
573 	struct drm_pending_vblank_event *event = crtc->state->event;
574 
575 	if (event) {
576 		crtc->state->event = NULL;
577 
578 		spin_lock_irq(&crtc->dev->event_lock);
579 		drm_crtc_send_vblank_event(crtc, event);
580 		spin_unlock_irq(&crtc->dev->event_lock);
581 	}
582 }
583 
584 
585 /**
586  * vmw_du_crtc_duplicate_state - duplicate crtc state
587  * @crtc: DRM crtc
588  *
589  * Allocates and returns a copy of the crtc state (both common and
590  * vmw-specific) for the specified crtc.
591  *
592  * Returns: The newly allocated crtc state, or NULL on failure.
593  */
594 struct drm_crtc_state *
595 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
596 {
597 	struct drm_crtc_state *state;
598 	struct vmw_crtc_state *vcs;
599 
600 	if (WARN_ON(!crtc->state))
601 		return NULL;
602 
603 	vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
604 
605 	if (!vcs)
606 		return NULL;
607 
608 	state = &vcs->base;
609 
610 	__drm_atomic_helper_crtc_duplicate_state(crtc, state);
611 
612 	return state;
613 }
614 
615 
616 /**
617  * vmw_du_crtc_reset - creates a blank vmw crtc state
618  * @crtc: DRM crtc
619  *
620  * Resets the atomic state for @crtc by freeing the state pointer (which
621  * might be NULL, e.g. at driver load time) and allocating a new empty state
622  * object.
623  */
624 void vmw_du_crtc_reset(struct drm_crtc *crtc)
625 {
626 	struct vmw_crtc_state *vcs;
627 
628 
629 	if (crtc->state) {
630 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
631 
632 		kfree(vmw_crtc_state_to_vcs(crtc->state));
633 	}
634 
635 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
636 
637 	if (!vcs) {
638 		DRM_ERROR("Cannot allocate vmw_crtc_state\n");
639 		return;
640 	}
641 
642 	crtc->state = &vcs->base;
643 	crtc->state->crtc = crtc;
644 }
645 
646 
647 /**
648  * vmw_du_crtc_destroy_state - destroy crtc state
649  * @crtc: DRM crtc
650  * @state: state object to destroy
651  *
652  * Destroys the crtc state (both common and vmw-specific) for the
653  * specified plane.
654  */
655 void
656 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
657 			  struct drm_crtc_state *state)
658 {
659 	drm_atomic_helper_crtc_destroy_state(crtc, state);
660 }
661 
662 
663 /**
664  * vmw_du_plane_duplicate_state - duplicate plane state
665  * @plane: drm plane
666  *
667  * Allocates and returns a copy of the plane state (both common and
668  * vmw-specific) for the specified plane.
669  *
670  * Returns: The newly allocated plane state, or NULL on failure.
671  */
672 struct drm_plane_state *
673 vmw_du_plane_duplicate_state(struct drm_plane *plane)
674 {
675 	struct drm_plane_state *state;
676 	struct vmw_plane_state *vps;
677 
678 	vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
679 
680 	if (!vps)
681 		return NULL;
682 
683 	vps->pinned = 0;
684 	vps->cpp = 0;
685 
686 	/* Each ref counted resource needs to be acquired again */
687 	if (vps->surf)
688 		(void) vmw_surface_reference(vps->surf);
689 
690 	if (vps->dmabuf)
691 		(void) vmw_dmabuf_reference(vps->dmabuf);
692 
693 	state = &vps->base;
694 
695 	__drm_atomic_helper_plane_duplicate_state(plane, state);
696 
697 	return state;
698 }
699 
700 
701 /**
702  * vmw_du_plane_reset - creates a blank vmw plane state
703  * @plane: drm plane
704  *
705  * Resets the atomic state for @plane by freeing the state pointer (which might
706  * be NULL, e.g. at driver load time) and allocating a new empty state object.
707  */
708 void vmw_du_plane_reset(struct drm_plane *plane)
709 {
710 	struct vmw_plane_state *vps;
711 
712 
713 	if (plane->state)
714 		vmw_du_plane_destroy_state(plane, plane->state);
715 
716 	vps = kzalloc(sizeof(*vps), GFP_KERNEL);
717 
718 	if (!vps) {
719 		DRM_ERROR("Cannot allocate vmw_plane_state\n");
720 		return;
721 	}
722 
723 	plane->state = &vps->base;
724 	plane->state->plane = plane;
725 	plane->state->rotation = DRM_MODE_ROTATE_0;
726 }
727 
728 
729 /**
730  * vmw_du_plane_destroy_state - destroy plane state
731  * @plane: DRM plane
732  * @state: state object to destroy
733  *
734  * Destroys the plane state (both common and vmw-specific) for the
735  * specified plane.
736  */
737 void
738 vmw_du_plane_destroy_state(struct drm_plane *plane,
739 			   struct drm_plane_state *state)
740 {
741 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
742 
743 
744 	/* Should have been freed by cleanup_fb */
745 	if (vps->surf)
746 		vmw_surface_unreference(&vps->surf);
747 
748 	if (vps->dmabuf)
749 		vmw_dmabuf_unreference(&vps->dmabuf);
750 
751 	drm_atomic_helper_plane_destroy_state(plane, state);
752 }
753 
754 
755 /**
756  * vmw_du_connector_duplicate_state - duplicate connector state
757  * @connector: DRM connector
758  *
759  * Allocates and returns a copy of the connector state (both common and
760  * vmw-specific) for the specified connector.
761  *
762  * Returns: The newly allocated connector state, or NULL on failure.
763  */
764 struct drm_connector_state *
765 vmw_du_connector_duplicate_state(struct drm_connector *connector)
766 {
767 	struct drm_connector_state *state;
768 	struct vmw_connector_state *vcs;
769 
770 	if (WARN_ON(!connector->state))
771 		return NULL;
772 
773 	vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
774 
775 	if (!vcs)
776 		return NULL;
777 
778 	state = &vcs->base;
779 
780 	__drm_atomic_helper_connector_duplicate_state(connector, state);
781 
782 	return state;
783 }
784 
785 
786 /**
787  * vmw_du_connector_reset - creates a blank vmw connector state
788  * @connector: DRM connector
789  *
790  * Resets the atomic state for @connector by freeing the state pointer (which
791  * might be NULL, e.g. at driver load time) and allocating a new empty state
792  * object.
793  */
794 void vmw_du_connector_reset(struct drm_connector *connector)
795 {
796 	struct vmw_connector_state *vcs;
797 
798 
799 	if (connector->state) {
800 		__drm_atomic_helper_connector_destroy_state(connector->state);
801 
802 		kfree(vmw_connector_state_to_vcs(connector->state));
803 	}
804 
805 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
806 
807 	if (!vcs) {
808 		DRM_ERROR("Cannot allocate vmw_connector_state\n");
809 		return;
810 	}
811 
812 	__drm_atomic_helper_connector_reset(connector, &vcs->base);
813 }
814 
815 
816 /**
817  * vmw_du_connector_destroy_state - destroy connector state
818  * @connector: DRM connector
819  * @state: state object to destroy
820  *
821  * Destroys the connector state (both common and vmw-specific) for the
822  * specified plane.
823  */
824 void
825 vmw_du_connector_destroy_state(struct drm_connector *connector,
826 			  struct drm_connector_state *state)
827 {
828 	drm_atomic_helper_connector_destroy_state(connector, state);
829 }
830 /*
831  * Generic framebuffer code
832  */
833 
834 /*
835  * Surface framebuffer code
836  */
837 
838 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
839 {
840 	struct vmw_framebuffer_surface *vfbs =
841 		vmw_framebuffer_to_vfbs(framebuffer);
842 
843 	drm_framebuffer_cleanup(framebuffer);
844 	vmw_surface_unreference(&vfbs->surface);
845 	if (vfbs->base.user_obj)
846 		ttm_base_object_unref(&vfbs->base.user_obj);
847 
848 	kfree(vfbs);
849 }
850 
851 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer,
852 				  struct drm_file *file_priv,
853 				  unsigned flags, unsigned color,
854 				  struct drm_clip_rect *clips,
855 				  unsigned num_clips)
856 {
857 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
858 	struct vmw_framebuffer_surface *vfbs =
859 		vmw_framebuffer_to_vfbs(framebuffer);
860 	struct drm_clip_rect norect;
861 	int ret, inc = 1;
862 
863 	/* Legacy Display Unit does not support 3D */
864 	if (dev_priv->active_display_unit == vmw_du_legacy)
865 		return -EINVAL;
866 
867 	drm_modeset_lock_all(dev_priv->dev);
868 
869 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
870 	if (unlikely(ret != 0)) {
871 		drm_modeset_unlock_all(dev_priv->dev);
872 		return ret;
873 	}
874 
875 	if (!num_clips) {
876 		num_clips = 1;
877 		clips = &norect;
878 		norect.x1 = norect.y1 = 0;
879 		norect.x2 = framebuffer->width;
880 		norect.y2 = framebuffer->height;
881 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
882 		num_clips /= 2;
883 		inc = 2; /* skip source rects */
884 	}
885 
886 	if (dev_priv->active_display_unit == vmw_du_screen_object)
887 		ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base,
888 						   clips, NULL, NULL, 0, 0,
889 						   num_clips, inc, NULL, NULL);
890 	else
891 		ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base,
892 						 clips, NULL, NULL, 0, 0,
893 						 num_clips, inc, NULL, NULL);
894 
895 	vmw_fifo_flush(dev_priv, false);
896 	ttm_read_unlock(&dev_priv->reservation_sem);
897 
898 	drm_modeset_unlock_all(dev_priv->dev);
899 
900 	return 0;
901 }
902 
903 /**
904  * vmw_kms_readback - Perform a readback from the screen system to
905  * a dma-buffer backed framebuffer.
906  *
907  * @dev_priv: Pointer to the device private structure.
908  * @file_priv: Pointer to a struct drm_file identifying the caller.
909  * Must be set to NULL if @user_fence_rep is NULL.
910  * @vfb: Pointer to the dma-buffer backed framebuffer.
911  * @user_fence_rep: User-space provided structure for fence information.
912  * Must be set to non-NULL if @file_priv is non-NULL.
913  * @vclips: Array of clip rects.
914  * @num_clips: Number of clip rects in @vclips.
915  *
916  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
917  * interrupted.
918  */
919 int vmw_kms_readback(struct vmw_private *dev_priv,
920 		     struct drm_file *file_priv,
921 		     struct vmw_framebuffer *vfb,
922 		     struct drm_vmw_fence_rep __user *user_fence_rep,
923 		     struct drm_vmw_rect *vclips,
924 		     uint32_t num_clips)
925 {
926 	switch (dev_priv->active_display_unit) {
927 	case vmw_du_screen_object:
928 		return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
929 					    user_fence_rep, vclips, num_clips,
930 					    NULL);
931 	case vmw_du_screen_target:
932 		return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
933 					user_fence_rep, NULL, vclips, num_clips,
934 					1, false, true, NULL);
935 	default:
936 		WARN_ONCE(true,
937 			  "Readback called with invalid display system.\n");
938 }
939 
940 	return -ENOSYS;
941 }
942 
943 
944 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
945 	.destroy = vmw_framebuffer_surface_destroy,
946 	.dirty = vmw_framebuffer_surface_dirty,
947 };
948 
949 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
950 					   struct vmw_surface *surface,
951 					   struct vmw_framebuffer **out,
952 					   const struct drm_mode_fb_cmd2
953 					   *mode_cmd,
954 					   bool is_dmabuf_proxy)
955 
956 {
957 	struct drm_device *dev = dev_priv->dev;
958 	struct vmw_framebuffer_surface *vfbs;
959 	enum SVGA3dSurfaceFormat format;
960 	int ret;
961 	struct drm_format_name_buf format_name;
962 
963 	/* 3D is only supported on HWv8 and newer hosts */
964 	if (dev_priv->active_display_unit == vmw_du_legacy)
965 		return -ENOSYS;
966 
967 	/*
968 	 * Sanity checks.
969 	 */
970 
971 	/* Surface must be marked as a scanout. */
972 	if (unlikely(!surface->scanout))
973 		return -EINVAL;
974 
975 	if (unlikely(surface->mip_levels[0] != 1 ||
976 		     surface->num_sizes != 1 ||
977 		     surface->base_size.width < mode_cmd->width ||
978 		     surface->base_size.height < mode_cmd->height ||
979 		     surface->base_size.depth != 1)) {
980 		DRM_ERROR("Incompatible surface dimensions "
981 			  "for requested mode.\n");
982 		return -EINVAL;
983 	}
984 
985 	switch (mode_cmd->pixel_format) {
986 	case DRM_FORMAT_ARGB8888:
987 		format = SVGA3D_A8R8G8B8;
988 		break;
989 	case DRM_FORMAT_XRGB8888:
990 		format = SVGA3D_X8R8G8B8;
991 		break;
992 	case DRM_FORMAT_RGB565:
993 		format = SVGA3D_R5G6B5;
994 		break;
995 	case DRM_FORMAT_XRGB1555:
996 		format = SVGA3D_A1R5G5B5;
997 		break;
998 	default:
999 		DRM_ERROR("Invalid pixel format: %s\n",
1000 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1001 		return -EINVAL;
1002 	}
1003 
1004 	/*
1005 	 * For DX, surface format validation is done when surface->scanout
1006 	 * is set.
1007 	 */
1008 	if (!dev_priv->has_dx && format != surface->format) {
1009 		DRM_ERROR("Invalid surface format for requested mode.\n");
1010 		return -EINVAL;
1011 	}
1012 
1013 	vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
1014 	if (!vfbs) {
1015 		ret = -ENOMEM;
1016 		goto out_err1;
1017 	}
1018 
1019 	drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
1020 	vfbs->surface = vmw_surface_reference(surface);
1021 	vfbs->base.user_handle = mode_cmd->handles[0];
1022 	vfbs->is_dmabuf_proxy = is_dmabuf_proxy;
1023 
1024 	*out = &vfbs->base;
1025 
1026 	ret = drm_framebuffer_init(dev, &vfbs->base.base,
1027 				   &vmw_framebuffer_surface_funcs);
1028 	if (ret)
1029 		goto out_err2;
1030 
1031 	return 0;
1032 
1033 out_err2:
1034 	vmw_surface_unreference(&surface);
1035 	kfree(vfbs);
1036 out_err1:
1037 	return ret;
1038 }
1039 
1040 /*
1041  * Dmabuf framebuffer code
1042  */
1043 
1044 static void vmw_framebuffer_dmabuf_destroy(struct drm_framebuffer *framebuffer)
1045 {
1046 	struct vmw_framebuffer_dmabuf *vfbd =
1047 		vmw_framebuffer_to_vfbd(framebuffer);
1048 
1049 	drm_framebuffer_cleanup(framebuffer);
1050 	vmw_dmabuf_unreference(&vfbd->buffer);
1051 	if (vfbd->base.user_obj)
1052 		ttm_base_object_unref(&vfbd->base.user_obj);
1053 
1054 	kfree(vfbd);
1055 }
1056 
1057 static int vmw_framebuffer_dmabuf_dirty(struct drm_framebuffer *framebuffer,
1058 				 struct drm_file *file_priv,
1059 				 unsigned flags, unsigned color,
1060 				 struct drm_clip_rect *clips,
1061 				 unsigned num_clips)
1062 {
1063 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1064 	struct vmw_framebuffer_dmabuf *vfbd =
1065 		vmw_framebuffer_to_vfbd(framebuffer);
1066 	struct drm_clip_rect norect;
1067 	int ret, increment = 1;
1068 
1069 	drm_modeset_lock_all(dev_priv->dev);
1070 
1071 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1072 	if (unlikely(ret != 0)) {
1073 		drm_modeset_unlock_all(dev_priv->dev);
1074 		return ret;
1075 	}
1076 
1077 	if (!num_clips) {
1078 		num_clips = 1;
1079 		clips = &norect;
1080 		norect.x1 = norect.y1 = 0;
1081 		norect.x2 = framebuffer->width;
1082 		norect.y2 = framebuffer->height;
1083 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1084 		num_clips /= 2;
1085 		increment = 2;
1086 	}
1087 
1088 	switch (dev_priv->active_display_unit) {
1089 	case vmw_du_screen_target:
1090 		ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL,
1091 				       clips, NULL, num_clips, increment,
1092 				       true, true, NULL);
1093 		break;
1094 	case vmw_du_screen_object:
1095 		ret = vmw_kms_sou_do_dmabuf_dirty(dev_priv, &vfbd->base,
1096 						  clips, NULL, num_clips,
1097 						  increment, true, NULL, NULL);
1098 		break;
1099 	case vmw_du_legacy:
1100 		ret = vmw_kms_ldu_do_dmabuf_dirty(dev_priv, &vfbd->base, 0, 0,
1101 						  clips, num_clips, increment);
1102 		break;
1103 	default:
1104 		ret = -EINVAL;
1105 		WARN_ONCE(true, "Dirty called with invalid display system.\n");
1106 		break;
1107 	}
1108 
1109 	vmw_fifo_flush(dev_priv, false);
1110 	ttm_read_unlock(&dev_priv->reservation_sem);
1111 
1112 	drm_modeset_unlock_all(dev_priv->dev);
1113 
1114 	return ret;
1115 }
1116 
1117 static const struct drm_framebuffer_funcs vmw_framebuffer_dmabuf_funcs = {
1118 	.destroy = vmw_framebuffer_dmabuf_destroy,
1119 	.dirty = vmw_framebuffer_dmabuf_dirty,
1120 };
1121 
1122 /**
1123  * Pin the dmabuffer in a location suitable for access by the
1124  * display system.
1125  */
1126 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1127 {
1128 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1129 	struct vmw_dma_buffer *buf;
1130 	struct ttm_placement *placement;
1131 	int ret;
1132 
1133 	buf = vfb->dmabuf ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1134 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1135 
1136 	if (!buf)
1137 		return 0;
1138 
1139 	switch (dev_priv->active_display_unit) {
1140 	case vmw_du_legacy:
1141 		vmw_overlay_pause_all(dev_priv);
1142 		ret = vmw_dmabuf_pin_in_start_of_vram(dev_priv, buf, false);
1143 		vmw_overlay_resume_all(dev_priv);
1144 		break;
1145 	case vmw_du_screen_object:
1146 	case vmw_du_screen_target:
1147 		if (vfb->dmabuf) {
1148 			if (dev_priv->capabilities & SVGA_CAP_3D) {
1149 				/*
1150 				 * Use surface DMA to get content to
1151 				 * sreen target surface.
1152 				 */
1153 				placement = &vmw_vram_gmr_placement;
1154 			} else {
1155 				/* Use CPU blit. */
1156 				placement = &vmw_sys_placement;
1157 			}
1158 		} else {
1159 			/* Use surface / image update */
1160 			placement = &vmw_mob_placement;
1161 		}
1162 
1163 		return vmw_dmabuf_pin_in_placement(dev_priv, buf, placement,
1164 						   false);
1165 	default:
1166 		return -EINVAL;
1167 	}
1168 
1169 	return ret;
1170 }
1171 
1172 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1173 {
1174 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1175 	struct vmw_dma_buffer *buf;
1176 
1177 	buf = vfb->dmabuf ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1178 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1179 
1180 	if (WARN_ON(!buf))
1181 		return 0;
1182 
1183 	return vmw_dmabuf_unpin(dev_priv, buf, false);
1184 }
1185 
1186 /**
1187  * vmw_create_dmabuf_proxy - create a proxy surface for the DMA buf
1188  *
1189  * @dev: DRM device
1190  * @mode_cmd: parameters for the new surface
1191  * @dmabuf_mob: MOB backing the DMA buf
1192  * @srf_out: newly created surface
1193  *
1194  * When the content FB is a DMA buf, we create a surface as a proxy to the
1195  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1196  * This is a more efficient approach
1197  *
1198  * RETURNS:
1199  * 0 on success, error code otherwise
1200  */
1201 static int vmw_create_dmabuf_proxy(struct drm_device *dev,
1202 				   const struct drm_mode_fb_cmd2 *mode_cmd,
1203 				   struct vmw_dma_buffer *dmabuf_mob,
1204 				   struct vmw_surface **srf_out)
1205 {
1206 	uint32_t format;
1207 	struct drm_vmw_size content_base_size = {0};
1208 	struct vmw_resource *res;
1209 	unsigned int bytes_pp;
1210 	struct drm_format_name_buf format_name;
1211 	int ret;
1212 
1213 	switch (mode_cmd->pixel_format) {
1214 	case DRM_FORMAT_ARGB8888:
1215 	case DRM_FORMAT_XRGB8888:
1216 		format = SVGA3D_X8R8G8B8;
1217 		bytes_pp = 4;
1218 		break;
1219 
1220 	case DRM_FORMAT_RGB565:
1221 	case DRM_FORMAT_XRGB1555:
1222 		format = SVGA3D_R5G6B5;
1223 		bytes_pp = 2;
1224 		break;
1225 
1226 	case 8:
1227 		format = SVGA3D_P8;
1228 		bytes_pp = 1;
1229 		break;
1230 
1231 	default:
1232 		DRM_ERROR("Invalid framebuffer format %s\n",
1233 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1234 		return -EINVAL;
1235 	}
1236 
1237 	content_base_size.width  = mode_cmd->pitches[0] / bytes_pp;
1238 	content_base_size.height = mode_cmd->height;
1239 	content_base_size.depth  = 1;
1240 
1241 	ret = vmw_surface_gb_priv_define(dev,
1242 			0, /* kernel visible only */
1243 			0, /* flags */
1244 			format,
1245 			true, /* can be a scanout buffer */
1246 			1, /* num of mip levels */
1247 			0,
1248 			0,
1249 			content_base_size,
1250 			srf_out);
1251 	if (ret) {
1252 		DRM_ERROR("Failed to allocate proxy content buffer\n");
1253 		return ret;
1254 	}
1255 
1256 	res = &(*srf_out)->res;
1257 
1258 	/* Reserve and switch the backing mob. */
1259 	mutex_lock(&res->dev_priv->cmdbuf_mutex);
1260 	(void) vmw_resource_reserve(res, false, true);
1261 	vmw_dmabuf_unreference(&res->backup);
1262 	res->backup = vmw_dmabuf_reference(dmabuf_mob);
1263 	res->backup_offset = 0;
1264 	vmw_resource_unreserve(res, false, NULL, 0);
1265 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1266 
1267 	return 0;
1268 }
1269 
1270 
1271 
1272 static int vmw_kms_new_framebuffer_dmabuf(struct vmw_private *dev_priv,
1273 					  struct vmw_dma_buffer *dmabuf,
1274 					  struct vmw_framebuffer **out,
1275 					  const struct drm_mode_fb_cmd2
1276 					  *mode_cmd)
1277 
1278 {
1279 	struct drm_device *dev = dev_priv->dev;
1280 	struct vmw_framebuffer_dmabuf *vfbd;
1281 	unsigned int requested_size;
1282 	struct drm_format_name_buf format_name;
1283 	int ret;
1284 
1285 	requested_size = mode_cmd->height * mode_cmd->pitches[0];
1286 	if (unlikely(requested_size > dmabuf->base.num_pages * PAGE_SIZE)) {
1287 		DRM_ERROR("Screen buffer object size is too small "
1288 			  "for requested mode.\n");
1289 		return -EINVAL;
1290 	}
1291 
1292 	/* Limited framebuffer color depth support for screen objects */
1293 	if (dev_priv->active_display_unit == vmw_du_screen_object) {
1294 		switch (mode_cmd->pixel_format) {
1295 		case DRM_FORMAT_XRGB8888:
1296 		case DRM_FORMAT_ARGB8888:
1297 			break;
1298 		case DRM_FORMAT_XRGB1555:
1299 		case DRM_FORMAT_RGB565:
1300 			break;
1301 		default:
1302 			DRM_ERROR("Invalid pixel format: %s\n",
1303 				  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1304 			return -EINVAL;
1305 		}
1306 	}
1307 
1308 	vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1309 	if (!vfbd) {
1310 		ret = -ENOMEM;
1311 		goto out_err1;
1312 	}
1313 
1314 	drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1315 	vfbd->base.dmabuf = true;
1316 	vfbd->buffer = vmw_dmabuf_reference(dmabuf);
1317 	vfbd->base.user_handle = mode_cmd->handles[0];
1318 	*out = &vfbd->base;
1319 
1320 	ret = drm_framebuffer_init(dev, &vfbd->base.base,
1321 				   &vmw_framebuffer_dmabuf_funcs);
1322 	if (ret)
1323 		goto out_err2;
1324 
1325 	return 0;
1326 
1327 out_err2:
1328 	vmw_dmabuf_unreference(&dmabuf);
1329 	kfree(vfbd);
1330 out_err1:
1331 	return ret;
1332 }
1333 
1334 
1335 /**
1336  * vmw_kms_srf_ok - check if a surface can be created
1337  *
1338  * @width: requested width
1339  * @height: requested height
1340  *
1341  * Surfaces need to be less than texture size
1342  */
1343 static bool
1344 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1345 {
1346 	if (width  > dev_priv->texture_max_width ||
1347 	    height > dev_priv->texture_max_height)
1348 		return false;
1349 
1350 	return true;
1351 }
1352 
1353 /**
1354  * vmw_kms_new_framebuffer - Create a new framebuffer.
1355  *
1356  * @dev_priv: Pointer to device private struct.
1357  * @dmabuf: Pointer to dma buffer to wrap the kms framebuffer around.
1358  * Either @dmabuf or @surface must be NULL.
1359  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1360  * Either @dmabuf or @surface must be NULL.
1361  * @only_2d: No presents will occur to this dma buffer based framebuffer. This
1362  * Helps the code to do some important optimizations.
1363  * @mode_cmd: Frame-buffer metadata.
1364  */
1365 struct vmw_framebuffer *
1366 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1367 			struct vmw_dma_buffer *dmabuf,
1368 			struct vmw_surface *surface,
1369 			bool only_2d,
1370 			const struct drm_mode_fb_cmd2 *mode_cmd)
1371 {
1372 	struct vmw_framebuffer *vfb = NULL;
1373 	bool is_dmabuf_proxy = false;
1374 	int ret;
1375 
1376 	/*
1377 	 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1378 	 * therefore, wrap the DMA buf in a surface so we can use the
1379 	 * SurfaceCopy command.
1380 	 */
1381 	if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1382 	    dmabuf && only_2d &&
1383 	    mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1384 	    dev_priv->active_display_unit == vmw_du_screen_target) {
1385 		ret = vmw_create_dmabuf_proxy(dev_priv->dev, mode_cmd,
1386 					      dmabuf, &surface);
1387 		if (ret)
1388 			return ERR_PTR(ret);
1389 
1390 		is_dmabuf_proxy = true;
1391 	}
1392 
1393 	/* Create the new framebuffer depending one what we have */
1394 	if (surface) {
1395 		ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1396 						      mode_cmd,
1397 						      is_dmabuf_proxy);
1398 
1399 		/*
1400 		 * vmw_create_dmabuf_proxy() adds a reference that is no longer
1401 		 * needed
1402 		 */
1403 		if (is_dmabuf_proxy)
1404 			vmw_surface_unreference(&surface);
1405 	} else if (dmabuf) {
1406 		ret = vmw_kms_new_framebuffer_dmabuf(dev_priv, dmabuf, &vfb,
1407 						     mode_cmd);
1408 	} else {
1409 		BUG();
1410 	}
1411 
1412 	if (ret)
1413 		return ERR_PTR(ret);
1414 
1415 	vfb->pin = vmw_framebuffer_pin;
1416 	vfb->unpin = vmw_framebuffer_unpin;
1417 
1418 	return vfb;
1419 }
1420 
1421 /*
1422  * Generic Kernel modesetting functions
1423  */
1424 
1425 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1426 						 struct drm_file *file_priv,
1427 						 const struct drm_mode_fb_cmd2 *mode_cmd)
1428 {
1429 	struct vmw_private *dev_priv = vmw_priv(dev);
1430 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1431 	struct vmw_framebuffer *vfb = NULL;
1432 	struct vmw_surface *surface = NULL;
1433 	struct vmw_dma_buffer *bo = NULL;
1434 	struct ttm_base_object *user_obj;
1435 	int ret;
1436 
1437 	/**
1438 	 * This code should be conditioned on Screen Objects not being used.
1439 	 * If screen objects are used, we can allocate a GMR to hold the
1440 	 * requested framebuffer.
1441 	 */
1442 
1443 	if (!vmw_kms_validate_mode_vram(dev_priv,
1444 					mode_cmd->pitches[0],
1445 					mode_cmd->height)) {
1446 		DRM_ERROR("Requested mode exceed bounding box limit.\n");
1447 		return ERR_PTR(-ENOMEM);
1448 	}
1449 
1450 	/*
1451 	 * Take a reference on the user object of the resource
1452 	 * backing the kms fb. This ensures that user-space handle
1453 	 * lookups on that resource will always work as long as
1454 	 * it's registered with a kms framebuffer. This is important,
1455 	 * since vmw_execbuf_process identifies resources in the
1456 	 * command stream using user-space handles.
1457 	 */
1458 
1459 	user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1460 	if (unlikely(user_obj == NULL)) {
1461 		DRM_ERROR("Could not locate requested kms frame buffer.\n");
1462 		return ERR_PTR(-ENOENT);
1463 	}
1464 
1465 	/**
1466 	 * End conditioned code.
1467 	 */
1468 
1469 	/* returns either a dmabuf or surface */
1470 	ret = vmw_user_lookup_handle(dev_priv, tfile,
1471 				     mode_cmd->handles[0],
1472 				     &surface, &bo);
1473 	if (ret)
1474 		goto err_out;
1475 
1476 
1477 	if (!bo &&
1478 	    !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1479 		DRM_ERROR("Surface size cannot exceed %dx%d",
1480 			dev_priv->texture_max_width,
1481 			dev_priv->texture_max_height);
1482 		goto err_out;
1483 	}
1484 
1485 
1486 	vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1487 				      !(dev_priv->capabilities & SVGA_CAP_3D),
1488 				      mode_cmd);
1489 	if (IS_ERR(vfb)) {
1490 		ret = PTR_ERR(vfb);
1491 		goto err_out;
1492  	}
1493 
1494 err_out:
1495 	/* vmw_user_lookup_handle takes one ref so does new_fb */
1496 	if (bo)
1497 		vmw_dmabuf_unreference(&bo);
1498 	if (surface)
1499 		vmw_surface_unreference(&surface);
1500 
1501 	if (ret) {
1502 		DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1503 		ttm_base_object_unref(&user_obj);
1504 		return ERR_PTR(ret);
1505 	} else
1506 		vfb->user_obj = user_obj;
1507 
1508 	return &vfb->base;
1509 }
1510 
1511 
1512 
1513 /**
1514  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1515  *
1516  * @dev: DRM device
1517  * @state: the driver state object
1518  *
1519  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1520  * us to assign a value to mode->crtc_clock so that
1521  * drm_calc_timestamping_constants() won't throw an error message
1522  *
1523  * RETURNS
1524  * Zero for success or -errno
1525  */
1526 static int
1527 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1528 			     struct drm_atomic_state *state)
1529 {
1530 	struct drm_crtc_state *crtc_state;
1531 	struct drm_crtc *crtc;
1532 	struct vmw_private *dev_priv = vmw_priv(dev);
1533 	int i;
1534 
1535 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1536 		unsigned long requested_bb_mem = 0;
1537 
1538 		if (dev_priv->active_display_unit == vmw_du_screen_target) {
1539 			if (crtc->primary->fb) {
1540 				int cpp = crtc->primary->fb->pitches[0] /
1541 					  crtc->primary->fb->width;
1542 
1543 				requested_bb_mem += crtc->mode.hdisplay * cpp *
1544 						    crtc->mode.vdisplay;
1545 			}
1546 
1547 			if (requested_bb_mem > dev_priv->prim_bb_mem)
1548 				return -EINVAL;
1549 		}
1550 	}
1551 
1552 	return drm_atomic_helper_check(dev, state);
1553 }
1554 
1555 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1556 	.fb_create = vmw_kms_fb_create,
1557 	.atomic_check = vmw_kms_atomic_check_modeset,
1558 	.atomic_commit = drm_atomic_helper_commit,
1559 };
1560 
1561 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1562 				   struct drm_file *file_priv,
1563 				   struct vmw_framebuffer *vfb,
1564 				   struct vmw_surface *surface,
1565 				   uint32_t sid,
1566 				   int32_t destX, int32_t destY,
1567 				   struct drm_vmw_rect *clips,
1568 				   uint32_t num_clips)
1569 {
1570 	return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1571 					    &surface->res, destX, destY,
1572 					    num_clips, 1, NULL, NULL);
1573 }
1574 
1575 
1576 int vmw_kms_present(struct vmw_private *dev_priv,
1577 		    struct drm_file *file_priv,
1578 		    struct vmw_framebuffer *vfb,
1579 		    struct vmw_surface *surface,
1580 		    uint32_t sid,
1581 		    int32_t destX, int32_t destY,
1582 		    struct drm_vmw_rect *clips,
1583 		    uint32_t num_clips)
1584 {
1585 	int ret;
1586 
1587 	switch (dev_priv->active_display_unit) {
1588 	case vmw_du_screen_target:
1589 		ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1590 						 &surface->res, destX, destY,
1591 						 num_clips, 1, NULL, NULL);
1592 		break;
1593 	case vmw_du_screen_object:
1594 		ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1595 					      sid, destX, destY, clips,
1596 					      num_clips);
1597 		break;
1598 	default:
1599 		WARN_ONCE(true,
1600 			  "Present called with invalid display system.\n");
1601 		ret = -ENOSYS;
1602 		break;
1603 	}
1604 	if (ret)
1605 		return ret;
1606 
1607 	vmw_fifo_flush(dev_priv, false);
1608 
1609 	return 0;
1610 }
1611 
1612 static void
1613 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1614 {
1615 	if (dev_priv->hotplug_mode_update_property)
1616 		return;
1617 
1618 	dev_priv->hotplug_mode_update_property =
1619 		drm_property_create_range(dev_priv->dev,
1620 					  DRM_MODE_PROP_IMMUTABLE,
1621 					  "hotplug_mode_update", 0, 1);
1622 
1623 	if (!dev_priv->hotplug_mode_update_property)
1624 		return;
1625 
1626 }
1627 
1628 int vmw_kms_init(struct vmw_private *dev_priv)
1629 {
1630 	struct drm_device *dev = dev_priv->dev;
1631 	int ret;
1632 
1633 	drm_mode_config_init(dev);
1634 	dev->mode_config.funcs = &vmw_kms_funcs;
1635 	dev->mode_config.min_width = 1;
1636 	dev->mode_config.min_height = 1;
1637 	dev->mode_config.max_width = dev_priv->texture_max_width;
1638 	dev->mode_config.max_height = dev_priv->texture_max_height;
1639 
1640 	drm_mode_create_suggested_offset_properties(dev);
1641 	vmw_kms_create_hotplug_mode_update_property(dev_priv);
1642 
1643 	ret = vmw_kms_stdu_init_display(dev_priv);
1644 	if (ret) {
1645 		ret = vmw_kms_sou_init_display(dev_priv);
1646 		if (ret) /* Fallback */
1647 			ret = vmw_kms_ldu_init_display(dev_priv);
1648 	}
1649 
1650 	return ret;
1651 }
1652 
1653 int vmw_kms_close(struct vmw_private *dev_priv)
1654 {
1655 	int ret = 0;
1656 
1657 	/*
1658 	 * Docs says we should take the lock before calling this function
1659 	 * but since it destroys encoders and our destructor calls
1660 	 * drm_encoder_cleanup which takes the lock we deadlock.
1661 	 */
1662 	drm_mode_config_cleanup(dev_priv->dev);
1663 	if (dev_priv->active_display_unit == vmw_du_legacy)
1664 		ret = vmw_kms_ldu_close_display(dev_priv);
1665 
1666 	return ret;
1667 }
1668 
1669 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1670 				struct drm_file *file_priv)
1671 {
1672 	struct drm_vmw_cursor_bypass_arg *arg = data;
1673 	struct vmw_display_unit *du;
1674 	struct drm_crtc *crtc;
1675 	int ret = 0;
1676 
1677 
1678 	mutex_lock(&dev->mode_config.mutex);
1679 	if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1680 
1681 		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1682 			du = vmw_crtc_to_du(crtc);
1683 			du->hotspot_x = arg->xhot;
1684 			du->hotspot_y = arg->yhot;
1685 		}
1686 
1687 		mutex_unlock(&dev->mode_config.mutex);
1688 		return 0;
1689 	}
1690 
1691 	crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
1692 	if (!crtc) {
1693 		ret = -ENOENT;
1694 		goto out;
1695 	}
1696 
1697 	du = vmw_crtc_to_du(crtc);
1698 
1699 	du->hotspot_x = arg->xhot;
1700 	du->hotspot_y = arg->yhot;
1701 
1702 out:
1703 	mutex_unlock(&dev->mode_config.mutex);
1704 
1705 	return ret;
1706 }
1707 
1708 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1709 			unsigned width, unsigned height, unsigned pitch,
1710 			unsigned bpp, unsigned depth)
1711 {
1712 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1713 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1714 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1715 		vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1716 			       SVGA_FIFO_PITCHLOCK);
1717 	vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1718 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1719 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1720 
1721 	if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1722 		DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1723 			  depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1724 		return -EINVAL;
1725 	}
1726 
1727 	return 0;
1728 }
1729 
1730 int vmw_kms_save_vga(struct vmw_private *vmw_priv)
1731 {
1732 	struct vmw_vga_topology_state *save;
1733 	uint32_t i;
1734 
1735 	vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH);
1736 	vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT);
1737 	vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL);
1738 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1739 		vmw_priv->vga_pitchlock =
1740 		  vmw_read(vmw_priv, SVGA_REG_PITCHLOCK);
1741 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1742 		vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt +
1743 							SVGA_FIFO_PITCHLOCK);
1744 
1745 	if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1746 		return 0;
1747 
1748 	vmw_priv->num_displays = vmw_read(vmw_priv,
1749 					  SVGA_REG_NUM_GUEST_DISPLAYS);
1750 
1751 	if (vmw_priv->num_displays == 0)
1752 		vmw_priv->num_displays = 1;
1753 
1754 	for (i = 0; i < vmw_priv->num_displays; ++i) {
1755 		save = &vmw_priv->vga_save[i];
1756 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1757 		save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY);
1758 		save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X);
1759 		save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y);
1760 		save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH);
1761 		save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT);
1762 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1763 		if (i == 0 && vmw_priv->num_displays == 1 &&
1764 		    save->width == 0 && save->height == 0) {
1765 
1766 			/*
1767 			 * It should be fairly safe to assume that these
1768 			 * values are uninitialized.
1769 			 */
1770 
1771 			save->width = vmw_priv->vga_width - save->pos_x;
1772 			save->height = vmw_priv->vga_height - save->pos_y;
1773 		}
1774 	}
1775 
1776 	return 0;
1777 }
1778 
1779 int vmw_kms_restore_vga(struct vmw_private *vmw_priv)
1780 {
1781 	struct vmw_vga_topology_state *save;
1782 	uint32_t i;
1783 
1784 	vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width);
1785 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height);
1786 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp);
1787 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1788 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK,
1789 			  vmw_priv->vga_pitchlock);
1790 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1791 		vmw_mmio_write(vmw_priv->vga_pitchlock,
1792 			       vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK);
1793 
1794 	if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1795 		return 0;
1796 
1797 	for (i = 0; i < vmw_priv->num_displays; ++i) {
1798 		save = &vmw_priv->vga_save[i];
1799 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1800 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary);
1801 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x);
1802 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y);
1803 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width);
1804 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height);
1805 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1806 	}
1807 
1808 	return 0;
1809 }
1810 
1811 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1812 				uint32_t pitch,
1813 				uint32_t height)
1814 {
1815 	return ((u64) pitch * (u64) height) < (u64)
1816 		((dev_priv->active_display_unit == vmw_du_screen_target) ?
1817 		 dev_priv->prim_bb_mem : dev_priv->vram_size);
1818 }
1819 
1820 
1821 /**
1822  * Function called by DRM code called with vbl_lock held.
1823  */
1824 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
1825 {
1826 	return 0;
1827 }
1828 
1829 /**
1830  * Function called by DRM code called with vbl_lock held.
1831  */
1832 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe)
1833 {
1834 	return -EINVAL;
1835 }
1836 
1837 /**
1838  * Function called by DRM code called with vbl_lock held.
1839  */
1840 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe)
1841 {
1842 }
1843 
1844 
1845 /*
1846  * Small shared kms functions.
1847  */
1848 
1849 static int vmw_du_update_layout(struct vmw_private *dev_priv, unsigned num,
1850 			 struct drm_vmw_rect *rects)
1851 {
1852 	struct drm_device *dev = dev_priv->dev;
1853 	struct vmw_display_unit *du;
1854 	struct drm_connector *con;
1855 
1856 	mutex_lock(&dev->mode_config.mutex);
1857 
1858 #if 0
1859 	{
1860 		unsigned int i;
1861 
1862 		DRM_INFO("%s: new layout ", __func__);
1863 		for (i = 0; i < num; i++)
1864 			DRM_INFO("(%i, %i %ux%u) ", rects[i].x, rects[i].y,
1865 				 rects[i].w, rects[i].h);
1866 		DRM_INFO("\n");
1867 	}
1868 #endif
1869 
1870 	list_for_each_entry(con, &dev->mode_config.connector_list, head) {
1871 		du = vmw_connector_to_du(con);
1872 		if (num > du->unit) {
1873 			du->pref_width = rects[du->unit].w;
1874 			du->pref_height = rects[du->unit].h;
1875 			du->pref_active = true;
1876 			du->gui_x = rects[du->unit].x;
1877 			du->gui_y = rects[du->unit].y;
1878 			drm_object_property_set_value
1879 			  (&con->base, dev->mode_config.suggested_x_property,
1880 			   du->gui_x);
1881 			drm_object_property_set_value
1882 			  (&con->base, dev->mode_config.suggested_y_property,
1883 			   du->gui_y);
1884 		} else {
1885 			du->pref_width = 800;
1886 			du->pref_height = 600;
1887 			du->pref_active = false;
1888 			drm_object_property_set_value
1889 			  (&con->base, dev->mode_config.suggested_x_property,
1890 			   0);
1891 			drm_object_property_set_value
1892 			  (&con->base, dev->mode_config.suggested_y_property,
1893 			   0);
1894 		}
1895 		con->status = vmw_du_connector_detect(con, true);
1896 	}
1897 
1898 	mutex_unlock(&dev->mode_config.mutex);
1899 	drm_sysfs_hotplug_event(dev);
1900 
1901 	return 0;
1902 }
1903 
1904 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
1905 			  u16 *r, u16 *g, u16 *b,
1906 			  uint32_t size,
1907 			  struct drm_modeset_acquire_ctx *ctx)
1908 {
1909 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
1910 	int i;
1911 
1912 	for (i = 0; i < size; i++) {
1913 		DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
1914 			  r[i], g[i], b[i]);
1915 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
1916 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
1917 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
1918 	}
1919 
1920 	return 0;
1921 }
1922 
1923 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
1924 {
1925 	return 0;
1926 }
1927 
1928 enum drm_connector_status
1929 vmw_du_connector_detect(struct drm_connector *connector, bool force)
1930 {
1931 	uint32_t num_displays;
1932 	struct drm_device *dev = connector->dev;
1933 	struct vmw_private *dev_priv = vmw_priv(dev);
1934 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
1935 
1936 	num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
1937 
1938 	return ((vmw_connector_to_du(connector)->unit < num_displays &&
1939 		 du->pref_active) ?
1940 		connector_status_connected : connector_status_disconnected);
1941 }
1942 
1943 static struct drm_display_mode vmw_kms_connector_builtin[] = {
1944 	/* 640x480@60Hz */
1945 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
1946 		   752, 800, 0, 480, 489, 492, 525, 0,
1947 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1948 	/* 800x600@60Hz */
1949 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
1950 		   968, 1056, 0, 600, 601, 605, 628, 0,
1951 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1952 	/* 1024x768@60Hz */
1953 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1954 		   1184, 1344, 0, 768, 771, 777, 806, 0,
1955 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1956 	/* 1152x864@75Hz */
1957 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1958 		   1344, 1600, 0, 864, 865, 868, 900, 0,
1959 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1960 	/* 1280x768@60Hz */
1961 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
1962 		   1472, 1664, 0, 768, 771, 778, 798, 0,
1963 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1964 	/* 1280x800@60Hz */
1965 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
1966 		   1480, 1680, 0, 800, 803, 809, 831, 0,
1967 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1968 	/* 1280x960@60Hz */
1969 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
1970 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
1971 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1972 	/* 1280x1024@60Hz */
1973 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
1974 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
1975 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1976 	/* 1360x768@60Hz */
1977 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
1978 		   1536, 1792, 0, 768, 771, 777, 795, 0,
1979 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1980 	/* 1440x1050@60Hz */
1981 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
1982 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
1983 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1984 	/* 1440x900@60Hz */
1985 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
1986 		   1672, 1904, 0, 900, 903, 909, 934, 0,
1987 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1988 	/* 1600x1200@60Hz */
1989 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
1990 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
1991 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1992 	/* 1680x1050@60Hz */
1993 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
1994 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
1995 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1996 	/* 1792x1344@60Hz */
1997 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
1998 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
1999 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2000 	/* 1853x1392@60Hz */
2001 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2002 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2003 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2004 	/* 1920x1200@60Hz */
2005 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2006 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2007 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2008 	/* 1920x1440@60Hz */
2009 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2010 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2011 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2012 	/* 2560x1600@60Hz */
2013 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2014 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2015 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2016 	/* Terminate */
2017 	{ DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2018 };
2019 
2020 /**
2021  * vmw_guess_mode_timing - Provide fake timings for a
2022  * 60Hz vrefresh mode.
2023  *
2024  * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2025  * members filled in.
2026  */
2027 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2028 {
2029 	mode->hsync_start = mode->hdisplay + 50;
2030 	mode->hsync_end = mode->hsync_start + 50;
2031 	mode->htotal = mode->hsync_end + 50;
2032 
2033 	mode->vsync_start = mode->vdisplay + 50;
2034 	mode->vsync_end = mode->vsync_start + 50;
2035 	mode->vtotal = mode->vsync_end + 50;
2036 
2037 	mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2038 	mode->vrefresh = drm_mode_vrefresh(mode);
2039 }
2040 
2041 
2042 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2043 				uint32_t max_width, uint32_t max_height)
2044 {
2045 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2046 	struct drm_device *dev = connector->dev;
2047 	struct vmw_private *dev_priv = vmw_priv(dev);
2048 	struct drm_display_mode *mode = NULL;
2049 	struct drm_display_mode *bmode;
2050 	struct drm_display_mode prefmode = { DRM_MODE("preferred",
2051 		DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2052 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2053 		DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2054 	};
2055 	int i;
2056 	u32 assumed_bpp = 4;
2057 
2058 	if (dev_priv->assume_16bpp)
2059 		assumed_bpp = 2;
2060 
2061 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2062 		max_width  = min(max_width,  dev_priv->stdu_max_width);
2063 		max_width  = min(max_width,  dev_priv->texture_max_width);
2064 
2065 		max_height = min(max_height, dev_priv->stdu_max_height);
2066 		max_height = min(max_height, dev_priv->texture_max_height);
2067 	}
2068 
2069 	/* Add preferred mode */
2070 	mode = drm_mode_duplicate(dev, &prefmode);
2071 	if (!mode)
2072 		return 0;
2073 	mode->hdisplay = du->pref_width;
2074 	mode->vdisplay = du->pref_height;
2075 	vmw_guess_mode_timing(mode);
2076 
2077 	if (vmw_kms_validate_mode_vram(dev_priv,
2078 					mode->hdisplay * assumed_bpp,
2079 					mode->vdisplay)) {
2080 		drm_mode_probed_add(connector, mode);
2081 	} else {
2082 		drm_mode_destroy(dev, mode);
2083 		mode = NULL;
2084 	}
2085 
2086 	if (du->pref_mode) {
2087 		list_del_init(&du->pref_mode->head);
2088 		drm_mode_destroy(dev, du->pref_mode);
2089 	}
2090 
2091 	/* mode might be null here, this is intended */
2092 	du->pref_mode = mode;
2093 
2094 	for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2095 		bmode = &vmw_kms_connector_builtin[i];
2096 		if (bmode->hdisplay > max_width ||
2097 		    bmode->vdisplay > max_height)
2098 			continue;
2099 
2100 		if (!vmw_kms_validate_mode_vram(dev_priv,
2101 						bmode->hdisplay * assumed_bpp,
2102 						bmode->vdisplay))
2103 			continue;
2104 
2105 		mode = drm_mode_duplicate(dev, bmode);
2106 		if (!mode)
2107 			return 0;
2108 		mode->vrefresh = drm_mode_vrefresh(mode);
2109 
2110 		drm_mode_probed_add(connector, mode);
2111 	}
2112 
2113 	drm_mode_connector_list_update(connector);
2114 	/* Move the prefered mode first, help apps pick the right mode. */
2115 	drm_mode_sort(&connector->modes);
2116 
2117 	return 1;
2118 }
2119 
2120 int vmw_du_connector_set_property(struct drm_connector *connector,
2121 				  struct drm_property *property,
2122 				  uint64_t val)
2123 {
2124 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2125 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2126 
2127 	if (property == dev_priv->implicit_placement_property)
2128 		du->is_implicit = val;
2129 
2130 	return 0;
2131 }
2132 
2133 
2134 
2135 /**
2136  * vmw_du_connector_atomic_set_property - Atomic version of get property
2137  *
2138  * @crtc - crtc the property is associated with
2139  *
2140  * Returns:
2141  * Zero on success, negative errno on failure.
2142  */
2143 int
2144 vmw_du_connector_atomic_set_property(struct drm_connector *connector,
2145 				     struct drm_connector_state *state,
2146 				     struct drm_property *property,
2147 				     uint64_t val)
2148 {
2149 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2150 	struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2151 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2152 
2153 
2154 	if (property == dev_priv->implicit_placement_property) {
2155 		vcs->is_implicit = val;
2156 
2157 		/*
2158 		 * We should really be doing a drm_atomic_commit() to
2159 		 * commit the new state, but since this doesn't cause
2160 		 * an immedate state change, this is probably ok
2161 		 */
2162 		du->is_implicit = vcs->is_implicit;
2163 	} else {
2164 		return -EINVAL;
2165 	}
2166 
2167 	return 0;
2168 }
2169 
2170 
2171 /**
2172  * vmw_du_connector_atomic_get_property - Atomic version of get property
2173  *
2174  * @connector - connector the property is associated with
2175  *
2176  * Returns:
2177  * Zero on success, negative errno on failure.
2178  */
2179 int
2180 vmw_du_connector_atomic_get_property(struct drm_connector *connector,
2181 				     const struct drm_connector_state *state,
2182 				     struct drm_property *property,
2183 				     uint64_t *val)
2184 {
2185 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2186 	struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2187 
2188 	if (property == dev_priv->implicit_placement_property)
2189 		*val = vcs->is_implicit;
2190 	else {
2191 		DRM_ERROR("Invalid Property %s\n", property->name);
2192 		return -EINVAL;
2193 	}
2194 
2195 	return 0;
2196 }
2197 
2198 
2199 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2200 				struct drm_file *file_priv)
2201 {
2202 	struct vmw_private *dev_priv = vmw_priv(dev);
2203 	struct drm_vmw_update_layout_arg *arg =
2204 		(struct drm_vmw_update_layout_arg *)data;
2205 	void __user *user_rects;
2206 	struct drm_vmw_rect *rects;
2207 	unsigned rects_size;
2208 	int ret;
2209 	int i;
2210 	u64 total_pixels = 0;
2211 	struct drm_mode_config *mode_config = &dev->mode_config;
2212 	struct drm_vmw_rect bounding_box = {0};
2213 
2214 	if (!arg->num_outputs) {
2215 		struct drm_vmw_rect def_rect = {0, 0, 800, 600};
2216 		vmw_du_update_layout(dev_priv, 1, &def_rect);
2217 		return 0;
2218 	}
2219 
2220 	rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2221 	rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2222 			GFP_KERNEL);
2223 	if (unlikely(!rects))
2224 		return -ENOMEM;
2225 
2226 	user_rects = (void __user *)(unsigned long)arg->rects;
2227 	ret = copy_from_user(rects, user_rects, rects_size);
2228 	if (unlikely(ret != 0)) {
2229 		DRM_ERROR("Failed to get rects.\n");
2230 		ret = -EFAULT;
2231 		goto out_free;
2232 	}
2233 
2234 	for (i = 0; i < arg->num_outputs; ++i) {
2235 		if (rects[i].x < 0 ||
2236 		    rects[i].y < 0 ||
2237 		    rects[i].x + rects[i].w > mode_config->max_width ||
2238 		    rects[i].y + rects[i].h > mode_config->max_height) {
2239 			DRM_ERROR("Invalid GUI layout.\n");
2240 			ret = -EINVAL;
2241 			goto out_free;
2242 		}
2243 
2244 		/*
2245 		 * bounding_box.w and bunding_box.h are used as
2246 		 * lower-right coordinates
2247 		 */
2248 		if (rects[i].x + rects[i].w > bounding_box.w)
2249 			bounding_box.w = rects[i].x + rects[i].w;
2250 
2251 		if (rects[i].y + rects[i].h > bounding_box.h)
2252 			bounding_box.h = rects[i].y + rects[i].h;
2253 
2254 		total_pixels += (u64) rects[i].w * (u64) rects[i].h;
2255 	}
2256 
2257 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2258 		/*
2259 		 * For Screen Targets, the limits for a toplogy are:
2260 		 *	1. Bounding box (assuming 32bpp) must be < prim_bb_mem
2261 		 *      2. Total pixels (assuming 32bpp) must be < prim_bb_mem
2262 		 */
2263 		u64 bb_mem    = (u64) bounding_box.w * bounding_box.h * 4;
2264 		u64 pixel_mem = total_pixels * 4;
2265 
2266 		if (bb_mem > dev_priv->prim_bb_mem) {
2267 			DRM_ERROR("Topology is beyond supported limits.\n");
2268 			ret = -EINVAL;
2269 			goto out_free;
2270 		}
2271 
2272 		if (pixel_mem > dev_priv->prim_bb_mem) {
2273 			DRM_ERROR("Combined output size too large\n");
2274 			ret = -EINVAL;
2275 			goto out_free;
2276 		}
2277 	}
2278 
2279 	vmw_du_update_layout(dev_priv, arg->num_outputs, rects);
2280 
2281 out_free:
2282 	kfree(rects);
2283 	return ret;
2284 }
2285 
2286 /**
2287  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2288  * on a set of cliprects and a set of display units.
2289  *
2290  * @dev_priv: Pointer to a device private structure.
2291  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2292  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2293  * Cliprects are given in framebuffer coordinates.
2294  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2295  * be NULL. Cliprects are given in source coordinates.
2296  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2297  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2298  * @num_clips: Number of cliprects in the @clips or @vclips array.
2299  * @increment: Integer with which to increment the clip counter when looping.
2300  * Used to skip a predetermined number of clip rects.
2301  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2302  */
2303 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2304 			 struct vmw_framebuffer *framebuffer,
2305 			 const struct drm_clip_rect *clips,
2306 			 const struct drm_vmw_rect *vclips,
2307 			 s32 dest_x, s32 dest_y,
2308 			 int num_clips,
2309 			 int increment,
2310 			 struct vmw_kms_dirty *dirty)
2311 {
2312 	struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2313 	struct drm_crtc *crtc;
2314 	u32 num_units = 0;
2315 	u32 i, k;
2316 
2317 	dirty->dev_priv = dev_priv;
2318 
2319 	/* If crtc is passed, no need to iterate over other display units */
2320 	if (dirty->crtc) {
2321 		units[num_units++] = vmw_crtc_to_du(dirty->crtc);
2322 	} else {
2323 		list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list,
2324 				    head) {
2325 			if (crtc->primary->fb != &framebuffer->base)
2326 				continue;
2327 			units[num_units++] = vmw_crtc_to_du(crtc);
2328 		}
2329 	}
2330 
2331 	for (k = 0; k < num_units; k++) {
2332 		struct vmw_display_unit *unit = units[k];
2333 		s32 crtc_x = unit->crtc.x;
2334 		s32 crtc_y = unit->crtc.y;
2335 		s32 crtc_width = unit->crtc.mode.hdisplay;
2336 		s32 crtc_height = unit->crtc.mode.vdisplay;
2337 		const struct drm_clip_rect *clips_ptr = clips;
2338 		const struct drm_vmw_rect *vclips_ptr = vclips;
2339 
2340 		dirty->unit = unit;
2341 		if (dirty->fifo_reserve_size > 0) {
2342 			dirty->cmd = vmw_fifo_reserve(dev_priv,
2343 						      dirty->fifo_reserve_size);
2344 			if (!dirty->cmd) {
2345 				DRM_ERROR("Couldn't reserve fifo space "
2346 					  "for dirty blits.\n");
2347 				return -ENOMEM;
2348 			}
2349 			memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2350 		}
2351 		dirty->num_hits = 0;
2352 		for (i = 0; i < num_clips; i++, clips_ptr += increment,
2353 		       vclips_ptr += increment) {
2354 			s32 clip_left;
2355 			s32 clip_top;
2356 
2357 			/*
2358 			 * Select clip array type. Note that integer type
2359 			 * in @clips is unsigned short, whereas in @vclips
2360 			 * it's 32-bit.
2361 			 */
2362 			if (clips) {
2363 				dirty->fb_x = (s32) clips_ptr->x1;
2364 				dirty->fb_y = (s32) clips_ptr->y1;
2365 				dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2366 					crtc_x;
2367 				dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2368 					crtc_y;
2369 			} else {
2370 				dirty->fb_x = vclips_ptr->x;
2371 				dirty->fb_y = vclips_ptr->y;
2372 				dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2373 					dest_x - crtc_x;
2374 				dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2375 					dest_y - crtc_y;
2376 			}
2377 
2378 			dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2379 			dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2380 
2381 			/* Skip this clip if it's outside the crtc region */
2382 			if (dirty->unit_x1 >= crtc_width ||
2383 			    dirty->unit_y1 >= crtc_height ||
2384 			    dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2385 				continue;
2386 
2387 			/* Clip right and bottom to crtc limits */
2388 			dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2389 					       crtc_width);
2390 			dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2391 					       crtc_height);
2392 
2393 			/* Clip left and top to crtc limits */
2394 			clip_left = min_t(s32, dirty->unit_x1, 0);
2395 			clip_top = min_t(s32, dirty->unit_y1, 0);
2396 			dirty->unit_x1 -= clip_left;
2397 			dirty->unit_y1 -= clip_top;
2398 			dirty->fb_x -= clip_left;
2399 			dirty->fb_y -= clip_top;
2400 
2401 			dirty->clip(dirty);
2402 		}
2403 
2404 		dirty->fifo_commit(dirty);
2405 	}
2406 
2407 	return 0;
2408 }
2409 
2410 /**
2411  * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before
2412  * command submission.
2413  *
2414  * @dev_priv. Pointer to a device private structure.
2415  * @buf: The buffer object
2416  * @interruptible: Whether to perform waits as interruptible.
2417  * @validate_as_mob: Whether the buffer should be validated as a MOB. If false,
2418  * The buffer will be validated as a GMR. Already pinned buffers will not be
2419  * validated.
2420  *
2421  * Returns 0 on success, negative error code on failure, -ERESTARTSYS if
2422  * interrupted by a signal.
2423  */
2424 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv,
2425 				  struct vmw_dma_buffer *buf,
2426 				  bool interruptible,
2427 				  bool validate_as_mob,
2428 				  bool for_cpu_blit)
2429 {
2430 	struct ttm_operation_ctx ctx = {
2431 		.interruptible = interruptible,
2432 		.no_wait_gpu = false};
2433 	struct ttm_buffer_object *bo = &buf->base;
2434 	int ret;
2435 
2436 	ttm_bo_reserve(bo, false, false, NULL);
2437 	if (for_cpu_blit)
2438 		ret = ttm_bo_validate(bo, &vmw_nonfixed_placement, &ctx);
2439 	else
2440 		ret = vmw_validate_single_buffer(dev_priv, bo, interruptible,
2441 						 validate_as_mob);
2442 	if (ret)
2443 		ttm_bo_unreserve(bo);
2444 
2445 	return ret;
2446 }
2447 
2448 /**
2449  * vmw_kms_helper_buffer_revert - Undo the actions of
2450  * vmw_kms_helper_buffer_prepare.
2451  *
2452  * @res: Pointer to the buffer object.
2453  *
2454  * Helper to be used if an error forces the caller to undo the actions of
2455  * vmw_kms_helper_buffer_prepare.
2456  */
2457 void vmw_kms_helper_buffer_revert(struct vmw_dma_buffer *buf)
2458 {
2459 	if (buf)
2460 		ttm_bo_unreserve(&buf->base);
2461 }
2462 
2463 /**
2464  * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after
2465  * kms command submission.
2466  *
2467  * @dev_priv: Pointer to a device private structure.
2468  * @file_priv: Pointer to a struct drm_file representing the caller's
2469  * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely
2470  * if non-NULL, @user_fence_rep must be non-NULL.
2471  * @buf: The buffer object.
2472  * @out_fence:  Optional pointer to a fence pointer. If non-NULL, a
2473  * ref-counted fence pointer is returned here.
2474  * @user_fence_rep: Optional pointer to a user-space provided struct
2475  * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the
2476  * function copies fence data to user-space in a fail-safe manner.
2477  */
2478 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv,
2479 				  struct drm_file *file_priv,
2480 				  struct vmw_dma_buffer *buf,
2481 				  struct vmw_fence_obj **out_fence,
2482 				  struct drm_vmw_fence_rep __user *
2483 				  user_fence_rep)
2484 {
2485 	struct vmw_fence_obj *fence;
2486 	uint32_t handle;
2487 	int ret;
2488 
2489 	ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2490 					 file_priv ? &handle : NULL);
2491 	if (buf)
2492 		vmw_fence_single_bo(&buf->base, fence);
2493 	if (file_priv)
2494 		vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2495 					    ret, user_fence_rep, fence,
2496 					    handle, -1, NULL);
2497 	if (out_fence)
2498 		*out_fence = fence;
2499 	else
2500 		vmw_fence_obj_unreference(&fence);
2501 
2502 	vmw_kms_helper_buffer_revert(buf);
2503 }
2504 
2505 
2506 /**
2507  * vmw_kms_helper_resource_revert - Undo the actions of
2508  * vmw_kms_helper_resource_prepare.
2509  *
2510  * @res: Pointer to the resource. Typically a surface.
2511  *
2512  * Helper to be used if an error forces the caller to undo the actions of
2513  * vmw_kms_helper_resource_prepare.
2514  */
2515 void vmw_kms_helper_resource_revert(struct vmw_validation_ctx *ctx)
2516 {
2517 	struct vmw_resource *res = ctx->res;
2518 
2519 	vmw_kms_helper_buffer_revert(ctx->buf);
2520 	vmw_dmabuf_unreference(&ctx->buf);
2521 	vmw_resource_unreserve(res, false, NULL, 0);
2522 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2523 }
2524 
2525 /**
2526  * vmw_kms_helper_resource_prepare - Reserve and validate a resource before
2527  * command submission.
2528  *
2529  * @res: Pointer to the resource. Typically a surface.
2530  * @interruptible: Whether to perform waits as interruptible.
2531  *
2532  * Reserves and validates also the backup buffer if a guest-backed resource.
2533  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
2534  * interrupted by a signal.
2535  */
2536 int vmw_kms_helper_resource_prepare(struct vmw_resource *res,
2537 				    bool interruptible,
2538 				    struct vmw_validation_ctx *ctx)
2539 {
2540 	int ret = 0;
2541 
2542 	ctx->buf = NULL;
2543 	ctx->res = res;
2544 
2545 	if (interruptible)
2546 		ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex);
2547 	else
2548 		mutex_lock(&res->dev_priv->cmdbuf_mutex);
2549 
2550 	if (unlikely(ret != 0))
2551 		return -ERESTARTSYS;
2552 
2553 	ret = vmw_resource_reserve(res, interruptible, false);
2554 	if (ret)
2555 		goto out_unlock;
2556 
2557 	if (res->backup) {
2558 		ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup,
2559 						    interruptible,
2560 						    res->dev_priv->has_mob,
2561 						    false);
2562 		if (ret)
2563 			goto out_unreserve;
2564 
2565 		ctx->buf = vmw_dmabuf_reference(res->backup);
2566 	}
2567 	ret = vmw_resource_validate(res);
2568 	if (ret)
2569 		goto out_revert;
2570 	return 0;
2571 
2572 out_revert:
2573 	vmw_kms_helper_buffer_revert(ctx->buf);
2574 out_unreserve:
2575 	vmw_resource_unreserve(res, false, NULL, 0);
2576 out_unlock:
2577 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2578 	return ret;
2579 }
2580 
2581 /**
2582  * vmw_kms_helper_resource_finish - Unreserve and fence a resource after
2583  * kms command submission.
2584  *
2585  * @res: Pointer to the resource. Typically a surface.
2586  * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2587  * ref-counted fence pointer is returned here.
2588  */
2589 void vmw_kms_helper_resource_finish(struct vmw_validation_ctx *ctx,
2590 				    struct vmw_fence_obj **out_fence)
2591 {
2592 	struct vmw_resource *res = ctx->res;
2593 
2594 	if (ctx->buf || out_fence)
2595 		vmw_kms_helper_buffer_finish(res->dev_priv, NULL, ctx->buf,
2596 					     out_fence, NULL);
2597 
2598 	vmw_dmabuf_unreference(&ctx->buf);
2599 	vmw_resource_unreserve(res, false, NULL, 0);
2600 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2601 }
2602 
2603 /**
2604  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2605  * its backing MOB.
2606  *
2607  * @res: Pointer to the surface resource
2608  * @clips: Clip rects in framebuffer (surface) space.
2609  * @num_clips: Number of clips in @clips.
2610  * @increment: Integer with which to increment the clip counter when looping.
2611  * Used to skip a predetermined number of clip rects.
2612  *
2613  * This function makes sure the proxy surface is updated from its backing MOB
2614  * using the region given by @clips. The surface resource @res and its backing
2615  * MOB needs to be reserved and validated on call.
2616  */
2617 int vmw_kms_update_proxy(struct vmw_resource *res,
2618 			 const struct drm_clip_rect *clips,
2619 			 unsigned num_clips,
2620 			 int increment)
2621 {
2622 	struct vmw_private *dev_priv = res->dev_priv;
2623 	struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size;
2624 	struct {
2625 		SVGA3dCmdHeader header;
2626 		SVGA3dCmdUpdateGBImage body;
2627 	} *cmd;
2628 	SVGA3dBox *box;
2629 	size_t copy_size = 0;
2630 	int i;
2631 
2632 	if (!clips)
2633 		return 0;
2634 
2635 	cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips);
2636 	if (!cmd) {
2637 		DRM_ERROR("Couldn't reserve fifo space for proxy surface "
2638 			  "update.\n");
2639 		return -ENOMEM;
2640 	}
2641 
2642 	for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2643 		box = &cmd->body.box;
2644 
2645 		cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2646 		cmd->header.size = sizeof(cmd->body);
2647 		cmd->body.image.sid = res->id;
2648 		cmd->body.image.face = 0;
2649 		cmd->body.image.mipmap = 0;
2650 
2651 		if (clips->x1 > size->width || clips->x2 > size->width ||
2652 		    clips->y1 > size->height || clips->y2 > size->height) {
2653 			DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2654 			return -EINVAL;
2655 		}
2656 
2657 		box->x = clips->x1;
2658 		box->y = clips->y1;
2659 		box->z = 0;
2660 		box->w = clips->x2 - clips->x1;
2661 		box->h = clips->y2 - clips->y1;
2662 		box->d = 1;
2663 
2664 		copy_size += sizeof(*cmd);
2665 	}
2666 
2667 	vmw_fifo_commit(dev_priv, copy_size);
2668 
2669 	return 0;
2670 }
2671 
2672 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2673 			    unsigned unit,
2674 			    u32 max_width,
2675 			    u32 max_height,
2676 			    struct drm_connector **p_con,
2677 			    struct drm_crtc **p_crtc,
2678 			    struct drm_display_mode **p_mode)
2679 {
2680 	struct drm_connector *con;
2681 	struct vmw_display_unit *du;
2682 	struct drm_display_mode *mode;
2683 	int i = 0;
2684 	int ret = 0;
2685 
2686 	mutex_lock(&dev_priv->dev->mode_config.mutex);
2687 	list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2688 			    head) {
2689 		if (i == unit)
2690 			break;
2691 
2692 		++i;
2693 	}
2694 
2695 	if (i != unit) {
2696 		DRM_ERROR("Could not find initial display unit.\n");
2697 		ret = -EINVAL;
2698 		goto out_unlock;
2699 	}
2700 
2701 	if (list_empty(&con->modes))
2702 		(void) vmw_du_connector_fill_modes(con, max_width, max_height);
2703 
2704 	if (list_empty(&con->modes)) {
2705 		DRM_ERROR("Could not find initial display mode.\n");
2706 		ret = -EINVAL;
2707 		goto out_unlock;
2708 	}
2709 
2710 	du = vmw_connector_to_du(con);
2711 	*p_con = con;
2712 	*p_crtc = &du->crtc;
2713 
2714 	list_for_each_entry(mode, &con->modes, head) {
2715 		if (mode->type & DRM_MODE_TYPE_PREFERRED)
2716 			break;
2717 	}
2718 
2719 	if (mode->type & DRM_MODE_TYPE_PREFERRED)
2720 		*p_mode = mode;
2721 	else {
2722 		WARN_ONCE(true, "Could not find initial preferred mode.\n");
2723 		*p_mode = list_first_entry(&con->modes,
2724 					   struct drm_display_mode,
2725 					   head);
2726 	}
2727 
2728  out_unlock:
2729 	mutex_unlock(&dev_priv->dev->mode_config.mutex);
2730 
2731 	return ret;
2732 }
2733 
2734 /**
2735  * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer
2736  *
2737  * @dev_priv: Pointer to a device private struct.
2738  * @du: The display unit of the crtc.
2739  */
2740 void vmw_kms_del_active(struct vmw_private *dev_priv,
2741 			struct vmw_display_unit *du)
2742 {
2743 	mutex_lock(&dev_priv->global_kms_state_mutex);
2744 	if (du->active_implicit) {
2745 		if (--(dev_priv->num_implicit) == 0)
2746 			dev_priv->implicit_fb = NULL;
2747 		du->active_implicit = false;
2748 	}
2749 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2750 }
2751 
2752 /**
2753  * vmw_kms_add_active - register a crtc binding to an implicit framebuffer
2754  *
2755  * @vmw_priv: Pointer to a device private struct.
2756  * @du: The display unit of the crtc.
2757  * @vfb: The implicit framebuffer
2758  *
2759  * Registers a binding to an implicit framebuffer.
2760  */
2761 void vmw_kms_add_active(struct vmw_private *dev_priv,
2762 			struct vmw_display_unit *du,
2763 			struct vmw_framebuffer *vfb)
2764 {
2765 	mutex_lock(&dev_priv->global_kms_state_mutex);
2766 	WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb);
2767 
2768 	if (!du->active_implicit && du->is_implicit) {
2769 		dev_priv->implicit_fb = vfb;
2770 		du->active_implicit = true;
2771 		dev_priv->num_implicit++;
2772 	}
2773 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2774 }
2775 
2776 /**
2777  * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc.
2778  *
2779  * @dev_priv: Pointer to device-private struct.
2780  * @crtc: The crtc we want to flip.
2781  *
2782  * Returns true or false depending whether it's OK to flip this crtc
2783  * based on the criterion that we must not have more than one implicit
2784  * frame-buffer at any one time.
2785  */
2786 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv,
2787 			    struct drm_crtc *crtc)
2788 {
2789 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2790 	bool ret;
2791 
2792 	mutex_lock(&dev_priv->global_kms_state_mutex);
2793 	ret = !du->is_implicit || dev_priv->num_implicit == 1;
2794 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2795 
2796 	return ret;
2797 }
2798 
2799 /**
2800  * vmw_kms_update_implicit_fb - Update the implicit fb.
2801  *
2802  * @dev_priv: Pointer to device-private struct.
2803  * @crtc: The crtc the new implicit frame-buffer is bound to.
2804  */
2805 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv,
2806 				struct drm_crtc *crtc)
2807 {
2808 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2809 	struct vmw_framebuffer *vfb;
2810 
2811 	mutex_lock(&dev_priv->global_kms_state_mutex);
2812 
2813 	if (!du->is_implicit)
2814 		goto out_unlock;
2815 
2816 	vfb = vmw_framebuffer_to_vfb(crtc->primary->fb);
2817 	WARN_ON_ONCE(dev_priv->num_implicit != 1 &&
2818 		     dev_priv->implicit_fb != vfb);
2819 
2820 	dev_priv->implicit_fb = vfb;
2821 out_unlock:
2822 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2823 }
2824 
2825 /**
2826  * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2827  * property.
2828  *
2829  * @dev_priv: Pointer to a device private struct.
2830  * @immutable: Whether the property is immutable.
2831  *
2832  * Sets up the implicit placement property unless it's already set up.
2833  */
2834 void
2835 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv,
2836 					   bool immutable)
2837 {
2838 	if (dev_priv->implicit_placement_property)
2839 		return;
2840 
2841 	dev_priv->implicit_placement_property =
2842 		drm_property_create_range(dev_priv->dev,
2843 					  immutable ?
2844 					  DRM_MODE_PROP_IMMUTABLE : 0,
2845 					  "implicit_placement", 0, 1);
2846 
2847 }
2848 
2849 
2850 /**
2851  * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config
2852  *
2853  * @set: The configuration to set.
2854  *
2855  * The vmwgfx Xorg driver doesn't assign the mode::type member, which
2856  * when drm_mode_set_crtcinfo is called as part of the configuration setting
2857  * causes it to return incorrect crtc dimensions causing severe problems in
2858  * the vmwgfx modesetting. So explicitly clear that member before calling
2859  * into drm_atomic_helper_set_config.
2860  */
2861 int vmw_kms_set_config(struct drm_mode_set *set,
2862 		       struct drm_modeset_acquire_ctx *ctx)
2863 {
2864 	if (set && set->mode)
2865 		set->mode->type = 0;
2866 
2867 	return drm_atomic_helper_set_config(set, ctx);
2868 }
2869 
2870 
2871 /**
2872  * vmw_kms_suspend - Save modesetting state and turn modesetting off.
2873  *
2874  * @dev: Pointer to the drm device
2875  * Return: 0 on success. Negative error code on failure.
2876  */
2877 int vmw_kms_suspend(struct drm_device *dev)
2878 {
2879 	struct vmw_private *dev_priv = vmw_priv(dev);
2880 
2881 	dev_priv->suspend_state = drm_atomic_helper_suspend(dev);
2882 	if (IS_ERR(dev_priv->suspend_state)) {
2883 		int ret = PTR_ERR(dev_priv->suspend_state);
2884 
2885 		DRM_ERROR("Failed kms suspend: %d\n", ret);
2886 		dev_priv->suspend_state = NULL;
2887 
2888 		return ret;
2889 	}
2890 
2891 	return 0;
2892 }
2893 
2894 
2895 /**
2896  * vmw_kms_resume - Re-enable modesetting and restore state
2897  *
2898  * @dev: Pointer to the drm device
2899  * Return: 0 on success. Negative error code on failure.
2900  *
2901  * State is resumed from a previous vmw_kms_suspend(). It's illegal
2902  * to call this function without a previous vmw_kms_suspend().
2903  */
2904 int vmw_kms_resume(struct drm_device *dev)
2905 {
2906 	struct vmw_private *dev_priv = vmw_priv(dev);
2907 	int ret;
2908 
2909 	if (WARN_ON(!dev_priv->suspend_state))
2910 		return 0;
2911 
2912 	ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state);
2913 	dev_priv->suspend_state = NULL;
2914 
2915 	return ret;
2916 }
2917 
2918 /**
2919  * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost
2920  *
2921  * @dev: Pointer to the drm device
2922  */
2923 void vmw_kms_lost_device(struct drm_device *dev)
2924 {
2925 	drm_atomic_helper_shutdown(dev);
2926 }
2927