xref: /openbmc/linux/drivers/gpu/drm/vmwgfx/vmwgfx_fence.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2011-2014 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include <drm/drmP.h>
29 #include "vmwgfx_drv.h"
30 
31 #define VMW_FENCE_WRAP (1 << 31)
32 
33 struct vmw_fence_manager {
34 	int num_fence_objects;
35 	struct vmw_private *dev_priv;
36 	spinlock_t lock;
37 	struct list_head fence_list;
38 	struct work_struct work;
39 	u32 user_fence_size;
40 	u32 fence_size;
41 	u32 event_fence_action_size;
42 	bool fifo_down;
43 	struct list_head cleanup_list;
44 	uint32_t pending_actions[VMW_ACTION_MAX];
45 	struct mutex goal_irq_mutex;
46 	bool goal_irq_on; /* Protected by @goal_irq_mutex */
47 	bool seqno_valid; /* Protected by @lock, and may not be set to true
48 			     without the @goal_irq_mutex held. */
49 	u64 ctx;
50 };
51 
52 struct vmw_user_fence {
53 	struct ttm_base_object base;
54 	struct vmw_fence_obj fence;
55 };
56 
57 /**
58  * struct vmw_event_fence_action - fence action that delivers a drm event.
59  *
60  * @e: A struct drm_pending_event that controls the event delivery.
61  * @action: A struct vmw_fence_action to hook up to a fence.
62  * @fence: A referenced pointer to the fence to keep it alive while @action
63  * hangs on it.
64  * @dev: Pointer to a struct drm_device so we can access the event stuff.
65  * @kref: Both @e and @action has destructors, so we need to refcount.
66  * @size: Size accounted for this object.
67  * @tv_sec: If non-null, the variable pointed to will be assigned
68  * current time tv_sec val when the fence signals.
69  * @tv_usec: Must be set if @tv_sec is set, and the variable pointed to will
70  * be assigned the current time tv_usec val when the fence signals.
71  */
72 struct vmw_event_fence_action {
73 	struct vmw_fence_action action;
74 
75 	struct drm_pending_event *event;
76 	struct vmw_fence_obj *fence;
77 	struct drm_device *dev;
78 
79 	uint32_t *tv_sec;
80 	uint32_t *tv_usec;
81 };
82 
83 static struct vmw_fence_manager *
84 fman_from_fence(struct vmw_fence_obj *fence)
85 {
86 	return container_of(fence->base.lock, struct vmw_fence_manager, lock);
87 }
88 
89 /**
90  * Note on fencing subsystem usage of irqs:
91  * Typically the vmw_fences_update function is called
92  *
93  * a) When a new fence seqno has been submitted by the fifo code.
94  * b) On-demand when we have waiters. Sleeping waiters will switch on the
95  * ANY_FENCE irq and call vmw_fences_update function each time an ANY_FENCE
96  * irq is received. When the last fence waiter is gone, that IRQ is masked
97  * away.
98  *
99  * In situations where there are no waiters and we don't submit any new fences,
100  * fence objects may not be signaled. This is perfectly OK, since there are
101  * no consumers of the signaled data, but that is NOT ok when there are fence
102  * actions attached to a fence. The fencing subsystem then makes use of the
103  * FENCE_GOAL irq and sets the fence goal seqno to that of the next fence
104  * which has an action attached, and each time vmw_fences_update is called,
105  * the subsystem makes sure the fence goal seqno is updated.
106  *
107  * The fence goal seqno irq is on as long as there are unsignaled fence
108  * objects with actions attached to them.
109  */
110 
111 static void vmw_fence_obj_destroy(struct dma_fence *f)
112 {
113 	struct vmw_fence_obj *fence =
114 		container_of(f, struct vmw_fence_obj, base);
115 
116 	struct vmw_fence_manager *fman = fman_from_fence(fence);
117 
118 	spin_lock(&fman->lock);
119 	list_del_init(&fence->head);
120 	--fman->num_fence_objects;
121 	spin_unlock(&fman->lock);
122 	fence->destroy(fence);
123 }
124 
125 static const char *vmw_fence_get_driver_name(struct dma_fence *f)
126 {
127 	return "vmwgfx";
128 }
129 
130 static const char *vmw_fence_get_timeline_name(struct dma_fence *f)
131 {
132 	return "svga";
133 }
134 
135 static bool vmw_fence_enable_signaling(struct dma_fence *f)
136 {
137 	struct vmw_fence_obj *fence =
138 		container_of(f, struct vmw_fence_obj, base);
139 
140 	struct vmw_fence_manager *fman = fman_from_fence(fence);
141 	struct vmw_private *dev_priv = fman->dev_priv;
142 
143 	u32 *fifo_mem = dev_priv->mmio_virt;
144 	u32 seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE);
145 	if (seqno - fence->base.seqno < VMW_FENCE_WRAP)
146 		return false;
147 
148 	vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC);
149 
150 	return true;
151 }
152 
153 struct vmwgfx_wait_cb {
154 	struct dma_fence_cb base;
155 	struct task_struct *task;
156 };
157 
158 static void
159 vmwgfx_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
160 {
161 	struct vmwgfx_wait_cb *wait =
162 		container_of(cb, struct vmwgfx_wait_cb, base);
163 
164 	wake_up_process(wait->task);
165 }
166 
167 static void __vmw_fences_update(struct vmw_fence_manager *fman);
168 
169 static long vmw_fence_wait(struct dma_fence *f, bool intr, signed long timeout)
170 {
171 	struct vmw_fence_obj *fence =
172 		container_of(f, struct vmw_fence_obj, base);
173 
174 	struct vmw_fence_manager *fman = fman_from_fence(fence);
175 	struct vmw_private *dev_priv = fman->dev_priv;
176 	struct vmwgfx_wait_cb cb;
177 	long ret = timeout;
178 
179 	if (likely(vmw_fence_obj_signaled(fence)))
180 		return timeout;
181 
182 	vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC);
183 	vmw_seqno_waiter_add(dev_priv);
184 
185 	spin_lock(f->lock);
186 
187 	if (intr && signal_pending(current)) {
188 		ret = -ERESTARTSYS;
189 		goto out;
190 	}
191 
192 	cb.base.func = vmwgfx_wait_cb;
193 	cb.task = current;
194 	list_add(&cb.base.node, &f->cb_list);
195 
196 	for (;;) {
197 		__vmw_fences_update(fman);
198 
199 		/*
200 		 * We can use the barrier free __set_current_state() since
201 		 * DMA_FENCE_FLAG_SIGNALED_BIT + wakeup is protected by the
202 		 * fence spinlock.
203 		 */
204 		if (intr)
205 			__set_current_state(TASK_INTERRUPTIBLE);
206 		else
207 			__set_current_state(TASK_UNINTERRUPTIBLE);
208 
209 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &f->flags)) {
210 			if (ret == 0 && timeout > 0)
211 				ret = 1;
212 			break;
213 		}
214 
215 		if (intr && signal_pending(current)) {
216 			ret = -ERESTARTSYS;
217 			break;
218 		}
219 
220 		if (ret == 0)
221 			break;
222 
223 		spin_unlock(f->lock);
224 
225 		ret = schedule_timeout(ret);
226 
227 		spin_lock(f->lock);
228 	}
229 	__set_current_state(TASK_RUNNING);
230 	if (!list_empty(&cb.base.node))
231 		list_del(&cb.base.node);
232 
233 out:
234 	spin_unlock(f->lock);
235 
236 	vmw_seqno_waiter_remove(dev_priv);
237 
238 	return ret;
239 }
240 
241 static const struct dma_fence_ops vmw_fence_ops = {
242 	.get_driver_name = vmw_fence_get_driver_name,
243 	.get_timeline_name = vmw_fence_get_timeline_name,
244 	.enable_signaling = vmw_fence_enable_signaling,
245 	.wait = vmw_fence_wait,
246 	.release = vmw_fence_obj_destroy,
247 };
248 
249 
250 /**
251  * Execute signal actions on fences recently signaled.
252  * This is done from a workqueue so we don't have to execute
253  * signal actions from atomic context.
254  */
255 
256 static void vmw_fence_work_func(struct work_struct *work)
257 {
258 	struct vmw_fence_manager *fman =
259 		container_of(work, struct vmw_fence_manager, work);
260 	struct list_head list;
261 	struct vmw_fence_action *action, *next_action;
262 	bool seqno_valid;
263 
264 	do {
265 		INIT_LIST_HEAD(&list);
266 		mutex_lock(&fman->goal_irq_mutex);
267 
268 		spin_lock(&fman->lock);
269 		list_splice_init(&fman->cleanup_list, &list);
270 		seqno_valid = fman->seqno_valid;
271 		spin_unlock(&fman->lock);
272 
273 		if (!seqno_valid && fman->goal_irq_on) {
274 			fman->goal_irq_on = false;
275 			vmw_goal_waiter_remove(fman->dev_priv);
276 		}
277 		mutex_unlock(&fman->goal_irq_mutex);
278 
279 		if (list_empty(&list))
280 			return;
281 
282 		/*
283 		 * At this point, only we should be able to manipulate the
284 		 * list heads of the actions we have on the private list.
285 		 * hence fman::lock not held.
286 		 */
287 
288 		list_for_each_entry_safe(action, next_action, &list, head) {
289 			list_del_init(&action->head);
290 			if (action->cleanup)
291 				action->cleanup(action);
292 		}
293 	} while (1);
294 }
295 
296 struct vmw_fence_manager *vmw_fence_manager_init(struct vmw_private *dev_priv)
297 {
298 	struct vmw_fence_manager *fman = kzalloc(sizeof(*fman), GFP_KERNEL);
299 
300 	if (unlikely(!fman))
301 		return NULL;
302 
303 	fman->dev_priv = dev_priv;
304 	spin_lock_init(&fman->lock);
305 	INIT_LIST_HEAD(&fman->fence_list);
306 	INIT_LIST_HEAD(&fman->cleanup_list);
307 	INIT_WORK(&fman->work, &vmw_fence_work_func);
308 	fman->fifo_down = true;
309 	fman->user_fence_size = ttm_round_pot(sizeof(struct vmw_user_fence));
310 	fman->fence_size = ttm_round_pot(sizeof(struct vmw_fence_obj));
311 	fman->event_fence_action_size =
312 		ttm_round_pot(sizeof(struct vmw_event_fence_action));
313 	mutex_init(&fman->goal_irq_mutex);
314 	fman->ctx = dma_fence_context_alloc(1);
315 
316 	return fman;
317 }
318 
319 void vmw_fence_manager_takedown(struct vmw_fence_manager *fman)
320 {
321 	bool lists_empty;
322 
323 	(void) cancel_work_sync(&fman->work);
324 
325 	spin_lock(&fman->lock);
326 	lists_empty = list_empty(&fman->fence_list) &&
327 		list_empty(&fman->cleanup_list);
328 	spin_unlock(&fman->lock);
329 
330 	BUG_ON(!lists_empty);
331 	kfree(fman);
332 }
333 
334 static int vmw_fence_obj_init(struct vmw_fence_manager *fman,
335 			      struct vmw_fence_obj *fence, u32 seqno,
336 			      void (*destroy) (struct vmw_fence_obj *fence))
337 {
338 	int ret = 0;
339 
340 	dma_fence_init(&fence->base, &vmw_fence_ops, &fman->lock,
341 		       fman->ctx, seqno);
342 	INIT_LIST_HEAD(&fence->seq_passed_actions);
343 	fence->destroy = destroy;
344 
345 	spin_lock(&fman->lock);
346 	if (unlikely(fman->fifo_down)) {
347 		ret = -EBUSY;
348 		goto out_unlock;
349 	}
350 	list_add_tail(&fence->head, &fman->fence_list);
351 	++fman->num_fence_objects;
352 
353 out_unlock:
354 	spin_unlock(&fman->lock);
355 	return ret;
356 
357 }
358 
359 static void vmw_fences_perform_actions(struct vmw_fence_manager *fman,
360 				struct list_head *list)
361 {
362 	struct vmw_fence_action *action, *next_action;
363 
364 	list_for_each_entry_safe(action, next_action, list, head) {
365 		list_del_init(&action->head);
366 		fman->pending_actions[action->type]--;
367 		if (action->seq_passed != NULL)
368 			action->seq_passed(action);
369 
370 		/*
371 		 * Add the cleanup action to the cleanup list so that
372 		 * it will be performed by a worker task.
373 		 */
374 
375 		list_add_tail(&action->head, &fman->cleanup_list);
376 	}
377 }
378 
379 /**
380  * vmw_fence_goal_new_locked - Figure out a new device fence goal
381  * seqno if needed.
382  *
383  * @fman: Pointer to a fence manager.
384  * @passed_seqno: The seqno the device currently signals as passed.
385  *
386  * This function should be called with the fence manager lock held.
387  * It is typically called when we have a new passed_seqno, and
388  * we might need to update the fence goal. It checks to see whether
389  * the current fence goal has already passed, and, in that case,
390  * scans through all unsignaled fences to get the next fence object with an
391  * action attached, and sets the seqno of that fence as a new fence goal.
392  *
393  * returns true if the device goal seqno was updated. False otherwise.
394  */
395 static bool vmw_fence_goal_new_locked(struct vmw_fence_manager *fman,
396 				      u32 passed_seqno)
397 {
398 	u32 goal_seqno;
399 	u32 *fifo_mem;
400 	struct vmw_fence_obj *fence;
401 
402 	if (likely(!fman->seqno_valid))
403 		return false;
404 
405 	fifo_mem = fman->dev_priv->mmio_virt;
406 	goal_seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE_GOAL);
407 	if (likely(passed_seqno - goal_seqno >= VMW_FENCE_WRAP))
408 		return false;
409 
410 	fman->seqno_valid = false;
411 	list_for_each_entry(fence, &fman->fence_list, head) {
412 		if (!list_empty(&fence->seq_passed_actions)) {
413 			fman->seqno_valid = true;
414 			vmw_mmio_write(fence->base.seqno,
415 				       fifo_mem + SVGA_FIFO_FENCE_GOAL);
416 			break;
417 		}
418 	}
419 
420 	return true;
421 }
422 
423 
424 /**
425  * vmw_fence_goal_check_locked - Replace the device fence goal seqno if
426  * needed.
427  *
428  * @fence: Pointer to a struct vmw_fence_obj the seqno of which should be
429  * considered as a device fence goal.
430  *
431  * This function should be called with the fence manager lock held.
432  * It is typically called when an action has been attached to a fence to
433  * check whether the seqno of that fence should be used for a fence
434  * goal interrupt. This is typically needed if the current fence goal is
435  * invalid, or has a higher seqno than that of the current fence object.
436  *
437  * returns true if the device goal seqno was updated. False otherwise.
438  */
439 static bool vmw_fence_goal_check_locked(struct vmw_fence_obj *fence)
440 {
441 	struct vmw_fence_manager *fman = fman_from_fence(fence);
442 	u32 goal_seqno;
443 	u32 *fifo_mem;
444 
445 	if (dma_fence_is_signaled_locked(&fence->base))
446 		return false;
447 
448 	fifo_mem = fman->dev_priv->mmio_virt;
449 	goal_seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE_GOAL);
450 	if (likely(fman->seqno_valid &&
451 		   goal_seqno - fence->base.seqno < VMW_FENCE_WRAP))
452 		return false;
453 
454 	vmw_mmio_write(fence->base.seqno, fifo_mem + SVGA_FIFO_FENCE_GOAL);
455 	fman->seqno_valid = true;
456 
457 	return true;
458 }
459 
460 static void __vmw_fences_update(struct vmw_fence_manager *fman)
461 {
462 	struct vmw_fence_obj *fence, *next_fence;
463 	struct list_head action_list;
464 	bool needs_rerun;
465 	uint32_t seqno, new_seqno;
466 	u32 *fifo_mem = fman->dev_priv->mmio_virt;
467 
468 	seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE);
469 rerun:
470 	list_for_each_entry_safe(fence, next_fence, &fman->fence_list, head) {
471 		if (seqno - fence->base.seqno < VMW_FENCE_WRAP) {
472 			list_del_init(&fence->head);
473 			dma_fence_signal_locked(&fence->base);
474 			INIT_LIST_HEAD(&action_list);
475 			list_splice_init(&fence->seq_passed_actions,
476 					 &action_list);
477 			vmw_fences_perform_actions(fman, &action_list);
478 		} else
479 			break;
480 	}
481 
482 	/*
483 	 * Rerun if the fence goal seqno was updated, and the
484 	 * hardware might have raced with that update, so that
485 	 * we missed a fence_goal irq.
486 	 */
487 
488 	needs_rerun = vmw_fence_goal_new_locked(fman, seqno);
489 	if (unlikely(needs_rerun)) {
490 		new_seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE);
491 		if (new_seqno != seqno) {
492 			seqno = new_seqno;
493 			goto rerun;
494 		}
495 	}
496 
497 	if (!list_empty(&fman->cleanup_list))
498 		(void) schedule_work(&fman->work);
499 }
500 
501 void vmw_fences_update(struct vmw_fence_manager *fman)
502 {
503 	spin_lock(&fman->lock);
504 	__vmw_fences_update(fman);
505 	spin_unlock(&fman->lock);
506 }
507 
508 bool vmw_fence_obj_signaled(struct vmw_fence_obj *fence)
509 {
510 	struct vmw_fence_manager *fman = fman_from_fence(fence);
511 
512 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags))
513 		return 1;
514 
515 	vmw_fences_update(fman);
516 
517 	return dma_fence_is_signaled(&fence->base);
518 }
519 
520 int vmw_fence_obj_wait(struct vmw_fence_obj *fence, bool lazy,
521 		       bool interruptible, unsigned long timeout)
522 {
523 	long ret = dma_fence_wait_timeout(&fence->base, interruptible, timeout);
524 
525 	if (likely(ret > 0))
526 		return 0;
527 	else if (ret == 0)
528 		return -EBUSY;
529 	else
530 		return ret;
531 }
532 
533 void vmw_fence_obj_flush(struct vmw_fence_obj *fence)
534 {
535 	struct vmw_private *dev_priv = fman_from_fence(fence)->dev_priv;
536 
537 	vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC);
538 }
539 
540 static void vmw_fence_destroy(struct vmw_fence_obj *fence)
541 {
542 	dma_fence_free(&fence->base);
543 }
544 
545 int vmw_fence_create(struct vmw_fence_manager *fman,
546 		     uint32_t seqno,
547 		     struct vmw_fence_obj **p_fence)
548 {
549 	struct vmw_fence_obj *fence;
550  	int ret;
551 
552 	fence = kzalloc(sizeof(*fence), GFP_KERNEL);
553 	if (unlikely(!fence))
554 		return -ENOMEM;
555 
556 	ret = vmw_fence_obj_init(fman, fence, seqno,
557 				 vmw_fence_destroy);
558 	if (unlikely(ret != 0))
559 		goto out_err_init;
560 
561 	*p_fence = fence;
562 	return 0;
563 
564 out_err_init:
565 	kfree(fence);
566 	return ret;
567 }
568 
569 
570 static void vmw_user_fence_destroy(struct vmw_fence_obj *fence)
571 {
572 	struct vmw_user_fence *ufence =
573 		container_of(fence, struct vmw_user_fence, fence);
574 	struct vmw_fence_manager *fman = fman_from_fence(fence);
575 
576 	ttm_base_object_kfree(ufence, base);
577 	/*
578 	 * Free kernel space accounting.
579 	 */
580 	ttm_mem_global_free(vmw_mem_glob(fman->dev_priv),
581 			    fman->user_fence_size);
582 }
583 
584 static void vmw_user_fence_base_release(struct ttm_base_object **p_base)
585 {
586 	struct ttm_base_object *base = *p_base;
587 	struct vmw_user_fence *ufence =
588 		container_of(base, struct vmw_user_fence, base);
589 	struct vmw_fence_obj *fence = &ufence->fence;
590 
591 	*p_base = NULL;
592 	vmw_fence_obj_unreference(&fence);
593 }
594 
595 int vmw_user_fence_create(struct drm_file *file_priv,
596 			  struct vmw_fence_manager *fman,
597 			  uint32_t seqno,
598 			  struct vmw_fence_obj **p_fence,
599 			  uint32_t *p_handle)
600 {
601 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
602 	struct vmw_user_fence *ufence;
603 	struct vmw_fence_obj *tmp;
604 	struct ttm_mem_global *mem_glob = vmw_mem_glob(fman->dev_priv);
605 	struct ttm_operation_ctx ctx = {
606 		.interruptible = false,
607 		.no_wait_gpu = false
608 	};
609 	int ret;
610 
611 	/*
612 	 * Kernel memory space accounting, since this object may
613 	 * be created by a user-space request.
614 	 */
615 
616 	ret = ttm_mem_global_alloc(mem_glob, fman->user_fence_size,
617 				   &ctx);
618 	if (unlikely(ret != 0))
619 		return ret;
620 
621 	ufence = kzalloc(sizeof(*ufence), GFP_KERNEL);
622 	if (unlikely(!ufence)) {
623 		ret = -ENOMEM;
624 		goto out_no_object;
625 	}
626 
627 	ret = vmw_fence_obj_init(fman, &ufence->fence, seqno,
628 				 vmw_user_fence_destroy);
629 	if (unlikely(ret != 0)) {
630 		kfree(ufence);
631 		goto out_no_object;
632 	}
633 
634 	/*
635 	 * The base object holds a reference which is freed in
636 	 * vmw_user_fence_base_release.
637 	 */
638 	tmp = vmw_fence_obj_reference(&ufence->fence);
639 	ret = ttm_base_object_init(tfile, &ufence->base, false,
640 				   VMW_RES_FENCE,
641 				   &vmw_user_fence_base_release, NULL);
642 
643 
644 	if (unlikely(ret != 0)) {
645 		/*
646 		 * Free the base object's reference
647 		 */
648 		vmw_fence_obj_unreference(&tmp);
649 		goto out_err;
650 	}
651 
652 	*p_fence = &ufence->fence;
653 	*p_handle = ufence->base.hash.key;
654 
655 	return 0;
656 out_err:
657 	tmp = &ufence->fence;
658 	vmw_fence_obj_unreference(&tmp);
659 out_no_object:
660 	ttm_mem_global_free(mem_glob, fman->user_fence_size);
661 	return ret;
662 }
663 
664 
665 /**
666  * vmw_wait_dma_fence - Wait for a dma fence
667  *
668  * @fman: pointer to a fence manager
669  * @fence: DMA fence to wait on
670  *
671  * This function handles the case when the fence is actually a fence
672  * array.  If that's the case, it'll wait on each of the child fence
673  */
674 int vmw_wait_dma_fence(struct vmw_fence_manager *fman,
675 		       struct dma_fence *fence)
676 {
677 	struct dma_fence_array *fence_array;
678 	int ret = 0;
679 	int i;
680 
681 
682 	if (dma_fence_is_signaled(fence))
683 		return 0;
684 
685 	if (!dma_fence_is_array(fence))
686 		return dma_fence_wait(fence, true);
687 
688 	/* From i915: Note that if the fence-array was created in
689 	 * signal-on-any mode, we should *not* decompose it into its individual
690 	 * fences. However, we don't currently store which mode the fence-array
691 	 * is operating in. Fortunately, the only user of signal-on-any is
692 	 * private to amdgpu and we should not see any incoming fence-array
693 	 * from sync-file being in signal-on-any mode.
694 	 */
695 
696 	fence_array = to_dma_fence_array(fence);
697 	for (i = 0; i < fence_array->num_fences; i++) {
698 		struct dma_fence *child = fence_array->fences[i];
699 
700 		ret = dma_fence_wait(child, true);
701 
702 		if (ret < 0)
703 			return ret;
704 	}
705 
706 	return 0;
707 }
708 
709 
710 /**
711  * vmw_fence_fifo_down - signal all unsignaled fence objects.
712  */
713 
714 void vmw_fence_fifo_down(struct vmw_fence_manager *fman)
715 {
716 	struct list_head action_list;
717 	int ret;
718 
719 	/*
720 	 * The list may be altered while we traverse it, so always
721 	 * restart when we've released the fman->lock.
722 	 */
723 
724 	spin_lock(&fman->lock);
725 	fman->fifo_down = true;
726 	while (!list_empty(&fman->fence_list)) {
727 		struct vmw_fence_obj *fence =
728 			list_entry(fman->fence_list.prev, struct vmw_fence_obj,
729 				   head);
730 		dma_fence_get(&fence->base);
731 		spin_unlock(&fman->lock);
732 
733 		ret = vmw_fence_obj_wait(fence, false, false,
734 					 VMW_FENCE_WAIT_TIMEOUT);
735 
736 		if (unlikely(ret != 0)) {
737 			list_del_init(&fence->head);
738 			dma_fence_signal(&fence->base);
739 			INIT_LIST_HEAD(&action_list);
740 			list_splice_init(&fence->seq_passed_actions,
741 					 &action_list);
742 			vmw_fences_perform_actions(fman, &action_list);
743 		}
744 
745 		BUG_ON(!list_empty(&fence->head));
746 		dma_fence_put(&fence->base);
747 		spin_lock(&fman->lock);
748 	}
749 	spin_unlock(&fman->lock);
750 }
751 
752 void vmw_fence_fifo_up(struct vmw_fence_manager *fman)
753 {
754 	spin_lock(&fman->lock);
755 	fman->fifo_down = false;
756 	spin_unlock(&fman->lock);
757 }
758 
759 
760 /**
761  * vmw_fence_obj_lookup - Look up a user-space fence object
762  *
763  * @tfile: A struct ttm_object_file identifying the caller.
764  * @handle: A handle identifying the fence object.
765  * @return: A struct vmw_user_fence base ttm object on success or
766  * an error pointer on failure.
767  *
768  * The fence object is looked up and type-checked. The caller needs
769  * to have opened the fence object first, but since that happens on
770  * creation and fence objects aren't shareable, that's not an
771  * issue currently.
772  */
773 static struct ttm_base_object *
774 vmw_fence_obj_lookup(struct ttm_object_file *tfile, u32 handle)
775 {
776 	struct ttm_base_object *base = ttm_base_object_lookup(tfile, handle);
777 
778 	if (!base) {
779 		pr_err("Invalid fence object handle 0x%08lx.\n",
780 		       (unsigned long)handle);
781 		return ERR_PTR(-EINVAL);
782 	}
783 
784 	if (base->refcount_release != vmw_user_fence_base_release) {
785 		pr_err("Invalid fence object handle 0x%08lx.\n",
786 		       (unsigned long)handle);
787 		ttm_base_object_unref(&base);
788 		return ERR_PTR(-EINVAL);
789 	}
790 
791 	return base;
792 }
793 
794 
795 int vmw_fence_obj_wait_ioctl(struct drm_device *dev, void *data,
796 			     struct drm_file *file_priv)
797 {
798 	struct drm_vmw_fence_wait_arg *arg =
799 	    (struct drm_vmw_fence_wait_arg *)data;
800 	unsigned long timeout;
801 	struct ttm_base_object *base;
802 	struct vmw_fence_obj *fence;
803 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
804 	int ret;
805 	uint64_t wait_timeout = ((uint64_t)arg->timeout_us * HZ);
806 
807 	/*
808 	 * 64-bit division not present on 32-bit systems, so do an
809 	 * approximation. (Divide by 1000000).
810 	 */
811 
812 	wait_timeout = (wait_timeout >> 20) + (wait_timeout >> 24) -
813 	  (wait_timeout >> 26);
814 
815 	if (!arg->cookie_valid) {
816 		arg->cookie_valid = 1;
817 		arg->kernel_cookie = jiffies + wait_timeout;
818 	}
819 
820 	base = vmw_fence_obj_lookup(tfile, arg->handle);
821 	if (IS_ERR(base))
822 		return PTR_ERR(base);
823 
824 	fence = &(container_of(base, struct vmw_user_fence, base)->fence);
825 
826 	timeout = jiffies;
827 	if (time_after_eq(timeout, (unsigned long)arg->kernel_cookie)) {
828 		ret = ((vmw_fence_obj_signaled(fence)) ?
829 		       0 : -EBUSY);
830 		goto out;
831 	}
832 
833 	timeout = (unsigned long)arg->kernel_cookie - timeout;
834 
835 	ret = vmw_fence_obj_wait(fence, arg->lazy, true, timeout);
836 
837 out:
838 	ttm_base_object_unref(&base);
839 
840 	/*
841 	 * Optionally unref the fence object.
842 	 */
843 
844 	if (ret == 0 && (arg->wait_options & DRM_VMW_WAIT_OPTION_UNREF))
845 		return ttm_ref_object_base_unref(tfile, arg->handle,
846 						 TTM_REF_USAGE);
847 	return ret;
848 }
849 
850 int vmw_fence_obj_signaled_ioctl(struct drm_device *dev, void *data,
851 				 struct drm_file *file_priv)
852 {
853 	struct drm_vmw_fence_signaled_arg *arg =
854 		(struct drm_vmw_fence_signaled_arg *) data;
855 	struct ttm_base_object *base;
856 	struct vmw_fence_obj *fence;
857 	struct vmw_fence_manager *fman;
858 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
859 	struct vmw_private *dev_priv = vmw_priv(dev);
860 
861 	base = vmw_fence_obj_lookup(tfile, arg->handle);
862 	if (IS_ERR(base))
863 		return PTR_ERR(base);
864 
865 	fence = &(container_of(base, struct vmw_user_fence, base)->fence);
866 	fman = fman_from_fence(fence);
867 
868 	arg->signaled = vmw_fence_obj_signaled(fence);
869 
870 	arg->signaled_flags = arg->flags;
871 	spin_lock(&fman->lock);
872 	arg->passed_seqno = dev_priv->last_read_seqno;
873 	spin_unlock(&fman->lock);
874 
875 	ttm_base_object_unref(&base);
876 
877 	return 0;
878 }
879 
880 
881 int vmw_fence_obj_unref_ioctl(struct drm_device *dev, void *data,
882 			      struct drm_file *file_priv)
883 {
884 	struct drm_vmw_fence_arg *arg =
885 		(struct drm_vmw_fence_arg *) data;
886 
887 	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
888 					 arg->handle,
889 					 TTM_REF_USAGE);
890 }
891 
892 /**
893  * vmw_event_fence_action_seq_passed
894  *
895  * @action: The struct vmw_fence_action embedded in a struct
896  * vmw_event_fence_action.
897  *
898  * This function is called when the seqno of the fence where @action is
899  * attached has passed. It queues the event on the submitter's event list.
900  * This function is always called from atomic context.
901  */
902 static void vmw_event_fence_action_seq_passed(struct vmw_fence_action *action)
903 {
904 	struct vmw_event_fence_action *eaction =
905 		container_of(action, struct vmw_event_fence_action, action);
906 	struct drm_device *dev = eaction->dev;
907 	struct drm_pending_event *event = eaction->event;
908 	struct drm_file *file_priv;
909 
910 
911 	if (unlikely(event == NULL))
912 		return;
913 
914 	file_priv = event->file_priv;
915 	spin_lock_irq(&dev->event_lock);
916 
917 	if (likely(eaction->tv_sec != NULL)) {
918 		struct timespec64 ts;
919 
920 		ktime_get_ts64(&ts);
921 		/* monotonic time, so no y2038 overflow */
922 		*eaction->tv_sec = ts.tv_sec;
923 		*eaction->tv_usec = ts.tv_nsec / NSEC_PER_USEC;
924 	}
925 
926 	drm_send_event_locked(dev, eaction->event);
927 	eaction->event = NULL;
928 	spin_unlock_irq(&dev->event_lock);
929 }
930 
931 /**
932  * vmw_event_fence_action_cleanup
933  *
934  * @action: The struct vmw_fence_action embedded in a struct
935  * vmw_event_fence_action.
936  *
937  * This function is the struct vmw_fence_action destructor. It's typically
938  * called from a workqueue.
939  */
940 static void vmw_event_fence_action_cleanup(struct vmw_fence_action *action)
941 {
942 	struct vmw_event_fence_action *eaction =
943 		container_of(action, struct vmw_event_fence_action, action);
944 
945 	vmw_fence_obj_unreference(&eaction->fence);
946 	kfree(eaction);
947 }
948 
949 
950 /**
951  * vmw_fence_obj_add_action - Add an action to a fence object.
952  *
953  * @fence - The fence object.
954  * @action - The action to add.
955  *
956  * Note that the action callbacks may be executed before this function
957  * returns.
958  */
959 static void vmw_fence_obj_add_action(struct vmw_fence_obj *fence,
960 			      struct vmw_fence_action *action)
961 {
962 	struct vmw_fence_manager *fman = fman_from_fence(fence);
963 	bool run_update = false;
964 
965 	mutex_lock(&fman->goal_irq_mutex);
966 	spin_lock(&fman->lock);
967 
968 	fman->pending_actions[action->type]++;
969 	if (dma_fence_is_signaled_locked(&fence->base)) {
970 		struct list_head action_list;
971 
972 		INIT_LIST_HEAD(&action_list);
973 		list_add_tail(&action->head, &action_list);
974 		vmw_fences_perform_actions(fman, &action_list);
975 	} else {
976 		list_add_tail(&action->head, &fence->seq_passed_actions);
977 
978 		/*
979 		 * This function may set fman::seqno_valid, so it must
980 		 * be run with the goal_irq_mutex held.
981 		 */
982 		run_update = vmw_fence_goal_check_locked(fence);
983 	}
984 
985 	spin_unlock(&fman->lock);
986 
987 	if (run_update) {
988 		if (!fman->goal_irq_on) {
989 			fman->goal_irq_on = true;
990 			vmw_goal_waiter_add(fman->dev_priv);
991 		}
992 		vmw_fences_update(fman);
993 	}
994 	mutex_unlock(&fman->goal_irq_mutex);
995 
996 }
997 
998 /**
999  * vmw_event_fence_action_create - Post an event for sending when a fence
1000  * object seqno has passed.
1001  *
1002  * @file_priv: The file connection on which the event should be posted.
1003  * @fence: The fence object on which to post the event.
1004  * @event: Event to be posted. This event should've been alloced
1005  * using k[mz]alloc, and should've been completely initialized.
1006  * @interruptible: Interruptible waits if possible.
1007  *
1008  * As a side effect, the object pointed to by @event may have been
1009  * freed when this function returns. If this function returns with
1010  * an error code, the caller needs to free that object.
1011  */
1012 
1013 int vmw_event_fence_action_queue(struct drm_file *file_priv,
1014 				 struct vmw_fence_obj *fence,
1015 				 struct drm_pending_event *event,
1016 				 uint32_t *tv_sec,
1017 				 uint32_t *tv_usec,
1018 				 bool interruptible)
1019 {
1020 	struct vmw_event_fence_action *eaction;
1021 	struct vmw_fence_manager *fman = fman_from_fence(fence);
1022 
1023 	eaction = kzalloc(sizeof(*eaction), GFP_KERNEL);
1024 	if (unlikely(!eaction))
1025 		return -ENOMEM;
1026 
1027 	eaction->event = event;
1028 
1029 	eaction->action.seq_passed = vmw_event_fence_action_seq_passed;
1030 	eaction->action.cleanup = vmw_event_fence_action_cleanup;
1031 	eaction->action.type = VMW_ACTION_EVENT;
1032 
1033 	eaction->fence = vmw_fence_obj_reference(fence);
1034 	eaction->dev = fman->dev_priv->dev;
1035 	eaction->tv_sec = tv_sec;
1036 	eaction->tv_usec = tv_usec;
1037 
1038 	vmw_fence_obj_add_action(fence, &eaction->action);
1039 
1040 	return 0;
1041 }
1042 
1043 struct vmw_event_fence_pending {
1044 	struct drm_pending_event base;
1045 	struct drm_vmw_event_fence event;
1046 };
1047 
1048 static int vmw_event_fence_action_create(struct drm_file *file_priv,
1049 				  struct vmw_fence_obj *fence,
1050 				  uint32_t flags,
1051 				  uint64_t user_data,
1052 				  bool interruptible)
1053 {
1054 	struct vmw_event_fence_pending *event;
1055 	struct vmw_fence_manager *fman = fman_from_fence(fence);
1056 	struct drm_device *dev = fman->dev_priv->dev;
1057 	int ret;
1058 
1059 	event = kzalloc(sizeof(*event), GFP_KERNEL);
1060 	if (unlikely(!event)) {
1061 		DRM_ERROR("Failed to allocate an event.\n");
1062 		ret = -ENOMEM;
1063 		goto out_no_space;
1064 	}
1065 
1066 	event->event.base.type = DRM_VMW_EVENT_FENCE_SIGNALED;
1067 	event->event.base.length = sizeof(*event);
1068 	event->event.user_data = user_data;
1069 
1070 	ret = drm_event_reserve_init(dev, file_priv, &event->base, &event->event.base);
1071 
1072 	if (unlikely(ret != 0)) {
1073 		DRM_ERROR("Failed to allocate event space for this file.\n");
1074 		kfree(event);
1075 		goto out_no_space;
1076 	}
1077 
1078 	if (flags & DRM_VMW_FE_FLAG_REQ_TIME)
1079 		ret = vmw_event_fence_action_queue(file_priv, fence,
1080 						   &event->base,
1081 						   &event->event.tv_sec,
1082 						   &event->event.tv_usec,
1083 						   interruptible);
1084 	else
1085 		ret = vmw_event_fence_action_queue(file_priv, fence,
1086 						   &event->base,
1087 						   NULL,
1088 						   NULL,
1089 						   interruptible);
1090 	if (ret != 0)
1091 		goto out_no_queue;
1092 
1093 	return 0;
1094 
1095 out_no_queue:
1096 	drm_event_cancel_free(dev, &event->base);
1097 out_no_space:
1098 	return ret;
1099 }
1100 
1101 int vmw_fence_event_ioctl(struct drm_device *dev, void *data,
1102 			  struct drm_file *file_priv)
1103 {
1104 	struct vmw_private *dev_priv = vmw_priv(dev);
1105 	struct drm_vmw_fence_event_arg *arg =
1106 		(struct drm_vmw_fence_event_arg *) data;
1107 	struct vmw_fence_obj *fence = NULL;
1108 	struct vmw_fpriv *vmw_fp = vmw_fpriv(file_priv);
1109 	struct ttm_object_file *tfile = vmw_fp->tfile;
1110 	struct drm_vmw_fence_rep __user *user_fence_rep =
1111 		(struct drm_vmw_fence_rep __user *)(unsigned long)
1112 		arg->fence_rep;
1113 	uint32_t handle;
1114 	int ret;
1115 
1116 	/*
1117 	 * Look up an existing fence object,
1118 	 * and if user-space wants a new reference,
1119 	 * add one.
1120 	 */
1121 	if (arg->handle) {
1122 		struct ttm_base_object *base =
1123 			vmw_fence_obj_lookup(tfile, arg->handle);
1124 
1125 		if (IS_ERR(base))
1126 			return PTR_ERR(base);
1127 
1128 		fence = &(container_of(base, struct vmw_user_fence,
1129 				       base)->fence);
1130 		(void) vmw_fence_obj_reference(fence);
1131 
1132 		if (user_fence_rep != NULL) {
1133 			ret = ttm_ref_object_add(vmw_fp->tfile, base,
1134 						 TTM_REF_USAGE, NULL, false);
1135 			if (unlikely(ret != 0)) {
1136 				DRM_ERROR("Failed to reference a fence "
1137 					  "object.\n");
1138 				goto out_no_ref_obj;
1139 			}
1140 			handle = base->hash.key;
1141 		}
1142 		ttm_base_object_unref(&base);
1143 	}
1144 
1145 	/*
1146 	 * Create a new fence object.
1147 	 */
1148 	if (!fence) {
1149 		ret = vmw_execbuf_fence_commands(file_priv, dev_priv,
1150 						 &fence,
1151 						 (user_fence_rep) ?
1152 						 &handle : NULL);
1153 		if (unlikely(ret != 0)) {
1154 			DRM_ERROR("Fence event failed to create fence.\n");
1155 			return ret;
1156 		}
1157 	}
1158 
1159 	BUG_ON(fence == NULL);
1160 
1161 	ret = vmw_event_fence_action_create(file_priv, fence,
1162 					    arg->flags,
1163 					    arg->user_data,
1164 					    true);
1165 	if (unlikely(ret != 0)) {
1166 		if (ret != -ERESTARTSYS)
1167 			DRM_ERROR("Failed to attach event to fence.\n");
1168 		goto out_no_create;
1169 	}
1170 
1171 	vmw_execbuf_copy_fence_user(dev_priv, vmw_fp, 0, user_fence_rep, fence,
1172 				    handle, -1, NULL);
1173 	vmw_fence_obj_unreference(&fence);
1174 	return 0;
1175 out_no_create:
1176 	if (user_fence_rep != NULL)
1177 		ttm_ref_object_base_unref(tfile, handle, TTM_REF_USAGE);
1178 out_no_ref_obj:
1179 	vmw_fence_obj_unreference(&fence);
1180 	return ret;
1181 }
1182