xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_plane.c (revision d0e22329)
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 /**
10  * DOC: VC4 plane module
11  *
12  * Each DRM plane is a layer of pixels being scanned out by the HVS.
13  *
14  * At atomic modeset check time, we compute the HVS display element
15  * state that would be necessary for displaying the plane (giving us a
16  * chance to figure out if a plane configuration is invalid), then at
17  * atomic flush time the CRTC will ask us to write our element state
18  * into the region of the HVS that it has allocated for us.
19  */
20 
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_helper.h>
23 #include <drm/drm_fb_cma_helper.h>
24 #include <drm/drm_plane_helper.h>
25 #include <drm/drm_atomic_uapi.h>
26 
27 #include "uapi/drm/vc4_drm.h"
28 #include "vc4_drv.h"
29 #include "vc4_regs.h"
30 
31 static const struct hvs_format {
32 	u32 drm; /* DRM_FORMAT_* */
33 	u32 hvs; /* HVS_FORMAT_* */
34 	u32 pixel_order;
35 } hvs_formats[] = {
36 	{
37 		.drm = DRM_FORMAT_XRGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
38 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
39 	},
40 	{
41 		.drm = DRM_FORMAT_ARGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
42 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
43 	},
44 	{
45 		.drm = DRM_FORMAT_ABGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
46 		.pixel_order = HVS_PIXEL_ORDER_ARGB,
47 	},
48 	{
49 		.drm = DRM_FORMAT_XBGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
50 		.pixel_order = HVS_PIXEL_ORDER_ARGB,
51 	},
52 	{
53 		.drm = DRM_FORMAT_RGB565, .hvs = HVS_PIXEL_FORMAT_RGB565,
54 		.pixel_order = HVS_PIXEL_ORDER_XRGB,
55 	},
56 	{
57 		.drm = DRM_FORMAT_BGR565, .hvs = HVS_PIXEL_FORMAT_RGB565,
58 		.pixel_order = HVS_PIXEL_ORDER_XBGR,
59 	},
60 	{
61 		.drm = DRM_FORMAT_ARGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
62 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
63 	},
64 	{
65 		.drm = DRM_FORMAT_XRGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
66 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
67 	},
68 	{
69 		.drm = DRM_FORMAT_RGB888, .hvs = HVS_PIXEL_FORMAT_RGB888,
70 		.pixel_order = HVS_PIXEL_ORDER_XRGB,
71 	},
72 	{
73 		.drm = DRM_FORMAT_BGR888, .hvs = HVS_PIXEL_FORMAT_RGB888,
74 		.pixel_order = HVS_PIXEL_ORDER_XBGR,
75 	},
76 	{
77 		.drm = DRM_FORMAT_YUV422,
78 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
79 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
80 	},
81 	{
82 		.drm = DRM_FORMAT_YVU422,
83 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
84 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
85 	},
86 	{
87 		.drm = DRM_FORMAT_YUV420,
88 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
89 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
90 	},
91 	{
92 		.drm = DRM_FORMAT_YVU420,
93 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
94 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
95 	},
96 	{
97 		.drm = DRM_FORMAT_NV12,
98 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
99 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
100 	},
101 	{
102 		.drm = DRM_FORMAT_NV21,
103 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
104 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
105 	},
106 	{
107 		.drm = DRM_FORMAT_NV16,
108 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
109 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
110 	},
111 	{
112 		.drm = DRM_FORMAT_NV61,
113 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
114 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
115 	},
116 };
117 
118 static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
119 {
120 	unsigned i;
121 
122 	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
123 		if (hvs_formats[i].drm == drm_format)
124 			return &hvs_formats[i];
125 	}
126 
127 	return NULL;
128 }
129 
130 static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
131 {
132 	if (dst == src)
133 		return VC4_SCALING_NONE;
134 	if (3 * dst >= 2 * src)
135 		return VC4_SCALING_PPF;
136 	else
137 		return VC4_SCALING_TPZ;
138 }
139 
140 static bool plane_enabled(struct drm_plane_state *state)
141 {
142 	return state->fb && state->crtc;
143 }
144 
145 static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
146 {
147 	struct vc4_plane_state *vc4_state;
148 
149 	if (WARN_ON(!plane->state))
150 		return NULL;
151 
152 	vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
153 	if (!vc4_state)
154 		return NULL;
155 
156 	memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
157 	vc4_state->dlist_initialized = 0;
158 
159 	__drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
160 
161 	if (vc4_state->dlist) {
162 		vc4_state->dlist = kmemdup(vc4_state->dlist,
163 					   vc4_state->dlist_count * 4,
164 					   GFP_KERNEL);
165 		if (!vc4_state->dlist) {
166 			kfree(vc4_state);
167 			return NULL;
168 		}
169 		vc4_state->dlist_size = vc4_state->dlist_count;
170 	}
171 
172 	return &vc4_state->base;
173 }
174 
175 static void vc4_plane_destroy_state(struct drm_plane *plane,
176 				    struct drm_plane_state *state)
177 {
178 	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
179 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
180 
181 	if (vc4_state->lbm.allocated) {
182 		unsigned long irqflags;
183 
184 		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
185 		drm_mm_remove_node(&vc4_state->lbm);
186 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
187 	}
188 
189 	kfree(vc4_state->dlist);
190 	__drm_atomic_helper_plane_destroy_state(&vc4_state->base);
191 	kfree(state);
192 }
193 
194 /* Called during init to allocate the plane's atomic state. */
195 static void vc4_plane_reset(struct drm_plane *plane)
196 {
197 	struct vc4_plane_state *vc4_state;
198 
199 	WARN_ON(plane->state);
200 
201 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
202 	if (!vc4_state)
203 		return;
204 
205 	__drm_atomic_helper_plane_reset(plane, &vc4_state->base);
206 }
207 
208 static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
209 {
210 	if (vc4_state->dlist_count == vc4_state->dlist_size) {
211 		u32 new_size = max(4u, vc4_state->dlist_count * 2);
212 		u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
213 
214 		if (!new_dlist)
215 			return;
216 		memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);
217 
218 		kfree(vc4_state->dlist);
219 		vc4_state->dlist = new_dlist;
220 		vc4_state->dlist_size = new_size;
221 	}
222 
223 	vc4_state->dlist[vc4_state->dlist_count++] = val;
224 }
225 
226 /* Returns the scl0/scl1 field based on whether the dimensions need to
227  * be up/down/non-scaled.
228  *
229  * This is a replication of a table from the spec.
230  */
231 static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
232 {
233 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
234 
235 	switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
236 	case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
237 		return SCALER_CTL0_SCL_H_PPF_V_PPF;
238 	case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
239 		return SCALER_CTL0_SCL_H_TPZ_V_PPF;
240 	case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
241 		return SCALER_CTL0_SCL_H_PPF_V_TPZ;
242 	case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
243 		return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
244 	case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
245 		return SCALER_CTL0_SCL_H_PPF_V_NONE;
246 	case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
247 		return SCALER_CTL0_SCL_H_NONE_V_PPF;
248 	case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
249 		return SCALER_CTL0_SCL_H_NONE_V_TPZ;
250 	case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
251 		return SCALER_CTL0_SCL_H_TPZ_V_NONE;
252 	default:
253 	case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
254 		/* The unity case is independently handled by
255 		 * SCALER_CTL0_UNITY.
256 		 */
257 		return 0;
258 	}
259 }
260 
261 static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
262 {
263 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
264 	struct drm_framebuffer *fb = state->fb;
265 	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
266 	u32 subpixel_src_mask = (1 << 16) - 1;
267 	u32 format = fb->format->format;
268 	int num_planes = fb->format->num_planes;
269 	struct drm_crtc_state *crtc_state;
270 	u32 h_subsample, v_subsample;
271 	int i, ret;
272 
273 	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
274 							state->crtc);
275 	if (!crtc_state) {
276 		DRM_DEBUG_KMS("Invalid crtc state\n");
277 		return -EINVAL;
278 	}
279 
280 	ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1,
281 						  INT_MAX, true, true);
282 	if (ret)
283 		return ret;
284 
285 	h_subsample = drm_format_horz_chroma_subsampling(format);
286 	v_subsample = drm_format_vert_chroma_subsampling(format);
287 
288 	for (i = 0; i < num_planes; i++)
289 		vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
290 
291 	/* We don't support subpixel source positioning for scaling. */
292 	if ((state->src.x1 & subpixel_src_mask) ||
293 	    (state->src.x2 & subpixel_src_mask) ||
294 	    (state->src.y1 & subpixel_src_mask) ||
295 	    (state->src.y2 & subpixel_src_mask)) {
296 		return -EINVAL;
297 	}
298 
299 	vc4_state->src_x = state->src.x1 >> 16;
300 	vc4_state->src_y = state->src.y1 >> 16;
301 	vc4_state->src_w[0] = (state->src.x2 - state->src.x1) >> 16;
302 	vc4_state->src_h[0] = (state->src.y2 - state->src.y1) >> 16;
303 
304 	vc4_state->crtc_x = state->dst.x1;
305 	vc4_state->crtc_y = state->dst.y1;
306 	vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
307 	vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
308 
309 	vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
310 						       vc4_state->crtc_w);
311 	vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
312 						       vc4_state->crtc_h);
313 
314 	vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
315 			       vc4_state->y_scaling[0] == VC4_SCALING_NONE);
316 
317 	if (num_planes > 1) {
318 		vc4_state->is_yuv = true;
319 
320 		vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
321 		vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
322 
323 		vc4_state->x_scaling[1] =
324 			vc4_get_scaling_mode(vc4_state->src_w[1],
325 					     vc4_state->crtc_w);
326 		vc4_state->y_scaling[1] =
327 			vc4_get_scaling_mode(vc4_state->src_h[1],
328 					     vc4_state->crtc_h);
329 
330 		/* YUV conversion requires that horizontal scaling be enabled
331 		 * on the UV plane even if vc4_get_scaling_mode() returned
332 		 * VC4_SCALING_NONE (which can happen when the down-scaling
333 		 * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
334 		 * case.
335 		 */
336 		if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
337 			vc4_state->x_scaling[1] = VC4_SCALING_PPF;
338 	} else {
339 		vc4_state->is_yuv = false;
340 		vc4_state->x_scaling[1] = VC4_SCALING_NONE;
341 		vc4_state->y_scaling[1] = VC4_SCALING_NONE;
342 	}
343 
344 	return 0;
345 }
346 
347 static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
348 {
349 	u32 scale, recip;
350 
351 	scale = (1 << 16) * src / dst;
352 
353 	/* The specs note that while the reciprocal would be defined
354 	 * as (1<<32)/scale, ~0 is close enough.
355 	 */
356 	recip = ~0 / scale;
357 
358 	vc4_dlist_write(vc4_state,
359 			VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
360 			VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
361 	vc4_dlist_write(vc4_state,
362 			VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
363 }
364 
365 static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
366 {
367 	u32 scale = (1 << 16) * src / dst;
368 
369 	vc4_dlist_write(vc4_state,
370 			SCALER_PPF_AGC |
371 			VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
372 			VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
373 }
374 
375 static u32 vc4_lbm_size(struct drm_plane_state *state)
376 {
377 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
378 	/* This is the worst case number.  One of the two sizes will
379 	 * be used depending on the scaling configuration.
380 	 */
381 	u32 pix_per_line = max(vc4_state->src_w[0], (u32)vc4_state->crtc_w);
382 	u32 lbm;
383 
384 	/* LBM is not needed when there's no vertical scaling. */
385 	if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
386 	    vc4_state->y_scaling[1] == VC4_SCALING_NONE)
387 		return 0;
388 
389 	if (!vc4_state->is_yuv) {
390 		if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
391 			lbm = pix_per_line * 8;
392 		else {
393 			/* In special cases, this multiplier might be 12. */
394 			lbm = pix_per_line * 16;
395 		}
396 	} else {
397 		/* There are cases for this going down to a multiplier
398 		 * of 2, but according to the firmware source, the
399 		 * table in the docs is somewhat wrong.
400 		 */
401 		lbm = pix_per_line * 16;
402 	}
403 
404 	lbm = roundup(lbm, 32);
405 
406 	return lbm;
407 }
408 
409 static void vc4_write_scaling_parameters(struct drm_plane_state *state,
410 					 int channel)
411 {
412 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
413 
414 	/* Ch0 H-PPF Word 0: Scaling Parameters */
415 	if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
416 		vc4_write_ppf(vc4_state,
417 			      vc4_state->src_w[channel], vc4_state->crtc_w);
418 	}
419 
420 	/* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
421 	if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
422 		vc4_write_ppf(vc4_state,
423 			      vc4_state->src_h[channel], vc4_state->crtc_h);
424 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
425 	}
426 
427 	/* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
428 	if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
429 		vc4_write_tpz(vc4_state,
430 			      vc4_state->src_w[channel], vc4_state->crtc_w);
431 	}
432 
433 	/* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
434 	if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
435 		vc4_write_tpz(vc4_state,
436 			      vc4_state->src_h[channel], vc4_state->crtc_h);
437 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
438 	}
439 }
440 
441 static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
442 {
443 	struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
444 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
445 	unsigned long irqflags;
446 	u32 lbm_size;
447 
448 	lbm_size = vc4_lbm_size(state);
449 	if (!lbm_size)
450 		return 0;
451 
452 	if (WARN_ON(!vc4_state->lbm_offset))
453 		return -EINVAL;
454 
455 	/* Allocate the LBM memory that the HVS will use for temporary
456 	 * storage due to our scaling/format conversion.
457 	 */
458 	if (!vc4_state->lbm.allocated) {
459 		int ret;
460 
461 		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
462 		ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
463 						 &vc4_state->lbm,
464 						 lbm_size, 32, 0, 0);
465 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
466 
467 		if (ret)
468 			return ret;
469 	} else {
470 		WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
471 	}
472 
473 	vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;
474 
475 	return 0;
476 }
477 
478 /* Writes out a full display list for an active plane to the plane's
479  * private dlist state.
480  */
481 static int vc4_plane_mode_set(struct drm_plane *plane,
482 			      struct drm_plane_state *state)
483 {
484 	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
485 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
486 	struct drm_framebuffer *fb = state->fb;
487 	u32 ctl0_offset = vc4_state->dlist_count;
488 	const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
489 	u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
490 	int num_planes = drm_format_num_planes(format->drm);
491 	u32 h_subsample, v_subsample;
492 	bool mix_plane_alpha;
493 	bool covers_screen;
494 	u32 scl0, scl1, pitch0;
495 	u32 tiling;
496 	u32 hvs_format = format->hvs;
497 	int ret, i;
498 
499 	if (vc4_state->dlist_initialized)
500 		return 0;
501 
502 	ret = vc4_plane_setup_clipping_and_scaling(state);
503 	if (ret)
504 		return ret;
505 
506 	/* SCL1 is used for Cb/Cr scaling of planar formats.  For RGB
507 	 * and 4:4:4, scl1 should be set to scl0 so both channels of
508 	 * the scaler do the same thing.  For YUV, the Y plane needs
509 	 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
510 	 * the scl fields here.
511 	 */
512 	if (num_planes == 1) {
513 		scl0 = vc4_get_scl_field(state, 0);
514 		scl1 = scl0;
515 	} else {
516 		scl0 = vc4_get_scl_field(state, 1);
517 		scl1 = vc4_get_scl_field(state, 0);
518 	}
519 
520 	h_subsample = drm_format_horz_chroma_subsampling(format->drm);
521 	v_subsample = drm_format_vert_chroma_subsampling(format->drm);
522 
523 	switch (base_format_mod) {
524 	case DRM_FORMAT_MOD_LINEAR:
525 		tiling = SCALER_CTL0_TILING_LINEAR;
526 		pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
527 
528 		/* Adjust the base pointer to the first pixel to be scanned
529 		 * out.
530 		 */
531 		for (i = 0; i < num_planes; i++) {
532 			vc4_state->offsets[i] += vc4_state->src_y /
533 						 (i ? v_subsample : 1) *
534 						 fb->pitches[i];
535 			vc4_state->offsets[i] += vc4_state->src_x /
536 						 (i ? h_subsample : 1) *
537 						 fb->format->cpp[i];
538 		}
539 
540 		break;
541 
542 	case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
543 		u32 tile_size_shift = 12; /* T tiles are 4kb */
544 		/* Whole-tile offsets, mostly for setting the pitch. */
545 		u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
546 		u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
547 		u32 tile_w_mask = (1 << tile_w_shift) - 1;
548 		/* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
549 		 * the height (in pixels) of a 4k tile.
550 		 */
551 		u32 tile_h_mask = (2 << tile_h_shift) - 1;
552 		/* For T-tiled, the FB pitch is "how many bytes from one row to
553 		 * the next, such that
554 		 *
555 		 *	pitch * tile_h == tile_size * tiles_per_row
556 		 */
557 		u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
558 		u32 tiles_l = vc4_state->src_x >> tile_w_shift;
559 		u32 tiles_r = tiles_w - tiles_l;
560 		u32 tiles_t = vc4_state->src_y >> tile_h_shift;
561 		/* Intra-tile offsets, which modify the base address (the
562 		 * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
563 		 * base address).
564 		 */
565 		u32 tile_y = (vc4_state->src_y >> 4) & 1;
566 		u32 subtile_y = (vc4_state->src_y >> 2) & 3;
567 		u32 utile_y = vc4_state->src_y & 3;
568 		u32 x_off = vc4_state->src_x & tile_w_mask;
569 		u32 y_off = vc4_state->src_y & tile_h_mask;
570 
571 		tiling = SCALER_CTL0_TILING_256B_OR_T;
572 		pitch0 = (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
573 			  VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
574 			  VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
575 			  VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
576 		vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift);
577 		vc4_state->offsets[0] += subtile_y << 8;
578 		vc4_state->offsets[0] += utile_y << 4;
579 
580 		/* Rows of tiles alternate left-to-right and right-to-left. */
581 		if (tiles_t & 1) {
582 			pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
583 			vc4_state->offsets[0] += (tiles_w - tiles_l) <<
584 						 tile_size_shift;
585 			vc4_state->offsets[0] -= (1 + !tile_y) << 10;
586 		} else {
587 			vc4_state->offsets[0] += tiles_l << tile_size_shift;
588 			vc4_state->offsets[0] += tile_y << 10;
589 		}
590 
591 		break;
592 	}
593 
594 	case DRM_FORMAT_MOD_BROADCOM_SAND64:
595 	case DRM_FORMAT_MOD_BROADCOM_SAND128:
596 	case DRM_FORMAT_MOD_BROADCOM_SAND256: {
597 		uint32_t param = fourcc_mod_broadcom_param(fb->modifier);
598 
599 		/* Column-based NV12 or RGBA.
600 		 */
601 		if (fb->format->num_planes > 1) {
602 			if (hvs_format != HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE) {
603 				DRM_DEBUG_KMS("SAND format only valid for NV12/21");
604 				return -EINVAL;
605 			}
606 			hvs_format = HVS_PIXEL_FORMAT_H264;
607 		} else {
608 			if (base_format_mod == DRM_FORMAT_MOD_BROADCOM_SAND256) {
609 				DRM_DEBUG_KMS("SAND256 format only valid for H.264");
610 				return -EINVAL;
611 			}
612 		}
613 
614 		switch (base_format_mod) {
615 		case DRM_FORMAT_MOD_BROADCOM_SAND64:
616 			tiling = SCALER_CTL0_TILING_64B;
617 			break;
618 		case DRM_FORMAT_MOD_BROADCOM_SAND128:
619 			tiling = SCALER_CTL0_TILING_128B;
620 			break;
621 		case DRM_FORMAT_MOD_BROADCOM_SAND256:
622 			tiling = SCALER_CTL0_TILING_256B_OR_T;
623 			break;
624 		default:
625 			break;
626 		}
627 
628 		if (param > SCALER_TILE_HEIGHT_MASK) {
629 			DRM_DEBUG_KMS("SAND height too large (%d)\n", param);
630 			return -EINVAL;
631 		}
632 
633 		pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
634 		break;
635 	}
636 
637 	default:
638 		DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
639 			      (long long)fb->modifier);
640 		return -EINVAL;
641 	}
642 
643 	/* Control word */
644 	vc4_dlist_write(vc4_state,
645 			SCALER_CTL0_VALID |
646 			VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
647 			(format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
648 			(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
649 			VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
650 			(vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
651 			VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
652 			VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
653 
654 	/* Position Word 0: Image Positions and Alpha Value */
655 	vc4_state->pos0_offset = vc4_state->dlist_count;
656 	vc4_dlist_write(vc4_state,
657 			VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
658 			VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
659 			VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
660 
661 	/* Position Word 1: Scaled Image Dimensions. */
662 	if (!vc4_state->is_unity) {
663 		vc4_dlist_write(vc4_state,
664 				VC4_SET_FIELD(vc4_state->crtc_w,
665 					      SCALER_POS1_SCL_WIDTH) |
666 				VC4_SET_FIELD(vc4_state->crtc_h,
667 					      SCALER_POS1_SCL_HEIGHT));
668 	}
669 
670 	/* Don't waste cycles mixing with plane alpha if the set alpha
671 	 * is opaque or there is no per-pixel alpha information.
672 	 * In any case we use the alpha property value as the fixed alpha.
673 	 */
674 	mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
675 			  fb->format->has_alpha;
676 
677 	/* Position Word 2: Source Image Size, Alpha */
678 	vc4_state->pos2_offset = vc4_state->dlist_count;
679 	vc4_dlist_write(vc4_state,
680 			VC4_SET_FIELD(fb->format->has_alpha ?
681 				      SCALER_POS2_ALPHA_MODE_PIPELINE :
682 				      SCALER_POS2_ALPHA_MODE_FIXED,
683 				      SCALER_POS2_ALPHA_MODE) |
684 			(mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
685 			(fb->format->has_alpha ? SCALER_POS2_ALPHA_PREMULT : 0) |
686 			VC4_SET_FIELD(vc4_state->src_w[0], SCALER_POS2_WIDTH) |
687 			VC4_SET_FIELD(vc4_state->src_h[0], SCALER_POS2_HEIGHT));
688 
689 	/* Position Word 3: Context.  Written by the HVS. */
690 	vc4_dlist_write(vc4_state, 0xc0c0c0c0);
691 
692 
693 	/* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
694 	 *
695 	 * The pointers may be any byte address.
696 	 */
697 	vc4_state->ptr0_offset = vc4_state->dlist_count;
698 	for (i = 0; i < num_planes; i++)
699 		vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
700 
701 	/* Pointer Context Word 0/1/2: Written by the HVS */
702 	for (i = 0; i < num_planes; i++)
703 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
704 
705 	/* Pitch word 0 */
706 	vc4_dlist_write(vc4_state, pitch0);
707 
708 	/* Pitch word 1/2 */
709 	for (i = 1; i < num_planes; i++) {
710 		if (hvs_format != HVS_PIXEL_FORMAT_H264) {
711 			vc4_dlist_write(vc4_state,
712 					VC4_SET_FIELD(fb->pitches[i],
713 						      SCALER_SRC_PITCH));
714 		} else {
715 			vc4_dlist_write(vc4_state, pitch0);
716 		}
717 	}
718 
719 	/* Colorspace conversion words */
720 	if (vc4_state->is_yuv) {
721 		vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
722 		vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
723 		vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
724 	}
725 
726 	vc4_state->lbm_offset = 0;
727 
728 	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
729 	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
730 	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
731 	    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
732 		/* Reserve a slot for the LBM Base Address. The real value will
733 		 * be set when calling vc4_plane_allocate_lbm().
734 		 */
735 		if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
736 		    vc4_state->y_scaling[1] != VC4_SCALING_NONE)
737 			vc4_state->lbm_offset = vc4_state->dlist_count++;
738 
739 		if (num_planes > 1) {
740 			/* Emit Cb/Cr as channel 0 and Y as channel
741 			 * 1. This matches how we set up scl0/scl1
742 			 * above.
743 			 */
744 			vc4_write_scaling_parameters(state, 1);
745 		}
746 		vc4_write_scaling_parameters(state, 0);
747 
748 		/* If any PPF setup was done, then all the kernel
749 		 * pointers get uploaded.
750 		 */
751 		if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
752 		    vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
753 		    vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
754 		    vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
755 			u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
756 						   SCALER_PPF_KERNEL_OFFSET);
757 
758 			/* HPPF plane 0 */
759 			vc4_dlist_write(vc4_state, kernel);
760 			/* VPPF plane 0 */
761 			vc4_dlist_write(vc4_state, kernel);
762 			/* HPPF plane 1 */
763 			vc4_dlist_write(vc4_state, kernel);
764 			/* VPPF plane 1 */
765 			vc4_dlist_write(vc4_state, kernel);
766 		}
767 	}
768 
769 	vc4_state->dlist[ctl0_offset] |=
770 		VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
771 
772 	/* crtc_* are already clipped coordinates. */
773 	covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
774 			vc4_state->crtc_w == state->crtc->mode.hdisplay &&
775 			vc4_state->crtc_h == state->crtc->mode.vdisplay;
776 	/* Background fill might be necessary when the plane has per-pixel
777 	 * alpha content or a non-opaque plane alpha and could blend from the
778 	 * background or does not cover the entire screen.
779 	 */
780 	vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
781 				   state->alpha != DRM_BLEND_ALPHA_OPAQUE;
782 
783 	/* Flag the dlist as initialized to avoid checking it twice in case
784 	 * the async update check already called vc4_plane_mode_set() and
785 	 * decided to fallback to sync update because async update was not
786 	 * possible.
787 	 */
788 	vc4_state->dlist_initialized = 1;
789 
790 	return 0;
791 }
792 
793 /* If a modeset involves changing the setup of a plane, the atomic
794  * infrastructure will call this to validate a proposed plane setup.
795  * However, if a plane isn't getting updated, this (and the
796  * corresponding vc4_plane_atomic_update) won't get called.  Thus, we
797  * compute the dlist here and have all active plane dlists get updated
798  * in the CRTC's flush.
799  */
800 static int vc4_plane_atomic_check(struct drm_plane *plane,
801 				  struct drm_plane_state *state)
802 {
803 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
804 	int ret;
805 
806 	vc4_state->dlist_count = 0;
807 
808 	if (!plane_enabled(state))
809 		return 0;
810 
811 	ret = vc4_plane_mode_set(plane, state);
812 	if (ret)
813 		return ret;
814 
815 	return vc4_plane_allocate_lbm(state);
816 }
817 
818 static void vc4_plane_atomic_update(struct drm_plane *plane,
819 				    struct drm_plane_state *old_state)
820 {
821 	/* No contents here.  Since we don't know where in the CRTC's
822 	 * dlist we should be stored, our dlist is uploaded to the
823 	 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
824 	 * time.
825 	 */
826 }
827 
828 u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
829 {
830 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
831 	int i;
832 
833 	vc4_state->hw_dlist = dlist;
834 
835 	/* Can't memcpy_toio() because it needs to be 32-bit writes. */
836 	for (i = 0; i < vc4_state->dlist_count; i++)
837 		writel(vc4_state->dlist[i], &dlist[i]);
838 
839 	return vc4_state->dlist_count;
840 }
841 
842 u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
843 {
844 	const struct vc4_plane_state *vc4_state =
845 		container_of(state, typeof(*vc4_state), base);
846 
847 	return vc4_state->dlist_count;
848 }
849 
850 /* Updates the plane to immediately (well, once the FIFO needs
851  * refilling) scan out from at a new framebuffer.
852  */
853 void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
854 {
855 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
856 	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
857 	uint32_t addr;
858 
859 	/* We're skipping the address adjustment for negative origin,
860 	 * because this is only called on the primary plane.
861 	 */
862 	WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
863 	addr = bo->paddr + fb->offsets[0];
864 
865 	/* Write the new address into the hardware immediately.  The
866 	 * scanout will start from this address as soon as the FIFO
867 	 * needs to refill with pixels.
868 	 */
869 	writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
870 
871 	/* Also update the CPU-side dlist copy, so that any later
872 	 * atomic updates that don't do a new modeset on our plane
873 	 * also use our updated address.
874 	 */
875 	vc4_state->dlist[vc4_state->ptr0_offset] = addr;
876 }
877 
878 static void vc4_plane_atomic_async_update(struct drm_plane *plane,
879 					  struct drm_plane_state *state)
880 {
881 	struct vc4_plane_state *vc4_state, *new_vc4_state;
882 
883 	drm_atomic_set_fb_for_plane(plane->state, state->fb);
884 	plane->state->crtc_x = state->crtc_x;
885 	plane->state->crtc_y = state->crtc_y;
886 	plane->state->crtc_w = state->crtc_w;
887 	plane->state->crtc_h = state->crtc_h;
888 	plane->state->src_x = state->src_x;
889 	plane->state->src_y = state->src_y;
890 	plane->state->src_w = state->src_w;
891 	plane->state->src_h = state->src_h;
892 	plane->state->src_h = state->src_h;
893 	plane->state->alpha = state->alpha;
894 	plane->state->pixel_blend_mode = state->pixel_blend_mode;
895 	plane->state->rotation = state->rotation;
896 	plane->state->zpos = state->zpos;
897 	plane->state->normalized_zpos = state->normalized_zpos;
898 	plane->state->color_encoding = state->color_encoding;
899 	plane->state->color_range = state->color_range;
900 	plane->state->src = state->src;
901 	plane->state->dst = state->dst;
902 	plane->state->visible = state->visible;
903 
904 	new_vc4_state = to_vc4_plane_state(state);
905 	vc4_state = to_vc4_plane_state(plane->state);
906 
907 	vc4_state->crtc_x = new_vc4_state->crtc_x;
908 	vc4_state->crtc_y = new_vc4_state->crtc_y;
909 	vc4_state->crtc_h = new_vc4_state->crtc_h;
910 	vc4_state->crtc_w = new_vc4_state->crtc_w;
911 	vc4_state->src_x = new_vc4_state->src_x;
912 	vc4_state->src_y = new_vc4_state->src_y;
913 	memcpy(vc4_state->src_w, new_vc4_state->src_w,
914 	       sizeof(vc4_state->src_w));
915 	memcpy(vc4_state->src_h, new_vc4_state->src_h,
916 	       sizeof(vc4_state->src_h));
917 	memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling,
918 	       sizeof(vc4_state->x_scaling));
919 	memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling,
920 	       sizeof(vc4_state->y_scaling));
921 	vc4_state->is_unity = new_vc4_state->is_unity;
922 	vc4_state->is_yuv = new_vc4_state->is_yuv;
923 	memcpy(vc4_state->offsets, new_vc4_state->offsets,
924 	       sizeof(vc4_state->offsets));
925 	vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill;
926 
927 	/* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
928 	vc4_state->dlist[vc4_state->pos0_offset] =
929 		new_vc4_state->dlist[vc4_state->pos0_offset];
930 	vc4_state->dlist[vc4_state->pos2_offset] =
931 		new_vc4_state->dlist[vc4_state->pos2_offset];
932 	vc4_state->dlist[vc4_state->ptr0_offset] =
933 		new_vc4_state->dlist[vc4_state->ptr0_offset];
934 
935 	/* Note that we can't just call vc4_plane_write_dlist()
936 	 * because that would smash the context data that the HVS is
937 	 * currently using.
938 	 */
939 	writel(vc4_state->dlist[vc4_state->pos0_offset],
940 	       &vc4_state->hw_dlist[vc4_state->pos0_offset]);
941 	writel(vc4_state->dlist[vc4_state->pos2_offset],
942 	       &vc4_state->hw_dlist[vc4_state->pos2_offset]);
943 	writel(vc4_state->dlist[vc4_state->ptr0_offset],
944 	       &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
945 }
946 
947 static int vc4_plane_atomic_async_check(struct drm_plane *plane,
948 					struct drm_plane_state *state)
949 {
950 	struct vc4_plane_state *old_vc4_state, *new_vc4_state;
951 	int ret;
952 	u32 i;
953 
954 	ret = vc4_plane_mode_set(plane, state);
955 	if (ret)
956 		return ret;
957 
958 	old_vc4_state = to_vc4_plane_state(plane->state);
959 	new_vc4_state = to_vc4_plane_state(state);
960 	if (old_vc4_state->dlist_count != new_vc4_state->dlist_count ||
961 	    old_vc4_state->pos0_offset != new_vc4_state->pos0_offset ||
962 	    old_vc4_state->pos2_offset != new_vc4_state->pos2_offset ||
963 	    old_vc4_state->ptr0_offset != new_vc4_state->ptr0_offset ||
964 	    vc4_lbm_size(plane->state) != vc4_lbm_size(state))
965 		return -EINVAL;
966 
967 	/* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update
968 	 * if anything else has changed, fallback to a sync update.
969 	 */
970 	for (i = 0; i < new_vc4_state->dlist_count; i++) {
971 		if (i == new_vc4_state->pos0_offset ||
972 		    i == new_vc4_state->pos2_offset ||
973 		    i == new_vc4_state->ptr0_offset ||
974 		    (new_vc4_state->lbm_offset &&
975 		     i == new_vc4_state->lbm_offset))
976 			continue;
977 
978 		if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i])
979 			return -EINVAL;
980 	}
981 
982 	return 0;
983 }
984 
985 static int vc4_prepare_fb(struct drm_plane *plane,
986 			  struct drm_plane_state *state)
987 {
988 	struct vc4_bo *bo;
989 	struct dma_fence *fence;
990 	int ret;
991 
992 	if (!state->fb)
993 		return 0;
994 
995 	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
996 
997 	fence = reservation_object_get_excl_rcu(bo->resv);
998 	drm_atomic_set_fence_for_plane(state, fence);
999 
1000 	if (plane->state->fb == state->fb)
1001 		return 0;
1002 
1003 	ret = vc4_bo_inc_usecnt(bo);
1004 	if (ret)
1005 		return ret;
1006 
1007 	return 0;
1008 }
1009 
1010 static void vc4_cleanup_fb(struct drm_plane *plane,
1011 			   struct drm_plane_state *state)
1012 {
1013 	struct vc4_bo *bo;
1014 
1015 	if (plane->state->fb == state->fb || !state->fb)
1016 		return;
1017 
1018 	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1019 	vc4_bo_dec_usecnt(bo);
1020 }
1021 
1022 static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
1023 	.atomic_check = vc4_plane_atomic_check,
1024 	.atomic_update = vc4_plane_atomic_update,
1025 	.prepare_fb = vc4_prepare_fb,
1026 	.cleanup_fb = vc4_cleanup_fb,
1027 	.atomic_async_check = vc4_plane_atomic_async_check,
1028 	.atomic_async_update = vc4_plane_atomic_async_update,
1029 };
1030 
1031 static void vc4_plane_destroy(struct drm_plane *plane)
1032 {
1033 	drm_plane_cleanup(plane);
1034 }
1035 
1036 static bool vc4_format_mod_supported(struct drm_plane *plane,
1037 				     uint32_t format,
1038 				     uint64_t modifier)
1039 {
1040 	/* Support T_TILING for RGB formats only. */
1041 	switch (format) {
1042 	case DRM_FORMAT_XRGB8888:
1043 	case DRM_FORMAT_ARGB8888:
1044 	case DRM_FORMAT_ABGR8888:
1045 	case DRM_FORMAT_XBGR8888:
1046 	case DRM_FORMAT_RGB565:
1047 	case DRM_FORMAT_BGR565:
1048 	case DRM_FORMAT_ARGB1555:
1049 	case DRM_FORMAT_XRGB1555:
1050 		switch (fourcc_mod_broadcom_mod(modifier)) {
1051 		case DRM_FORMAT_MOD_LINEAR:
1052 		case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
1053 		case DRM_FORMAT_MOD_BROADCOM_SAND64:
1054 		case DRM_FORMAT_MOD_BROADCOM_SAND128:
1055 			return true;
1056 		default:
1057 			return false;
1058 		}
1059 	case DRM_FORMAT_NV12:
1060 	case DRM_FORMAT_NV21:
1061 		switch (fourcc_mod_broadcom_mod(modifier)) {
1062 		case DRM_FORMAT_MOD_LINEAR:
1063 		case DRM_FORMAT_MOD_BROADCOM_SAND64:
1064 		case DRM_FORMAT_MOD_BROADCOM_SAND128:
1065 		case DRM_FORMAT_MOD_BROADCOM_SAND256:
1066 			return true;
1067 		default:
1068 			return false;
1069 		}
1070 	case DRM_FORMAT_YUV422:
1071 	case DRM_FORMAT_YVU422:
1072 	case DRM_FORMAT_YUV420:
1073 	case DRM_FORMAT_YVU420:
1074 	case DRM_FORMAT_NV16:
1075 	case DRM_FORMAT_NV61:
1076 	default:
1077 		return (modifier == DRM_FORMAT_MOD_LINEAR);
1078 	}
1079 }
1080 
1081 static const struct drm_plane_funcs vc4_plane_funcs = {
1082 	.update_plane = drm_atomic_helper_update_plane,
1083 	.disable_plane = drm_atomic_helper_disable_plane,
1084 	.destroy = vc4_plane_destroy,
1085 	.set_property = NULL,
1086 	.reset = vc4_plane_reset,
1087 	.atomic_duplicate_state = vc4_plane_duplicate_state,
1088 	.atomic_destroy_state = vc4_plane_destroy_state,
1089 	.format_mod_supported = vc4_format_mod_supported,
1090 };
1091 
1092 struct drm_plane *vc4_plane_init(struct drm_device *dev,
1093 				 enum drm_plane_type type)
1094 {
1095 	struct drm_plane *plane = NULL;
1096 	struct vc4_plane *vc4_plane;
1097 	u32 formats[ARRAY_SIZE(hvs_formats)];
1098 	int ret = 0;
1099 	unsigned i;
1100 	static const uint64_t modifiers[] = {
1101 		DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
1102 		DRM_FORMAT_MOD_BROADCOM_SAND128,
1103 		DRM_FORMAT_MOD_BROADCOM_SAND64,
1104 		DRM_FORMAT_MOD_BROADCOM_SAND256,
1105 		DRM_FORMAT_MOD_LINEAR,
1106 		DRM_FORMAT_MOD_INVALID
1107 	};
1108 
1109 	vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane),
1110 				 GFP_KERNEL);
1111 	if (!vc4_plane)
1112 		return ERR_PTR(-ENOMEM);
1113 
1114 	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++)
1115 		formats[i] = hvs_formats[i].drm;
1116 
1117 	plane = &vc4_plane->base;
1118 	ret = drm_universal_plane_init(dev, plane, 0,
1119 				       &vc4_plane_funcs,
1120 				       formats, ARRAY_SIZE(formats),
1121 				       modifiers, type, NULL);
1122 
1123 	drm_plane_helper_add(plane, &vc4_plane_helper_funcs);
1124 
1125 	drm_plane_create_alpha_property(plane);
1126 
1127 	return plane;
1128 }
1129