1 /* 2 * Copyright (C) 2015 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 /** 10 * DOC: VC4 plane module 11 * 12 * Each DRM plane is a layer of pixels being scanned out by the HVS. 13 * 14 * At atomic modeset check time, we compute the HVS display element 15 * state that would be necessary for displaying the plane (giving us a 16 * chance to figure out if a plane configuration is invalid), then at 17 * atomic flush time the CRTC will ask us to write our element state 18 * into the region of the HVS that it has allocated for us. 19 */ 20 21 #include <drm/drm_atomic.h> 22 #include <drm/drm_atomic_helper.h> 23 #include <drm/drm_fb_cma_helper.h> 24 #include <drm/drm_plane_helper.h> 25 26 #include "uapi/drm/vc4_drm.h" 27 #include "vc4_drv.h" 28 #include "vc4_regs.h" 29 30 enum vc4_scaling_mode { 31 VC4_SCALING_NONE, 32 VC4_SCALING_TPZ, 33 VC4_SCALING_PPF, 34 }; 35 36 struct vc4_plane_state { 37 struct drm_plane_state base; 38 /* System memory copy of the display list for this element, computed 39 * at atomic_check time. 40 */ 41 u32 *dlist; 42 u32 dlist_size; /* Number of dwords allocated for the display list */ 43 u32 dlist_count; /* Number of used dwords in the display list. */ 44 45 /* Offset in the dlist to various words, for pageflip or 46 * cursor updates. 47 */ 48 u32 pos0_offset; 49 u32 pos2_offset; 50 u32 ptr0_offset; 51 52 /* Offset where the plane's dlist was last stored in the 53 * hardware at vc4_crtc_atomic_flush() time. 54 */ 55 u32 __iomem *hw_dlist; 56 57 /* Clipped coordinates of the plane on the display. */ 58 int crtc_x, crtc_y, crtc_w, crtc_h; 59 /* Clipped area being scanned from in the FB. */ 60 u32 src_x, src_y; 61 62 u32 src_w[2], src_h[2]; 63 64 /* Scaling selection for the RGB/Y plane and the Cb/Cr planes. */ 65 enum vc4_scaling_mode x_scaling[2], y_scaling[2]; 66 bool is_unity; 67 bool is_yuv; 68 69 /* Offset to start scanning out from the start of the plane's 70 * BO. 71 */ 72 u32 offsets[3]; 73 74 /* Our allocation in LBM for temporary storage during scaling. */ 75 struct drm_mm_node lbm; 76 }; 77 78 static inline struct vc4_plane_state * 79 to_vc4_plane_state(struct drm_plane_state *state) 80 { 81 return (struct vc4_plane_state *)state; 82 } 83 84 static const struct hvs_format { 85 u32 drm; /* DRM_FORMAT_* */ 86 u32 hvs; /* HVS_FORMAT_* */ 87 u32 pixel_order; 88 bool has_alpha; 89 bool flip_cbcr; 90 } hvs_formats[] = { 91 { 92 .drm = DRM_FORMAT_XRGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, 93 .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = false, 94 }, 95 { 96 .drm = DRM_FORMAT_ARGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, 97 .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = true, 98 }, 99 { 100 .drm = DRM_FORMAT_ABGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, 101 .pixel_order = HVS_PIXEL_ORDER_ARGB, .has_alpha = true, 102 }, 103 { 104 .drm = DRM_FORMAT_XBGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, 105 .pixel_order = HVS_PIXEL_ORDER_ARGB, .has_alpha = false, 106 }, 107 { 108 .drm = DRM_FORMAT_RGB565, .hvs = HVS_PIXEL_FORMAT_RGB565, 109 .pixel_order = HVS_PIXEL_ORDER_XRGB, .has_alpha = false, 110 }, 111 { 112 .drm = DRM_FORMAT_BGR565, .hvs = HVS_PIXEL_FORMAT_RGB565, 113 .pixel_order = HVS_PIXEL_ORDER_XBGR, .has_alpha = false, 114 }, 115 { 116 .drm = DRM_FORMAT_ARGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551, 117 .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = true, 118 }, 119 { 120 .drm = DRM_FORMAT_XRGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551, 121 .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = false, 122 }, 123 { 124 .drm = DRM_FORMAT_YUV422, 125 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE, 126 }, 127 { 128 .drm = DRM_FORMAT_YVU422, 129 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE, 130 .flip_cbcr = true, 131 }, 132 { 133 .drm = DRM_FORMAT_YUV420, 134 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE, 135 }, 136 { 137 .drm = DRM_FORMAT_YVU420, 138 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE, 139 .flip_cbcr = true, 140 }, 141 { 142 .drm = DRM_FORMAT_NV12, 143 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE, 144 }, 145 { 146 .drm = DRM_FORMAT_NV16, 147 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE, 148 }, 149 }; 150 151 static const struct hvs_format *vc4_get_hvs_format(u32 drm_format) 152 { 153 unsigned i; 154 155 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) { 156 if (hvs_formats[i].drm == drm_format) 157 return &hvs_formats[i]; 158 } 159 160 return NULL; 161 } 162 163 static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst) 164 { 165 if (dst > src) 166 return VC4_SCALING_PPF; 167 else if (dst < src) 168 return VC4_SCALING_TPZ; 169 else 170 return VC4_SCALING_NONE; 171 } 172 173 static bool plane_enabled(struct drm_plane_state *state) 174 { 175 return state->fb && state->crtc; 176 } 177 178 static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane) 179 { 180 struct vc4_plane_state *vc4_state; 181 182 if (WARN_ON(!plane->state)) 183 return NULL; 184 185 vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL); 186 if (!vc4_state) 187 return NULL; 188 189 memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm)); 190 191 __drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base); 192 193 if (vc4_state->dlist) { 194 vc4_state->dlist = kmemdup(vc4_state->dlist, 195 vc4_state->dlist_count * 4, 196 GFP_KERNEL); 197 if (!vc4_state->dlist) { 198 kfree(vc4_state); 199 return NULL; 200 } 201 vc4_state->dlist_size = vc4_state->dlist_count; 202 } 203 204 return &vc4_state->base; 205 } 206 207 static void vc4_plane_destroy_state(struct drm_plane *plane, 208 struct drm_plane_state *state) 209 { 210 struct vc4_dev *vc4 = to_vc4_dev(plane->dev); 211 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 212 213 if (vc4_state->lbm.allocated) { 214 unsigned long irqflags; 215 216 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags); 217 drm_mm_remove_node(&vc4_state->lbm); 218 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags); 219 } 220 221 kfree(vc4_state->dlist); 222 __drm_atomic_helper_plane_destroy_state(&vc4_state->base); 223 kfree(state); 224 } 225 226 /* Called during init to allocate the plane's atomic state. */ 227 static void vc4_plane_reset(struct drm_plane *plane) 228 { 229 struct vc4_plane_state *vc4_state; 230 231 WARN_ON(plane->state); 232 233 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 234 if (!vc4_state) 235 return; 236 237 plane->state = &vc4_state->base; 238 vc4_state->base.plane = plane; 239 } 240 241 static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val) 242 { 243 if (vc4_state->dlist_count == vc4_state->dlist_size) { 244 u32 new_size = max(4u, vc4_state->dlist_count * 2); 245 u32 *new_dlist = kmalloc(new_size * 4, GFP_KERNEL); 246 247 if (!new_dlist) 248 return; 249 memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4); 250 251 kfree(vc4_state->dlist); 252 vc4_state->dlist = new_dlist; 253 vc4_state->dlist_size = new_size; 254 } 255 256 vc4_state->dlist[vc4_state->dlist_count++] = val; 257 } 258 259 /* Returns the scl0/scl1 field based on whether the dimensions need to 260 * be up/down/non-scaled. 261 * 262 * This is a replication of a table from the spec. 263 */ 264 static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane) 265 { 266 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 267 268 switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) { 269 case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF: 270 return SCALER_CTL0_SCL_H_PPF_V_PPF; 271 case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF: 272 return SCALER_CTL0_SCL_H_TPZ_V_PPF; 273 case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ: 274 return SCALER_CTL0_SCL_H_PPF_V_TPZ; 275 case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ: 276 return SCALER_CTL0_SCL_H_TPZ_V_TPZ; 277 case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE: 278 return SCALER_CTL0_SCL_H_PPF_V_NONE; 279 case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF: 280 return SCALER_CTL0_SCL_H_NONE_V_PPF; 281 case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ: 282 return SCALER_CTL0_SCL_H_NONE_V_TPZ; 283 case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE: 284 return SCALER_CTL0_SCL_H_TPZ_V_NONE; 285 default: 286 case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE: 287 /* The unity case is independently handled by 288 * SCALER_CTL0_UNITY. 289 */ 290 return 0; 291 } 292 } 293 294 static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state) 295 { 296 struct drm_plane *plane = state->plane; 297 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 298 struct drm_framebuffer *fb = state->fb; 299 struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0); 300 u32 subpixel_src_mask = (1 << 16) - 1; 301 u32 format = fb->format->format; 302 int num_planes = fb->format->num_planes; 303 u32 h_subsample = 1; 304 u32 v_subsample = 1; 305 int i; 306 307 for (i = 0; i < num_planes; i++) 308 vc4_state->offsets[i] = bo->paddr + fb->offsets[i]; 309 310 /* We don't support subpixel source positioning for scaling. */ 311 if ((state->src_x & subpixel_src_mask) || 312 (state->src_y & subpixel_src_mask) || 313 (state->src_w & subpixel_src_mask) || 314 (state->src_h & subpixel_src_mask)) { 315 return -EINVAL; 316 } 317 318 vc4_state->src_x = state->src_x >> 16; 319 vc4_state->src_y = state->src_y >> 16; 320 vc4_state->src_w[0] = state->src_w >> 16; 321 vc4_state->src_h[0] = state->src_h >> 16; 322 323 vc4_state->crtc_x = state->crtc_x; 324 vc4_state->crtc_y = state->crtc_y; 325 vc4_state->crtc_w = state->crtc_w; 326 vc4_state->crtc_h = state->crtc_h; 327 328 vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0], 329 vc4_state->crtc_w); 330 vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0], 331 vc4_state->crtc_h); 332 333 if (num_planes > 1) { 334 vc4_state->is_yuv = true; 335 336 h_subsample = drm_format_horz_chroma_subsampling(format); 337 v_subsample = drm_format_vert_chroma_subsampling(format); 338 vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample; 339 vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample; 340 341 vc4_state->x_scaling[1] = 342 vc4_get_scaling_mode(vc4_state->src_w[1], 343 vc4_state->crtc_w); 344 vc4_state->y_scaling[1] = 345 vc4_get_scaling_mode(vc4_state->src_h[1], 346 vc4_state->crtc_h); 347 348 /* YUV conversion requires that scaling be enabled, 349 * even on a plane that's otherwise 1:1. Choose TPZ 350 * for simplicity. 351 */ 352 if (vc4_state->x_scaling[0] == VC4_SCALING_NONE) 353 vc4_state->x_scaling[0] = VC4_SCALING_TPZ; 354 if (vc4_state->y_scaling[0] == VC4_SCALING_NONE) 355 vc4_state->y_scaling[0] = VC4_SCALING_TPZ; 356 } 357 358 vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE && 359 vc4_state->y_scaling[0] == VC4_SCALING_NONE && 360 vc4_state->x_scaling[1] == VC4_SCALING_NONE && 361 vc4_state->y_scaling[1] == VC4_SCALING_NONE); 362 363 /* No configuring scaling on the cursor plane, since it gets 364 non-vblank-synced updates, and scaling requires requires 365 LBM changes which have to be vblank-synced. 366 */ 367 if (plane->type == DRM_PLANE_TYPE_CURSOR && !vc4_state->is_unity) 368 return -EINVAL; 369 370 /* Clamp the on-screen start x/y to 0. The hardware doesn't 371 * support negative y, and negative x wastes bandwidth. 372 */ 373 if (vc4_state->crtc_x < 0) { 374 for (i = 0; i < num_planes; i++) { 375 u32 cpp = fb->format->cpp[i]; 376 u32 subs = ((i == 0) ? 1 : h_subsample); 377 378 vc4_state->offsets[i] += (cpp * 379 (-vc4_state->crtc_x) / subs); 380 } 381 vc4_state->src_w[0] += vc4_state->crtc_x; 382 vc4_state->src_w[1] += vc4_state->crtc_x / h_subsample; 383 vc4_state->crtc_x = 0; 384 } 385 386 if (vc4_state->crtc_y < 0) { 387 for (i = 0; i < num_planes; i++) { 388 u32 subs = ((i == 0) ? 1 : v_subsample); 389 390 vc4_state->offsets[i] += (fb->pitches[i] * 391 (-vc4_state->crtc_y) / subs); 392 } 393 vc4_state->src_h[0] += vc4_state->crtc_y; 394 vc4_state->src_h[1] += vc4_state->crtc_y / v_subsample; 395 vc4_state->crtc_y = 0; 396 } 397 398 return 0; 399 } 400 401 static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst) 402 { 403 u32 scale, recip; 404 405 scale = (1 << 16) * src / dst; 406 407 /* The specs note that while the reciprocal would be defined 408 * as (1<<32)/scale, ~0 is close enough. 409 */ 410 recip = ~0 / scale; 411 412 vc4_dlist_write(vc4_state, 413 VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) | 414 VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE)); 415 vc4_dlist_write(vc4_state, 416 VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP)); 417 } 418 419 static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst) 420 { 421 u32 scale = (1 << 16) * src / dst; 422 423 vc4_dlist_write(vc4_state, 424 SCALER_PPF_AGC | 425 VC4_SET_FIELD(scale, SCALER_PPF_SCALE) | 426 VC4_SET_FIELD(0, SCALER_PPF_IPHASE)); 427 } 428 429 static u32 vc4_lbm_size(struct drm_plane_state *state) 430 { 431 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 432 /* This is the worst case number. One of the two sizes will 433 * be used depending on the scaling configuration. 434 */ 435 u32 pix_per_line = max(vc4_state->src_w[0], (u32)vc4_state->crtc_w); 436 u32 lbm; 437 438 if (!vc4_state->is_yuv) { 439 if (vc4_state->is_unity) 440 return 0; 441 else if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ) 442 lbm = pix_per_line * 8; 443 else { 444 /* In special cases, this multiplier might be 12. */ 445 lbm = pix_per_line * 16; 446 } 447 } else { 448 /* There are cases for this going down to a multiplier 449 * of 2, but according to the firmware source, the 450 * table in the docs is somewhat wrong. 451 */ 452 lbm = pix_per_line * 16; 453 } 454 455 lbm = roundup(lbm, 32); 456 457 return lbm; 458 } 459 460 static void vc4_write_scaling_parameters(struct drm_plane_state *state, 461 int channel) 462 { 463 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 464 465 /* Ch0 H-PPF Word 0: Scaling Parameters */ 466 if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) { 467 vc4_write_ppf(vc4_state, 468 vc4_state->src_w[channel], vc4_state->crtc_w); 469 } 470 471 /* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */ 472 if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) { 473 vc4_write_ppf(vc4_state, 474 vc4_state->src_h[channel], vc4_state->crtc_h); 475 vc4_dlist_write(vc4_state, 0xc0c0c0c0); 476 } 477 478 /* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */ 479 if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) { 480 vc4_write_tpz(vc4_state, 481 vc4_state->src_w[channel], vc4_state->crtc_w); 482 } 483 484 /* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */ 485 if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) { 486 vc4_write_tpz(vc4_state, 487 vc4_state->src_h[channel], vc4_state->crtc_h); 488 vc4_dlist_write(vc4_state, 0xc0c0c0c0); 489 } 490 } 491 492 /* Writes out a full display list for an active plane to the plane's 493 * private dlist state. 494 */ 495 static int vc4_plane_mode_set(struct drm_plane *plane, 496 struct drm_plane_state *state) 497 { 498 struct vc4_dev *vc4 = to_vc4_dev(plane->dev); 499 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 500 struct drm_framebuffer *fb = state->fb; 501 u32 ctl0_offset = vc4_state->dlist_count; 502 const struct hvs_format *format = vc4_get_hvs_format(fb->format->format); 503 int num_planes = drm_format_num_planes(format->drm); 504 u32 scl0, scl1, pitch0; 505 u32 lbm_size, tiling; 506 unsigned long irqflags; 507 int ret, i; 508 509 ret = vc4_plane_setup_clipping_and_scaling(state); 510 if (ret) 511 return ret; 512 513 /* Allocate the LBM memory that the HVS will use for temporary 514 * storage due to our scaling/format conversion. 515 */ 516 lbm_size = vc4_lbm_size(state); 517 if (lbm_size) { 518 if (!vc4_state->lbm.allocated) { 519 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags); 520 ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm, 521 &vc4_state->lbm, 522 lbm_size, 32, 0, 0); 523 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags); 524 } else { 525 WARN_ON_ONCE(lbm_size != vc4_state->lbm.size); 526 } 527 } 528 529 if (ret) 530 return ret; 531 532 /* SCL1 is used for Cb/Cr scaling of planar formats. For RGB 533 * and 4:4:4, scl1 should be set to scl0 so both channels of 534 * the scaler do the same thing. For YUV, the Y plane needs 535 * to be put in channel 1 and Cb/Cr in channel 0, so we swap 536 * the scl fields here. 537 */ 538 if (num_planes == 1) { 539 scl0 = vc4_get_scl_field(state, 1); 540 scl1 = scl0; 541 } else { 542 scl0 = vc4_get_scl_field(state, 1); 543 scl1 = vc4_get_scl_field(state, 0); 544 } 545 546 switch (fb->modifier) { 547 case DRM_FORMAT_MOD_LINEAR: 548 tiling = SCALER_CTL0_TILING_LINEAR; 549 pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH); 550 break; 551 552 case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: { 553 /* For T-tiled, the FB pitch is "how many bytes from 554 * one row to the next, such that pitch * tile_h == 555 * tile_size * tiles_per_row." 556 */ 557 u32 tile_size_shift = 12; /* T tiles are 4kb */ 558 u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */ 559 u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift); 560 561 tiling = SCALER_CTL0_TILING_256B_OR_T; 562 563 pitch0 = (VC4_SET_FIELD(0, SCALER_PITCH0_TILE_Y_OFFSET) | 564 VC4_SET_FIELD(0, SCALER_PITCH0_TILE_WIDTH_L) | 565 VC4_SET_FIELD(tiles_w, SCALER_PITCH0_TILE_WIDTH_R)); 566 break; 567 } 568 569 default: 570 DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx", 571 (long long)fb->modifier); 572 return -EINVAL; 573 } 574 575 /* Control word */ 576 vc4_dlist_write(vc4_state, 577 SCALER_CTL0_VALID | 578 (format->pixel_order << SCALER_CTL0_ORDER_SHIFT) | 579 (format->hvs << SCALER_CTL0_PIXEL_FORMAT_SHIFT) | 580 VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) | 581 (vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) | 582 VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) | 583 VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1)); 584 585 /* Position Word 0: Image Positions and Alpha Value */ 586 vc4_state->pos0_offset = vc4_state->dlist_count; 587 vc4_dlist_write(vc4_state, 588 VC4_SET_FIELD(0xff, SCALER_POS0_FIXED_ALPHA) | 589 VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) | 590 VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y)); 591 592 /* Position Word 1: Scaled Image Dimensions. */ 593 if (!vc4_state->is_unity) { 594 vc4_dlist_write(vc4_state, 595 VC4_SET_FIELD(vc4_state->crtc_w, 596 SCALER_POS1_SCL_WIDTH) | 597 VC4_SET_FIELD(vc4_state->crtc_h, 598 SCALER_POS1_SCL_HEIGHT)); 599 } 600 601 /* Position Word 2: Source Image Size, Alpha Mode */ 602 vc4_state->pos2_offset = vc4_state->dlist_count; 603 vc4_dlist_write(vc4_state, 604 VC4_SET_FIELD(format->has_alpha ? 605 SCALER_POS2_ALPHA_MODE_PIPELINE : 606 SCALER_POS2_ALPHA_MODE_FIXED, 607 SCALER_POS2_ALPHA_MODE) | 608 VC4_SET_FIELD(vc4_state->src_w[0], SCALER_POS2_WIDTH) | 609 VC4_SET_FIELD(vc4_state->src_h[0], SCALER_POS2_HEIGHT)); 610 611 /* Position Word 3: Context. Written by the HVS. */ 612 vc4_dlist_write(vc4_state, 0xc0c0c0c0); 613 614 615 /* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers 616 * 617 * The pointers may be any byte address. 618 */ 619 vc4_state->ptr0_offset = vc4_state->dlist_count; 620 if (!format->flip_cbcr) { 621 for (i = 0; i < num_planes; i++) 622 vc4_dlist_write(vc4_state, vc4_state->offsets[i]); 623 } else { 624 WARN_ON_ONCE(num_planes != 3); 625 vc4_dlist_write(vc4_state, vc4_state->offsets[0]); 626 vc4_dlist_write(vc4_state, vc4_state->offsets[2]); 627 vc4_dlist_write(vc4_state, vc4_state->offsets[1]); 628 } 629 630 /* Pointer Context Word 0/1/2: Written by the HVS */ 631 for (i = 0; i < num_planes; i++) 632 vc4_dlist_write(vc4_state, 0xc0c0c0c0); 633 634 /* Pitch word 0 */ 635 vc4_dlist_write(vc4_state, pitch0); 636 637 /* Pitch word 1/2 */ 638 for (i = 1; i < num_planes; i++) { 639 vc4_dlist_write(vc4_state, 640 VC4_SET_FIELD(fb->pitches[i], SCALER_SRC_PITCH)); 641 } 642 643 /* Colorspace conversion words */ 644 if (vc4_state->is_yuv) { 645 vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5); 646 vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5); 647 vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5); 648 } 649 650 if (!vc4_state->is_unity) { 651 /* LBM Base Address. */ 652 if (vc4_state->y_scaling[0] != VC4_SCALING_NONE || 653 vc4_state->y_scaling[1] != VC4_SCALING_NONE) { 654 vc4_dlist_write(vc4_state, vc4_state->lbm.start); 655 } 656 657 if (num_planes > 1) { 658 /* Emit Cb/Cr as channel 0 and Y as channel 659 * 1. This matches how we set up scl0/scl1 660 * above. 661 */ 662 vc4_write_scaling_parameters(state, 1); 663 } 664 vc4_write_scaling_parameters(state, 0); 665 666 /* If any PPF setup was done, then all the kernel 667 * pointers get uploaded. 668 */ 669 if (vc4_state->x_scaling[0] == VC4_SCALING_PPF || 670 vc4_state->y_scaling[0] == VC4_SCALING_PPF || 671 vc4_state->x_scaling[1] == VC4_SCALING_PPF || 672 vc4_state->y_scaling[1] == VC4_SCALING_PPF) { 673 u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start, 674 SCALER_PPF_KERNEL_OFFSET); 675 676 /* HPPF plane 0 */ 677 vc4_dlist_write(vc4_state, kernel); 678 /* VPPF plane 0 */ 679 vc4_dlist_write(vc4_state, kernel); 680 /* HPPF plane 1 */ 681 vc4_dlist_write(vc4_state, kernel); 682 /* VPPF plane 1 */ 683 vc4_dlist_write(vc4_state, kernel); 684 } 685 } 686 687 vc4_state->dlist[ctl0_offset] |= 688 VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE); 689 690 return 0; 691 } 692 693 /* If a modeset involves changing the setup of a plane, the atomic 694 * infrastructure will call this to validate a proposed plane setup. 695 * However, if a plane isn't getting updated, this (and the 696 * corresponding vc4_plane_atomic_update) won't get called. Thus, we 697 * compute the dlist here and have all active plane dlists get updated 698 * in the CRTC's flush. 699 */ 700 static int vc4_plane_atomic_check(struct drm_plane *plane, 701 struct drm_plane_state *state) 702 { 703 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 704 705 vc4_state->dlist_count = 0; 706 707 if (plane_enabled(state)) 708 return vc4_plane_mode_set(plane, state); 709 else 710 return 0; 711 } 712 713 static void vc4_plane_atomic_update(struct drm_plane *plane, 714 struct drm_plane_state *old_state) 715 { 716 /* No contents here. Since we don't know where in the CRTC's 717 * dlist we should be stored, our dlist is uploaded to the 718 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush 719 * time. 720 */ 721 } 722 723 u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist) 724 { 725 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state); 726 int i; 727 728 vc4_state->hw_dlist = dlist; 729 730 /* Can't memcpy_toio() because it needs to be 32-bit writes. */ 731 for (i = 0; i < vc4_state->dlist_count; i++) 732 writel(vc4_state->dlist[i], &dlist[i]); 733 734 return vc4_state->dlist_count; 735 } 736 737 u32 vc4_plane_dlist_size(const struct drm_plane_state *state) 738 { 739 const struct vc4_plane_state *vc4_state = 740 container_of(state, typeof(*vc4_state), base); 741 742 return vc4_state->dlist_count; 743 } 744 745 /* Updates the plane to immediately (well, once the FIFO needs 746 * refilling) scan out from at a new framebuffer. 747 */ 748 void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb) 749 { 750 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state); 751 struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0); 752 uint32_t addr; 753 754 /* We're skipping the address adjustment for negative origin, 755 * because this is only called on the primary plane. 756 */ 757 WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0); 758 addr = bo->paddr + fb->offsets[0]; 759 760 /* Write the new address into the hardware immediately. The 761 * scanout will start from this address as soon as the FIFO 762 * needs to refill with pixels. 763 */ 764 writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]); 765 766 /* Also update the CPU-side dlist copy, so that any later 767 * atomic updates that don't do a new modeset on our plane 768 * also use our updated address. 769 */ 770 vc4_state->dlist[vc4_state->ptr0_offset] = addr; 771 } 772 773 static int vc4_prepare_fb(struct drm_plane *plane, 774 struct drm_plane_state *state) 775 { 776 struct vc4_bo *bo; 777 struct dma_fence *fence; 778 int ret; 779 780 if ((plane->state->fb == state->fb) || !state->fb) 781 return 0; 782 783 bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base); 784 785 ret = vc4_bo_inc_usecnt(bo); 786 if (ret) 787 return ret; 788 789 fence = reservation_object_get_excl_rcu(bo->resv); 790 drm_atomic_set_fence_for_plane(state, fence); 791 792 return 0; 793 } 794 795 static void vc4_cleanup_fb(struct drm_plane *plane, 796 struct drm_plane_state *state) 797 { 798 struct vc4_bo *bo; 799 800 if (plane->state->fb == state->fb || !state->fb) 801 return; 802 803 bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base); 804 vc4_bo_dec_usecnt(bo); 805 } 806 807 static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = { 808 .atomic_check = vc4_plane_atomic_check, 809 .atomic_update = vc4_plane_atomic_update, 810 .prepare_fb = vc4_prepare_fb, 811 .cleanup_fb = vc4_cleanup_fb, 812 }; 813 814 static void vc4_plane_destroy(struct drm_plane *plane) 815 { 816 drm_plane_helper_disable(plane); 817 drm_plane_cleanup(plane); 818 } 819 820 /* Implements immediate (non-vblank-synced) updates of the cursor 821 * position, or falls back to the atomic helper otherwise. 822 */ 823 static int 824 vc4_update_plane(struct drm_plane *plane, 825 struct drm_crtc *crtc, 826 struct drm_framebuffer *fb, 827 int crtc_x, int crtc_y, 828 unsigned int crtc_w, unsigned int crtc_h, 829 uint32_t src_x, uint32_t src_y, 830 uint32_t src_w, uint32_t src_h, 831 struct drm_modeset_acquire_ctx *ctx) 832 { 833 struct drm_plane_state *plane_state; 834 struct vc4_plane_state *vc4_state; 835 836 if (plane != crtc->cursor) 837 goto out; 838 839 plane_state = plane->state; 840 vc4_state = to_vc4_plane_state(plane_state); 841 842 if (!plane_state) 843 goto out; 844 845 /* No configuring new scaling in the fast path. */ 846 if (crtc_w != plane_state->crtc_w || 847 crtc_h != plane_state->crtc_h || 848 src_w != plane_state->src_w || 849 src_h != plane_state->src_h) { 850 goto out; 851 } 852 853 if (fb != plane_state->fb) { 854 drm_atomic_set_fb_for_plane(plane->state, fb); 855 vc4_plane_async_set_fb(plane, fb); 856 } 857 858 /* Set the cursor's position on the screen. This is the 859 * expected change from the drm_mode_cursor_universal() 860 * helper. 861 */ 862 plane_state->crtc_x = crtc_x; 863 plane_state->crtc_y = crtc_y; 864 865 /* Allow changing the start position within the cursor BO, if 866 * that matters. 867 */ 868 plane_state->src_x = src_x; 869 plane_state->src_y = src_y; 870 871 /* Update the display list based on the new crtc_x/y. */ 872 vc4_plane_atomic_check(plane, plane_state); 873 874 /* Note that we can't just call vc4_plane_write_dlist() 875 * because that would smash the context data that the HVS is 876 * currently using. 877 */ 878 writel(vc4_state->dlist[vc4_state->pos0_offset], 879 &vc4_state->hw_dlist[vc4_state->pos0_offset]); 880 writel(vc4_state->dlist[vc4_state->pos2_offset], 881 &vc4_state->hw_dlist[vc4_state->pos2_offset]); 882 writel(vc4_state->dlist[vc4_state->ptr0_offset], 883 &vc4_state->hw_dlist[vc4_state->ptr0_offset]); 884 885 return 0; 886 887 out: 888 return drm_atomic_helper_update_plane(plane, crtc, fb, 889 crtc_x, crtc_y, 890 crtc_w, crtc_h, 891 src_x, src_y, 892 src_w, src_h, 893 ctx); 894 } 895 896 static const struct drm_plane_funcs vc4_plane_funcs = { 897 .update_plane = vc4_update_plane, 898 .disable_plane = drm_atomic_helper_disable_plane, 899 .destroy = vc4_plane_destroy, 900 .set_property = NULL, 901 .reset = vc4_plane_reset, 902 .atomic_duplicate_state = vc4_plane_duplicate_state, 903 .atomic_destroy_state = vc4_plane_destroy_state, 904 }; 905 906 struct drm_plane *vc4_plane_init(struct drm_device *dev, 907 enum drm_plane_type type) 908 { 909 struct drm_plane *plane = NULL; 910 struct vc4_plane *vc4_plane; 911 u32 formats[ARRAY_SIZE(hvs_formats)]; 912 u32 num_formats = 0; 913 int ret = 0; 914 unsigned i; 915 916 vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane), 917 GFP_KERNEL); 918 if (!vc4_plane) 919 return ERR_PTR(-ENOMEM); 920 921 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) { 922 /* Don't allow YUV in cursor planes, since that means 923 * tuning on the scaler, which we don't allow for the 924 * cursor. 925 */ 926 if (type != DRM_PLANE_TYPE_CURSOR || 927 hvs_formats[i].hvs < HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE) { 928 formats[num_formats++] = hvs_formats[i].drm; 929 } 930 } 931 plane = &vc4_plane->base; 932 ret = drm_universal_plane_init(dev, plane, 0, 933 &vc4_plane_funcs, 934 formats, num_formats, 935 NULL, type, NULL); 936 937 drm_plane_helper_add(plane, &vc4_plane_helper_funcs); 938 939 return plane; 940 } 941