1 /* 2 * Copyright (C) 2015 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 /** 10 * DOC: VC4 plane module 11 * 12 * Each DRM plane is a layer of pixels being scanned out by the HVS. 13 * 14 * At atomic modeset check time, we compute the HVS display element 15 * state that would be necessary for displaying the plane (giving us a 16 * chance to figure out if a plane configuration is invalid), then at 17 * atomic flush time the CRTC will ask us to write our element state 18 * into the region of the HVS that it has allocated for us. 19 */ 20 21 #include "vc4_drv.h" 22 #include "vc4_regs.h" 23 #include "drm_atomic_helper.h" 24 #include "drm_fb_cma_helper.h" 25 #include "drm_plane_helper.h" 26 27 enum vc4_scaling_mode { 28 VC4_SCALING_NONE, 29 VC4_SCALING_TPZ, 30 VC4_SCALING_PPF, 31 }; 32 33 struct vc4_plane_state { 34 struct drm_plane_state base; 35 /* System memory copy of the display list for this element, computed 36 * at atomic_check time. 37 */ 38 u32 *dlist; 39 u32 dlist_size; /* Number of dwords allocated for the display list */ 40 u32 dlist_count; /* Number of used dwords in the display list. */ 41 42 /* Offset in the dlist to various words, for pageflip or 43 * cursor updates. 44 */ 45 u32 pos0_offset; 46 u32 pos2_offset; 47 u32 ptr0_offset; 48 49 /* Offset where the plane's dlist was last stored in the 50 * hardware at vc4_crtc_atomic_flush() time. 51 */ 52 u32 __iomem *hw_dlist; 53 54 /* Clipped coordinates of the plane on the display. */ 55 int crtc_x, crtc_y, crtc_w, crtc_h; 56 /* Clipped area being scanned from in the FB. */ 57 u32 src_x, src_y; 58 59 u32 src_w[2], src_h[2]; 60 61 /* Scaling selection for the RGB/Y plane and the Cb/Cr planes. */ 62 enum vc4_scaling_mode x_scaling[2], y_scaling[2]; 63 bool is_unity; 64 bool is_yuv; 65 66 /* Offset to start scanning out from the start of the plane's 67 * BO. 68 */ 69 u32 offsets[3]; 70 71 /* Our allocation in LBM for temporary storage during scaling. */ 72 struct drm_mm_node lbm; 73 }; 74 75 static inline struct vc4_plane_state * 76 to_vc4_plane_state(struct drm_plane_state *state) 77 { 78 return (struct vc4_plane_state *)state; 79 } 80 81 static const struct hvs_format { 82 u32 drm; /* DRM_FORMAT_* */ 83 u32 hvs; /* HVS_FORMAT_* */ 84 u32 pixel_order; 85 bool has_alpha; 86 bool flip_cbcr; 87 } hvs_formats[] = { 88 { 89 .drm = DRM_FORMAT_XRGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, 90 .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = false, 91 }, 92 { 93 .drm = DRM_FORMAT_ARGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, 94 .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = true, 95 }, 96 { 97 .drm = DRM_FORMAT_ABGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, 98 .pixel_order = HVS_PIXEL_ORDER_ARGB, .has_alpha = true, 99 }, 100 { 101 .drm = DRM_FORMAT_XBGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, 102 .pixel_order = HVS_PIXEL_ORDER_ARGB, .has_alpha = false, 103 }, 104 { 105 .drm = DRM_FORMAT_RGB565, .hvs = HVS_PIXEL_FORMAT_RGB565, 106 .pixel_order = HVS_PIXEL_ORDER_XRGB, .has_alpha = false, 107 }, 108 { 109 .drm = DRM_FORMAT_BGR565, .hvs = HVS_PIXEL_FORMAT_RGB565, 110 .pixel_order = HVS_PIXEL_ORDER_XBGR, .has_alpha = false, 111 }, 112 { 113 .drm = DRM_FORMAT_ARGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551, 114 .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = true, 115 }, 116 { 117 .drm = DRM_FORMAT_XRGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551, 118 .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = false, 119 }, 120 { 121 .drm = DRM_FORMAT_YUV422, 122 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE, 123 }, 124 { 125 .drm = DRM_FORMAT_YVU422, 126 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE, 127 .flip_cbcr = true, 128 }, 129 { 130 .drm = DRM_FORMAT_YUV420, 131 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE, 132 }, 133 { 134 .drm = DRM_FORMAT_YVU420, 135 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE, 136 .flip_cbcr = true, 137 }, 138 { 139 .drm = DRM_FORMAT_NV12, 140 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE, 141 }, 142 { 143 .drm = DRM_FORMAT_NV16, 144 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE, 145 }, 146 }; 147 148 static const struct hvs_format *vc4_get_hvs_format(u32 drm_format) 149 { 150 unsigned i; 151 152 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) { 153 if (hvs_formats[i].drm == drm_format) 154 return &hvs_formats[i]; 155 } 156 157 return NULL; 158 } 159 160 static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst) 161 { 162 if (dst > src) 163 return VC4_SCALING_PPF; 164 else if (dst < src) 165 return VC4_SCALING_TPZ; 166 else 167 return VC4_SCALING_NONE; 168 } 169 170 static bool plane_enabled(struct drm_plane_state *state) 171 { 172 return state->fb && state->crtc; 173 } 174 175 static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane) 176 { 177 struct vc4_plane_state *vc4_state; 178 179 if (WARN_ON(!plane->state)) 180 return NULL; 181 182 vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL); 183 if (!vc4_state) 184 return NULL; 185 186 memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm)); 187 188 __drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base); 189 190 if (vc4_state->dlist) { 191 vc4_state->dlist = kmemdup(vc4_state->dlist, 192 vc4_state->dlist_count * 4, 193 GFP_KERNEL); 194 if (!vc4_state->dlist) { 195 kfree(vc4_state); 196 return NULL; 197 } 198 vc4_state->dlist_size = vc4_state->dlist_count; 199 } 200 201 return &vc4_state->base; 202 } 203 204 static void vc4_plane_destroy_state(struct drm_plane *plane, 205 struct drm_plane_state *state) 206 { 207 struct vc4_dev *vc4 = to_vc4_dev(plane->dev); 208 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 209 210 if (vc4_state->lbm.allocated) { 211 unsigned long irqflags; 212 213 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags); 214 drm_mm_remove_node(&vc4_state->lbm); 215 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags); 216 } 217 218 kfree(vc4_state->dlist); 219 __drm_atomic_helper_plane_destroy_state(&vc4_state->base); 220 kfree(state); 221 } 222 223 /* Called during init to allocate the plane's atomic state. */ 224 static void vc4_plane_reset(struct drm_plane *plane) 225 { 226 struct vc4_plane_state *vc4_state; 227 228 WARN_ON(plane->state); 229 230 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 231 if (!vc4_state) 232 return; 233 234 plane->state = &vc4_state->base; 235 vc4_state->base.plane = plane; 236 } 237 238 static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val) 239 { 240 if (vc4_state->dlist_count == vc4_state->dlist_size) { 241 u32 new_size = max(4u, vc4_state->dlist_count * 2); 242 u32 *new_dlist = kmalloc(new_size * 4, GFP_KERNEL); 243 244 if (!new_dlist) 245 return; 246 memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4); 247 248 kfree(vc4_state->dlist); 249 vc4_state->dlist = new_dlist; 250 vc4_state->dlist_size = new_size; 251 } 252 253 vc4_state->dlist[vc4_state->dlist_count++] = val; 254 } 255 256 /* Returns the scl0/scl1 field based on whether the dimensions need to 257 * be up/down/non-scaled. 258 * 259 * This is a replication of a table from the spec. 260 */ 261 static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane) 262 { 263 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 264 265 switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) { 266 case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF: 267 return SCALER_CTL0_SCL_H_PPF_V_PPF; 268 case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF: 269 return SCALER_CTL0_SCL_H_TPZ_V_PPF; 270 case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ: 271 return SCALER_CTL0_SCL_H_PPF_V_TPZ; 272 case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ: 273 return SCALER_CTL0_SCL_H_TPZ_V_TPZ; 274 case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE: 275 return SCALER_CTL0_SCL_H_PPF_V_NONE; 276 case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF: 277 return SCALER_CTL0_SCL_H_NONE_V_PPF; 278 case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ: 279 return SCALER_CTL0_SCL_H_NONE_V_TPZ; 280 case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE: 281 return SCALER_CTL0_SCL_H_TPZ_V_NONE; 282 default: 283 case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE: 284 /* The unity case is independently handled by 285 * SCALER_CTL0_UNITY. 286 */ 287 return 0; 288 } 289 } 290 291 static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state) 292 { 293 struct drm_plane *plane = state->plane; 294 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 295 struct drm_framebuffer *fb = state->fb; 296 struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0); 297 u32 subpixel_src_mask = (1 << 16) - 1; 298 u32 format = fb->format->format; 299 int num_planes = fb->format->num_planes; 300 u32 h_subsample = 1; 301 u32 v_subsample = 1; 302 int i; 303 304 for (i = 0; i < num_planes; i++) 305 vc4_state->offsets[i] = bo->paddr + fb->offsets[i]; 306 307 /* We don't support subpixel source positioning for scaling. */ 308 if ((state->src_x & subpixel_src_mask) || 309 (state->src_y & subpixel_src_mask) || 310 (state->src_w & subpixel_src_mask) || 311 (state->src_h & subpixel_src_mask)) { 312 return -EINVAL; 313 } 314 315 vc4_state->src_x = state->src_x >> 16; 316 vc4_state->src_y = state->src_y >> 16; 317 vc4_state->src_w[0] = state->src_w >> 16; 318 vc4_state->src_h[0] = state->src_h >> 16; 319 320 vc4_state->crtc_x = state->crtc_x; 321 vc4_state->crtc_y = state->crtc_y; 322 vc4_state->crtc_w = state->crtc_w; 323 vc4_state->crtc_h = state->crtc_h; 324 325 vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0], 326 vc4_state->crtc_w); 327 vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0], 328 vc4_state->crtc_h); 329 330 if (num_planes > 1) { 331 vc4_state->is_yuv = true; 332 333 h_subsample = drm_format_horz_chroma_subsampling(format); 334 v_subsample = drm_format_vert_chroma_subsampling(format); 335 vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample; 336 vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample; 337 338 vc4_state->x_scaling[1] = 339 vc4_get_scaling_mode(vc4_state->src_w[1], 340 vc4_state->crtc_w); 341 vc4_state->y_scaling[1] = 342 vc4_get_scaling_mode(vc4_state->src_h[1], 343 vc4_state->crtc_h); 344 345 /* YUV conversion requires that scaling be enabled, 346 * even on a plane that's otherwise 1:1. Choose TPZ 347 * for simplicity. 348 */ 349 if (vc4_state->x_scaling[0] == VC4_SCALING_NONE) 350 vc4_state->x_scaling[0] = VC4_SCALING_TPZ; 351 if (vc4_state->y_scaling[0] == VC4_SCALING_NONE) 352 vc4_state->y_scaling[0] = VC4_SCALING_TPZ; 353 } 354 355 vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE && 356 vc4_state->y_scaling[0] == VC4_SCALING_NONE && 357 vc4_state->x_scaling[1] == VC4_SCALING_NONE && 358 vc4_state->y_scaling[1] == VC4_SCALING_NONE); 359 360 /* No configuring scaling on the cursor plane, since it gets 361 non-vblank-synced updates, and scaling requires requires 362 LBM changes which have to be vblank-synced. 363 */ 364 if (plane->type == DRM_PLANE_TYPE_CURSOR && !vc4_state->is_unity) 365 return -EINVAL; 366 367 /* Clamp the on-screen start x/y to 0. The hardware doesn't 368 * support negative y, and negative x wastes bandwidth. 369 */ 370 if (vc4_state->crtc_x < 0) { 371 for (i = 0; i < num_planes; i++) { 372 u32 cpp = fb->format->cpp[i]; 373 u32 subs = ((i == 0) ? 1 : h_subsample); 374 375 vc4_state->offsets[i] += (cpp * 376 (-vc4_state->crtc_x) / subs); 377 } 378 vc4_state->src_w[0] += vc4_state->crtc_x; 379 vc4_state->src_w[1] += vc4_state->crtc_x / h_subsample; 380 vc4_state->crtc_x = 0; 381 } 382 383 if (vc4_state->crtc_y < 0) { 384 for (i = 0; i < num_planes; i++) { 385 u32 subs = ((i == 0) ? 1 : v_subsample); 386 387 vc4_state->offsets[i] += (fb->pitches[i] * 388 (-vc4_state->crtc_y) / subs); 389 } 390 vc4_state->src_h[0] += vc4_state->crtc_y; 391 vc4_state->src_h[1] += vc4_state->crtc_y / v_subsample; 392 vc4_state->crtc_y = 0; 393 } 394 395 return 0; 396 } 397 398 static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst) 399 { 400 u32 scale, recip; 401 402 scale = (1 << 16) * src / dst; 403 404 /* The specs note that while the reciprocal would be defined 405 * as (1<<32)/scale, ~0 is close enough. 406 */ 407 recip = ~0 / scale; 408 409 vc4_dlist_write(vc4_state, 410 VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) | 411 VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE)); 412 vc4_dlist_write(vc4_state, 413 VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP)); 414 } 415 416 static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst) 417 { 418 u32 scale = (1 << 16) * src / dst; 419 420 vc4_dlist_write(vc4_state, 421 SCALER_PPF_AGC | 422 VC4_SET_FIELD(scale, SCALER_PPF_SCALE) | 423 VC4_SET_FIELD(0, SCALER_PPF_IPHASE)); 424 } 425 426 static u32 vc4_lbm_size(struct drm_plane_state *state) 427 { 428 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 429 /* This is the worst case number. One of the two sizes will 430 * be used depending on the scaling configuration. 431 */ 432 u32 pix_per_line = max(vc4_state->src_w[0], (u32)vc4_state->crtc_w); 433 u32 lbm; 434 435 if (!vc4_state->is_yuv) { 436 if (vc4_state->is_unity) 437 return 0; 438 else if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ) 439 lbm = pix_per_line * 8; 440 else { 441 /* In special cases, this multiplier might be 12. */ 442 lbm = pix_per_line * 16; 443 } 444 } else { 445 /* There are cases for this going down to a multiplier 446 * of 2, but according to the firmware source, the 447 * table in the docs is somewhat wrong. 448 */ 449 lbm = pix_per_line * 16; 450 } 451 452 lbm = roundup(lbm, 32); 453 454 return lbm; 455 } 456 457 static void vc4_write_scaling_parameters(struct drm_plane_state *state, 458 int channel) 459 { 460 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 461 462 /* Ch0 H-PPF Word 0: Scaling Parameters */ 463 if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) { 464 vc4_write_ppf(vc4_state, 465 vc4_state->src_w[channel], vc4_state->crtc_w); 466 } 467 468 /* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */ 469 if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) { 470 vc4_write_ppf(vc4_state, 471 vc4_state->src_h[channel], vc4_state->crtc_h); 472 vc4_dlist_write(vc4_state, 0xc0c0c0c0); 473 } 474 475 /* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */ 476 if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) { 477 vc4_write_tpz(vc4_state, 478 vc4_state->src_w[channel], vc4_state->crtc_w); 479 } 480 481 /* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */ 482 if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) { 483 vc4_write_tpz(vc4_state, 484 vc4_state->src_h[channel], vc4_state->crtc_h); 485 vc4_dlist_write(vc4_state, 0xc0c0c0c0); 486 } 487 } 488 489 /* Writes out a full display list for an active plane to the plane's 490 * private dlist state. 491 */ 492 static int vc4_plane_mode_set(struct drm_plane *plane, 493 struct drm_plane_state *state) 494 { 495 struct vc4_dev *vc4 = to_vc4_dev(plane->dev); 496 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 497 struct drm_framebuffer *fb = state->fb; 498 u32 ctl0_offset = vc4_state->dlist_count; 499 const struct hvs_format *format = vc4_get_hvs_format(fb->format->format); 500 int num_planes = drm_format_num_planes(format->drm); 501 u32 scl0, scl1; 502 u32 lbm_size; 503 unsigned long irqflags; 504 int ret, i; 505 506 ret = vc4_plane_setup_clipping_and_scaling(state); 507 if (ret) 508 return ret; 509 510 /* Allocate the LBM memory that the HVS will use for temporary 511 * storage due to our scaling/format conversion. 512 */ 513 lbm_size = vc4_lbm_size(state); 514 if (lbm_size) { 515 if (!vc4_state->lbm.allocated) { 516 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags); 517 ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm, 518 &vc4_state->lbm, 519 lbm_size, 32, 0, 0); 520 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags); 521 } else { 522 WARN_ON_ONCE(lbm_size != vc4_state->lbm.size); 523 } 524 } 525 526 if (ret) 527 return ret; 528 529 /* SCL1 is used for Cb/Cr scaling of planar formats. For RGB 530 * and 4:4:4, scl1 should be set to scl0 so both channels of 531 * the scaler do the same thing. For YUV, the Y plane needs 532 * to be put in channel 1 and Cb/Cr in channel 0, so we swap 533 * the scl fields here. 534 */ 535 if (num_planes == 1) { 536 scl0 = vc4_get_scl_field(state, 1); 537 scl1 = scl0; 538 } else { 539 scl0 = vc4_get_scl_field(state, 1); 540 scl1 = vc4_get_scl_field(state, 0); 541 } 542 543 /* Control word */ 544 vc4_dlist_write(vc4_state, 545 SCALER_CTL0_VALID | 546 (format->pixel_order << SCALER_CTL0_ORDER_SHIFT) | 547 (format->hvs << SCALER_CTL0_PIXEL_FORMAT_SHIFT) | 548 (vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) | 549 VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) | 550 VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1)); 551 552 /* Position Word 0: Image Positions and Alpha Value */ 553 vc4_state->pos0_offset = vc4_state->dlist_count; 554 vc4_dlist_write(vc4_state, 555 VC4_SET_FIELD(0xff, SCALER_POS0_FIXED_ALPHA) | 556 VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) | 557 VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y)); 558 559 /* Position Word 1: Scaled Image Dimensions. */ 560 if (!vc4_state->is_unity) { 561 vc4_dlist_write(vc4_state, 562 VC4_SET_FIELD(vc4_state->crtc_w, 563 SCALER_POS1_SCL_WIDTH) | 564 VC4_SET_FIELD(vc4_state->crtc_h, 565 SCALER_POS1_SCL_HEIGHT)); 566 } 567 568 /* Position Word 2: Source Image Size, Alpha Mode */ 569 vc4_state->pos2_offset = vc4_state->dlist_count; 570 vc4_dlist_write(vc4_state, 571 VC4_SET_FIELD(format->has_alpha ? 572 SCALER_POS2_ALPHA_MODE_PIPELINE : 573 SCALER_POS2_ALPHA_MODE_FIXED, 574 SCALER_POS2_ALPHA_MODE) | 575 VC4_SET_FIELD(vc4_state->src_w[0], SCALER_POS2_WIDTH) | 576 VC4_SET_FIELD(vc4_state->src_h[0], SCALER_POS2_HEIGHT)); 577 578 /* Position Word 3: Context. Written by the HVS. */ 579 vc4_dlist_write(vc4_state, 0xc0c0c0c0); 580 581 582 /* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers 583 * 584 * The pointers may be any byte address. 585 */ 586 vc4_state->ptr0_offset = vc4_state->dlist_count; 587 if (!format->flip_cbcr) { 588 for (i = 0; i < num_planes; i++) 589 vc4_dlist_write(vc4_state, vc4_state->offsets[i]); 590 } else { 591 WARN_ON_ONCE(num_planes != 3); 592 vc4_dlist_write(vc4_state, vc4_state->offsets[0]); 593 vc4_dlist_write(vc4_state, vc4_state->offsets[2]); 594 vc4_dlist_write(vc4_state, vc4_state->offsets[1]); 595 } 596 597 /* Pointer Context Word 0/1/2: Written by the HVS */ 598 for (i = 0; i < num_planes; i++) 599 vc4_dlist_write(vc4_state, 0xc0c0c0c0); 600 601 /* Pitch word 0/1/2 */ 602 for (i = 0; i < num_planes; i++) { 603 vc4_dlist_write(vc4_state, 604 VC4_SET_FIELD(fb->pitches[i], SCALER_SRC_PITCH)); 605 } 606 607 /* Colorspace conversion words */ 608 if (vc4_state->is_yuv) { 609 vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5); 610 vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5); 611 vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5); 612 } 613 614 if (!vc4_state->is_unity) { 615 /* LBM Base Address. */ 616 if (vc4_state->y_scaling[0] != VC4_SCALING_NONE || 617 vc4_state->y_scaling[1] != VC4_SCALING_NONE) { 618 vc4_dlist_write(vc4_state, vc4_state->lbm.start); 619 } 620 621 if (num_planes > 1) { 622 /* Emit Cb/Cr as channel 0 and Y as channel 623 * 1. This matches how we set up scl0/scl1 624 * above. 625 */ 626 vc4_write_scaling_parameters(state, 1); 627 } 628 vc4_write_scaling_parameters(state, 0); 629 630 /* If any PPF setup was done, then all the kernel 631 * pointers get uploaded. 632 */ 633 if (vc4_state->x_scaling[0] == VC4_SCALING_PPF || 634 vc4_state->y_scaling[0] == VC4_SCALING_PPF || 635 vc4_state->x_scaling[1] == VC4_SCALING_PPF || 636 vc4_state->y_scaling[1] == VC4_SCALING_PPF) { 637 u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start, 638 SCALER_PPF_KERNEL_OFFSET); 639 640 /* HPPF plane 0 */ 641 vc4_dlist_write(vc4_state, kernel); 642 /* VPPF plane 0 */ 643 vc4_dlist_write(vc4_state, kernel); 644 /* HPPF plane 1 */ 645 vc4_dlist_write(vc4_state, kernel); 646 /* VPPF plane 1 */ 647 vc4_dlist_write(vc4_state, kernel); 648 } 649 } 650 651 vc4_state->dlist[ctl0_offset] |= 652 VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE); 653 654 return 0; 655 } 656 657 /* If a modeset involves changing the setup of a plane, the atomic 658 * infrastructure will call this to validate a proposed plane setup. 659 * However, if a plane isn't getting updated, this (and the 660 * corresponding vc4_plane_atomic_update) won't get called. Thus, we 661 * compute the dlist here and have all active plane dlists get updated 662 * in the CRTC's flush. 663 */ 664 static int vc4_plane_atomic_check(struct drm_plane *plane, 665 struct drm_plane_state *state) 666 { 667 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 668 669 vc4_state->dlist_count = 0; 670 671 if (plane_enabled(state)) 672 return vc4_plane_mode_set(plane, state); 673 else 674 return 0; 675 } 676 677 static void vc4_plane_atomic_update(struct drm_plane *plane, 678 struct drm_plane_state *old_state) 679 { 680 /* No contents here. Since we don't know where in the CRTC's 681 * dlist we should be stored, our dlist is uploaded to the 682 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush 683 * time. 684 */ 685 } 686 687 u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist) 688 { 689 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state); 690 int i; 691 692 vc4_state->hw_dlist = dlist; 693 694 /* Can't memcpy_toio() because it needs to be 32-bit writes. */ 695 for (i = 0; i < vc4_state->dlist_count; i++) 696 writel(vc4_state->dlist[i], &dlist[i]); 697 698 return vc4_state->dlist_count; 699 } 700 701 u32 vc4_plane_dlist_size(const struct drm_plane_state *state) 702 { 703 const struct vc4_plane_state *vc4_state = 704 container_of(state, typeof(*vc4_state), base); 705 706 return vc4_state->dlist_count; 707 } 708 709 /* Updates the plane to immediately (well, once the FIFO needs 710 * refilling) scan out from at a new framebuffer. 711 */ 712 void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb) 713 { 714 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state); 715 struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0); 716 uint32_t addr; 717 718 /* We're skipping the address adjustment for negative origin, 719 * because this is only called on the primary plane. 720 */ 721 WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0); 722 addr = bo->paddr + fb->offsets[0]; 723 724 /* Write the new address into the hardware immediately. The 725 * scanout will start from this address as soon as the FIFO 726 * needs to refill with pixels. 727 */ 728 writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]); 729 730 /* Also update the CPU-side dlist copy, so that any later 731 * atomic updates that don't do a new modeset on our plane 732 * also use our updated address. 733 */ 734 vc4_state->dlist[vc4_state->ptr0_offset] = addr; 735 } 736 737 static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = { 738 .atomic_check = vc4_plane_atomic_check, 739 .atomic_update = vc4_plane_atomic_update, 740 }; 741 742 static void vc4_plane_destroy(struct drm_plane *plane) 743 { 744 drm_plane_helper_disable(plane); 745 drm_plane_cleanup(plane); 746 } 747 748 /* Implements immediate (non-vblank-synced) updates of the cursor 749 * position, or falls back to the atomic helper otherwise. 750 */ 751 static int 752 vc4_update_plane(struct drm_plane *plane, 753 struct drm_crtc *crtc, 754 struct drm_framebuffer *fb, 755 int crtc_x, int crtc_y, 756 unsigned int crtc_w, unsigned int crtc_h, 757 uint32_t src_x, uint32_t src_y, 758 uint32_t src_w, uint32_t src_h) 759 { 760 struct drm_plane_state *plane_state; 761 struct vc4_plane_state *vc4_state; 762 763 if (plane != crtc->cursor) 764 goto out; 765 766 plane_state = plane->state; 767 vc4_state = to_vc4_plane_state(plane_state); 768 769 if (!plane_state) 770 goto out; 771 772 /* If we're changing the cursor contents, do that in the 773 * normal vblank-synced atomic path. 774 */ 775 if (fb != plane_state->fb) 776 goto out; 777 778 /* No configuring new scaling in the fast path. */ 779 if (crtc_w != plane_state->crtc_w || 780 crtc_h != plane_state->crtc_h || 781 src_w != plane_state->src_w || 782 src_h != plane_state->src_h) { 783 goto out; 784 } 785 786 /* Set the cursor's position on the screen. This is the 787 * expected change from the drm_mode_cursor_universal() 788 * helper. 789 */ 790 plane_state->crtc_x = crtc_x; 791 plane_state->crtc_y = crtc_y; 792 793 /* Allow changing the start position within the cursor BO, if 794 * that matters. 795 */ 796 plane_state->src_x = src_x; 797 plane_state->src_y = src_y; 798 799 /* Update the display list based on the new crtc_x/y. */ 800 vc4_plane_atomic_check(plane, plane_state); 801 802 /* Note that we can't just call vc4_plane_write_dlist() 803 * because that would smash the context data that the HVS is 804 * currently using. 805 */ 806 writel(vc4_state->dlist[vc4_state->pos0_offset], 807 &vc4_state->hw_dlist[vc4_state->pos0_offset]); 808 writel(vc4_state->dlist[vc4_state->pos2_offset], 809 &vc4_state->hw_dlist[vc4_state->pos2_offset]); 810 writel(vc4_state->dlist[vc4_state->ptr0_offset], 811 &vc4_state->hw_dlist[vc4_state->ptr0_offset]); 812 813 return 0; 814 815 out: 816 return drm_atomic_helper_update_plane(plane, crtc, fb, 817 crtc_x, crtc_y, 818 crtc_w, crtc_h, 819 src_x, src_y, 820 src_w, src_h); 821 } 822 823 static const struct drm_plane_funcs vc4_plane_funcs = { 824 .update_plane = vc4_update_plane, 825 .disable_plane = drm_atomic_helper_disable_plane, 826 .destroy = vc4_plane_destroy, 827 .set_property = NULL, 828 .reset = vc4_plane_reset, 829 .atomic_duplicate_state = vc4_plane_duplicate_state, 830 .atomic_destroy_state = vc4_plane_destroy_state, 831 }; 832 833 struct drm_plane *vc4_plane_init(struct drm_device *dev, 834 enum drm_plane_type type) 835 { 836 struct drm_plane *plane = NULL; 837 struct vc4_plane *vc4_plane; 838 u32 formats[ARRAY_SIZE(hvs_formats)]; 839 u32 num_formats = 0; 840 int ret = 0; 841 unsigned i; 842 843 vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane), 844 GFP_KERNEL); 845 if (!vc4_plane) { 846 ret = -ENOMEM; 847 goto fail; 848 } 849 850 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) { 851 /* Don't allow YUV in cursor planes, since that means 852 * tuning on the scaler, which we don't allow for the 853 * cursor. 854 */ 855 if (type != DRM_PLANE_TYPE_CURSOR || 856 hvs_formats[i].hvs < HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE) { 857 formats[num_formats++] = hvs_formats[i].drm; 858 } 859 } 860 plane = &vc4_plane->base; 861 ret = drm_universal_plane_init(dev, plane, 0, 862 &vc4_plane_funcs, 863 formats, num_formats, 864 type, NULL); 865 866 drm_plane_helper_add(plane, &vc4_plane_helper_funcs); 867 868 return plane; 869 fail: 870 if (plane) 871 vc4_plane_destroy(plane); 872 873 return ERR_PTR(ret); 874 } 875