1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /************************************************************************** 3 * 4 * Copyright 2011-2014 VMware, Inc., Palo Alto, CA., USA 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include <linux/sched/signal.h> 29 30 #include "vmwgfx_drv.h" 31 32 #define VMW_FENCE_WRAP (1 << 31) 33 34 struct vmw_fence_manager { 35 int num_fence_objects; 36 struct vmw_private *dev_priv; 37 spinlock_t lock; 38 struct list_head fence_list; 39 struct work_struct work; 40 u32 user_fence_size; 41 u32 fence_size; 42 u32 event_fence_action_size; 43 bool fifo_down; 44 struct list_head cleanup_list; 45 uint32_t pending_actions[VMW_ACTION_MAX]; 46 struct mutex goal_irq_mutex; 47 bool goal_irq_on; /* Protected by @goal_irq_mutex */ 48 bool seqno_valid; /* Protected by @lock, and may not be set to true 49 without the @goal_irq_mutex held. */ 50 u64 ctx; 51 }; 52 53 struct vmw_user_fence { 54 struct ttm_base_object base; 55 struct vmw_fence_obj fence; 56 }; 57 58 /** 59 * struct vmw_event_fence_action - fence action that delivers a drm event. 60 * 61 * @e: A struct drm_pending_event that controls the event delivery. 62 * @action: A struct vmw_fence_action to hook up to a fence. 63 * @fence: A referenced pointer to the fence to keep it alive while @action 64 * hangs on it. 65 * @dev: Pointer to a struct drm_device so we can access the event stuff. 66 * @kref: Both @e and @action has destructors, so we need to refcount. 67 * @size: Size accounted for this object. 68 * @tv_sec: If non-null, the variable pointed to will be assigned 69 * current time tv_sec val when the fence signals. 70 * @tv_usec: Must be set if @tv_sec is set, and the variable pointed to will 71 * be assigned the current time tv_usec val when the fence signals. 72 */ 73 struct vmw_event_fence_action { 74 struct vmw_fence_action action; 75 76 struct drm_pending_event *event; 77 struct vmw_fence_obj *fence; 78 struct drm_device *dev; 79 80 uint32_t *tv_sec; 81 uint32_t *tv_usec; 82 }; 83 84 static struct vmw_fence_manager * 85 fman_from_fence(struct vmw_fence_obj *fence) 86 { 87 return container_of(fence->base.lock, struct vmw_fence_manager, lock); 88 } 89 90 /** 91 * Note on fencing subsystem usage of irqs: 92 * Typically the vmw_fences_update function is called 93 * 94 * a) When a new fence seqno has been submitted by the fifo code. 95 * b) On-demand when we have waiters. Sleeping waiters will switch on the 96 * ANY_FENCE irq and call vmw_fences_update function each time an ANY_FENCE 97 * irq is received. When the last fence waiter is gone, that IRQ is masked 98 * away. 99 * 100 * In situations where there are no waiters and we don't submit any new fences, 101 * fence objects may not be signaled. This is perfectly OK, since there are 102 * no consumers of the signaled data, but that is NOT ok when there are fence 103 * actions attached to a fence. The fencing subsystem then makes use of the 104 * FENCE_GOAL irq and sets the fence goal seqno to that of the next fence 105 * which has an action attached, and each time vmw_fences_update is called, 106 * the subsystem makes sure the fence goal seqno is updated. 107 * 108 * The fence goal seqno irq is on as long as there are unsignaled fence 109 * objects with actions attached to them. 110 */ 111 112 static void vmw_fence_obj_destroy(struct dma_fence *f) 113 { 114 struct vmw_fence_obj *fence = 115 container_of(f, struct vmw_fence_obj, base); 116 117 struct vmw_fence_manager *fman = fman_from_fence(fence); 118 119 spin_lock(&fman->lock); 120 list_del_init(&fence->head); 121 --fman->num_fence_objects; 122 spin_unlock(&fman->lock); 123 fence->destroy(fence); 124 } 125 126 static const char *vmw_fence_get_driver_name(struct dma_fence *f) 127 { 128 return "vmwgfx"; 129 } 130 131 static const char *vmw_fence_get_timeline_name(struct dma_fence *f) 132 { 133 return "svga"; 134 } 135 136 static bool vmw_fence_enable_signaling(struct dma_fence *f) 137 { 138 struct vmw_fence_obj *fence = 139 container_of(f, struct vmw_fence_obj, base); 140 141 struct vmw_fence_manager *fman = fman_from_fence(fence); 142 struct vmw_private *dev_priv = fman->dev_priv; 143 144 u32 *fifo_mem = dev_priv->mmio_virt; 145 u32 seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE); 146 if (seqno - fence->base.seqno < VMW_FENCE_WRAP) 147 return false; 148 149 vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC); 150 151 return true; 152 } 153 154 struct vmwgfx_wait_cb { 155 struct dma_fence_cb base; 156 struct task_struct *task; 157 }; 158 159 static void 160 vmwgfx_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 161 { 162 struct vmwgfx_wait_cb *wait = 163 container_of(cb, struct vmwgfx_wait_cb, base); 164 165 wake_up_process(wait->task); 166 } 167 168 static void __vmw_fences_update(struct vmw_fence_manager *fman); 169 170 static long vmw_fence_wait(struct dma_fence *f, bool intr, signed long timeout) 171 { 172 struct vmw_fence_obj *fence = 173 container_of(f, struct vmw_fence_obj, base); 174 175 struct vmw_fence_manager *fman = fman_from_fence(fence); 176 struct vmw_private *dev_priv = fman->dev_priv; 177 struct vmwgfx_wait_cb cb; 178 long ret = timeout; 179 180 if (likely(vmw_fence_obj_signaled(fence))) 181 return timeout; 182 183 vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC); 184 vmw_seqno_waiter_add(dev_priv); 185 186 spin_lock(f->lock); 187 188 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &f->flags)) 189 goto out; 190 191 if (intr && signal_pending(current)) { 192 ret = -ERESTARTSYS; 193 goto out; 194 } 195 196 cb.base.func = vmwgfx_wait_cb; 197 cb.task = current; 198 list_add(&cb.base.node, &f->cb_list); 199 200 for (;;) { 201 __vmw_fences_update(fman); 202 203 /* 204 * We can use the barrier free __set_current_state() since 205 * DMA_FENCE_FLAG_SIGNALED_BIT + wakeup is protected by the 206 * fence spinlock. 207 */ 208 if (intr) 209 __set_current_state(TASK_INTERRUPTIBLE); 210 else 211 __set_current_state(TASK_UNINTERRUPTIBLE); 212 213 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &f->flags)) { 214 if (ret == 0 && timeout > 0) 215 ret = 1; 216 break; 217 } 218 219 if (intr && signal_pending(current)) { 220 ret = -ERESTARTSYS; 221 break; 222 } 223 224 if (ret == 0) 225 break; 226 227 spin_unlock(f->lock); 228 229 ret = schedule_timeout(ret); 230 231 spin_lock(f->lock); 232 } 233 __set_current_state(TASK_RUNNING); 234 if (!list_empty(&cb.base.node)) 235 list_del(&cb.base.node); 236 237 out: 238 spin_unlock(f->lock); 239 240 vmw_seqno_waiter_remove(dev_priv); 241 242 return ret; 243 } 244 245 static const struct dma_fence_ops vmw_fence_ops = { 246 .get_driver_name = vmw_fence_get_driver_name, 247 .get_timeline_name = vmw_fence_get_timeline_name, 248 .enable_signaling = vmw_fence_enable_signaling, 249 .wait = vmw_fence_wait, 250 .release = vmw_fence_obj_destroy, 251 }; 252 253 254 /** 255 * Execute signal actions on fences recently signaled. 256 * This is done from a workqueue so we don't have to execute 257 * signal actions from atomic context. 258 */ 259 260 static void vmw_fence_work_func(struct work_struct *work) 261 { 262 struct vmw_fence_manager *fman = 263 container_of(work, struct vmw_fence_manager, work); 264 struct list_head list; 265 struct vmw_fence_action *action, *next_action; 266 bool seqno_valid; 267 268 do { 269 INIT_LIST_HEAD(&list); 270 mutex_lock(&fman->goal_irq_mutex); 271 272 spin_lock(&fman->lock); 273 list_splice_init(&fman->cleanup_list, &list); 274 seqno_valid = fman->seqno_valid; 275 spin_unlock(&fman->lock); 276 277 if (!seqno_valid && fman->goal_irq_on) { 278 fman->goal_irq_on = false; 279 vmw_goal_waiter_remove(fman->dev_priv); 280 } 281 mutex_unlock(&fman->goal_irq_mutex); 282 283 if (list_empty(&list)) 284 return; 285 286 /* 287 * At this point, only we should be able to manipulate the 288 * list heads of the actions we have on the private list. 289 * hence fman::lock not held. 290 */ 291 292 list_for_each_entry_safe(action, next_action, &list, head) { 293 list_del_init(&action->head); 294 if (action->cleanup) 295 action->cleanup(action); 296 } 297 } while (1); 298 } 299 300 struct vmw_fence_manager *vmw_fence_manager_init(struct vmw_private *dev_priv) 301 { 302 struct vmw_fence_manager *fman = kzalloc(sizeof(*fman), GFP_KERNEL); 303 304 if (unlikely(!fman)) 305 return NULL; 306 307 fman->dev_priv = dev_priv; 308 spin_lock_init(&fman->lock); 309 INIT_LIST_HEAD(&fman->fence_list); 310 INIT_LIST_HEAD(&fman->cleanup_list); 311 INIT_WORK(&fman->work, &vmw_fence_work_func); 312 fman->fifo_down = true; 313 fman->user_fence_size = ttm_round_pot(sizeof(struct vmw_user_fence)) + 314 TTM_OBJ_EXTRA_SIZE; 315 fman->fence_size = ttm_round_pot(sizeof(struct vmw_fence_obj)); 316 fman->event_fence_action_size = 317 ttm_round_pot(sizeof(struct vmw_event_fence_action)); 318 mutex_init(&fman->goal_irq_mutex); 319 fman->ctx = dma_fence_context_alloc(1); 320 321 return fman; 322 } 323 324 void vmw_fence_manager_takedown(struct vmw_fence_manager *fman) 325 { 326 bool lists_empty; 327 328 (void) cancel_work_sync(&fman->work); 329 330 spin_lock(&fman->lock); 331 lists_empty = list_empty(&fman->fence_list) && 332 list_empty(&fman->cleanup_list); 333 spin_unlock(&fman->lock); 334 335 BUG_ON(!lists_empty); 336 kfree(fman); 337 } 338 339 static int vmw_fence_obj_init(struct vmw_fence_manager *fman, 340 struct vmw_fence_obj *fence, u32 seqno, 341 void (*destroy) (struct vmw_fence_obj *fence)) 342 { 343 int ret = 0; 344 345 dma_fence_init(&fence->base, &vmw_fence_ops, &fman->lock, 346 fman->ctx, seqno); 347 INIT_LIST_HEAD(&fence->seq_passed_actions); 348 fence->destroy = destroy; 349 350 spin_lock(&fman->lock); 351 if (unlikely(fman->fifo_down)) { 352 ret = -EBUSY; 353 goto out_unlock; 354 } 355 list_add_tail(&fence->head, &fman->fence_list); 356 ++fman->num_fence_objects; 357 358 out_unlock: 359 spin_unlock(&fman->lock); 360 return ret; 361 362 } 363 364 static void vmw_fences_perform_actions(struct vmw_fence_manager *fman, 365 struct list_head *list) 366 { 367 struct vmw_fence_action *action, *next_action; 368 369 list_for_each_entry_safe(action, next_action, list, head) { 370 list_del_init(&action->head); 371 fman->pending_actions[action->type]--; 372 if (action->seq_passed != NULL) 373 action->seq_passed(action); 374 375 /* 376 * Add the cleanup action to the cleanup list so that 377 * it will be performed by a worker task. 378 */ 379 380 list_add_tail(&action->head, &fman->cleanup_list); 381 } 382 } 383 384 /** 385 * vmw_fence_goal_new_locked - Figure out a new device fence goal 386 * seqno if needed. 387 * 388 * @fman: Pointer to a fence manager. 389 * @passed_seqno: The seqno the device currently signals as passed. 390 * 391 * This function should be called with the fence manager lock held. 392 * It is typically called when we have a new passed_seqno, and 393 * we might need to update the fence goal. It checks to see whether 394 * the current fence goal has already passed, and, in that case, 395 * scans through all unsignaled fences to get the next fence object with an 396 * action attached, and sets the seqno of that fence as a new fence goal. 397 * 398 * returns true if the device goal seqno was updated. False otherwise. 399 */ 400 static bool vmw_fence_goal_new_locked(struct vmw_fence_manager *fman, 401 u32 passed_seqno) 402 { 403 u32 goal_seqno; 404 u32 *fifo_mem; 405 struct vmw_fence_obj *fence; 406 407 if (likely(!fman->seqno_valid)) 408 return false; 409 410 fifo_mem = fman->dev_priv->mmio_virt; 411 goal_seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE_GOAL); 412 if (likely(passed_seqno - goal_seqno >= VMW_FENCE_WRAP)) 413 return false; 414 415 fman->seqno_valid = false; 416 list_for_each_entry(fence, &fman->fence_list, head) { 417 if (!list_empty(&fence->seq_passed_actions)) { 418 fman->seqno_valid = true; 419 vmw_mmio_write(fence->base.seqno, 420 fifo_mem + SVGA_FIFO_FENCE_GOAL); 421 break; 422 } 423 } 424 425 return true; 426 } 427 428 429 /** 430 * vmw_fence_goal_check_locked - Replace the device fence goal seqno if 431 * needed. 432 * 433 * @fence: Pointer to a struct vmw_fence_obj the seqno of which should be 434 * considered as a device fence goal. 435 * 436 * This function should be called with the fence manager lock held. 437 * It is typically called when an action has been attached to a fence to 438 * check whether the seqno of that fence should be used for a fence 439 * goal interrupt. This is typically needed if the current fence goal is 440 * invalid, or has a higher seqno than that of the current fence object. 441 * 442 * returns true if the device goal seqno was updated. False otherwise. 443 */ 444 static bool vmw_fence_goal_check_locked(struct vmw_fence_obj *fence) 445 { 446 struct vmw_fence_manager *fman = fman_from_fence(fence); 447 u32 goal_seqno; 448 u32 *fifo_mem; 449 450 if (dma_fence_is_signaled_locked(&fence->base)) 451 return false; 452 453 fifo_mem = fman->dev_priv->mmio_virt; 454 goal_seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE_GOAL); 455 if (likely(fman->seqno_valid && 456 goal_seqno - fence->base.seqno < VMW_FENCE_WRAP)) 457 return false; 458 459 vmw_mmio_write(fence->base.seqno, fifo_mem + SVGA_FIFO_FENCE_GOAL); 460 fman->seqno_valid = true; 461 462 return true; 463 } 464 465 static void __vmw_fences_update(struct vmw_fence_manager *fman) 466 { 467 struct vmw_fence_obj *fence, *next_fence; 468 struct list_head action_list; 469 bool needs_rerun; 470 uint32_t seqno, new_seqno; 471 u32 *fifo_mem = fman->dev_priv->mmio_virt; 472 473 seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE); 474 rerun: 475 list_for_each_entry_safe(fence, next_fence, &fman->fence_list, head) { 476 if (seqno - fence->base.seqno < VMW_FENCE_WRAP) { 477 list_del_init(&fence->head); 478 dma_fence_signal_locked(&fence->base); 479 INIT_LIST_HEAD(&action_list); 480 list_splice_init(&fence->seq_passed_actions, 481 &action_list); 482 vmw_fences_perform_actions(fman, &action_list); 483 } else 484 break; 485 } 486 487 /* 488 * Rerun if the fence goal seqno was updated, and the 489 * hardware might have raced with that update, so that 490 * we missed a fence_goal irq. 491 */ 492 493 needs_rerun = vmw_fence_goal_new_locked(fman, seqno); 494 if (unlikely(needs_rerun)) { 495 new_seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE); 496 if (new_seqno != seqno) { 497 seqno = new_seqno; 498 goto rerun; 499 } 500 } 501 502 if (!list_empty(&fman->cleanup_list)) 503 (void) schedule_work(&fman->work); 504 } 505 506 void vmw_fences_update(struct vmw_fence_manager *fman) 507 { 508 spin_lock(&fman->lock); 509 __vmw_fences_update(fman); 510 spin_unlock(&fman->lock); 511 } 512 513 bool vmw_fence_obj_signaled(struct vmw_fence_obj *fence) 514 { 515 struct vmw_fence_manager *fman = fman_from_fence(fence); 516 517 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags)) 518 return 1; 519 520 vmw_fences_update(fman); 521 522 return dma_fence_is_signaled(&fence->base); 523 } 524 525 int vmw_fence_obj_wait(struct vmw_fence_obj *fence, bool lazy, 526 bool interruptible, unsigned long timeout) 527 { 528 long ret = dma_fence_wait_timeout(&fence->base, interruptible, timeout); 529 530 if (likely(ret > 0)) 531 return 0; 532 else if (ret == 0) 533 return -EBUSY; 534 else 535 return ret; 536 } 537 538 void vmw_fence_obj_flush(struct vmw_fence_obj *fence) 539 { 540 struct vmw_private *dev_priv = fman_from_fence(fence)->dev_priv; 541 542 vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC); 543 } 544 545 static void vmw_fence_destroy(struct vmw_fence_obj *fence) 546 { 547 dma_fence_free(&fence->base); 548 } 549 550 int vmw_fence_create(struct vmw_fence_manager *fman, 551 uint32_t seqno, 552 struct vmw_fence_obj **p_fence) 553 { 554 struct vmw_fence_obj *fence; 555 int ret; 556 557 fence = kzalloc(sizeof(*fence), GFP_KERNEL); 558 if (unlikely(!fence)) 559 return -ENOMEM; 560 561 ret = vmw_fence_obj_init(fman, fence, seqno, 562 vmw_fence_destroy); 563 if (unlikely(ret != 0)) 564 goto out_err_init; 565 566 *p_fence = fence; 567 return 0; 568 569 out_err_init: 570 kfree(fence); 571 return ret; 572 } 573 574 575 static void vmw_user_fence_destroy(struct vmw_fence_obj *fence) 576 { 577 struct vmw_user_fence *ufence = 578 container_of(fence, struct vmw_user_fence, fence); 579 struct vmw_fence_manager *fman = fman_from_fence(fence); 580 581 ttm_base_object_kfree(ufence, base); 582 /* 583 * Free kernel space accounting. 584 */ 585 ttm_mem_global_free(vmw_mem_glob(fman->dev_priv), 586 fman->user_fence_size); 587 } 588 589 static void vmw_user_fence_base_release(struct ttm_base_object **p_base) 590 { 591 struct ttm_base_object *base = *p_base; 592 struct vmw_user_fence *ufence = 593 container_of(base, struct vmw_user_fence, base); 594 struct vmw_fence_obj *fence = &ufence->fence; 595 596 *p_base = NULL; 597 vmw_fence_obj_unreference(&fence); 598 } 599 600 int vmw_user_fence_create(struct drm_file *file_priv, 601 struct vmw_fence_manager *fman, 602 uint32_t seqno, 603 struct vmw_fence_obj **p_fence, 604 uint32_t *p_handle) 605 { 606 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 607 struct vmw_user_fence *ufence; 608 struct vmw_fence_obj *tmp; 609 struct ttm_mem_global *mem_glob = vmw_mem_glob(fman->dev_priv); 610 struct ttm_operation_ctx ctx = { 611 .interruptible = false, 612 .no_wait_gpu = false 613 }; 614 int ret; 615 616 /* 617 * Kernel memory space accounting, since this object may 618 * be created by a user-space request. 619 */ 620 621 ret = ttm_mem_global_alloc(mem_glob, fman->user_fence_size, 622 &ctx); 623 if (unlikely(ret != 0)) 624 return ret; 625 626 ufence = kzalloc(sizeof(*ufence), GFP_KERNEL); 627 if (unlikely(!ufence)) { 628 ret = -ENOMEM; 629 goto out_no_object; 630 } 631 632 ret = vmw_fence_obj_init(fman, &ufence->fence, seqno, 633 vmw_user_fence_destroy); 634 if (unlikely(ret != 0)) { 635 kfree(ufence); 636 goto out_no_object; 637 } 638 639 /* 640 * The base object holds a reference which is freed in 641 * vmw_user_fence_base_release. 642 */ 643 tmp = vmw_fence_obj_reference(&ufence->fence); 644 ret = ttm_base_object_init(tfile, &ufence->base, false, 645 VMW_RES_FENCE, 646 &vmw_user_fence_base_release, NULL); 647 648 649 if (unlikely(ret != 0)) { 650 /* 651 * Free the base object's reference 652 */ 653 vmw_fence_obj_unreference(&tmp); 654 goto out_err; 655 } 656 657 *p_fence = &ufence->fence; 658 *p_handle = ufence->base.handle; 659 660 return 0; 661 out_err: 662 tmp = &ufence->fence; 663 vmw_fence_obj_unreference(&tmp); 664 out_no_object: 665 ttm_mem_global_free(mem_glob, fman->user_fence_size); 666 return ret; 667 } 668 669 670 /** 671 * vmw_wait_dma_fence - Wait for a dma fence 672 * 673 * @fman: pointer to a fence manager 674 * @fence: DMA fence to wait on 675 * 676 * This function handles the case when the fence is actually a fence 677 * array. If that's the case, it'll wait on each of the child fence 678 */ 679 int vmw_wait_dma_fence(struct vmw_fence_manager *fman, 680 struct dma_fence *fence) 681 { 682 struct dma_fence_array *fence_array; 683 int ret = 0; 684 int i; 685 686 687 if (dma_fence_is_signaled(fence)) 688 return 0; 689 690 if (!dma_fence_is_array(fence)) 691 return dma_fence_wait(fence, true); 692 693 /* From i915: Note that if the fence-array was created in 694 * signal-on-any mode, we should *not* decompose it into its individual 695 * fences. However, we don't currently store which mode the fence-array 696 * is operating in. Fortunately, the only user of signal-on-any is 697 * private to amdgpu and we should not see any incoming fence-array 698 * from sync-file being in signal-on-any mode. 699 */ 700 701 fence_array = to_dma_fence_array(fence); 702 for (i = 0; i < fence_array->num_fences; i++) { 703 struct dma_fence *child = fence_array->fences[i]; 704 705 ret = dma_fence_wait(child, true); 706 707 if (ret < 0) 708 return ret; 709 } 710 711 return 0; 712 } 713 714 715 /** 716 * vmw_fence_fifo_down - signal all unsignaled fence objects. 717 */ 718 719 void vmw_fence_fifo_down(struct vmw_fence_manager *fman) 720 { 721 struct list_head action_list; 722 int ret; 723 724 /* 725 * The list may be altered while we traverse it, so always 726 * restart when we've released the fman->lock. 727 */ 728 729 spin_lock(&fman->lock); 730 fman->fifo_down = true; 731 while (!list_empty(&fman->fence_list)) { 732 struct vmw_fence_obj *fence = 733 list_entry(fman->fence_list.prev, struct vmw_fence_obj, 734 head); 735 dma_fence_get(&fence->base); 736 spin_unlock(&fman->lock); 737 738 ret = vmw_fence_obj_wait(fence, false, false, 739 VMW_FENCE_WAIT_TIMEOUT); 740 741 if (unlikely(ret != 0)) { 742 list_del_init(&fence->head); 743 dma_fence_signal(&fence->base); 744 INIT_LIST_HEAD(&action_list); 745 list_splice_init(&fence->seq_passed_actions, 746 &action_list); 747 vmw_fences_perform_actions(fman, &action_list); 748 } 749 750 BUG_ON(!list_empty(&fence->head)); 751 dma_fence_put(&fence->base); 752 spin_lock(&fman->lock); 753 } 754 spin_unlock(&fman->lock); 755 } 756 757 void vmw_fence_fifo_up(struct vmw_fence_manager *fman) 758 { 759 spin_lock(&fman->lock); 760 fman->fifo_down = false; 761 spin_unlock(&fman->lock); 762 } 763 764 765 /** 766 * vmw_fence_obj_lookup - Look up a user-space fence object 767 * 768 * @tfile: A struct ttm_object_file identifying the caller. 769 * @handle: A handle identifying the fence object. 770 * @return: A struct vmw_user_fence base ttm object on success or 771 * an error pointer on failure. 772 * 773 * The fence object is looked up and type-checked. The caller needs 774 * to have opened the fence object first, but since that happens on 775 * creation and fence objects aren't shareable, that's not an 776 * issue currently. 777 */ 778 static struct ttm_base_object * 779 vmw_fence_obj_lookup(struct ttm_object_file *tfile, u32 handle) 780 { 781 struct ttm_base_object *base = ttm_base_object_lookup(tfile, handle); 782 783 if (!base) { 784 pr_err("Invalid fence object handle 0x%08lx.\n", 785 (unsigned long)handle); 786 return ERR_PTR(-EINVAL); 787 } 788 789 if (base->refcount_release != vmw_user_fence_base_release) { 790 pr_err("Invalid fence object handle 0x%08lx.\n", 791 (unsigned long)handle); 792 ttm_base_object_unref(&base); 793 return ERR_PTR(-EINVAL); 794 } 795 796 return base; 797 } 798 799 800 int vmw_fence_obj_wait_ioctl(struct drm_device *dev, void *data, 801 struct drm_file *file_priv) 802 { 803 struct drm_vmw_fence_wait_arg *arg = 804 (struct drm_vmw_fence_wait_arg *)data; 805 unsigned long timeout; 806 struct ttm_base_object *base; 807 struct vmw_fence_obj *fence; 808 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 809 int ret; 810 uint64_t wait_timeout = ((uint64_t)arg->timeout_us * HZ); 811 812 /* 813 * 64-bit division not present on 32-bit systems, so do an 814 * approximation. (Divide by 1000000). 815 */ 816 817 wait_timeout = (wait_timeout >> 20) + (wait_timeout >> 24) - 818 (wait_timeout >> 26); 819 820 if (!arg->cookie_valid) { 821 arg->cookie_valid = 1; 822 arg->kernel_cookie = jiffies + wait_timeout; 823 } 824 825 base = vmw_fence_obj_lookup(tfile, arg->handle); 826 if (IS_ERR(base)) 827 return PTR_ERR(base); 828 829 fence = &(container_of(base, struct vmw_user_fence, base)->fence); 830 831 timeout = jiffies; 832 if (time_after_eq(timeout, (unsigned long)arg->kernel_cookie)) { 833 ret = ((vmw_fence_obj_signaled(fence)) ? 834 0 : -EBUSY); 835 goto out; 836 } 837 838 timeout = (unsigned long)arg->kernel_cookie - timeout; 839 840 ret = vmw_fence_obj_wait(fence, arg->lazy, true, timeout); 841 842 out: 843 ttm_base_object_unref(&base); 844 845 /* 846 * Optionally unref the fence object. 847 */ 848 849 if (ret == 0 && (arg->wait_options & DRM_VMW_WAIT_OPTION_UNREF)) 850 return ttm_ref_object_base_unref(tfile, arg->handle, 851 TTM_REF_USAGE); 852 return ret; 853 } 854 855 int vmw_fence_obj_signaled_ioctl(struct drm_device *dev, void *data, 856 struct drm_file *file_priv) 857 { 858 struct drm_vmw_fence_signaled_arg *arg = 859 (struct drm_vmw_fence_signaled_arg *) data; 860 struct ttm_base_object *base; 861 struct vmw_fence_obj *fence; 862 struct vmw_fence_manager *fman; 863 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 864 struct vmw_private *dev_priv = vmw_priv(dev); 865 866 base = vmw_fence_obj_lookup(tfile, arg->handle); 867 if (IS_ERR(base)) 868 return PTR_ERR(base); 869 870 fence = &(container_of(base, struct vmw_user_fence, base)->fence); 871 fman = fman_from_fence(fence); 872 873 arg->signaled = vmw_fence_obj_signaled(fence); 874 875 arg->signaled_flags = arg->flags; 876 spin_lock(&fman->lock); 877 arg->passed_seqno = dev_priv->last_read_seqno; 878 spin_unlock(&fman->lock); 879 880 ttm_base_object_unref(&base); 881 882 return 0; 883 } 884 885 886 int vmw_fence_obj_unref_ioctl(struct drm_device *dev, void *data, 887 struct drm_file *file_priv) 888 { 889 struct drm_vmw_fence_arg *arg = 890 (struct drm_vmw_fence_arg *) data; 891 892 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile, 893 arg->handle, 894 TTM_REF_USAGE); 895 } 896 897 /** 898 * vmw_event_fence_action_seq_passed 899 * 900 * @action: The struct vmw_fence_action embedded in a struct 901 * vmw_event_fence_action. 902 * 903 * This function is called when the seqno of the fence where @action is 904 * attached has passed. It queues the event on the submitter's event list. 905 * This function is always called from atomic context. 906 */ 907 static void vmw_event_fence_action_seq_passed(struct vmw_fence_action *action) 908 { 909 struct vmw_event_fence_action *eaction = 910 container_of(action, struct vmw_event_fence_action, action); 911 struct drm_device *dev = eaction->dev; 912 struct drm_pending_event *event = eaction->event; 913 914 if (unlikely(event == NULL)) 915 return; 916 917 spin_lock_irq(&dev->event_lock); 918 919 if (likely(eaction->tv_sec != NULL)) { 920 struct timespec64 ts; 921 922 ktime_get_ts64(&ts); 923 /* monotonic time, so no y2038 overflow */ 924 *eaction->tv_sec = ts.tv_sec; 925 *eaction->tv_usec = ts.tv_nsec / NSEC_PER_USEC; 926 } 927 928 drm_send_event_locked(dev, eaction->event); 929 eaction->event = NULL; 930 spin_unlock_irq(&dev->event_lock); 931 } 932 933 /** 934 * vmw_event_fence_action_cleanup 935 * 936 * @action: The struct vmw_fence_action embedded in a struct 937 * vmw_event_fence_action. 938 * 939 * This function is the struct vmw_fence_action destructor. It's typically 940 * called from a workqueue. 941 */ 942 static void vmw_event_fence_action_cleanup(struct vmw_fence_action *action) 943 { 944 struct vmw_event_fence_action *eaction = 945 container_of(action, struct vmw_event_fence_action, action); 946 947 vmw_fence_obj_unreference(&eaction->fence); 948 kfree(eaction); 949 } 950 951 952 /** 953 * vmw_fence_obj_add_action - Add an action to a fence object. 954 * 955 * @fence - The fence object. 956 * @action - The action to add. 957 * 958 * Note that the action callbacks may be executed before this function 959 * returns. 960 */ 961 static void vmw_fence_obj_add_action(struct vmw_fence_obj *fence, 962 struct vmw_fence_action *action) 963 { 964 struct vmw_fence_manager *fman = fman_from_fence(fence); 965 bool run_update = false; 966 967 mutex_lock(&fman->goal_irq_mutex); 968 spin_lock(&fman->lock); 969 970 fman->pending_actions[action->type]++; 971 if (dma_fence_is_signaled_locked(&fence->base)) { 972 struct list_head action_list; 973 974 INIT_LIST_HEAD(&action_list); 975 list_add_tail(&action->head, &action_list); 976 vmw_fences_perform_actions(fman, &action_list); 977 } else { 978 list_add_tail(&action->head, &fence->seq_passed_actions); 979 980 /* 981 * This function may set fman::seqno_valid, so it must 982 * be run with the goal_irq_mutex held. 983 */ 984 run_update = vmw_fence_goal_check_locked(fence); 985 } 986 987 spin_unlock(&fman->lock); 988 989 if (run_update) { 990 if (!fman->goal_irq_on) { 991 fman->goal_irq_on = true; 992 vmw_goal_waiter_add(fman->dev_priv); 993 } 994 vmw_fences_update(fman); 995 } 996 mutex_unlock(&fman->goal_irq_mutex); 997 998 } 999 1000 /** 1001 * vmw_event_fence_action_create - Post an event for sending when a fence 1002 * object seqno has passed. 1003 * 1004 * @file_priv: The file connection on which the event should be posted. 1005 * @fence: The fence object on which to post the event. 1006 * @event: Event to be posted. This event should've been alloced 1007 * using k[mz]alloc, and should've been completely initialized. 1008 * @interruptible: Interruptible waits if possible. 1009 * 1010 * As a side effect, the object pointed to by @event may have been 1011 * freed when this function returns. If this function returns with 1012 * an error code, the caller needs to free that object. 1013 */ 1014 1015 int vmw_event_fence_action_queue(struct drm_file *file_priv, 1016 struct vmw_fence_obj *fence, 1017 struct drm_pending_event *event, 1018 uint32_t *tv_sec, 1019 uint32_t *tv_usec, 1020 bool interruptible) 1021 { 1022 struct vmw_event_fence_action *eaction; 1023 struct vmw_fence_manager *fman = fman_from_fence(fence); 1024 1025 eaction = kzalloc(sizeof(*eaction), GFP_KERNEL); 1026 if (unlikely(!eaction)) 1027 return -ENOMEM; 1028 1029 eaction->event = event; 1030 1031 eaction->action.seq_passed = vmw_event_fence_action_seq_passed; 1032 eaction->action.cleanup = vmw_event_fence_action_cleanup; 1033 eaction->action.type = VMW_ACTION_EVENT; 1034 1035 eaction->fence = vmw_fence_obj_reference(fence); 1036 eaction->dev = fman->dev_priv->dev; 1037 eaction->tv_sec = tv_sec; 1038 eaction->tv_usec = tv_usec; 1039 1040 vmw_fence_obj_add_action(fence, &eaction->action); 1041 1042 return 0; 1043 } 1044 1045 struct vmw_event_fence_pending { 1046 struct drm_pending_event base; 1047 struct drm_vmw_event_fence event; 1048 }; 1049 1050 static int vmw_event_fence_action_create(struct drm_file *file_priv, 1051 struct vmw_fence_obj *fence, 1052 uint32_t flags, 1053 uint64_t user_data, 1054 bool interruptible) 1055 { 1056 struct vmw_event_fence_pending *event; 1057 struct vmw_fence_manager *fman = fman_from_fence(fence); 1058 struct drm_device *dev = fman->dev_priv->dev; 1059 int ret; 1060 1061 event = kzalloc(sizeof(*event), GFP_KERNEL); 1062 if (unlikely(!event)) { 1063 DRM_ERROR("Failed to allocate an event.\n"); 1064 ret = -ENOMEM; 1065 goto out_no_space; 1066 } 1067 1068 event->event.base.type = DRM_VMW_EVENT_FENCE_SIGNALED; 1069 event->event.base.length = sizeof(*event); 1070 event->event.user_data = user_data; 1071 1072 ret = drm_event_reserve_init(dev, file_priv, &event->base, &event->event.base); 1073 1074 if (unlikely(ret != 0)) { 1075 DRM_ERROR("Failed to allocate event space for this file.\n"); 1076 kfree(event); 1077 goto out_no_space; 1078 } 1079 1080 if (flags & DRM_VMW_FE_FLAG_REQ_TIME) 1081 ret = vmw_event_fence_action_queue(file_priv, fence, 1082 &event->base, 1083 &event->event.tv_sec, 1084 &event->event.tv_usec, 1085 interruptible); 1086 else 1087 ret = vmw_event_fence_action_queue(file_priv, fence, 1088 &event->base, 1089 NULL, 1090 NULL, 1091 interruptible); 1092 if (ret != 0) 1093 goto out_no_queue; 1094 1095 return 0; 1096 1097 out_no_queue: 1098 drm_event_cancel_free(dev, &event->base); 1099 out_no_space: 1100 return ret; 1101 } 1102 1103 int vmw_fence_event_ioctl(struct drm_device *dev, void *data, 1104 struct drm_file *file_priv) 1105 { 1106 struct vmw_private *dev_priv = vmw_priv(dev); 1107 struct drm_vmw_fence_event_arg *arg = 1108 (struct drm_vmw_fence_event_arg *) data; 1109 struct vmw_fence_obj *fence = NULL; 1110 struct vmw_fpriv *vmw_fp = vmw_fpriv(file_priv); 1111 struct ttm_object_file *tfile = vmw_fp->tfile; 1112 struct drm_vmw_fence_rep __user *user_fence_rep = 1113 (struct drm_vmw_fence_rep __user *)(unsigned long) 1114 arg->fence_rep; 1115 uint32_t handle; 1116 int ret; 1117 1118 /* 1119 * Look up an existing fence object, 1120 * and if user-space wants a new reference, 1121 * add one. 1122 */ 1123 if (arg->handle) { 1124 struct ttm_base_object *base = 1125 vmw_fence_obj_lookup(tfile, arg->handle); 1126 1127 if (IS_ERR(base)) 1128 return PTR_ERR(base); 1129 1130 fence = &(container_of(base, struct vmw_user_fence, 1131 base)->fence); 1132 (void) vmw_fence_obj_reference(fence); 1133 1134 if (user_fence_rep != NULL) { 1135 ret = ttm_ref_object_add(vmw_fp->tfile, base, 1136 TTM_REF_USAGE, NULL, false); 1137 if (unlikely(ret != 0)) { 1138 DRM_ERROR("Failed to reference a fence " 1139 "object.\n"); 1140 goto out_no_ref_obj; 1141 } 1142 handle = base->handle; 1143 } 1144 ttm_base_object_unref(&base); 1145 } 1146 1147 /* 1148 * Create a new fence object. 1149 */ 1150 if (!fence) { 1151 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, 1152 &fence, 1153 (user_fence_rep) ? 1154 &handle : NULL); 1155 if (unlikely(ret != 0)) { 1156 DRM_ERROR("Fence event failed to create fence.\n"); 1157 return ret; 1158 } 1159 } 1160 1161 BUG_ON(fence == NULL); 1162 1163 ret = vmw_event_fence_action_create(file_priv, fence, 1164 arg->flags, 1165 arg->user_data, 1166 true); 1167 if (unlikely(ret != 0)) { 1168 if (ret != -ERESTARTSYS) 1169 DRM_ERROR("Failed to attach event to fence.\n"); 1170 goto out_no_create; 1171 } 1172 1173 vmw_execbuf_copy_fence_user(dev_priv, vmw_fp, 0, user_fence_rep, fence, 1174 handle, -1, NULL); 1175 vmw_fence_obj_unreference(&fence); 1176 return 0; 1177 out_no_create: 1178 if (user_fence_rep != NULL) 1179 ttm_ref_object_base_unref(tfile, handle, TTM_REF_USAGE); 1180 out_no_ref_obj: 1181 vmw_fence_obj_unreference(&fence); 1182 return ret; 1183 } 1184