1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /************************************************************************** 3 * 4 * Copyright 2011-2014 VMware, Inc., Palo Alto, CA., USA 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include <linux/sched/signal.h> 29 30 #include "vmwgfx_drv.h" 31 32 #define VMW_FENCE_WRAP (1 << 31) 33 34 struct vmw_fence_manager { 35 int num_fence_objects; 36 struct vmw_private *dev_priv; 37 spinlock_t lock; 38 struct list_head fence_list; 39 struct work_struct work; 40 u32 user_fence_size; 41 u32 fence_size; 42 u32 event_fence_action_size; 43 bool fifo_down; 44 struct list_head cleanup_list; 45 uint32_t pending_actions[VMW_ACTION_MAX]; 46 struct mutex goal_irq_mutex; 47 bool goal_irq_on; /* Protected by @goal_irq_mutex */ 48 bool seqno_valid; /* Protected by @lock, and may not be set to true 49 without the @goal_irq_mutex held. */ 50 u64 ctx; 51 }; 52 53 struct vmw_user_fence { 54 struct ttm_base_object base; 55 struct vmw_fence_obj fence; 56 }; 57 58 /** 59 * struct vmw_event_fence_action - fence action that delivers a drm event. 60 * 61 * @action: A struct vmw_fence_action to hook up to a fence. 62 * @event: A pointer to the pending event. 63 * @fence: A referenced pointer to the fence to keep it alive while @action 64 * hangs on it. 65 * @dev: Pointer to a struct drm_device so we can access the event stuff. 66 * @tv_sec: If non-null, the variable pointed to will be assigned 67 * current time tv_sec val when the fence signals. 68 * @tv_usec: Must be set if @tv_sec is set, and the variable pointed to will 69 * be assigned the current time tv_usec val when the fence signals. 70 */ 71 struct vmw_event_fence_action { 72 struct vmw_fence_action action; 73 74 struct drm_pending_event *event; 75 struct vmw_fence_obj *fence; 76 struct drm_device *dev; 77 78 uint32_t *tv_sec; 79 uint32_t *tv_usec; 80 }; 81 82 static struct vmw_fence_manager * 83 fman_from_fence(struct vmw_fence_obj *fence) 84 { 85 return container_of(fence->base.lock, struct vmw_fence_manager, lock); 86 } 87 88 /* 89 * Note on fencing subsystem usage of irqs: 90 * Typically the vmw_fences_update function is called 91 * 92 * a) When a new fence seqno has been submitted by the fifo code. 93 * b) On-demand when we have waiters. Sleeping waiters will switch on the 94 * ANY_FENCE irq and call vmw_fences_update function each time an ANY_FENCE 95 * irq is received. When the last fence waiter is gone, that IRQ is masked 96 * away. 97 * 98 * In situations where there are no waiters and we don't submit any new fences, 99 * fence objects may not be signaled. This is perfectly OK, since there are 100 * no consumers of the signaled data, but that is NOT ok when there are fence 101 * actions attached to a fence. The fencing subsystem then makes use of the 102 * FENCE_GOAL irq and sets the fence goal seqno to that of the next fence 103 * which has an action attached, and each time vmw_fences_update is called, 104 * the subsystem makes sure the fence goal seqno is updated. 105 * 106 * The fence goal seqno irq is on as long as there are unsignaled fence 107 * objects with actions attached to them. 108 */ 109 110 static void vmw_fence_obj_destroy(struct dma_fence *f) 111 { 112 struct vmw_fence_obj *fence = 113 container_of(f, struct vmw_fence_obj, base); 114 115 struct vmw_fence_manager *fman = fman_from_fence(fence); 116 117 spin_lock(&fman->lock); 118 list_del_init(&fence->head); 119 --fman->num_fence_objects; 120 spin_unlock(&fman->lock); 121 fence->destroy(fence); 122 } 123 124 static const char *vmw_fence_get_driver_name(struct dma_fence *f) 125 { 126 return "vmwgfx"; 127 } 128 129 static const char *vmw_fence_get_timeline_name(struct dma_fence *f) 130 { 131 return "svga"; 132 } 133 134 static bool vmw_fence_enable_signaling(struct dma_fence *f) 135 { 136 struct vmw_fence_obj *fence = 137 container_of(f, struct vmw_fence_obj, base); 138 139 struct vmw_fence_manager *fman = fman_from_fence(fence); 140 struct vmw_private *dev_priv = fman->dev_priv; 141 142 u32 seqno = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_FENCE); 143 if (seqno - fence->base.seqno < VMW_FENCE_WRAP) 144 return false; 145 146 vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC); 147 148 return true; 149 } 150 151 struct vmwgfx_wait_cb { 152 struct dma_fence_cb base; 153 struct task_struct *task; 154 }; 155 156 static void 157 vmwgfx_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 158 { 159 struct vmwgfx_wait_cb *wait = 160 container_of(cb, struct vmwgfx_wait_cb, base); 161 162 wake_up_process(wait->task); 163 } 164 165 static void __vmw_fences_update(struct vmw_fence_manager *fman); 166 167 static long vmw_fence_wait(struct dma_fence *f, bool intr, signed long timeout) 168 { 169 struct vmw_fence_obj *fence = 170 container_of(f, struct vmw_fence_obj, base); 171 172 struct vmw_fence_manager *fman = fman_from_fence(fence); 173 struct vmw_private *dev_priv = fman->dev_priv; 174 struct vmwgfx_wait_cb cb; 175 long ret = timeout; 176 177 if (likely(vmw_fence_obj_signaled(fence))) 178 return timeout; 179 180 vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC); 181 vmw_seqno_waiter_add(dev_priv); 182 183 spin_lock(f->lock); 184 185 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &f->flags)) 186 goto out; 187 188 if (intr && signal_pending(current)) { 189 ret = -ERESTARTSYS; 190 goto out; 191 } 192 193 cb.base.func = vmwgfx_wait_cb; 194 cb.task = current; 195 list_add(&cb.base.node, &f->cb_list); 196 197 for (;;) { 198 __vmw_fences_update(fman); 199 200 /* 201 * We can use the barrier free __set_current_state() since 202 * DMA_FENCE_FLAG_SIGNALED_BIT + wakeup is protected by the 203 * fence spinlock. 204 */ 205 if (intr) 206 __set_current_state(TASK_INTERRUPTIBLE); 207 else 208 __set_current_state(TASK_UNINTERRUPTIBLE); 209 210 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &f->flags)) { 211 if (ret == 0 && timeout > 0) 212 ret = 1; 213 break; 214 } 215 216 if (intr && signal_pending(current)) { 217 ret = -ERESTARTSYS; 218 break; 219 } 220 221 if (ret == 0) 222 break; 223 224 spin_unlock(f->lock); 225 226 ret = schedule_timeout(ret); 227 228 spin_lock(f->lock); 229 } 230 __set_current_state(TASK_RUNNING); 231 if (!list_empty(&cb.base.node)) 232 list_del(&cb.base.node); 233 234 out: 235 spin_unlock(f->lock); 236 237 vmw_seqno_waiter_remove(dev_priv); 238 239 return ret; 240 } 241 242 static const struct dma_fence_ops vmw_fence_ops = { 243 .get_driver_name = vmw_fence_get_driver_name, 244 .get_timeline_name = vmw_fence_get_timeline_name, 245 .enable_signaling = vmw_fence_enable_signaling, 246 .wait = vmw_fence_wait, 247 .release = vmw_fence_obj_destroy, 248 }; 249 250 251 /* 252 * Execute signal actions on fences recently signaled. 253 * This is done from a workqueue so we don't have to execute 254 * signal actions from atomic context. 255 */ 256 257 static void vmw_fence_work_func(struct work_struct *work) 258 { 259 struct vmw_fence_manager *fman = 260 container_of(work, struct vmw_fence_manager, work); 261 struct list_head list; 262 struct vmw_fence_action *action, *next_action; 263 bool seqno_valid; 264 265 do { 266 INIT_LIST_HEAD(&list); 267 mutex_lock(&fman->goal_irq_mutex); 268 269 spin_lock(&fman->lock); 270 list_splice_init(&fman->cleanup_list, &list); 271 seqno_valid = fman->seqno_valid; 272 spin_unlock(&fman->lock); 273 274 if (!seqno_valid && fman->goal_irq_on) { 275 fman->goal_irq_on = false; 276 vmw_goal_waiter_remove(fman->dev_priv); 277 } 278 mutex_unlock(&fman->goal_irq_mutex); 279 280 if (list_empty(&list)) 281 return; 282 283 /* 284 * At this point, only we should be able to manipulate the 285 * list heads of the actions we have on the private list. 286 * hence fman::lock not held. 287 */ 288 289 list_for_each_entry_safe(action, next_action, &list, head) { 290 list_del_init(&action->head); 291 if (action->cleanup) 292 action->cleanup(action); 293 } 294 } while (1); 295 } 296 297 struct vmw_fence_manager *vmw_fence_manager_init(struct vmw_private *dev_priv) 298 { 299 struct vmw_fence_manager *fman = kzalloc(sizeof(*fman), GFP_KERNEL); 300 301 if (unlikely(!fman)) 302 return NULL; 303 304 fman->dev_priv = dev_priv; 305 spin_lock_init(&fman->lock); 306 INIT_LIST_HEAD(&fman->fence_list); 307 INIT_LIST_HEAD(&fman->cleanup_list); 308 INIT_WORK(&fman->work, &vmw_fence_work_func); 309 fman->fifo_down = true; 310 fman->user_fence_size = ttm_round_pot(sizeof(struct vmw_user_fence)) + 311 TTM_OBJ_EXTRA_SIZE; 312 fman->fence_size = ttm_round_pot(sizeof(struct vmw_fence_obj)); 313 fman->event_fence_action_size = 314 ttm_round_pot(sizeof(struct vmw_event_fence_action)); 315 mutex_init(&fman->goal_irq_mutex); 316 fman->ctx = dma_fence_context_alloc(1); 317 318 return fman; 319 } 320 321 void vmw_fence_manager_takedown(struct vmw_fence_manager *fman) 322 { 323 bool lists_empty; 324 325 (void) cancel_work_sync(&fman->work); 326 327 spin_lock(&fman->lock); 328 lists_empty = list_empty(&fman->fence_list) && 329 list_empty(&fman->cleanup_list); 330 spin_unlock(&fman->lock); 331 332 BUG_ON(!lists_empty); 333 kfree(fman); 334 } 335 336 static int vmw_fence_obj_init(struct vmw_fence_manager *fman, 337 struct vmw_fence_obj *fence, u32 seqno, 338 void (*destroy) (struct vmw_fence_obj *fence)) 339 { 340 int ret = 0; 341 342 dma_fence_init(&fence->base, &vmw_fence_ops, &fman->lock, 343 fman->ctx, seqno); 344 INIT_LIST_HEAD(&fence->seq_passed_actions); 345 fence->destroy = destroy; 346 347 spin_lock(&fman->lock); 348 if (unlikely(fman->fifo_down)) { 349 ret = -EBUSY; 350 goto out_unlock; 351 } 352 list_add_tail(&fence->head, &fman->fence_list); 353 ++fman->num_fence_objects; 354 355 out_unlock: 356 spin_unlock(&fman->lock); 357 return ret; 358 359 } 360 361 static void vmw_fences_perform_actions(struct vmw_fence_manager *fman, 362 struct list_head *list) 363 { 364 struct vmw_fence_action *action, *next_action; 365 366 list_for_each_entry_safe(action, next_action, list, head) { 367 list_del_init(&action->head); 368 fman->pending_actions[action->type]--; 369 if (action->seq_passed != NULL) 370 action->seq_passed(action); 371 372 /* 373 * Add the cleanup action to the cleanup list so that 374 * it will be performed by a worker task. 375 */ 376 377 list_add_tail(&action->head, &fman->cleanup_list); 378 } 379 } 380 381 /** 382 * vmw_fence_goal_new_locked - Figure out a new device fence goal 383 * seqno if needed. 384 * 385 * @fman: Pointer to a fence manager. 386 * @passed_seqno: The seqno the device currently signals as passed. 387 * 388 * This function should be called with the fence manager lock held. 389 * It is typically called when we have a new passed_seqno, and 390 * we might need to update the fence goal. It checks to see whether 391 * the current fence goal has already passed, and, in that case, 392 * scans through all unsignaled fences to get the next fence object with an 393 * action attached, and sets the seqno of that fence as a new fence goal. 394 * 395 * returns true if the device goal seqno was updated. False otherwise. 396 */ 397 static bool vmw_fence_goal_new_locked(struct vmw_fence_manager *fman, 398 u32 passed_seqno) 399 { 400 u32 goal_seqno; 401 struct vmw_fence_obj *fence; 402 403 if (likely(!fman->seqno_valid)) 404 return false; 405 406 goal_seqno = vmw_fifo_mem_read(fman->dev_priv, SVGA_FIFO_FENCE_GOAL); 407 if (likely(passed_seqno - goal_seqno >= VMW_FENCE_WRAP)) 408 return false; 409 410 fman->seqno_valid = false; 411 list_for_each_entry(fence, &fman->fence_list, head) { 412 if (!list_empty(&fence->seq_passed_actions)) { 413 fman->seqno_valid = true; 414 vmw_fifo_mem_write(fman->dev_priv, 415 SVGA_FIFO_FENCE_GOAL, 416 fence->base.seqno); 417 break; 418 } 419 } 420 421 return true; 422 } 423 424 425 /** 426 * vmw_fence_goal_check_locked - Replace the device fence goal seqno if 427 * needed. 428 * 429 * @fence: Pointer to a struct vmw_fence_obj the seqno of which should be 430 * considered as a device fence goal. 431 * 432 * This function should be called with the fence manager lock held. 433 * It is typically called when an action has been attached to a fence to 434 * check whether the seqno of that fence should be used for a fence 435 * goal interrupt. This is typically needed if the current fence goal is 436 * invalid, or has a higher seqno than that of the current fence object. 437 * 438 * returns true if the device goal seqno was updated. False otherwise. 439 */ 440 static bool vmw_fence_goal_check_locked(struct vmw_fence_obj *fence) 441 { 442 struct vmw_fence_manager *fman = fman_from_fence(fence); 443 u32 goal_seqno; 444 445 if (dma_fence_is_signaled_locked(&fence->base)) 446 return false; 447 448 goal_seqno = vmw_fifo_mem_read(fman->dev_priv, SVGA_FIFO_FENCE_GOAL); 449 if (likely(fman->seqno_valid && 450 goal_seqno - fence->base.seqno < VMW_FENCE_WRAP)) 451 return false; 452 453 vmw_fifo_mem_write(fman->dev_priv, SVGA_FIFO_FENCE_GOAL, 454 fence->base.seqno); 455 fman->seqno_valid = true; 456 457 return true; 458 } 459 460 static void __vmw_fences_update(struct vmw_fence_manager *fman) 461 { 462 struct vmw_fence_obj *fence, *next_fence; 463 struct list_head action_list; 464 bool needs_rerun; 465 uint32_t seqno, new_seqno; 466 467 seqno = vmw_fifo_mem_read(fman->dev_priv, SVGA_FIFO_FENCE); 468 rerun: 469 list_for_each_entry_safe(fence, next_fence, &fman->fence_list, head) { 470 if (seqno - fence->base.seqno < VMW_FENCE_WRAP) { 471 list_del_init(&fence->head); 472 dma_fence_signal_locked(&fence->base); 473 INIT_LIST_HEAD(&action_list); 474 list_splice_init(&fence->seq_passed_actions, 475 &action_list); 476 vmw_fences_perform_actions(fman, &action_list); 477 } else 478 break; 479 } 480 481 /* 482 * Rerun if the fence goal seqno was updated, and the 483 * hardware might have raced with that update, so that 484 * we missed a fence_goal irq. 485 */ 486 487 needs_rerun = vmw_fence_goal_new_locked(fman, seqno); 488 if (unlikely(needs_rerun)) { 489 new_seqno = vmw_fifo_mem_read(fman->dev_priv, SVGA_FIFO_FENCE); 490 if (new_seqno != seqno) { 491 seqno = new_seqno; 492 goto rerun; 493 } 494 } 495 496 if (!list_empty(&fman->cleanup_list)) 497 (void) schedule_work(&fman->work); 498 } 499 500 void vmw_fences_update(struct vmw_fence_manager *fman) 501 { 502 spin_lock(&fman->lock); 503 __vmw_fences_update(fman); 504 spin_unlock(&fman->lock); 505 } 506 507 bool vmw_fence_obj_signaled(struct vmw_fence_obj *fence) 508 { 509 struct vmw_fence_manager *fman = fman_from_fence(fence); 510 511 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags)) 512 return true; 513 514 vmw_fences_update(fman); 515 516 return dma_fence_is_signaled(&fence->base); 517 } 518 519 int vmw_fence_obj_wait(struct vmw_fence_obj *fence, bool lazy, 520 bool interruptible, unsigned long timeout) 521 { 522 long ret = dma_fence_wait_timeout(&fence->base, interruptible, timeout); 523 524 if (likely(ret > 0)) 525 return 0; 526 else if (ret == 0) 527 return -EBUSY; 528 else 529 return ret; 530 } 531 532 void vmw_fence_obj_flush(struct vmw_fence_obj *fence) 533 { 534 struct vmw_private *dev_priv = fman_from_fence(fence)->dev_priv; 535 536 vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC); 537 } 538 539 static void vmw_fence_destroy(struct vmw_fence_obj *fence) 540 { 541 dma_fence_free(&fence->base); 542 } 543 544 int vmw_fence_create(struct vmw_fence_manager *fman, 545 uint32_t seqno, 546 struct vmw_fence_obj **p_fence) 547 { 548 struct vmw_fence_obj *fence; 549 int ret; 550 551 fence = kzalloc(sizeof(*fence), GFP_KERNEL); 552 if (unlikely(!fence)) 553 return -ENOMEM; 554 555 ret = vmw_fence_obj_init(fman, fence, seqno, 556 vmw_fence_destroy); 557 if (unlikely(ret != 0)) 558 goto out_err_init; 559 560 *p_fence = fence; 561 return 0; 562 563 out_err_init: 564 kfree(fence); 565 return ret; 566 } 567 568 569 static void vmw_user_fence_destroy(struct vmw_fence_obj *fence) 570 { 571 struct vmw_user_fence *ufence = 572 container_of(fence, struct vmw_user_fence, fence); 573 struct vmw_fence_manager *fman = fman_from_fence(fence); 574 575 ttm_base_object_kfree(ufence, base); 576 /* 577 * Free kernel space accounting. 578 */ 579 ttm_mem_global_free(vmw_mem_glob(fman->dev_priv), 580 fman->user_fence_size); 581 } 582 583 static void vmw_user_fence_base_release(struct ttm_base_object **p_base) 584 { 585 struct ttm_base_object *base = *p_base; 586 struct vmw_user_fence *ufence = 587 container_of(base, struct vmw_user_fence, base); 588 struct vmw_fence_obj *fence = &ufence->fence; 589 590 *p_base = NULL; 591 vmw_fence_obj_unreference(&fence); 592 } 593 594 int vmw_user_fence_create(struct drm_file *file_priv, 595 struct vmw_fence_manager *fman, 596 uint32_t seqno, 597 struct vmw_fence_obj **p_fence, 598 uint32_t *p_handle) 599 { 600 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 601 struct vmw_user_fence *ufence; 602 struct vmw_fence_obj *tmp; 603 struct ttm_mem_global *mem_glob = vmw_mem_glob(fman->dev_priv); 604 struct ttm_operation_ctx ctx = { 605 .interruptible = false, 606 .no_wait_gpu = false 607 }; 608 int ret; 609 610 /* 611 * Kernel memory space accounting, since this object may 612 * be created by a user-space request. 613 */ 614 615 ret = ttm_mem_global_alloc(mem_glob, fman->user_fence_size, 616 &ctx); 617 if (unlikely(ret != 0)) 618 return ret; 619 620 ufence = kzalloc(sizeof(*ufence), GFP_KERNEL); 621 if (unlikely(!ufence)) { 622 ret = -ENOMEM; 623 goto out_no_object; 624 } 625 626 ret = vmw_fence_obj_init(fman, &ufence->fence, seqno, 627 vmw_user_fence_destroy); 628 if (unlikely(ret != 0)) { 629 kfree(ufence); 630 goto out_no_object; 631 } 632 633 /* 634 * The base object holds a reference which is freed in 635 * vmw_user_fence_base_release. 636 */ 637 tmp = vmw_fence_obj_reference(&ufence->fence); 638 ret = ttm_base_object_init(tfile, &ufence->base, false, 639 VMW_RES_FENCE, 640 &vmw_user_fence_base_release, NULL); 641 642 643 if (unlikely(ret != 0)) { 644 /* 645 * Free the base object's reference 646 */ 647 vmw_fence_obj_unreference(&tmp); 648 goto out_err; 649 } 650 651 *p_fence = &ufence->fence; 652 *p_handle = ufence->base.handle; 653 654 return 0; 655 out_err: 656 tmp = &ufence->fence; 657 vmw_fence_obj_unreference(&tmp); 658 out_no_object: 659 ttm_mem_global_free(mem_glob, fman->user_fence_size); 660 return ret; 661 } 662 663 664 /** 665 * vmw_wait_dma_fence - Wait for a dma fence 666 * 667 * @fman: pointer to a fence manager 668 * @fence: DMA fence to wait on 669 * 670 * This function handles the case when the fence is actually a fence 671 * array. If that's the case, it'll wait on each of the child fence 672 */ 673 int vmw_wait_dma_fence(struct vmw_fence_manager *fman, 674 struct dma_fence *fence) 675 { 676 struct dma_fence_array *fence_array; 677 int ret = 0; 678 int i; 679 680 681 if (dma_fence_is_signaled(fence)) 682 return 0; 683 684 if (!dma_fence_is_array(fence)) 685 return dma_fence_wait(fence, true); 686 687 /* From i915: Note that if the fence-array was created in 688 * signal-on-any mode, we should *not* decompose it into its individual 689 * fences. However, we don't currently store which mode the fence-array 690 * is operating in. Fortunately, the only user of signal-on-any is 691 * private to amdgpu and we should not see any incoming fence-array 692 * from sync-file being in signal-on-any mode. 693 */ 694 695 fence_array = to_dma_fence_array(fence); 696 for (i = 0; i < fence_array->num_fences; i++) { 697 struct dma_fence *child = fence_array->fences[i]; 698 699 ret = dma_fence_wait(child, true); 700 701 if (ret < 0) 702 return ret; 703 } 704 705 return 0; 706 } 707 708 709 /* 710 * vmw_fence_fifo_down - signal all unsignaled fence objects. 711 */ 712 713 void vmw_fence_fifo_down(struct vmw_fence_manager *fman) 714 { 715 struct list_head action_list; 716 int ret; 717 718 /* 719 * The list may be altered while we traverse it, so always 720 * restart when we've released the fman->lock. 721 */ 722 723 spin_lock(&fman->lock); 724 fman->fifo_down = true; 725 while (!list_empty(&fman->fence_list)) { 726 struct vmw_fence_obj *fence = 727 list_entry(fman->fence_list.prev, struct vmw_fence_obj, 728 head); 729 dma_fence_get(&fence->base); 730 spin_unlock(&fman->lock); 731 732 ret = vmw_fence_obj_wait(fence, false, false, 733 VMW_FENCE_WAIT_TIMEOUT); 734 735 if (unlikely(ret != 0)) { 736 list_del_init(&fence->head); 737 dma_fence_signal(&fence->base); 738 INIT_LIST_HEAD(&action_list); 739 list_splice_init(&fence->seq_passed_actions, 740 &action_list); 741 vmw_fences_perform_actions(fman, &action_list); 742 } 743 744 BUG_ON(!list_empty(&fence->head)); 745 dma_fence_put(&fence->base); 746 spin_lock(&fman->lock); 747 } 748 spin_unlock(&fman->lock); 749 } 750 751 void vmw_fence_fifo_up(struct vmw_fence_manager *fman) 752 { 753 spin_lock(&fman->lock); 754 fman->fifo_down = false; 755 spin_unlock(&fman->lock); 756 } 757 758 759 /** 760 * vmw_fence_obj_lookup - Look up a user-space fence object 761 * 762 * @tfile: A struct ttm_object_file identifying the caller. 763 * @handle: A handle identifying the fence object. 764 * @return: A struct vmw_user_fence base ttm object on success or 765 * an error pointer on failure. 766 * 767 * The fence object is looked up and type-checked. The caller needs 768 * to have opened the fence object first, but since that happens on 769 * creation and fence objects aren't shareable, that's not an 770 * issue currently. 771 */ 772 static struct ttm_base_object * 773 vmw_fence_obj_lookup(struct ttm_object_file *tfile, u32 handle) 774 { 775 struct ttm_base_object *base = ttm_base_object_lookup(tfile, handle); 776 777 if (!base) { 778 pr_err("Invalid fence object handle 0x%08lx.\n", 779 (unsigned long)handle); 780 return ERR_PTR(-EINVAL); 781 } 782 783 if (base->refcount_release != vmw_user_fence_base_release) { 784 pr_err("Invalid fence object handle 0x%08lx.\n", 785 (unsigned long)handle); 786 ttm_base_object_unref(&base); 787 return ERR_PTR(-EINVAL); 788 } 789 790 return base; 791 } 792 793 794 int vmw_fence_obj_wait_ioctl(struct drm_device *dev, void *data, 795 struct drm_file *file_priv) 796 { 797 struct drm_vmw_fence_wait_arg *arg = 798 (struct drm_vmw_fence_wait_arg *)data; 799 unsigned long timeout; 800 struct ttm_base_object *base; 801 struct vmw_fence_obj *fence; 802 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 803 int ret; 804 uint64_t wait_timeout = ((uint64_t)arg->timeout_us * HZ); 805 806 /* 807 * 64-bit division not present on 32-bit systems, so do an 808 * approximation. (Divide by 1000000). 809 */ 810 811 wait_timeout = (wait_timeout >> 20) + (wait_timeout >> 24) - 812 (wait_timeout >> 26); 813 814 if (!arg->cookie_valid) { 815 arg->cookie_valid = 1; 816 arg->kernel_cookie = jiffies + wait_timeout; 817 } 818 819 base = vmw_fence_obj_lookup(tfile, arg->handle); 820 if (IS_ERR(base)) 821 return PTR_ERR(base); 822 823 fence = &(container_of(base, struct vmw_user_fence, base)->fence); 824 825 timeout = jiffies; 826 if (time_after_eq(timeout, (unsigned long)arg->kernel_cookie)) { 827 ret = ((vmw_fence_obj_signaled(fence)) ? 828 0 : -EBUSY); 829 goto out; 830 } 831 832 timeout = (unsigned long)arg->kernel_cookie - timeout; 833 834 ret = vmw_fence_obj_wait(fence, arg->lazy, true, timeout); 835 836 out: 837 ttm_base_object_unref(&base); 838 839 /* 840 * Optionally unref the fence object. 841 */ 842 843 if (ret == 0 && (arg->wait_options & DRM_VMW_WAIT_OPTION_UNREF)) 844 return ttm_ref_object_base_unref(tfile, arg->handle, 845 TTM_REF_USAGE); 846 return ret; 847 } 848 849 int vmw_fence_obj_signaled_ioctl(struct drm_device *dev, void *data, 850 struct drm_file *file_priv) 851 { 852 struct drm_vmw_fence_signaled_arg *arg = 853 (struct drm_vmw_fence_signaled_arg *) data; 854 struct ttm_base_object *base; 855 struct vmw_fence_obj *fence; 856 struct vmw_fence_manager *fman; 857 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 858 struct vmw_private *dev_priv = vmw_priv(dev); 859 860 base = vmw_fence_obj_lookup(tfile, arg->handle); 861 if (IS_ERR(base)) 862 return PTR_ERR(base); 863 864 fence = &(container_of(base, struct vmw_user_fence, base)->fence); 865 fman = fman_from_fence(fence); 866 867 arg->signaled = vmw_fence_obj_signaled(fence); 868 869 arg->signaled_flags = arg->flags; 870 spin_lock(&fman->lock); 871 arg->passed_seqno = dev_priv->last_read_seqno; 872 spin_unlock(&fman->lock); 873 874 ttm_base_object_unref(&base); 875 876 return 0; 877 } 878 879 880 int vmw_fence_obj_unref_ioctl(struct drm_device *dev, void *data, 881 struct drm_file *file_priv) 882 { 883 struct drm_vmw_fence_arg *arg = 884 (struct drm_vmw_fence_arg *) data; 885 886 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile, 887 arg->handle, 888 TTM_REF_USAGE); 889 } 890 891 /** 892 * vmw_event_fence_action_seq_passed 893 * 894 * @action: The struct vmw_fence_action embedded in a struct 895 * vmw_event_fence_action. 896 * 897 * This function is called when the seqno of the fence where @action is 898 * attached has passed. It queues the event on the submitter's event list. 899 * This function is always called from atomic context. 900 */ 901 static void vmw_event_fence_action_seq_passed(struct vmw_fence_action *action) 902 { 903 struct vmw_event_fence_action *eaction = 904 container_of(action, struct vmw_event_fence_action, action); 905 struct drm_device *dev = eaction->dev; 906 struct drm_pending_event *event = eaction->event; 907 908 if (unlikely(event == NULL)) 909 return; 910 911 spin_lock_irq(&dev->event_lock); 912 913 if (likely(eaction->tv_sec != NULL)) { 914 struct timespec64 ts; 915 916 ktime_get_ts64(&ts); 917 /* monotonic time, so no y2038 overflow */ 918 *eaction->tv_sec = ts.tv_sec; 919 *eaction->tv_usec = ts.tv_nsec / NSEC_PER_USEC; 920 } 921 922 drm_send_event_locked(dev, eaction->event); 923 eaction->event = NULL; 924 spin_unlock_irq(&dev->event_lock); 925 } 926 927 /** 928 * vmw_event_fence_action_cleanup 929 * 930 * @action: The struct vmw_fence_action embedded in a struct 931 * vmw_event_fence_action. 932 * 933 * This function is the struct vmw_fence_action destructor. It's typically 934 * called from a workqueue. 935 */ 936 static void vmw_event_fence_action_cleanup(struct vmw_fence_action *action) 937 { 938 struct vmw_event_fence_action *eaction = 939 container_of(action, struct vmw_event_fence_action, action); 940 941 vmw_fence_obj_unreference(&eaction->fence); 942 kfree(eaction); 943 } 944 945 946 /** 947 * vmw_fence_obj_add_action - Add an action to a fence object. 948 * 949 * @fence: The fence object. 950 * @action: The action to add. 951 * 952 * Note that the action callbacks may be executed before this function 953 * returns. 954 */ 955 static void vmw_fence_obj_add_action(struct vmw_fence_obj *fence, 956 struct vmw_fence_action *action) 957 { 958 struct vmw_fence_manager *fman = fman_from_fence(fence); 959 bool run_update = false; 960 961 mutex_lock(&fman->goal_irq_mutex); 962 spin_lock(&fman->lock); 963 964 fman->pending_actions[action->type]++; 965 if (dma_fence_is_signaled_locked(&fence->base)) { 966 struct list_head action_list; 967 968 INIT_LIST_HEAD(&action_list); 969 list_add_tail(&action->head, &action_list); 970 vmw_fences_perform_actions(fman, &action_list); 971 } else { 972 list_add_tail(&action->head, &fence->seq_passed_actions); 973 974 /* 975 * This function may set fman::seqno_valid, so it must 976 * be run with the goal_irq_mutex held. 977 */ 978 run_update = vmw_fence_goal_check_locked(fence); 979 } 980 981 spin_unlock(&fman->lock); 982 983 if (run_update) { 984 if (!fman->goal_irq_on) { 985 fman->goal_irq_on = true; 986 vmw_goal_waiter_add(fman->dev_priv); 987 } 988 vmw_fences_update(fman); 989 } 990 mutex_unlock(&fman->goal_irq_mutex); 991 992 } 993 994 /** 995 * vmw_event_fence_action_create - Post an event for sending when a fence 996 * object seqno has passed. 997 * 998 * @file_priv: The file connection on which the event should be posted. 999 * @fence: The fence object on which to post the event. 1000 * @event: Event to be posted. This event should've been alloced 1001 * using k[mz]alloc, and should've been completely initialized. 1002 * @tv_sec: If non-null, the variable pointed to will be assigned 1003 * current time tv_sec val when the fence signals. 1004 * @tv_usec: Must be set if @tv_sec is set, and the variable pointed to will 1005 * be assigned the current time tv_usec val when the fence signals. 1006 * @interruptible: Interruptible waits if possible. 1007 * 1008 * As a side effect, the object pointed to by @event may have been 1009 * freed when this function returns. If this function returns with 1010 * an error code, the caller needs to free that object. 1011 */ 1012 1013 int vmw_event_fence_action_queue(struct drm_file *file_priv, 1014 struct vmw_fence_obj *fence, 1015 struct drm_pending_event *event, 1016 uint32_t *tv_sec, 1017 uint32_t *tv_usec, 1018 bool interruptible) 1019 { 1020 struct vmw_event_fence_action *eaction; 1021 struct vmw_fence_manager *fman = fman_from_fence(fence); 1022 1023 eaction = kzalloc(sizeof(*eaction), GFP_KERNEL); 1024 if (unlikely(!eaction)) 1025 return -ENOMEM; 1026 1027 eaction->event = event; 1028 1029 eaction->action.seq_passed = vmw_event_fence_action_seq_passed; 1030 eaction->action.cleanup = vmw_event_fence_action_cleanup; 1031 eaction->action.type = VMW_ACTION_EVENT; 1032 1033 eaction->fence = vmw_fence_obj_reference(fence); 1034 eaction->dev = &fman->dev_priv->drm; 1035 eaction->tv_sec = tv_sec; 1036 eaction->tv_usec = tv_usec; 1037 1038 vmw_fence_obj_add_action(fence, &eaction->action); 1039 1040 return 0; 1041 } 1042 1043 struct vmw_event_fence_pending { 1044 struct drm_pending_event base; 1045 struct drm_vmw_event_fence event; 1046 }; 1047 1048 static int vmw_event_fence_action_create(struct drm_file *file_priv, 1049 struct vmw_fence_obj *fence, 1050 uint32_t flags, 1051 uint64_t user_data, 1052 bool interruptible) 1053 { 1054 struct vmw_event_fence_pending *event; 1055 struct vmw_fence_manager *fman = fman_from_fence(fence); 1056 struct drm_device *dev = &fman->dev_priv->drm; 1057 int ret; 1058 1059 event = kzalloc(sizeof(*event), GFP_KERNEL); 1060 if (unlikely(!event)) { 1061 DRM_ERROR("Failed to allocate an event.\n"); 1062 ret = -ENOMEM; 1063 goto out_no_space; 1064 } 1065 1066 event->event.base.type = DRM_VMW_EVENT_FENCE_SIGNALED; 1067 event->event.base.length = sizeof(*event); 1068 event->event.user_data = user_data; 1069 1070 ret = drm_event_reserve_init(dev, file_priv, &event->base, &event->event.base); 1071 1072 if (unlikely(ret != 0)) { 1073 DRM_ERROR("Failed to allocate event space for this file.\n"); 1074 kfree(event); 1075 goto out_no_space; 1076 } 1077 1078 if (flags & DRM_VMW_FE_FLAG_REQ_TIME) 1079 ret = vmw_event_fence_action_queue(file_priv, fence, 1080 &event->base, 1081 &event->event.tv_sec, 1082 &event->event.tv_usec, 1083 interruptible); 1084 else 1085 ret = vmw_event_fence_action_queue(file_priv, fence, 1086 &event->base, 1087 NULL, 1088 NULL, 1089 interruptible); 1090 if (ret != 0) 1091 goto out_no_queue; 1092 1093 return 0; 1094 1095 out_no_queue: 1096 drm_event_cancel_free(dev, &event->base); 1097 out_no_space: 1098 return ret; 1099 } 1100 1101 int vmw_fence_event_ioctl(struct drm_device *dev, void *data, 1102 struct drm_file *file_priv) 1103 { 1104 struct vmw_private *dev_priv = vmw_priv(dev); 1105 struct drm_vmw_fence_event_arg *arg = 1106 (struct drm_vmw_fence_event_arg *) data; 1107 struct vmw_fence_obj *fence = NULL; 1108 struct vmw_fpriv *vmw_fp = vmw_fpriv(file_priv); 1109 struct ttm_object_file *tfile = vmw_fp->tfile; 1110 struct drm_vmw_fence_rep __user *user_fence_rep = 1111 (struct drm_vmw_fence_rep __user *)(unsigned long) 1112 arg->fence_rep; 1113 uint32_t handle; 1114 int ret; 1115 1116 /* 1117 * Look up an existing fence object, 1118 * and if user-space wants a new reference, 1119 * add one. 1120 */ 1121 if (arg->handle) { 1122 struct ttm_base_object *base = 1123 vmw_fence_obj_lookup(tfile, arg->handle); 1124 1125 if (IS_ERR(base)) 1126 return PTR_ERR(base); 1127 1128 fence = &(container_of(base, struct vmw_user_fence, 1129 base)->fence); 1130 (void) vmw_fence_obj_reference(fence); 1131 1132 if (user_fence_rep != NULL) { 1133 ret = ttm_ref_object_add(vmw_fp->tfile, base, 1134 TTM_REF_USAGE, NULL, false); 1135 if (unlikely(ret != 0)) { 1136 DRM_ERROR("Failed to reference a fence " 1137 "object.\n"); 1138 goto out_no_ref_obj; 1139 } 1140 handle = base->handle; 1141 } 1142 ttm_base_object_unref(&base); 1143 } 1144 1145 /* 1146 * Create a new fence object. 1147 */ 1148 if (!fence) { 1149 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, 1150 &fence, 1151 (user_fence_rep) ? 1152 &handle : NULL); 1153 if (unlikely(ret != 0)) { 1154 DRM_ERROR("Fence event failed to create fence.\n"); 1155 return ret; 1156 } 1157 } 1158 1159 BUG_ON(fence == NULL); 1160 1161 ret = vmw_event_fence_action_create(file_priv, fence, 1162 arg->flags, 1163 arg->user_data, 1164 true); 1165 if (unlikely(ret != 0)) { 1166 if (ret != -ERESTARTSYS) 1167 DRM_ERROR("Failed to attach event to fence.\n"); 1168 goto out_no_create; 1169 } 1170 1171 vmw_execbuf_copy_fence_user(dev_priv, vmw_fp, 0, user_fence_rep, fence, 1172 handle, -1, NULL); 1173 vmw_fence_obj_unreference(&fence); 1174 return 0; 1175 out_no_create: 1176 if (user_fence_rep != NULL) 1177 ttm_ref_object_base_unref(tfile, handle, TTM_REF_USAGE); 1178 out_no_ref_obj: 1179 vmw_fence_obj_unreference(&fence); 1180 return ret; 1181 } 1182