xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_plane.c (revision 8ffdff6a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 plane module
8  *
9  * Each DRM plane is a layer of pixels being scanned out by the HVS.
10  *
11  * At atomic modeset check time, we compute the HVS display element
12  * state that would be necessary for displaying the plane (giving us a
13  * chance to figure out if a plane configuration is invalid), then at
14  * atomic flush time the CRTC will ask us to write our element state
15  * into the region of the HVS that it has allocated for us.
16  */
17 
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_atomic_uapi.h>
21 #include <drm/drm_fb_cma_helper.h>
22 #include <drm/drm_fourcc.h>
23 #include <drm/drm_gem_framebuffer_helper.h>
24 #include <drm/drm_plane_helper.h>
25 
26 #include "uapi/drm/vc4_drm.h"
27 
28 #include "vc4_drv.h"
29 #include "vc4_regs.h"
30 
31 static const struct hvs_format {
32 	u32 drm; /* DRM_FORMAT_* */
33 	u32 hvs; /* HVS_FORMAT_* */
34 	u32 pixel_order;
35 	u32 pixel_order_hvs5;
36 } hvs_formats[] = {
37 	{
38 		.drm = DRM_FORMAT_XRGB8888,
39 		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
40 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
41 		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
42 	},
43 	{
44 		.drm = DRM_FORMAT_ARGB8888,
45 		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
46 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
47 		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
48 	},
49 	{
50 		.drm = DRM_FORMAT_ABGR8888,
51 		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
52 		.pixel_order = HVS_PIXEL_ORDER_ARGB,
53 		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
54 	},
55 	{
56 		.drm = DRM_FORMAT_XBGR8888,
57 		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
58 		.pixel_order = HVS_PIXEL_ORDER_ARGB,
59 		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
60 	},
61 	{
62 		.drm = DRM_FORMAT_RGB565,
63 		.hvs = HVS_PIXEL_FORMAT_RGB565,
64 		.pixel_order = HVS_PIXEL_ORDER_XRGB,
65 	},
66 	{
67 		.drm = DRM_FORMAT_BGR565,
68 		.hvs = HVS_PIXEL_FORMAT_RGB565,
69 		.pixel_order = HVS_PIXEL_ORDER_XBGR,
70 	},
71 	{
72 		.drm = DRM_FORMAT_ARGB1555,
73 		.hvs = HVS_PIXEL_FORMAT_RGBA5551,
74 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
75 	},
76 	{
77 		.drm = DRM_FORMAT_XRGB1555,
78 		.hvs = HVS_PIXEL_FORMAT_RGBA5551,
79 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
80 	},
81 	{
82 		.drm = DRM_FORMAT_RGB888,
83 		.hvs = HVS_PIXEL_FORMAT_RGB888,
84 		.pixel_order = HVS_PIXEL_ORDER_XRGB,
85 	},
86 	{
87 		.drm = DRM_FORMAT_BGR888,
88 		.hvs = HVS_PIXEL_FORMAT_RGB888,
89 		.pixel_order = HVS_PIXEL_ORDER_XBGR,
90 	},
91 	{
92 		.drm = DRM_FORMAT_YUV422,
93 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
94 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
95 	},
96 	{
97 		.drm = DRM_FORMAT_YVU422,
98 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
99 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
100 	},
101 	{
102 		.drm = DRM_FORMAT_YUV420,
103 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
104 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
105 	},
106 	{
107 		.drm = DRM_FORMAT_YVU420,
108 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
109 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
110 	},
111 	{
112 		.drm = DRM_FORMAT_NV12,
113 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
114 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
115 	},
116 	{
117 		.drm = DRM_FORMAT_NV21,
118 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
119 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
120 	},
121 	{
122 		.drm = DRM_FORMAT_NV16,
123 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
124 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
125 	},
126 	{
127 		.drm = DRM_FORMAT_NV61,
128 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
129 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
130 	},
131 };
132 
133 static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
134 {
135 	unsigned i;
136 
137 	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
138 		if (hvs_formats[i].drm == drm_format)
139 			return &hvs_formats[i];
140 	}
141 
142 	return NULL;
143 }
144 
145 static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
146 {
147 	if (dst == src)
148 		return VC4_SCALING_NONE;
149 	if (3 * dst >= 2 * src)
150 		return VC4_SCALING_PPF;
151 	else
152 		return VC4_SCALING_TPZ;
153 }
154 
155 static bool plane_enabled(struct drm_plane_state *state)
156 {
157 	return state->fb && !WARN_ON(!state->crtc);
158 }
159 
160 static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
161 {
162 	struct vc4_plane_state *vc4_state;
163 
164 	if (WARN_ON(!plane->state))
165 		return NULL;
166 
167 	vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
168 	if (!vc4_state)
169 		return NULL;
170 
171 	memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
172 	vc4_state->dlist_initialized = 0;
173 
174 	__drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
175 
176 	if (vc4_state->dlist) {
177 		vc4_state->dlist = kmemdup(vc4_state->dlist,
178 					   vc4_state->dlist_count * 4,
179 					   GFP_KERNEL);
180 		if (!vc4_state->dlist) {
181 			kfree(vc4_state);
182 			return NULL;
183 		}
184 		vc4_state->dlist_size = vc4_state->dlist_count;
185 	}
186 
187 	return &vc4_state->base;
188 }
189 
190 static void vc4_plane_destroy_state(struct drm_plane *plane,
191 				    struct drm_plane_state *state)
192 {
193 	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
194 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
195 
196 	if (drm_mm_node_allocated(&vc4_state->lbm)) {
197 		unsigned long irqflags;
198 
199 		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
200 		drm_mm_remove_node(&vc4_state->lbm);
201 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
202 	}
203 
204 	kfree(vc4_state->dlist);
205 	__drm_atomic_helper_plane_destroy_state(&vc4_state->base);
206 	kfree(state);
207 }
208 
209 /* Called during init to allocate the plane's atomic state. */
210 static void vc4_plane_reset(struct drm_plane *plane)
211 {
212 	struct vc4_plane_state *vc4_state;
213 
214 	WARN_ON(plane->state);
215 
216 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
217 	if (!vc4_state)
218 		return;
219 
220 	__drm_atomic_helper_plane_reset(plane, &vc4_state->base);
221 }
222 
223 static void vc4_dlist_counter_increment(struct vc4_plane_state *vc4_state)
224 {
225 	if (vc4_state->dlist_count == vc4_state->dlist_size) {
226 		u32 new_size = max(4u, vc4_state->dlist_count * 2);
227 		u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
228 
229 		if (!new_dlist)
230 			return;
231 		memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);
232 
233 		kfree(vc4_state->dlist);
234 		vc4_state->dlist = new_dlist;
235 		vc4_state->dlist_size = new_size;
236 	}
237 
238 	vc4_state->dlist_count++;
239 }
240 
241 static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
242 {
243 	unsigned int idx = vc4_state->dlist_count;
244 
245 	vc4_dlist_counter_increment(vc4_state);
246 	vc4_state->dlist[idx] = val;
247 }
248 
249 /* Returns the scl0/scl1 field based on whether the dimensions need to
250  * be up/down/non-scaled.
251  *
252  * This is a replication of a table from the spec.
253  */
254 static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
255 {
256 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
257 
258 	switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
259 	case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
260 		return SCALER_CTL0_SCL_H_PPF_V_PPF;
261 	case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
262 		return SCALER_CTL0_SCL_H_TPZ_V_PPF;
263 	case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
264 		return SCALER_CTL0_SCL_H_PPF_V_TPZ;
265 	case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
266 		return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
267 	case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
268 		return SCALER_CTL0_SCL_H_PPF_V_NONE;
269 	case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
270 		return SCALER_CTL0_SCL_H_NONE_V_PPF;
271 	case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
272 		return SCALER_CTL0_SCL_H_NONE_V_TPZ;
273 	case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
274 		return SCALER_CTL0_SCL_H_TPZ_V_NONE;
275 	default:
276 	case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
277 		/* The unity case is independently handled by
278 		 * SCALER_CTL0_UNITY.
279 		 */
280 		return 0;
281 	}
282 }
283 
284 static int vc4_plane_margins_adj(struct drm_plane_state *pstate)
285 {
286 	struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate);
287 	unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay;
288 	struct drm_crtc_state *crtc_state;
289 
290 	crtc_state = drm_atomic_get_new_crtc_state(pstate->state,
291 						   pstate->crtc);
292 
293 	vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom);
294 	if (!left && !right && !top && !bottom)
295 		return 0;
296 
297 	if (left + right >= crtc_state->mode.hdisplay ||
298 	    top + bottom >= crtc_state->mode.vdisplay)
299 		return -EINVAL;
300 
301 	adjhdisplay = crtc_state->mode.hdisplay - (left + right);
302 	vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x *
303 					       adjhdisplay,
304 					       crtc_state->mode.hdisplay);
305 	vc4_pstate->crtc_x += left;
306 	if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - left)
307 		vc4_pstate->crtc_x = crtc_state->mode.hdisplay - left;
308 
309 	adjvdisplay = crtc_state->mode.vdisplay - (top + bottom);
310 	vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y *
311 					       adjvdisplay,
312 					       crtc_state->mode.vdisplay);
313 	vc4_pstate->crtc_y += top;
314 	if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - top)
315 		vc4_pstate->crtc_y = crtc_state->mode.vdisplay - top;
316 
317 	vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w *
318 					       adjhdisplay,
319 					       crtc_state->mode.hdisplay);
320 	vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h *
321 					       adjvdisplay,
322 					       crtc_state->mode.vdisplay);
323 
324 	if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h)
325 		return -EINVAL;
326 
327 	return 0;
328 }
329 
330 static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
331 {
332 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
333 	struct drm_framebuffer *fb = state->fb;
334 	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
335 	u32 subpixel_src_mask = (1 << 16) - 1;
336 	int num_planes = fb->format->num_planes;
337 	struct drm_crtc_state *crtc_state;
338 	u32 h_subsample = fb->format->hsub;
339 	u32 v_subsample = fb->format->vsub;
340 	int i, ret;
341 
342 	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
343 							state->crtc);
344 	if (!crtc_state) {
345 		DRM_DEBUG_KMS("Invalid crtc state\n");
346 		return -EINVAL;
347 	}
348 
349 	ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1,
350 						  INT_MAX, true, true);
351 	if (ret)
352 		return ret;
353 
354 	for (i = 0; i < num_planes; i++)
355 		vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
356 
357 	/* We don't support subpixel source positioning for scaling. */
358 	if ((state->src.x1 & subpixel_src_mask) ||
359 	    (state->src.x2 & subpixel_src_mask) ||
360 	    (state->src.y1 & subpixel_src_mask) ||
361 	    (state->src.y2 & subpixel_src_mask)) {
362 		return -EINVAL;
363 	}
364 
365 	vc4_state->src_x = state->src.x1 >> 16;
366 	vc4_state->src_y = state->src.y1 >> 16;
367 	vc4_state->src_w[0] = (state->src.x2 - state->src.x1) >> 16;
368 	vc4_state->src_h[0] = (state->src.y2 - state->src.y1) >> 16;
369 
370 	vc4_state->crtc_x = state->dst.x1;
371 	vc4_state->crtc_y = state->dst.y1;
372 	vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
373 	vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
374 
375 	ret = vc4_plane_margins_adj(state);
376 	if (ret)
377 		return ret;
378 
379 	vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
380 						       vc4_state->crtc_w);
381 	vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
382 						       vc4_state->crtc_h);
383 
384 	vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
385 			       vc4_state->y_scaling[0] == VC4_SCALING_NONE);
386 
387 	if (num_planes > 1) {
388 		vc4_state->is_yuv = true;
389 
390 		vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
391 		vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
392 
393 		vc4_state->x_scaling[1] =
394 			vc4_get_scaling_mode(vc4_state->src_w[1],
395 					     vc4_state->crtc_w);
396 		vc4_state->y_scaling[1] =
397 			vc4_get_scaling_mode(vc4_state->src_h[1],
398 					     vc4_state->crtc_h);
399 
400 		/* YUV conversion requires that horizontal scaling be enabled
401 		 * on the UV plane even if vc4_get_scaling_mode() returned
402 		 * VC4_SCALING_NONE (which can happen when the down-scaling
403 		 * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
404 		 * case.
405 		 */
406 		if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
407 			vc4_state->x_scaling[1] = VC4_SCALING_PPF;
408 	} else {
409 		vc4_state->is_yuv = false;
410 		vc4_state->x_scaling[1] = VC4_SCALING_NONE;
411 		vc4_state->y_scaling[1] = VC4_SCALING_NONE;
412 	}
413 
414 	return 0;
415 }
416 
417 static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
418 {
419 	u32 scale, recip;
420 
421 	scale = (1 << 16) * src / dst;
422 
423 	/* The specs note that while the reciprocal would be defined
424 	 * as (1<<32)/scale, ~0 is close enough.
425 	 */
426 	recip = ~0 / scale;
427 
428 	vc4_dlist_write(vc4_state,
429 			VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
430 			VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
431 	vc4_dlist_write(vc4_state,
432 			VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
433 }
434 
435 static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
436 {
437 	u32 scale = (1 << 16) * src / dst;
438 
439 	vc4_dlist_write(vc4_state,
440 			SCALER_PPF_AGC |
441 			VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
442 			VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
443 }
444 
445 static u32 vc4_lbm_size(struct drm_plane_state *state)
446 {
447 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
448 	struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
449 	u32 pix_per_line;
450 	u32 lbm;
451 
452 	/* LBM is not needed when there's no vertical scaling. */
453 	if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
454 	    vc4_state->y_scaling[1] == VC4_SCALING_NONE)
455 		return 0;
456 
457 	/*
458 	 * This can be further optimized in the RGB/YUV444 case if the PPF
459 	 * decimation factor is between 0.5 and 1.0 by using crtc_w.
460 	 *
461 	 * It's not an issue though, since in that case since src_w[0] is going
462 	 * to be greater than or equal to crtc_w.
463 	 */
464 	if (vc4_state->x_scaling[0] == VC4_SCALING_TPZ)
465 		pix_per_line = vc4_state->crtc_w;
466 	else
467 		pix_per_line = vc4_state->src_w[0];
468 
469 	if (!vc4_state->is_yuv) {
470 		if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
471 			lbm = pix_per_line * 8;
472 		else {
473 			/* In special cases, this multiplier might be 12. */
474 			lbm = pix_per_line * 16;
475 		}
476 	} else {
477 		/* There are cases for this going down to a multiplier
478 		 * of 2, but according to the firmware source, the
479 		 * table in the docs is somewhat wrong.
480 		 */
481 		lbm = pix_per_line * 16;
482 	}
483 
484 	/* Align it to 64 or 128 (hvs5) bytes */
485 	lbm = roundup(lbm, vc4->hvs->hvs5 ? 128 : 64);
486 
487 	/* Each "word" of the LBM memory contains 2 or 4 (hvs5) pixels */
488 	lbm /= vc4->hvs->hvs5 ? 4 : 2;
489 
490 	return lbm;
491 }
492 
493 static void vc4_write_scaling_parameters(struct drm_plane_state *state,
494 					 int channel)
495 {
496 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
497 
498 	/* Ch0 H-PPF Word 0: Scaling Parameters */
499 	if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
500 		vc4_write_ppf(vc4_state,
501 			      vc4_state->src_w[channel], vc4_state->crtc_w);
502 	}
503 
504 	/* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
505 	if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
506 		vc4_write_ppf(vc4_state,
507 			      vc4_state->src_h[channel], vc4_state->crtc_h);
508 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
509 	}
510 
511 	/* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
512 	if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
513 		vc4_write_tpz(vc4_state,
514 			      vc4_state->src_w[channel], vc4_state->crtc_w);
515 	}
516 
517 	/* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
518 	if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
519 		vc4_write_tpz(vc4_state,
520 			      vc4_state->src_h[channel], vc4_state->crtc_h);
521 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
522 	}
523 }
524 
525 static void vc4_plane_calc_load(struct drm_plane_state *state)
526 {
527 	unsigned int hvs_load_shift, vrefresh, i;
528 	struct drm_framebuffer *fb = state->fb;
529 	struct vc4_plane_state *vc4_state;
530 	struct drm_crtc_state *crtc_state;
531 	unsigned int vscale_factor;
532 	struct vc4_dev *vc4;
533 
534 	vc4 = to_vc4_dev(state->plane->dev);
535 	if (!vc4->load_tracker_available)
536 		return;
537 
538 	vc4_state = to_vc4_plane_state(state);
539 	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
540 							state->crtc);
541 	vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode);
542 
543 	/* The HVS is able to process 2 pixels/cycle when scaling the source,
544 	 * 4 pixels/cycle otherwise.
545 	 * Alpha blending step seems to be pipelined and it's always operating
546 	 * at 4 pixels/cycle, so the limiting aspect here seems to be the
547 	 * scaler block.
548 	 * HVS load is expressed in clk-cycles/sec (AKA Hz).
549 	 */
550 	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
551 	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
552 	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
553 	    vc4_state->y_scaling[1] != VC4_SCALING_NONE)
554 		hvs_load_shift = 1;
555 	else
556 		hvs_load_shift = 2;
557 
558 	vc4_state->membus_load = 0;
559 	vc4_state->hvs_load = 0;
560 	for (i = 0; i < fb->format->num_planes; i++) {
561 		/* Even if the bandwidth/plane required for a single frame is
562 		 *
563 		 * vc4_state->src_w[i] * vc4_state->src_h[i] * cpp * vrefresh
564 		 *
565 		 * when downscaling, we have to read more pixels per line in
566 		 * the time frame reserved for a single line, so the bandwidth
567 		 * demand can be punctually higher. To account for that, we
568 		 * calculate the down-scaling factor and multiply the plane
569 		 * load by this number. We're likely over-estimating the read
570 		 * demand, but that's better than under-estimating it.
571 		 */
572 		vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i],
573 					     vc4_state->crtc_h);
574 		vc4_state->membus_load += vc4_state->src_w[i] *
575 					  vc4_state->src_h[i] * vscale_factor *
576 					  fb->format->cpp[i];
577 		vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w;
578 	}
579 
580 	vc4_state->hvs_load *= vrefresh;
581 	vc4_state->hvs_load >>= hvs_load_shift;
582 	vc4_state->membus_load *= vrefresh;
583 }
584 
585 static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
586 {
587 	struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
588 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
589 	unsigned long irqflags;
590 	u32 lbm_size;
591 
592 	lbm_size = vc4_lbm_size(state);
593 	if (!lbm_size)
594 		return 0;
595 
596 	if (WARN_ON(!vc4_state->lbm_offset))
597 		return -EINVAL;
598 
599 	/* Allocate the LBM memory that the HVS will use for temporary
600 	 * storage due to our scaling/format conversion.
601 	 */
602 	if (!drm_mm_node_allocated(&vc4_state->lbm)) {
603 		int ret;
604 
605 		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
606 		ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
607 						 &vc4_state->lbm,
608 						 lbm_size,
609 						 vc4->hvs->hvs5 ? 64 : 32,
610 						 0, 0);
611 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
612 
613 		if (ret)
614 			return ret;
615 	} else {
616 		WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
617 	}
618 
619 	vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;
620 
621 	return 0;
622 }
623 
624 /* Writes out a full display list for an active plane to the plane's
625  * private dlist state.
626  */
627 static int vc4_plane_mode_set(struct drm_plane *plane,
628 			      struct drm_plane_state *state)
629 {
630 	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
631 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
632 	struct drm_framebuffer *fb = state->fb;
633 	u32 ctl0_offset = vc4_state->dlist_count;
634 	const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
635 	u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
636 	int num_planes = fb->format->num_planes;
637 	u32 h_subsample = fb->format->hsub;
638 	u32 v_subsample = fb->format->vsub;
639 	bool mix_plane_alpha;
640 	bool covers_screen;
641 	u32 scl0, scl1, pitch0;
642 	u32 tiling, src_y;
643 	u32 hvs_format = format->hvs;
644 	unsigned int rotation;
645 	int ret, i;
646 
647 	if (vc4_state->dlist_initialized)
648 		return 0;
649 
650 	ret = vc4_plane_setup_clipping_and_scaling(state);
651 	if (ret)
652 		return ret;
653 
654 	/* SCL1 is used for Cb/Cr scaling of planar formats.  For RGB
655 	 * and 4:4:4, scl1 should be set to scl0 so both channels of
656 	 * the scaler do the same thing.  For YUV, the Y plane needs
657 	 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
658 	 * the scl fields here.
659 	 */
660 	if (num_planes == 1) {
661 		scl0 = vc4_get_scl_field(state, 0);
662 		scl1 = scl0;
663 	} else {
664 		scl0 = vc4_get_scl_field(state, 1);
665 		scl1 = vc4_get_scl_field(state, 0);
666 	}
667 
668 	rotation = drm_rotation_simplify(state->rotation,
669 					 DRM_MODE_ROTATE_0 |
670 					 DRM_MODE_REFLECT_X |
671 					 DRM_MODE_REFLECT_Y);
672 
673 	/* We must point to the last line when Y reflection is enabled. */
674 	src_y = vc4_state->src_y;
675 	if (rotation & DRM_MODE_REFLECT_Y)
676 		src_y += vc4_state->src_h[0] - 1;
677 
678 	switch (base_format_mod) {
679 	case DRM_FORMAT_MOD_LINEAR:
680 		tiling = SCALER_CTL0_TILING_LINEAR;
681 		pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
682 
683 		/* Adjust the base pointer to the first pixel to be scanned
684 		 * out.
685 		 */
686 		for (i = 0; i < num_planes; i++) {
687 			vc4_state->offsets[i] += src_y /
688 						 (i ? v_subsample : 1) *
689 						 fb->pitches[i];
690 
691 			vc4_state->offsets[i] += vc4_state->src_x /
692 						 (i ? h_subsample : 1) *
693 						 fb->format->cpp[i];
694 		}
695 
696 		break;
697 
698 	case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
699 		u32 tile_size_shift = 12; /* T tiles are 4kb */
700 		/* Whole-tile offsets, mostly for setting the pitch. */
701 		u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
702 		u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
703 		u32 tile_w_mask = (1 << tile_w_shift) - 1;
704 		/* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
705 		 * the height (in pixels) of a 4k tile.
706 		 */
707 		u32 tile_h_mask = (2 << tile_h_shift) - 1;
708 		/* For T-tiled, the FB pitch is "how many bytes from one row to
709 		 * the next, such that
710 		 *
711 		 *	pitch * tile_h == tile_size * tiles_per_row
712 		 */
713 		u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
714 		u32 tiles_l = vc4_state->src_x >> tile_w_shift;
715 		u32 tiles_r = tiles_w - tiles_l;
716 		u32 tiles_t = src_y >> tile_h_shift;
717 		/* Intra-tile offsets, which modify the base address (the
718 		 * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
719 		 * base address).
720 		 */
721 		u32 tile_y = (src_y >> 4) & 1;
722 		u32 subtile_y = (src_y >> 2) & 3;
723 		u32 utile_y = src_y & 3;
724 		u32 x_off = vc4_state->src_x & tile_w_mask;
725 		u32 y_off = src_y & tile_h_mask;
726 
727 		/* When Y reflection is requested we must set the
728 		 * SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines
729 		 * after the initial one should be fetched in descending order,
730 		 * which makes sense since we start from the last line and go
731 		 * backward.
732 		 * Don't know why we need y_off = max_y_off - y_off, but it's
733 		 * definitely required (I guess it's also related to the "going
734 		 * backward" situation).
735 		 */
736 		if (rotation & DRM_MODE_REFLECT_Y) {
737 			y_off = tile_h_mask - y_off;
738 			pitch0 = SCALER_PITCH0_TILE_LINE_DIR;
739 		} else {
740 			pitch0 = 0;
741 		}
742 
743 		tiling = SCALER_CTL0_TILING_256B_OR_T;
744 		pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
745 			   VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
746 			   VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
747 			   VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
748 		vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift);
749 		vc4_state->offsets[0] += subtile_y << 8;
750 		vc4_state->offsets[0] += utile_y << 4;
751 
752 		/* Rows of tiles alternate left-to-right and right-to-left. */
753 		if (tiles_t & 1) {
754 			pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
755 			vc4_state->offsets[0] += (tiles_w - tiles_l) <<
756 						 tile_size_shift;
757 			vc4_state->offsets[0] -= (1 + !tile_y) << 10;
758 		} else {
759 			vc4_state->offsets[0] += tiles_l << tile_size_shift;
760 			vc4_state->offsets[0] += tile_y << 10;
761 		}
762 
763 		break;
764 	}
765 
766 	case DRM_FORMAT_MOD_BROADCOM_SAND64:
767 	case DRM_FORMAT_MOD_BROADCOM_SAND128:
768 	case DRM_FORMAT_MOD_BROADCOM_SAND256: {
769 		uint32_t param = fourcc_mod_broadcom_param(fb->modifier);
770 		u32 tile_w, tile, x_off, pix_per_tile;
771 
772 		hvs_format = HVS_PIXEL_FORMAT_H264;
773 
774 		switch (base_format_mod) {
775 		case DRM_FORMAT_MOD_BROADCOM_SAND64:
776 			tiling = SCALER_CTL0_TILING_64B;
777 			tile_w = 64;
778 			break;
779 		case DRM_FORMAT_MOD_BROADCOM_SAND128:
780 			tiling = SCALER_CTL0_TILING_128B;
781 			tile_w = 128;
782 			break;
783 		case DRM_FORMAT_MOD_BROADCOM_SAND256:
784 			tiling = SCALER_CTL0_TILING_256B_OR_T;
785 			tile_w = 256;
786 			break;
787 		default:
788 			break;
789 		}
790 
791 		if (param > SCALER_TILE_HEIGHT_MASK) {
792 			DRM_DEBUG_KMS("SAND height too large (%d)\n", param);
793 			return -EINVAL;
794 		}
795 
796 		pix_per_tile = tile_w / fb->format->cpp[0];
797 		tile = vc4_state->src_x / pix_per_tile;
798 		x_off = vc4_state->src_x % pix_per_tile;
799 
800 		/* Adjust the base pointer to the first pixel to be scanned
801 		 * out.
802 		 */
803 		for (i = 0; i < num_planes; i++) {
804 			vc4_state->offsets[i] += param * tile_w * tile;
805 			vc4_state->offsets[i] += src_y /
806 						 (i ? v_subsample : 1) *
807 						 tile_w;
808 			vc4_state->offsets[i] += x_off /
809 						 (i ? h_subsample : 1) *
810 						 fb->format->cpp[i];
811 		}
812 
813 		pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
814 		break;
815 	}
816 
817 	default:
818 		DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
819 			      (long long)fb->modifier);
820 		return -EINVAL;
821 	}
822 
823 	/* Don't waste cycles mixing with plane alpha if the set alpha
824 	 * is opaque or there is no per-pixel alpha information.
825 	 * In any case we use the alpha property value as the fixed alpha.
826 	 */
827 	mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
828 			  fb->format->has_alpha;
829 
830 	if (!vc4->hvs->hvs5) {
831 	/* Control word */
832 		vc4_dlist_write(vc4_state,
833 				SCALER_CTL0_VALID |
834 				(rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) |
835 				(rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) |
836 				VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
837 				(format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
838 				(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
839 				VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
840 				(vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
841 				VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
842 				VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
843 
844 		/* Position Word 0: Image Positions and Alpha Value */
845 		vc4_state->pos0_offset = vc4_state->dlist_count;
846 		vc4_dlist_write(vc4_state,
847 				VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
848 				VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
849 				VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
850 
851 		/* Position Word 1: Scaled Image Dimensions. */
852 		if (!vc4_state->is_unity) {
853 			vc4_dlist_write(vc4_state,
854 					VC4_SET_FIELD(vc4_state->crtc_w,
855 						      SCALER_POS1_SCL_WIDTH) |
856 					VC4_SET_FIELD(vc4_state->crtc_h,
857 						      SCALER_POS1_SCL_HEIGHT));
858 		}
859 
860 		/* Position Word 2: Source Image Size, Alpha */
861 		vc4_state->pos2_offset = vc4_state->dlist_count;
862 		vc4_dlist_write(vc4_state,
863 				VC4_SET_FIELD(fb->format->has_alpha ?
864 					      SCALER_POS2_ALPHA_MODE_PIPELINE :
865 					      SCALER_POS2_ALPHA_MODE_FIXED,
866 					      SCALER_POS2_ALPHA_MODE) |
867 				(mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
868 				(fb->format->has_alpha ?
869 						SCALER_POS2_ALPHA_PREMULT : 0) |
870 				VC4_SET_FIELD(vc4_state->src_w[0],
871 					      SCALER_POS2_WIDTH) |
872 				VC4_SET_FIELD(vc4_state->src_h[0],
873 					      SCALER_POS2_HEIGHT));
874 
875 		/* Position Word 3: Context.  Written by the HVS. */
876 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
877 
878 	} else {
879 		u32 hvs_pixel_order = format->pixel_order;
880 
881 		if (format->pixel_order_hvs5)
882 			hvs_pixel_order = format->pixel_order_hvs5;
883 
884 		/* Control word */
885 		vc4_dlist_write(vc4_state,
886 				SCALER_CTL0_VALID |
887 				(hvs_pixel_order << SCALER_CTL0_ORDER_SHIFT) |
888 				(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
889 				VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
890 				(vc4_state->is_unity ?
891 						SCALER5_CTL0_UNITY : 0) |
892 				VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
893 				VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1) |
894 				SCALER5_CTL0_ALPHA_EXPAND |
895 				SCALER5_CTL0_RGB_EXPAND);
896 
897 		/* Position Word 0: Image Positions and Alpha Value */
898 		vc4_state->pos0_offset = vc4_state->dlist_count;
899 		vc4_dlist_write(vc4_state,
900 				(rotation & DRM_MODE_REFLECT_Y ?
901 						SCALER5_POS0_VFLIP : 0) |
902 				VC4_SET_FIELD(vc4_state->crtc_x,
903 					      SCALER_POS0_START_X) |
904 				(rotation & DRM_MODE_REFLECT_X ?
905 					      SCALER5_POS0_HFLIP : 0) |
906 				VC4_SET_FIELD(vc4_state->crtc_y,
907 					      SCALER5_POS0_START_Y)
908 			       );
909 
910 		/* Control Word 2 */
911 		vc4_dlist_write(vc4_state,
912 				VC4_SET_FIELD(state->alpha >> 4,
913 					      SCALER5_CTL2_ALPHA) |
914 				(fb->format->has_alpha ?
915 					SCALER5_CTL2_ALPHA_PREMULT : 0) |
916 				(mix_plane_alpha ?
917 					SCALER5_CTL2_ALPHA_MIX : 0) |
918 				VC4_SET_FIELD(fb->format->has_alpha ?
919 				      SCALER5_CTL2_ALPHA_MODE_PIPELINE :
920 				      SCALER5_CTL2_ALPHA_MODE_FIXED,
921 				      SCALER5_CTL2_ALPHA_MODE)
922 			       );
923 
924 		/* Position Word 1: Scaled Image Dimensions. */
925 		if (!vc4_state->is_unity) {
926 			vc4_dlist_write(vc4_state,
927 					VC4_SET_FIELD(vc4_state->crtc_w,
928 						      SCALER5_POS1_SCL_WIDTH) |
929 					VC4_SET_FIELD(vc4_state->crtc_h,
930 						      SCALER5_POS1_SCL_HEIGHT));
931 		}
932 
933 		/* Position Word 2: Source Image Size */
934 		vc4_state->pos2_offset = vc4_state->dlist_count;
935 		vc4_dlist_write(vc4_state,
936 				VC4_SET_FIELD(vc4_state->src_w[0],
937 					      SCALER5_POS2_WIDTH) |
938 				VC4_SET_FIELD(vc4_state->src_h[0],
939 					      SCALER5_POS2_HEIGHT));
940 
941 		/* Position Word 3: Context.  Written by the HVS. */
942 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
943 	}
944 
945 
946 	/* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
947 	 *
948 	 * The pointers may be any byte address.
949 	 */
950 	vc4_state->ptr0_offset = vc4_state->dlist_count;
951 	for (i = 0; i < num_planes; i++)
952 		vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
953 
954 	/* Pointer Context Word 0/1/2: Written by the HVS */
955 	for (i = 0; i < num_planes; i++)
956 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
957 
958 	/* Pitch word 0 */
959 	vc4_dlist_write(vc4_state, pitch0);
960 
961 	/* Pitch word 1/2 */
962 	for (i = 1; i < num_planes; i++) {
963 		if (hvs_format != HVS_PIXEL_FORMAT_H264) {
964 			vc4_dlist_write(vc4_state,
965 					VC4_SET_FIELD(fb->pitches[i],
966 						      SCALER_SRC_PITCH));
967 		} else {
968 			vc4_dlist_write(vc4_state, pitch0);
969 		}
970 	}
971 
972 	/* Colorspace conversion words */
973 	if (vc4_state->is_yuv) {
974 		vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
975 		vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
976 		vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
977 	}
978 
979 	vc4_state->lbm_offset = 0;
980 
981 	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
982 	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
983 	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
984 	    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
985 		/* Reserve a slot for the LBM Base Address. The real value will
986 		 * be set when calling vc4_plane_allocate_lbm().
987 		 */
988 		if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
989 		    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
990 			vc4_state->lbm_offset = vc4_state->dlist_count;
991 			vc4_dlist_counter_increment(vc4_state);
992 		}
993 
994 		if (num_planes > 1) {
995 			/* Emit Cb/Cr as channel 0 and Y as channel
996 			 * 1. This matches how we set up scl0/scl1
997 			 * above.
998 			 */
999 			vc4_write_scaling_parameters(state, 1);
1000 		}
1001 		vc4_write_scaling_parameters(state, 0);
1002 
1003 		/* If any PPF setup was done, then all the kernel
1004 		 * pointers get uploaded.
1005 		 */
1006 		if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
1007 		    vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
1008 		    vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
1009 		    vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
1010 			u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
1011 						   SCALER_PPF_KERNEL_OFFSET);
1012 
1013 			/* HPPF plane 0 */
1014 			vc4_dlist_write(vc4_state, kernel);
1015 			/* VPPF plane 0 */
1016 			vc4_dlist_write(vc4_state, kernel);
1017 			/* HPPF plane 1 */
1018 			vc4_dlist_write(vc4_state, kernel);
1019 			/* VPPF plane 1 */
1020 			vc4_dlist_write(vc4_state, kernel);
1021 		}
1022 	}
1023 
1024 	vc4_state->dlist[ctl0_offset] |=
1025 		VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
1026 
1027 	/* crtc_* are already clipped coordinates. */
1028 	covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
1029 			vc4_state->crtc_w == state->crtc->mode.hdisplay &&
1030 			vc4_state->crtc_h == state->crtc->mode.vdisplay;
1031 	/* Background fill might be necessary when the plane has per-pixel
1032 	 * alpha content or a non-opaque plane alpha and could blend from the
1033 	 * background or does not cover the entire screen.
1034 	 */
1035 	vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
1036 				   state->alpha != DRM_BLEND_ALPHA_OPAQUE;
1037 
1038 	/* Flag the dlist as initialized to avoid checking it twice in case
1039 	 * the async update check already called vc4_plane_mode_set() and
1040 	 * decided to fallback to sync update because async update was not
1041 	 * possible.
1042 	 */
1043 	vc4_state->dlist_initialized = 1;
1044 
1045 	vc4_plane_calc_load(state);
1046 
1047 	return 0;
1048 }
1049 
1050 /* If a modeset involves changing the setup of a plane, the atomic
1051  * infrastructure will call this to validate a proposed plane setup.
1052  * However, if a plane isn't getting updated, this (and the
1053  * corresponding vc4_plane_atomic_update) won't get called.  Thus, we
1054  * compute the dlist here and have all active plane dlists get updated
1055  * in the CRTC's flush.
1056  */
1057 static int vc4_plane_atomic_check(struct drm_plane *plane,
1058 				  struct drm_plane_state *state)
1059 {
1060 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
1061 	int ret;
1062 
1063 	vc4_state->dlist_count = 0;
1064 
1065 	if (!plane_enabled(state))
1066 		return 0;
1067 
1068 	ret = vc4_plane_mode_set(plane, state);
1069 	if (ret)
1070 		return ret;
1071 
1072 	return vc4_plane_allocate_lbm(state);
1073 }
1074 
1075 static void vc4_plane_atomic_update(struct drm_plane *plane,
1076 				    struct drm_plane_state *old_state)
1077 {
1078 	/* No contents here.  Since we don't know where in the CRTC's
1079 	 * dlist we should be stored, our dlist is uploaded to the
1080 	 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
1081 	 * time.
1082 	 */
1083 }
1084 
1085 u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
1086 {
1087 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1088 	int i;
1089 
1090 	vc4_state->hw_dlist = dlist;
1091 
1092 	/* Can't memcpy_toio() because it needs to be 32-bit writes. */
1093 	for (i = 0; i < vc4_state->dlist_count; i++)
1094 		writel(vc4_state->dlist[i], &dlist[i]);
1095 
1096 	return vc4_state->dlist_count;
1097 }
1098 
1099 u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
1100 {
1101 	const struct vc4_plane_state *vc4_state =
1102 		container_of(state, typeof(*vc4_state), base);
1103 
1104 	return vc4_state->dlist_count;
1105 }
1106 
1107 /* Updates the plane to immediately (well, once the FIFO needs
1108  * refilling) scan out from at a new framebuffer.
1109  */
1110 void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
1111 {
1112 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1113 	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
1114 	uint32_t addr;
1115 
1116 	/* We're skipping the address adjustment for negative origin,
1117 	 * because this is only called on the primary plane.
1118 	 */
1119 	WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
1120 	addr = bo->paddr + fb->offsets[0];
1121 
1122 	/* Write the new address into the hardware immediately.  The
1123 	 * scanout will start from this address as soon as the FIFO
1124 	 * needs to refill with pixels.
1125 	 */
1126 	writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1127 
1128 	/* Also update the CPU-side dlist copy, so that any later
1129 	 * atomic updates that don't do a new modeset on our plane
1130 	 * also use our updated address.
1131 	 */
1132 	vc4_state->dlist[vc4_state->ptr0_offset] = addr;
1133 }
1134 
1135 static void vc4_plane_atomic_async_update(struct drm_plane *plane,
1136 					  struct drm_plane_state *state)
1137 {
1138 	struct vc4_plane_state *vc4_state, *new_vc4_state;
1139 
1140 	swap(plane->state->fb, state->fb);
1141 	plane->state->crtc_x = state->crtc_x;
1142 	plane->state->crtc_y = state->crtc_y;
1143 	plane->state->crtc_w = state->crtc_w;
1144 	plane->state->crtc_h = state->crtc_h;
1145 	plane->state->src_x = state->src_x;
1146 	plane->state->src_y = state->src_y;
1147 	plane->state->src_w = state->src_w;
1148 	plane->state->src_h = state->src_h;
1149 	plane->state->src_h = state->src_h;
1150 	plane->state->alpha = state->alpha;
1151 	plane->state->pixel_blend_mode = state->pixel_blend_mode;
1152 	plane->state->rotation = state->rotation;
1153 	plane->state->zpos = state->zpos;
1154 	plane->state->normalized_zpos = state->normalized_zpos;
1155 	plane->state->color_encoding = state->color_encoding;
1156 	plane->state->color_range = state->color_range;
1157 	plane->state->src = state->src;
1158 	plane->state->dst = state->dst;
1159 	plane->state->visible = state->visible;
1160 
1161 	new_vc4_state = to_vc4_plane_state(state);
1162 	vc4_state = to_vc4_plane_state(plane->state);
1163 
1164 	vc4_state->crtc_x = new_vc4_state->crtc_x;
1165 	vc4_state->crtc_y = new_vc4_state->crtc_y;
1166 	vc4_state->crtc_h = new_vc4_state->crtc_h;
1167 	vc4_state->crtc_w = new_vc4_state->crtc_w;
1168 	vc4_state->src_x = new_vc4_state->src_x;
1169 	vc4_state->src_y = new_vc4_state->src_y;
1170 	memcpy(vc4_state->src_w, new_vc4_state->src_w,
1171 	       sizeof(vc4_state->src_w));
1172 	memcpy(vc4_state->src_h, new_vc4_state->src_h,
1173 	       sizeof(vc4_state->src_h));
1174 	memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling,
1175 	       sizeof(vc4_state->x_scaling));
1176 	memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling,
1177 	       sizeof(vc4_state->y_scaling));
1178 	vc4_state->is_unity = new_vc4_state->is_unity;
1179 	vc4_state->is_yuv = new_vc4_state->is_yuv;
1180 	memcpy(vc4_state->offsets, new_vc4_state->offsets,
1181 	       sizeof(vc4_state->offsets));
1182 	vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill;
1183 
1184 	/* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
1185 	vc4_state->dlist[vc4_state->pos0_offset] =
1186 		new_vc4_state->dlist[vc4_state->pos0_offset];
1187 	vc4_state->dlist[vc4_state->pos2_offset] =
1188 		new_vc4_state->dlist[vc4_state->pos2_offset];
1189 	vc4_state->dlist[vc4_state->ptr0_offset] =
1190 		new_vc4_state->dlist[vc4_state->ptr0_offset];
1191 
1192 	/* Note that we can't just call vc4_plane_write_dlist()
1193 	 * because that would smash the context data that the HVS is
1194 	 * currently using.
1195 	 */
1196 	writel(vc4_state->dlist[vc4_state->pos0_offset],
1197 	       &vc4_state->hw_dlist[vc4_state->pos0_offset]);
1198 	writel(vc4_state->dlist[vc4_state->pos2_offset],
1199 	       &vc4_state->hw_dlist[vc4_state->pos2_offset]);
1200 	writel(vc4_state->dlist[vc4_state->ptr0_offset],
1201 	       &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1202 }
1203 
1204 static int vc4_plane_atomic_async_check(struct drm_plane *plane,
1205 					struct drm_plane_state *state)
1206 {
1207 	struct vc4_plane_state *old_vc4_state, *new_vc4_state;
1208 	int ret;
1209 	u32 i;
1210 
1211 	ret = vc4_plane_mode_set(plane, state);
1212 	if (ret)
1213 		return ret;
1214 
1215 	old_vc4_state = to_vc4_plane_state(plane->state);
1216 	new_vc4_state = to_vc4_plane_state(state);
1217 	if (old_vc4_state->dlist_count != new_vc4_state->dlist_count ||
1218 	    old_vc4_state->pos0_offset != new_vc4_state->pos0_offset ||
1219 	    old_vc4_state->pos2_offset != new_vc4_state->pos2_offset ||
1220 	    old_vc4_state->ptr0_offset != new_vc4_state->ptr0_offset ||
1221 	    vc4_lbm_size(plane->state) != vc4_lbm_size(state))
1222 		return -EINVAL;
1223 
1224 	/* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update
1225 	 * if anything else has changed, fallback to a sync update.
1226 	 */
1227 	for (i = 0; i < new_vc4_state->dlist_count; i++) {
1228 		if (i == new_vc4_state->pos0_offset ||
1229 		    i == new_vc4_state->pos2_offset ||
1230 		    i == new_vc4_state->ptr0_offset ||
1231 		    (new_vc4_state->lbm_offset &&
1232 		     i == new_vc4_state->lbm_offset))
1233 			continue;
1234 
1235 		if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i])
1236 			return -EINVAL;
1237 	}
1238 
1239 	return 0;
1240 }
1241 
1242 static int vc4_prepare_fb(struct drm_plane *plane,
1243 			  struct drm_plane_state *state)
1244 {
1245 	struct vc4_bo *bo;
1246 	int ret;
1247 
1248 	if (!state->fb)
1249 		return 0;
1250 
1251 	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1252 
1253 	drm_gem_fb_prepare_fb(plane, state);
1254 
1255 	if (plane->state->fb == state->fb)
1256 		return 0;
1257 
1258 	ret = vc4_bo_inc_usecnt(bo);
1259 	if (ret)
1260 		return ret;
1261 
1262 	return 0;
1263 }
1264 
1265 static void vc4_cleanup_fb(struct drm_plane *plane,
1266 			   struct drm_plane_state *state)
1267 {
1268 	struct vc4_bo *bo;
1269 
1270 	if (plane->state->fb == state->fb || !state->fb)
1271 		return;
1272 
1273 	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1274 	vc4_bo_dec_usecnt(bo);
1275 }
1276 
1277 static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
1278 	.atomic_check = vc4_plane_atomic_check,
1279 	.atomic_update = vc4_plane_atomic_update,
1280 	.prepare_fb = vc4_prepare_fb,
1281 	.cleanup_fb = vc4_cleanup_fb,
1282 	.atomic_async_check = vc4_plane_atomic_async_check,
1283 	.atomic_async_update = vc4_plane_atomic_async_update,
1284 };
1285 
1286 static bool vc4_format_mod_supported(struct drm_plane *plane,
1287 				     uint32_t format,
1288 				     uint64_t modifier)
1289 {
1290 	/* Support T_TILING for RGB formats only. */
1291 	switch (format) {
1292 	case DRM_FORMAT_XRGB8888:
1293 	case DRM_FORMAT_ARGB8888:
1294 	case DRM_FORMAT_ABGR8888:
1295 	case DRM_FORMAT_XBGR8888:
1296 	case DRM_FORMAT_RGB565:
1297 	case DRM_FORMAT_BGR565:
1298 	case DRM_FORMAT_ARGB1555:
1299 	case DRM_FORMAT_XRGB1555:
1300 		switch (fourcc_mod_broadcom_mod(modifier)) {
1301 		case DRM_FORMAT_MOD_LINEAR:
1302 		case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
1303 			return true;
1304 		default:
1305 			return false;
1306 		}
1307 	case DRM_FORMAT_NV12:
1308 	case DRM_FORMAT_NV21:
1309 		switch (fourcc_mod_broadcom_mod(modifier)) {
1310 		case DRM_FORMAT_MOD_LINEAR:
1311 		case DRM_FORMAT_MOD_BROADCOM_SAND64:
1312 		case DRM_FORMAT_MOD_BROADCOM_SAND128:
1313 		case DRM_FORMAT_MOD_BROADCOM_SAND256:
1314 			return true;
1315 		default:
1316 			return false;
1317 		}
1318 	case DRM_FORMAT_RGBX1010102:
1319 	case DRM_FORMAT_BGRX1010102:
1320 	case DRM_FORMAT_RGBA1010102:
1321 	case DRM_FORMAT_BGRA1010102:
1322 	case DRM_FORMAT_YUV422:
1323 	case DRM_FORMAT_YVU422:
1324 	case DRM_FORMAT_YUV420:
1325 	case DRM_FORMAT_YVU420:
1326 	case DRM_FORMAT_NV16:
1327 	case DRM_FORMAT_NV61:
1328 	default:
1329 		return (modifier == DRM_FORMAT_MOD_LINEAR);
1330 	}
1331 }
1332 
1333 static const struct drm_plane_funcs vc4_plane_funcs = {
1334 	.update_plane = drm_atomic_helper_update_plane,
1335 	.disable_plane = drm_atomic_helper_disable_plane,
1336 	.destroy = drm_plane_cleanup,
1337 	.set_property = NULL,
1338 	.reset = vc4_plane_reset,
1339 	.atomic_duplicate_state = vc4_plane_duplicate_state,
1340 	.atomic_destroy_state = vc4_plane_destroy_state,
1341 	.format_mod_supported = vc4_format_mod_supported,
1342 };
1343 
1344 struct drm_plane *vc4_plane_init(struct drm_device *dev,
1345 				 enum drm_plane_type type)
1346 {
1347 	struct drm_plane *plane = NULL;
1348 	struct vc4_plane *vc4_plane;
1349 	u32 formats[ARRAY_SIZE(hvs_formats)];
1350 	int ret = 0;
1351 	unsigned i;
1352 	static const uint64_t modifiers[] = {
1353 		DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
1354 		DRM_FORMAT_MOD_BROADCOM_SAND128,
1355 		DRM_FORMAT_MOD_BROADCOM_SAND64,
1356 		DRM_FORMAT_MOD_BROADCOM_SAND256,
1357 		DRM_FORMAT_MOD_LINEAR,
1358 		DRM_FORMAT_MOD_INVALID
1359 	};
1360 
1361 	vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane),
1362 				 GFP_KERNEL);
1363 	if (!vc4_plane)
1364 		return ERR_PTR(-ENOMEM);
1365 
1366 	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++)
1367 		formats[i] = hvs_formats[i].drm;
1368 
1369 	plane = &vc4_plane->base;
1370 	ret = drm_universal_plane_init(dev, plane, 0,
1371 				       &vc4_plane_funcs,
1372 				       formats, ARRAY_SIZE(formats),
1373 				       modifiers, type, NULL);
1374 	if (ret)
1375 		return ERR_PTR(ret);
1376 
1377 	drm_plane_helper_add(plane, &vc4_plane_helper_funcs);
1378 
1379 	drm_plane_create_alpha_property(plane);
1380 	drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1381 					   DRM_MODE_ROTATE_0 |
1382 					   DRM_MODE_ROTATE_180 |
1383 					   DRM_MODE_REFLECT_X |
1384 					   DRM_MODE_REFLECT_Y);
1385 
1386 	return plane;
1387 }
1388 
1389 int vc4_plane_create_additional_planes(struct drm_device *drm)
1390 {
1391 	struct drm_plane *cursor_plane;
1392 	struct drm_crtc *crtc;
1393 	unsigned int i;
1394 
1395 	/* Set up some arbitrary number of planes.  We're not limited
1396 	 * by a set number of physical registers, just the space in
1397 	 * the HVS (16k) and how small an plane can be (28 bytes).
1398 	 * However, each plane we set up takes up some memory, and
1399 	 * increases the cost of looping over planes, which atomic
1400 	 * modesetting does quite a bit.  As a result, we pick a
1401 	 * modest number of planes to expose, that should hopefully
1402 	 * still cover any sane usecase.
1403 	 */
1404 	for (i = 0; i < 16; i++) {
1405 		struct drm_plane *plane =
1406 			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1407 
1408 		if (IS_ERR(plane))
1409 			continue;
1410 
1411 		plane->possible_crtcs =
1412 			GENMASK(drm->mode_config.num_crtc - 1, 0);
1413 	}
1414 
1415 	drm_for_each_crtc(crtc, drm) {
1416 		/* Set up the legacy cursor after overlay initialization,
1417 		 * since we overlay planes on the CRTC in the order they were
1418 		 * initialized.
1419 		 */
1420 		cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1421 		if (!IS_ERR(cursor_plane)) {
1422 			cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1423 			crtc->cursor = cursor_plane;
1424 		}
1425 	}
1426 
1427 	return 0;
1428 }
1429