1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /************************************************************************** 3 * 4 * Copyright 2011-2014 VMware, Inc., Palo Alto, CA., USA 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include <drm/drmP.h> 29 #include "vmwgfx_drv.h" 30 31 #define VMW_FENCE_WRAP (1 << 31) 32 33 struct vmw_fence_manager { 34 int num_fence_objects; 35 struct vmw_private *dev_priv; 36 spinlock_t lock; 37 struct list_head fence_list; 38 struct work_struct work; 39 u32 user_fence_size; 40 u32 fence_size; 41 u32 event_fence_action_size; 42 bool fifo_down; 43 struct list_head cleanup_list; 44 uint32_t pending_actions[VMW_ACTION_MAX]; 45 struct mutex goal_irq_mutex; 46 bool goal_irq_on; /* Protected by @goal_irq_mutex */ 47 bool seqno_valid; /* Protected by @lock, and may not be set to true 48 without the @goal_irq_mutex held. */ 49 u64 ctx; 50 }; 51 52 struct vmw_user_fence { 53 struct ttm_base_object base; 54 struct vmw_fence_obj fence; 55 }; 56 57 /** 58 * struct vmw_event_fence_action - fence action that delivers a drm event. 59 * 60 * @e: A struct drm_pending_event that controls the event delivery. 61 * @action: A struct vmw_fence_action to hook up to a fence. 62 * @fence: A referenced pointer to the fence to keep it alive while @action 63 * hangs on it. 64 * @dev: Pointer to a struct drm_device so we can access the event stuff. 65 * @kref: Both @e and @action has destructors, so we need to refcount. 66 * @size: Size accounted for this object. 67 * @tv_sec: If non-null, the variable pointed to will be assigned 68 * current time tv_sec val when the fence signals. 69 * @tv_usec: Must be set if @tv_sec is set, and the variable pointed to will 70 * be assigned the current time tv_usec val when the fence signals. 71 */ 72 struct vmw_event_fence_action { 73 struct vmw_fence_action action; 74 75 struct drm_pending_event *event; 76 struct vmw_fence_obj *fence; 77 struct drm_device *dev; 78 79 uint32_t *tv_sec; 80 uint32_t *tv_usec; 81 }; 82 83 static struct vmw_fence_manager * 84 fman_from_fence(struct vmw_fence_obj *fence) 85 { 86 return container_of(fence->base.lock, struct vmw_fence_manager, lock); 87 } 88 89 /** 90 * Note on fencing subsystem usage of irqs: 91 * Typically the vmw_fences_update function is called 92 * 93 * a) When a new fence seqno has been submitted by the fifo code. 94 * b) On-demand when we have waiters. Sleeping waiters will switch on the 95 * ANY_FENCE irq and call vmw_fences_update function each time an ANY_FENCE 96 * irq is received. When the last fence waiter is gone, that IRQ is masked 97 * away. 98 * 99 * In situations where there are no waiters and we don't submit any new fences, 100 * fence objects may not be signaled. This is perfectly OK, since there are 101 * no consumers of the signaled data, but that is NOT ok when there are fence 102 * actions attached to a fence. The fencing subsystem then makes use of the 103 * FENCE_GOAL irq and sets the fence goal seqno to that of the next fence 104 * which has an action attached, and each time vmw_fences_update is called, 105 * the subsystem makes sure the fence goal seqno is updated. 106 * 107 * The fence goal seqno irq is on as long as there are unsignaled fence 108 * objects with actions attached to them. 109 */ 110 111 static void vmw_fence_obj_destroy(struct dma_fence *f) 112 { 113 struct vmw_fence_obj *fence = 114 container_of(f, struct vmw_fence_obj, base); 115 116 struct vmw_fence_manager *fman = fman_from_fence(fence); 117 118 spin_lock(&fman->lock); 119 list_del_init(&fence->head); 120 --fman->num_fence_objects; 121 spin_unlock(&fman->lock); 122 fence->destroy(fence); 123 } 124 125 static const char *vmw_fence_get_driver_name(struct dma_fence *f) 126 { 127 return "vmwgfx"; 128 } 129 130 static const char *vmw_fence_get_timeline_name(struct dma_fence *f) 131 { 132 return "svga"; 133 } 134 135 static bool vmw_fence_enable_signaling(struct dma_fence *f) 136 { 137 struct vmw_fence_obj *fence = 138 container_of(f, struct vmw_fence_obj, base); 139 140 struct vmw_fence_manager *fman = fman_from_fence(fence); 141 struct vmw_private *dev_priv = fman->dev_priv; 142 143 u32 *fifo_mem = dev_priv->mmio_virt; 144 u32 seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE); 145 if (seqno - fence->base.seqno < VMW_FENCE_WRAP) 146 return false; 147 148 vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC); 149 150 return true; 151 } 152 153 struct vmwgfx_wait_cb { 154 struct dma_fence_cb base; 155 struct task_struct *task; 156 }; 157 158 static void 159 vmwgfx_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 160 { 161 struct vmwgfx_wait_cb *wait = 162 container_of(cb, struct vmwgfx_wait_cb, base); 163 164 wake_up_process(wait->task); 165 } 166 167 static void __vmw_fences_update(struct vmw_fence_manager *fman); 168 169 static long vmw_fence_wait(struct dma_fence *f, bool intr, signed long timeout) 170 { 171 struct vmw_fence_obj *fence = 172 container_of(f, struct vmw_fence_obj, base); 173 174 struct vmw_fence_manager *fman = fman_from_fence(fence); 175 struct vmw_private *dev_priv = fman->dev_priv; 176 struct vmwgfx_wait_cb cb; 177 long ret = timeout; 178 179 if (likely(vmw_fence_obj_signaled(fence))) 180 return timeout; 181 182 vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC); 183 vmw_seqno_waiter_add(dev_priv); 184 185 spin_lock(f->lock); 186 187 if (intr && signal_pending(current)) { 188 ret = -ERESTARTSYS; 189 goto out; 190 } 191 192 cb.base.func = vmwgfx_wait_cb; 193 cb.task = current; 194 list_add(&cb.base.node, &f->cb_list); 195 196 for (;;) { 197 __vmw_fences_update(fman); 198 199 /* 200 * We can use the barrier free __set_current_state() since 201 * DMA_FENCE_FLAG_SIGNALED_BIT + wakeup is protected by the 202 * fence spinlock. 203 */ 204 if (intr) 205 __set_current_state(TASK_INTERRUPTIBLE); 206 else 207 __set_current_state(TASK_UNINTERRUPTIBLE); 208 209 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &f->flags)) { 210 if (ret == 0 && timeout > 0) 211 ret = 1; 212 break; 213 } 214 215 if (intr && signal_pending(current)) { 216 ret = -ERESTARTSYS; 217 break; 218 } 219 220 if (ret == 0) 221 break; 222 223 spin_unlock(f->lock); 224 225 ret = schedule_timeout(ret); 226 227 spin_lock(f->lock); 228 } 229 __set_current_state(TASK_RUNNING); 230 if (!list_empty(&cb.base.node)) 231 list_del(&cb.base.node); 232 233 out: 234 spin_unlock(f->lock); 235 236 vmw_seqno_waiter_remove(dev_priv); 237 238 return ret; 239 } 240 241 static const struct dma_fence_ops vmw_fence_ops = { 242 .get_driver_name = vmw_fence_get_driver_name, 243 .get_timeline_name = vmw_fence_get_timeline_name, 244 .enable_signaling = vmw_fence_enable_signaling, 245 .wait = vmw_fence_wait, 246 .release = vmw_fence_obj_destroy, 247 }; 248 249 250 /** 251 * Execute signal actions on fences recently signaled. 252 * This is done from a workqueue so we don't have to execute 253 * signal actions from atomic context. 254 */ 255 256 static void vmw_fence_work_func(struct work_struct *work) 257 { 258 struct vmw_fence_manager *fman = 259 container_of(work, struct vmw_fence_manager, work); 260 struct list_head list; 261 struct vmw_fence_action *action, *next_action; 262 bool seqno_valid; 263 264 do { 265 INIT_LIST_HEAD(&list); 266 mutex_lock(&fman->goal_irq_mutex); 267 268 spin_lock(&fman->lock); 269 list_splice_init(&fman->cleanup_list, &list); 270 seqno_valid = fman->seqno_valid; 271 spin_unlock(&fman->lock); 272 273 if (!seqno_valid && fman->goal_irq_on) { 274 fman->goal_irq_on = false; 275 vmw_goal_waiter_remove(fman->dev_priv); 276 } 277 mutex_unlock(&fman->goal_irq_mutex); 278 279 if (list_empty(&list)) 280 return; 281 282 /* 283 * At this point, only we should be able to manipulate the 284 * list heads of the actions we have on the private list. 285 * hence fman::lock not held. 286 */ 287 288 list_for_each_entry_safe(action, next_action, &list, head) { 289 list_del_init(&action->head); 290 if (action->cleanup) 291 action->cleanup(action); 292 } 293 } while (1); 294 } 295 296 struct vmw_fence_manager *vmw_fence_manager_init(struct vmw_private *dev_priv) 297 { 298 struct vmw_fence_manager *fman = kzalloc(sizeof(*fman), GFP_KERNEL); 299 300 if (unlikely(!fman)) 301 return NULL; 302 303 fman->dev_priv = dev_priv; 304 spin_lock_init(&fman->lock); 305 INIT_LIST_HEAD(&fman->fence_list); 306 INIT_LIST_HEAD(&fman->cleanup_list); 307 INIT_WORK(&fman->work, &vmw_fence_work_func); 308 fman->fifo_down = true; 309 fman->user_fence_size = ttm_round_pot(sizeof(struct vmw_user_fence)) + 310 TTM_OBJ_EXTRA_SIZE; 311 fman->fence_size = ttm_round_pot(sizeof(struct vmw_fence_obj)); 312 fman->event_fence_action_size = 313 ttm_round_pot(sizeof(struct vmw_event_fence_action)); 314 mutex_init(&fman->goal_irq_mutex); 315 fman->ctx = dma_fence_context_alloc(1); 316 317 return fman; 318 } 319 320 void vmw_fence_manager_takedown(struct vmw_fence_manager *fman) 321 { 322 bool lists_empty; 323 324 (void) cancel_work_sync(&fman->work); 325 326 spin_lock(&fman->lock); 327 lists_empty = list_empty(&fman->fence_list) && 328 list_empty(&fman->cleanup_list); 329 spin_unlock(&fman->lock); 330 331 BUG_ON(!lists_empty); 332 kfree(fman); 333 } 334 335 static int vmw_fence_obj_init(struct vmw_fence_manager *fman, 336 struct vmw_fence_obj *fence, u32 seqno, 337 void (*destroy) (struct vmw_fence_obj *fence)) 338 { 339 int ret = 0; 340 341 dma_fence_init(&fence->base, &vmw_fence_ops, &fman->lock, 342 fman->ctx, seqno); 343 INIT_LIST_HEAD(&fence->seq_passed_actions); 344 fence->destroy = destroy; 345 346 spin_lock(&fman->lock); 347 if (unlikely(fman->fifo_down)) { 348 ret = -EBUSY; 349 goto out_unlock; 350 } 351 list_add_tail(&fence->head, &fman->fence_list); 352 ++fman->num_fence_objects; 353 354 out_unlock: 355 spin_unlock(&fman->lock); 356 return ret; 357 358 } 359 360 static void vmw_fences_perform_actions(struct vmw_fence_manager *fman, 361 struct list_head *list) 362 { 363 struct vmw_fence_action *action, *next_action; 364 365 list_for_each_entry_safe(action, next_action, list, head) { 366 list_del_init(&action->head); 367 fman->pending_actions[action->type]--; 368 if (action->seq_passed != NULL) 369 action->seq_passed(action); 370 371 /* 372 * Add the cleanup action to the cleanup list so that 373 * it will be performed by a worker task. 374 */ 375 376 list_add_tail(&action->head, &fman->cleanup_list); 377 } 378 } 379 380 /** 381 * vmw_fence_goal_new_locked - Figure out a new device fence goal 382 * seqno if needed. 383 * 384 * @fman: Pointer to a fence manager. 385 * @passed_seqno: The seqno the device currently signals as passed. 386 * 387 * This function should be called with the fence manager lock held. 388 * It is typically called when we have a new passed_seqno, and 389 * we might need to update the fence goal. It checks to see whether 390 * the current fence goal has already passed, and, in that case, 391 * scans through all unsignaled fences to get the next fence object with an 392 * action attached, and sets the seqno of that fence as a new fence goal. 393 * 394 * returns true if the device goal seqno was updated. False otherwise. 395 */ 396 static bool vmw_fence_goal_new_locked(struct vmw_fence_manager *fman, 397 u32 passed_seqno) 398 { 399 u32 goal_seqno; 400 u32 *fifo_mem; 401 struct vmw_fence_obj *fence; 402 403 if (likely(!fman->seqno_valid)) 404 return false; 405 406 fifo_mem = fman->dev_priv->mmio_virt; 407 goal_seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE_GOAL); 408 if (likely(passed_seqno - goal_seqno >= VMW_FENCE_WRAP)) 409 return false; 410 411 fman->seqno_valid = false; 412 list_for_each_entry(fence, &fman->fence_list, head) { 413 if (!list_empty(&fence->seq_passed_actions)) { 414 fman->seqno_valid = true; 415 vmw_mmio_write(fence->base.seqno, 416 fifo_mem + SVGA_FIFO_FENCE_GOAL); 417 break; 418 } 419 } 420 421 return true; 422 } 423 424 425 /** 426 * vmw_fence_goal_check_locked - Replace the device fence goal seqno if 427 * needed. 428 * 429 * @fence: Pointer to a struct vmw_fence_obj the seqno of which should be 430 * considered as a device fence goal. 431 * 432 * This function should be called with the fence manager lock held. 433 * It is typically called when an action has been attached to a fence to 434 * check whether the seqno of that fence should be used for a fence 435 * goal interrupt. This is typically needed if the current fence goal is 436 * invalid, or has a higher seqno than that of the current fence object. 437 * 438 * returns true if the device goal seqno was updated. False otherwise. 439 */ 440 static bool vmw_fence_goal_check_locked(struct vmw_fence_obj *fence) 441 { 442 struct vmw_fence_manager *fman = fman_from_fence(fence); 443 u32 goal_seqno; 444 u32 *fifo_mem; 445 446 if (dma_fence_is_signaled_locked(&fence->base)) 447 return false; 448 449 fifo_mem = fman->dev_priv->mmio_virt; 450 goal_seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE_GOAL); 451 if (likely(fman->seqno_valid && 452 goal_seqno - fence->base.seqno < VMW_FENCE_WRAP)) 453 return false; 454 455 vmw_mmio_write(fence->base.seqno, fifo_mem + SVGA_FIFO_FENCE_GOAL); 456 fman->seqno_valid = true; 457 458 return true; 459 } 460 461 static void __vmw_fences_update(struct vmw_fence_manager *fman) 462 { 463 struct vmw_fence_obj *fence, *next_fence; 464 struct list_head action_list; 465 bool needs_rerun; 466 uint32_t seqno, new_seqno; 467 u32 *fifo_mem = fman->dev_priv->mmio_virt; 468 469 seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE); 470 rerun: 471 list_for_each_entry_safe(fence, next_fence, &fman->fence_list, head) { 472 if (seqno - fence->base.seqno < VMW_FENCE_WRAP) { 473 list_del_init(&fence->head); 474 dma_fence_signal_locked(&fence->base); 475 INIT_LIST_HEAD(&action_list); 476 list_splice_init(&fence->seq_passed_actions, 477 &action_list); 478 vmw_fences_perform_actions(fman, &action_list); 479 } else 480 break; 481 } 482 483 /* 484 * Rerun if the fence goal seqno was updated, and the 485 * hardware might have raced with that update, so that 486 * we missed a fence_goal irq. 487 */ 488 489 needs_rerun = vmw_fence_goal_new_locked(fman, seqno); 490 if (unlikely(needs_rerun)) { 491 new_seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE); 492 if (new_seqno != seqno) { 493 seqno = new_seqno; 494 goto rerun; 495 } 496 } 497 498 if (!list_empty(&fman->cleanup_list)) 499 (void) schedule_work(&fman->work); 500 } 501 502 void vmw_fences_update(struct vmw_fence_manager *fman) 503 { 504 spin_lock(&fman->lock); 505 __vmw_fences_update(fman); 506 spin_unlock(&fman->lock); 507 } 508 509 bool vmw_fence_obj_signaled(struct vmw_fence_obj *fence) 510 { 511 struct vmw_fence_manager *fman = fman_from_fence(fence); 512 513 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags)) 514 return 1; 515 516 vmw_fences_update(fman); 517 518 return dma_fence_is_signaled(&fence->base); 519 } 520 521 int vmw_fence_obj_wait(struct vmw_fence_obj *fence, bool lazy, 522 bool interruptible, unsigned long timeout) 523 { 524 long ret = dma_fence_wait_timeout(&fence->base, interruptible, timeout); 525 526 if (likely(ret > 0)) 527 return 0; 528 else if (ret == 0) 529 return -EBUSY; 530 else 531 return ret; 532 } 533 534 void vmw_fence_obj_flush(struct vmw_fence_obj *fence) 535 { 536 struct vmw_private *dev_priv = fman_from_fence(fence)->dev_priv; 537 538 vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC); 539 } 540 541 static void vmw_fence_destroy(struct vmw_fence_obj *fence) 542 { 543 dma_fence_free(&fence->base); 544 } 545 546 int vmw_fence_create(struct vmw_fence_manager *fman, 547 uint32_t seqno, 548 struct vmw_fence_obj **p_fence) 549 { 550 struct vmw_fence_obj *fence; 551 int ret; 552 553 fence = kzalloc(sizeof(*fence), GFP_KERNEL); 554 if (unlikely(!fence)) 555 return -ENOMEM; 556 557 ret = vmw_fence_obj_init(fman, fence, seqno, 558 vmw_fence_destroy); 559 if (unlikely(ret != 0)) 560 goto out_err_init; 561 562 *p_fence = fence; 563 return 0; 564 565 out_err_init: 566 kfree(fence); 567 return ret; 568 } 569 570 571 static void vmw_user_fence_destroy(struct vmw_fence_obj *fence) 572 { 573 struct vmw_user_fence *ufence = 574 container_of(fence, struct vmw_user_fence, fence); 575 struct vmw_fence_manager *fman = fman_from_fence(fence); 576 577 ttm_base_object_kfree(ufence, base); 578 /* 579 * Free kernel space accounting. 580 */ 581 ttm_mem_global_free(vmw_mem_glob(fman->dev_priv), 582 fman->user_fence_size); 583 } 584 585 static void vmw_user_fence_base_release(struct ttm_base_object **p_base) 586 { 587 struct ttm_base_object *base = *p_base; 588 struct vmw_user_fence *ufence = 589 container_of(base, struct vmw_user_fence, base); 590 struct vmw_fence_obj *fence = &ufence->fence; 591 592 *p_base = NULL; 593 vmw_fence_obj_unreference(&fence); 594 } 595 596 int vmw_user_fence_create(struct drm_file *file_priv, 597 struct vmw_fence_manager *fman, 598 uint32_t seqno, 599 struct vmw_fence_obj **p_fence, 600 uint32_t *p_handle) 601 { 602 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 603 struct vmw_user_fence *ufence; 604 struct vmw_fence_obj *tmp; 605 struct ttm_mem_global *mem_glob = vmw_mem_glob(fman->dev_priv); 606 struct ttm_operation_ctx ctx = { 607 .interruptible = false, 608 .no_wait_gpu = false 609 }; 610 int ret; 611 612 /* 613 * Kernel memory space accounting, since this object may 614 * be created by a user-space request. 615 */ 616 617 ret = ttm_mem_global_alloc(mem_glob, fman->user_fence_size, 618 &ctx); 619 if (unlikely(ret != 0)) 620 return ret; 621 622 ufence = kzalloc(sizeof(*ufence), GFP_KERNEL); 623 if (unlikely(!ufence)) { 624 ret = -ENOMEM; 625 goto out_no_object; 626 } 627 628 ret = vmw_fence_obj_init(fman, &ufence->fence, seqno, 629 vmw_user_fence_destroy); 630 if (unlikely(ret != 0)) { 631 kfree(ufence); 632 goto out_no_object; 633 } 634 635 /* 636 * The base object holds a reference which is freed in 637 * vmw_user_fence_base_release. 638 */ 639 tmp = vmw_fence_obj_reference(&ufence->fence); 640 ret = ttm_base_object_init(tfile, &ufence->base, false, 641 VMW_RES_FENCE, 642 &vmw_user_fence_base_release, NULL); 643 644 645 if (unlikely(ret != 0)) { 646 /* 647 * Free the base object's reference 648 */ 649 vmw_fence_obj_unreference(&tmp); 650 goto out_err; 651 } 652 653 *p_fence = &ufence->fence; 654 *p_handle = ufence->base.handle; 655 656 return 0; 657 out_err: 658 tmp = &ufence->fence; 659 vmw_fence_obj_unreference(&tmp); 660 out_no_object: 661 ttm_mem_global_free(mem_glob, fman->user_fence_size); 662 return ret; 663 } 664 665 666 /** 667 * vmw_wait_dma_fence - Wait for a dma fence 668 * 669 * @fman: pointer to a fence manager 670 * @fence: DMA fence to wait on 671 * 672 * This function handles the case when the fence is actually a fence 673 * array. If that's the case, it'll wait on each of the child fence 674 */ 675 int vmw_wait_dma_fence(struct vmw_fence_manager *fman, 676 struct dma_fence *fence) 677 { 678 struct dma_fence_array *fence_array; 679 int ret = 0; 680 int i; 681 682 683 if (dma_fence_is_signaled(fence)) 684 return 0; 685 686 if (!dma_fence_is_array(fence)) 687 return dma_fence_wait(fence, true); 688 689 /* From i915: Note that if the fence-array was created in 690 * signal-on-any mode, we should *not* decompose it into its individual 691 * fences. However, we don't currently store which mode the fence-array 692 * is operating in. Fortunately, the only user of signal-on-any is 693 * private to amdgpu and we should not see any incoming fence-array 694 * from sync-file being in signal-on-any mode. 695 */ 696 697 fence_array = to_dma_fence_array(fence); 698 for (i = 0; i < fence_array->num_fences; i++) { 699 struct dma_fence *child = fence_array->fences[i]; 700 701 ret = dma_fence_wait(child, true); 702 703 if (ret < 0) 704 return ret; 705 } 706 707 return 0; 708 } 709 710 711 /** 712 * vmw_fence_fifo_down - signal all unsignaled fence objects. 713 */ 714 715 void vmw_fence_fifo_down(struct vmw_fence_manager *fman) 716 { 717 struct list_head action_list; 718 int ret; 719 720 /* 721 * The list may be altered while we traverse it, so always 722 * restart when we've released the fman->lock. 723 */ 724 725 spin_lock(&fman->lock); 726 fman->fifo_down = true; 727 while (!list_empty(&fman->fence_list)) { 728 struct vmw_fence_obj *fence = 729 list_entry(fman->fence_list.prev, struct vmw_fence_obj, 730 head); 731 dma_fence_get(&fence->base); 732 spin_unlock(&fman->lock); 733 734 ret = vmw_fence_obj_wait(fence, false, false, 735 VMW_FENCE_WAIT_TIMEOUT); 736 737 if (unlikely(ret != 0)) { 738 list_del_init(&fence->head); 739 dma_fence_signal(&fence->base); 740 INIT_LIST_HEAD(&action_list); 741 list_splice_init(&fence->seq_passed_actions, 742 &action_list); 743 vmw_fences_perform_actions(fman, &action_list); 744 } 745 746 BUG_ON(!list_empty(&fence->head)); 747 dma_fence_put(&fence->base); 748 spin_lock(&fman->lock); 749 } 750 spin_unlock(&fman->lock); 751 } 752 753 void vmw_fence_fifo_up(struct vmw_fence_manager *fman) 754 { 755 spin_lock(&fman->lock); 756 fman->fifo_down = false; 757 spin_unlock(&fman->lock); 758 } 759 760 761 /** 762 * vmw_fence_obj_lookup - Look up a user-space fence object 763 * 764 * @tfile: A struct ttm_object_file identifying the caller. 765 * @handle: A handle identifying the fence object. 766 * @return: A struct vmw_user_fence base ttm object on success or 767 * an error pointer on failure. 768 * 769 * The fence object is looked up and type-checked. The caller needs 770 * to have opened the fence object first, but since that happens on 771 * creation and fence objects aren't shareable, that's not an 772 * issue currently. 773 */ 774 static struct ttm_base_object * 775 vmw_fence_obj_lookup(struct ttm_object_file *tfile, u32 handle) 776 { 777 struct ttm_base_object *base = ttm_base_object_lookup(tfile, handle); 778 779 if (!base) { 780 pr_err("Invalid fence object handle 0x%08lx.\n", 781 (unsigned long)handle); 782 return ERR_PTR(-EINVAL); 783 } 784 785 if (base->refcount_release != vmw_user_fence_base_release) { 786 pr_err("Invalid fence object handle 0x%08lx.\n", 787 (unsigned long)handle); 788 ttm_base_object_unref(&base); 789 return ERR_PTR(-EINVAL); 790 } 791 792 return base; 793 } 794 795 796 int vmw_fence_obj_wait_ioctl(struct drm_device *dev, void *data, 797 struct drm_file *file_priv) 798 { 799 struct drm_vmw_fence_wait_arg *arg = 800 (struct drm_vmw_fence_wait_arg *)data; 801 unsigned long timeout; 802 struct ttm_base_object *base; 803 struct vmw_fence_obj *fence; 804 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 805 int ret; 806 uint64_t wait_timeout = ((uint64_t)arg->timeout_us * HZ); 807 808 /* 809 * 64-bit division not present on 32-bit systems, so do an 810 * approximation. (Divide by 1000000). 811 */ 812 813 wait_timeout = (wait_timeout >> 20) + (wait_timeout >> 24) - 814 (wait_timeout >> 26); 815 816 if (!arg->cookie_valid) { 817 arg->cookie_valid = 1; 818 arg->kernel_cookie = jiffies + wait_timeout; 819 } 820 821 base = vmw_fence_obj_lookup(tfile, arg->handle); 822 if (IS_ERR(base)) 823 return PTR_ERR(base); 824 825 fence = &(container_of(base, struct vmw_user_fence, base)->fence); 826 827 timeout = jiffies; 828 if (time_after_eq(timeout, (unsigned long)arg->kernel_cookie)) { 829 ret = ((vmw_fence_obj_signaled(fence)) ? 830 0 : -EBUSY); 831 goto out; 832 } 833 834 timeout = (unsigned long)arg->kernel_cookie - timeout; 835 836 ret = vmw_fence_obj_wait(fence, arg->lazy, true, timeout); 837 838 out: 839 ttm_base_object_unref(&base); 840 841 /* 842 * Optionally unref the fence object. 843 */ 844 845 if (ret == 0 && (arg->wait_options & DRM_VMW_WAIT_OPTION_UNREF)) 846 return ttm_ref_object_base_unref(tfile, arg->handle, 847 TTM_REF_USAGE); 848 return ret; 849 } 850 851 int vmw_fence_obj_signaled_ioctl(struct drm_device *dev, void *data, 852 struct drm_file *file_priv) 853 { 854 struct drm_vmw_fence_signaled_arg *arg = 855 (struct drm_vmw_fence_signaled_arg *) data; 856 struct ttm_base_object *base; 857 struct vmw_fence_obj *fence; 858 struct vmw_fence_manager *fman; 859 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 860 struct vmw_private *dev_priv = vmw_priv(dev); 861 862 base = vmw_fence_obj_lookup(tfile, arg->handle); 863 if (IS_ERR(base)) 864 return PTR_ERR(base); 865 866 fence = &(container_of(base, struct vmw_user_fence, base)->fence); 867 fman = fman_from_fence(fence); 868 869 arg->signaled = vmw_fence_obj_signaled(fence); 870 871 arg->signaled_flags = arg->flags; 872 spin_lock(&fman->lock); 873 arg->passed_seqno = dev_priv->last_read_seqno; 874 spin_unlock(&fman->lock); 875 876 ttm_base_object_unref(&base); 877 878 return 0; 879 } 880 881 882 int vmw_fence_obj_unref_ioctl(struct drm_device *dev, void *data, 883 struct drm_file *file_priv) 884 { 885 struct drm_vmw_fence_arg *arg = 886 (struct drm_vmw_fence_arg *) data; 887 888 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile, 889 arg->handle, 890 TTM_REF_USAGE); 891 } 892 893 /** 894 * vmw_event_fence_action_seq_passed 895 * 896 * @action: The struct vmw_fence_action embedded in a struct 897 * vmw_event_fence_action. 898 * 899 * This function is called when the seqno of the fence where @action is 900 * attached has passed. It queues the event on the submitter's event list. 901 * This function is always called from atomic context. 902 */ 903 static void vmw_event_fence_action_seq_passed(struct vmw_fence_action *action) 904 { 905 struct vmw_event_fence_action *eaction = 906 container_of(action, struct vmw_event_fence_action, action); 907 struct drm_device *dev = eaction->dev; 908 struct drm_pending_event *event = eaction->event; 909 struct drm_file *file_priv; 910 911 912 if (unlikely(event == NULL)) 913 return; 914 915 file_priv = event->file_priv; 916 spin_lock_irq(&dev->event_lock); 917 918 if (likely(eaction->tv_sec != NULL)) { 919 struct timespec64 ts; 920 921 ktime_get_ts64(&ts); 922 /* monotonic time, so no y2038 overflow */ 923 *eaction->tv_sec = ts.tv_sec; 924 *eaction->tv_usec = ts.tv_nsec / NSEC_PER_USEC; 925 } 926 927 drm_send_event_locked(dev, eaction->event); 928 eaction->event = NULL; 929 spin_unlock_irq(&dev->event_lock); 930 } 931 932 /** 933 * vmw_event_fence_action_cleanup 934 * 935 * @action: The struct vmw_fence_action embedded in a struct 936 * vmw_event_fence_action. 937 * 938 * This function is the struct vmw_fence_action destructor. It's typically 939 * called from a workqueue. 940 */ 941 static void vmw_event_fence_action_cleanup(struct vmw_fence_action *action) 942 { 943 struct vmw_event_fence_action *eaction = 944 container_of(action, struct vmw_event_fence_action, action); 945 946 vmw_fence_obj_unreference(&eaction->fence); 947 kfree(eaction); 948 } 949 950 951 /** 952 * vmw_fence_obj_add_action - Add an action to a fence object. 953 * 954 * @fence - The fence object. 955 * @action - The action to add. 956 * 957 * Note that the action callbacks may be executed before this function 958 * returns. 959 */ 960 static void vmw_fence_obj_add_action(struct vmw_fence_obj *fence, 961 struct vmw_fence_action *action) 962 { 963 struct vmw_fence_manager *fman = fman_from_fence(fence); 964 bool run_update = false; 965 966 mutex_lock(&fman->goal_irq_mutex); 967 spin_lock(&fman->lock); 968 969 fman->pending_actions[action->type]++; 970 if (dma_fence_is_signaled_locked(&fence->base)) { 971 struct list_head action_list; 972 973 INIT_LIST_HEAD(&action_list); 974 list_add_tail(&action->head, &action_list); 975 vmw_fences_perform_actions(fman, &action_list); 976 } else { 977 list_add_tail(&action->head, &fence->seq_passed_actions); 978 979 /* 980 * This function may set fman::seqno_valid, so it must 981 * be run with the goal_irq_mutex held. 982 */ 983 run_update = vmw_fence_goal_check_locked(fence); 984 } 985 986 spin_unlock(&fman->lock); 987 988 if (run_update) { 989 if (!fman->goal_irq_on) { 990 fman->goal_irq_on = true; 991 vmw_goal_waiter_add(fman->dev_priv); 992 } 993 vmw_fences_update(fman); 994 } 995 mutex_unlock(&fman->goal_irq_mutex); 996 997 } 998 999 /** 1000 * vmw_event_fence_action_create - Post an event for sending when a fence 1001 * object seqno has passed. 1002 * 1003 * @file_priv: The file connection on which the event should be posted. 1004 * @fence: The fence object on which to post the event. 1005 * @event: Event to be posted. This event should've been alloced 1006 * using k[mz]alloc, and should've been completely initialized. 1007 * @interruptible: Interruptible waits if possible. 1008 * 1009 * As a side effect, the object pointed to by @event may have been 1010 * freed when this function returns. If this function returns with 1011 * an error code, the caller needs to free that object. 1012 */ 1013 1014 int vmw_event_fence_action_queue(struct drm_file *file_priv, 1015 struct vmw_fence_obj *fence, 1016 struct drm_pending_event *event, 1017 uint32_t *tv_sec, 1018 uint32_t *tv_usec, 1019 bool interruptible) 1020 { 1021 struct vmw_event_fence_action *eaction; 1022 struct vmw_fence_manager *fman = fman_from_fence(fence); 1023 1024 eaction = kzalloc(sizeof(*eaction), GFP_KERNEL); 1025 if (unlikely(!eaction)) 1026 return -ENOMEM; 1027 1028 eaction->event = event; 1029 1030 eaction->action.seq_passed = vmw_event_fence_action_seq_passed; 1031 eaction->action.cleanup = vmw_event_fence_action_cleanup; 1032 eaction->action.type = VMW_ACTION_EVENT; 1033 1034 eaction->fence = vmw_fence_obj_reference(fence); 1035 eaction->dev = fman->dev_priv->dev; 1036 eaction->tv_sec = tv_sec; 1037 eaction->tv_usec = tv_usec; 1038 1039 vmw_fence_obj_add_action(fence, &eaction->action); 1040 1041 return 0; 1042 } 1043 1044 struct vmw_event_fence_pending { 1045 struct drm_pending_event base; 1046 struct drm_vmw_event_fence event; 1047 }; 1048 1049 static int vmw_event_fence_action_create(struct drm_file *file_priv, 1050 struct vmw_fence_obj *fence, 1051 uint32_t flags, 1052 uint64_t user_data, 1053 bool interruptible) 1054 { 1055 struct vmw_event_fence_pending *event; 1056 struct vmw_fence_manager *fman = fman_from_fence(fence); 1057 struct drm_device *dev = fman->dev_priv->dev; 1058 int ret; 1059 1060 event = kzalloc(sizeof(*event), GFP_KERNEL); 1061 if (unlikely(!event)) { 1062 DRM_ERROR("Failed to allocate an event.\n"); 1063 ret = -ENOMEM; 1064 goto out_no_space; 1065 } 1066 1067 event->event.base.type = DRM_VMW_EVENT_FENCE_SIGNALED; 1068 event->event.base.length = sizeof(*event); 1069 event->event.user_data = user_data; 1070 1071 ret = drm_event_reserve_init(dev, file_priv, &event->base, &event->event.base); 1072 1073 if (unlikely(ret != 0)) { 1074 DRM_ERROR("Failed to allocate event space for this file.\n"); 1075 kfree(event); 1076 goto out_no_space; 1077 } 1078 1079 if (flags & DRM_VMW_FE_FLAG_REQ_TIME) 1080 ret = vmw_event_fence_action_queue(file_priv, fence, 1081 &event->base, 1082 &event->event.tv_sec, 1083 &event->event.tv_usec, 1084 interruptible); 1085 else 1086 ret = vmw_event_fence_action_queue(file_priv, fence, 1087 &event->base, 1088 NULL, 1089 NULL, 1090 interruptible); 1091 if (ret != 0) 1092 goto out_no_queue; 1093 1094 return 0; 1095 1096 out_no_queue: 1097 drm_event_cancel_free(dev, &event->base); 1098 out_no_space: 1099 return ret; 1100 } 1101 1102 int vmw_fence_event_ioctl(struct drm_device *dev, void *data, 1103 struct drm_file *file_priv) 1104 { 1105 struct vmw_private *dev_priv = vmw_priv(dev); 1106 struct drm_vmw_fence_event_arg *arg = 1107 (struct drm_vmw_fence_event_arg *) data; 1108 struct vmw_fence_obj *fence = NULL; 1109 struct vmw_fpriv *vmw_fp = vmw_fpriv(file_priv); 1110 struct ttm_object_file *tfile = vmw_fp->tfile; 1111 struct drm_vmw_fence_rep __user *user_fence_rep = 1112 (struct drm_vmw_fence_rep __user *)(unsigned long) 1113 arg->fence_rep; 1114 uint32_t handle; 1115 int ret; 1116 1117 /* 1118 * Look up an existing fence object, 1119 * and if user-space wants a new reference, 1120 * add one. 1121 */ 1122 if (arg->handle) { 1123 struct ttm_base_object *base = 1124 vmw_fence_obj_lookup(tfile, arg->handle); 1125 1126 if (IS_ERR(base)) 1127 return PTR_ERR(base); 1128 1129 fence = &(container_of(base, struct vmw_user_fence, 1130 base)->fence); 1131 (void) vmw_fence_obj_reference(fence); 1132 1133 if (user_fence_rep != NULL) { 1134 ret = ttm_ref_object_add(vmw_fp->tfile, base, 1135 TTM_REF_USAGE, NULL, false); 1136 if (unlikely(ret != 0)) { 1137 DRM_ERROR("Failed to reference a fence " 1138 "object.\n"); 1139 goto out_no_ref_obj; 1140 } 1141 handle = base->handle; 1142 } 1143 ttm_base_object_unref(&base); 1144 } 1145 1146 /* 1147 * Create a new fence object. 1148 */ 1149 if (!fence) { 1150 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, 1151 &fence, 1152 (user_fence_rep) ? 1153 &handle : NULL); 1154 if (unlikely(ret != 0)) { 1155 DRM_ERROR("Fence event failed to create fence.\n"); 1156 return ret; 1157 } 1158 } 1159 1160 BUG_ON(fence == NULL); 1161 1162 ret = vmw_event_fence_action_create(file_priv, fence, 1163 arg->flags, 1164 arg->user_data, 1165 true); 1166 if (unlikely(ret != 0)) { 1167 if (ret != -ERESTARTSYS) 1168 DRM_ERROR("Failed to attach event to fence.\n"); 1169 goto out_no_create; 1170 } 1171 1172 vmw_execbuf_copy_fence_user(dev_priv, vmw_fp, 0, user_fence_rep, fence, 1173 handle, -1, NULL); 1174 vmw_fence_obj_unreference(&fence); 1175 return 0; 1176 out_no_create: 1177 if (user_fence_rep != NULL) 1178 ttm_ref_object_base_unref(tfile, handle, TTM_REF_USAGE); 1179 out_no_ref_obj: 1180 vmw_fence_obj_unreference(&fence); 1181 return ret; 1182 } 1183