xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_plane.c (revision 1fa0a7dc)
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 /**
10  * DOC: VC4 plane module
11  *
12  * Each DRM plane is a layer of pixels being scanned out by the HVS.
13  *
14  * At atomic modeset check time, we compute the HVS display element
15  * state that would be necessary for displaying the plane (giving us a
16  * chance to figure out if a plane configuration is invalid), then at
17  * atomic flush time the CRTC will ask us to write our element state
18  * into the region of the HVS that it has allocated for us.
19  */
20 
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_helper.h>
23 #include <drm/drm_fb_cma_helper.h>
24 #include <drm/drm_plane_helper.h>
25 #include <drm/drm_atomic_uapi.h>
26 
27 #include "uapi/drm/vc4_drm.h"
28 #include "vc4_drv.h"
29 #include "vc4_regs.h"
30 
31 static const struct hvs_format {
32 	u32 drm; /* DRM_FORMAT_* */
33 	u32 hvs; /* HVS_FORMAT_* */
34 	u32 pixel_order;
35 } hvs_formats[] = {
36 	{
37 		.drm = DRM_FORMAT_XRGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
38 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
39 	},
40 	{
41 		.drm = DRM_FORMAT_ARGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
42 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
43 	},
44 	{
45 		.drm = DRM_FORMAT_ABGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
46 		.pixel_order = HVS_PIXEL_ORDER_ARGB,
47 	},
48 	{
49 		.drm = DRM_FORMAT_XBGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
50 		.pixel_order = HVS_PIXEL_ORDER_ARGB,
51 	},
52 	{
53 		.drm = DRM_FORMAT_RGB565, .hvs = HVS_PIXEL_FORMAT_RGB565,
54 		.pixel_order = HVS_PIXEL_ORDER_XRGB,
55 	},
56 	{
57 		.drm = DRM_FORMAT_BGR565, .hvs = HVS_PIXEL_FORMAT_RGB565,
58 		.pixel_order = HVS_PIXEL_ORDER_XBGR,
59 	},
60 	{
61 		.drm = DRM_FORMAT_ARGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
62 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
63 	},
64 	{
65 		.drm = DRM_FORMAT_XRGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
66 		.pixel_order = HVS_PIXEL_ORDER_ABGR,
67 	},
68 	{
69 		.drm = DRM_FORMAT_RGB888, .hvs = HVS_PIXEL_FORMAT_RGB888,
70 		.pixel_order = HVS_PIXEL_ORDER_XRGB,
71 	},
72 	{
73 		.drm = DRM_FORMAT_BGR888, .hvs = HVS_PIXEL_FORMAT_RGB888,
74 		.pixel_order = HVS_PIXEL_ORDER_XBGR,
75 	},
76 	{
77 		.drm = DRM_FORMAT_YUV422,
78 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
79 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
80 	},
81 	{
82 		.drm = DRM_FORMAT_YVU422,
83 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
84 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
85 	},
86 	{
87 		.drm = DRM_FORMAT_YUV420,
88 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
89 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
90 	},
91 	{
92 		.drm = DRM_FORMAT_YVU420,
93 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
94 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
95 	},
96 	{
97 		.drm = DRM_FORMAT_NV12,
98 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
99 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
100 	},
101 	{
102 		.drm = DRM_FORMAT_NV21,
103 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
104 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
105 	},
106 	{
107 		.drm = DRM_FORMAT_NV16,
108 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
109 		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
110 	},
111 	{
112 		.drm = DRM_FORMAT_NV61,
113 		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
114 		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
115 	},
116 };
117 
118 static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
119 {
120 	unsigned i;
121 
122 	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
123 		if (hvs_formats[i].drm == drm_format)
124 			return &hvs_formats[i];
125 	}
126 
127 	return NULL;
128 }
129 
130 static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
131 {
132 	if (dst == src)
133 		return VC4_SCALING_NONE;
134 	if (3 * dst >= 2 * src)
135 		return VC4_SCALING_PPF;
136 	else
137 		return VC4_SCALING_TPZ;
138 }
139 
140 static bool plane_enabled(struct drm_plane_state *state)
141 {
142 	return state->fb && state->crtc;
143 }
144 
145 static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
146 {
147 	struct vc4_plane_state *vc4_state;
148 
149 	if (WARN_ON(!plane->state))
150 		return NULL;
151 
152 	vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
153 	if (!vc4_state)
154 		return NULL;
155 
156 	memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
157 	vc4_state->dlist_initialized = 0;
158 
159 	__drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
160 
161 	if (vc4_state->dlist) {
162 		vc4_state->dlist = kmemdup(vc4_state->dlist,
163 					   vc4_state->dlist_count * 4,
164 					   GFP_KERNEL);
165 		if (!vc4_state->dlist) {
166 			kfree(vc4_state);
167 			return NULL;
168 		}
169 		vc4_state->dlist_size = vc4_state->dlist_count;
170 	}
171 
172 	return &vc4_state->base;
173 }
174 
175 static void vc4_plane_destroy_state(struct drm_plane *plane,
176 				    struct drm_plane_state *state)
177 {
178 	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
179 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
180 
181 	if (vc4_state->lbm.allocated) {
182 		unsigned long irqflags;
183 
184 		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
185 		drm_mm_remove_node(&vc4_state->lbm);
186 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
187 	}
188 
189 	kfree(vc4_state->dlist);
190 	__drm_atomic_helper_plane_destroy_state(&vc4_state->base);
191 	kfree(state);
192 }
193 
194 /* Called during init to allocate the plane's atomic state. */
195 static void vc4_plane_reset(struct drm_plane *plane)
196 {
197 	struct vc4_plane_state *vc4_state;
198 
199 	WARN_ON(plane->state);
200 
201 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
202 	if (!vc4_state)
203 		return;
204 
205 	__drm_atomic_helper_plane_reset(plane, &vc4_state->base);
206 }
207 
208 static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
209 {
210 	if (vc4_state->dlist_count == vc4_state->dlist_size) {
211 		u32 new_size = max(4u, vc4_state->dlist_count * 2);
212 		u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
213 
214 		if (!new_dlist)
215 			return;
216 		memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);
217 
218 		kfree(vc4_state->dlist);
219 		vc4_state->dlist = new_dlist;
220 		vc4_state->dlist_size = new_size;
221 	}
222 
223 	vc4_state->dlist[vc4_state->dlist_count++] = val;
224 }
225 
226 /* Returns the scl0/scl1 field based on whether the dimensions need to
227  * be up/down/non-scaled.
228  *
229  * This is a replication of a table from the spec.
230  */
231 static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
232 {
233 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
234 
235 	switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
236 	case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
237 		return SCALER_CTL0_SCL_H_PPF_V_PPF;
238 	case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
239 		return SCALER_CTL0_SCL_H_TPZ_V_PPF;
240 	case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
241 		return SCALER_CTL0_SCL_H_PPF_V_TPZ;
242 	case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
243 		return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
244 	case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
245 		return SCALER_CTL0_SCL_H_PPF_V_NONE;
246 	case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
247 		return SCALER_CTL0_SCL_H_NONE_V_PPF;
248 	case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
249 		return SCALER_CTL0_SCL_H_NONE_V_TPZ;
250 	case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
251 		return SCALER_CTL0_SCL_H_TPZ_V_NONE;
252 	default:
253 	case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
254 		/* The unity case is independently handled by
255 		 * SCALER_CTL0_UNITY.
256 		 */
257 		return 0;
258 	}
259 }
260 
261 static int vc4_plane_margins_adj(struct drm_plane_state *pstate)
262 {
263 	struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate);
264 	unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay;
265 	struct drm_crtc_state *crtc_state;
266 
267 	crtc_state = drm_atomic_get_new_crtc_state(pstate->state,
268 						   pstate->crtc);
269 
270 	vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom);
271 	if (!left && !right && !top && !bottom)
272 		return 0;
273 
274 	if (left + right >= crtc_state->mode.hdisplay ||
275 	    top + bottom >= crtc_state->mode.vdisplay)
276 		return -EINVAL;
277 
278 	adjhdisplay = crtc_state->mode.hdisplay - (left + right);
279 	vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x *
280 					       adjhdisplay,
281 					       crtc_state->mode.hdisplay);
282 	vc4_pstate->crtc_x += left;
283 	if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - left)
284 		vc4_pstate->crtc_x = crtc_state->mode.hdisplay - left;
285 
286 	adjvdisplay = crtc_state->mode.vdisplay - (top + bottom);
287 	vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y *
288 					       adjvdisplay,
289 					       crtc_state->mode.vdisplay);
290 	vc4_pstate->crtc_y += top;
291 	if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - top)
292 		vc4_pstate->crtc_y = crtc_state->mode.vdisplay - top;
293 
294 	vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w *
295 					       adjhdisplay,
296 					       crtc_state->mode.hdisplay);
297 	vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h *
298 					       adjvdisplay,
299 					       crtc_state->mode.vdisplay);
300 
301 	if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h)
302 		return -EINVAL;
303 
304 	return 0;
305 }
306 
307 static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
308 {
309 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
310 	struct drm_framebuffer *fb = state->fb;
311 	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
312 	u32 subpixel_src_mask = (1 << 16) - 1;
313 	u32 format = fb->format->format;
314 	int num_planes = fb->format->num_planes;
315 	struct drm_crtc_state *crtc_state;
316 	u32 h_subsample, v_subsample;
317 	int i, ret;
318 
319 	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
320 							state->crtc);
321 	if (!crtc_state) {
322 		DRM_DEBUG_KMS("Invalid crtc state\n");
323 		return -EINVAL;
324 	}
325 
326 	ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1,
327 						  INT_MAX, true, true);
328 	if (ret)
329 		return ret;
330 
331 	h_subsample = drm_format_horz_chroma_subsampling(format);
332 	v_subsample = drm_format_vert_chroma_subsampling(format);
333 
334 	for (i = 0; i < num_planes; i++)
335 		vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
336 
337 	/* We don't support subpixel source positioning for scaling. */
338 	if ((state->src.x1 & subpixel_src_mask) ||
339 	    (state->src.x2 & subpixel_src_mask) ||
340 	    (state->src.y1 & subpixel_src_mask) ||
341 	    (state->src.y2 & subpixel_src_mask)) {
342 		return -EINVAL;
343 	}
344 
345 	vc4_state->src_x = state->src.x1 >> 16;
346 	vc4_state->src_y = state->src.y1 >> 16;
347 	vc4_state->src_w[0] = (state->src.x2 - state->src.x1) >> 16;
348 	vc4_state->src_h[0] = (state->src.y2 - state->src.y1) >> 16;
349 
350 	vc4_state->crtc_x = state->dst.x1;
351 	vc4_state->crtc_y = state->dst.y1;
352 	vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
353 	vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
354 
355 	ret = vc4_plane_margins_adj(state);
356 	if (ret)
357 		return ret;
358 
359 	vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
360 						       vc4_state->crtc_w);
361 	vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
362 						       vc4_state->crtc_h);
363 
364 	vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
365 			       vc4_state->y_scaling[0] == VC4_SCALING_NONE);
366 
367 	if (num_planes > 1) {
368 		vc4_state->is_yuv = true;
369 
370 		vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
371 		vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
372 
373 		vc4_state->x_scaling[1] =
374 			vc4_get_scaling_mode(vc4_state->src_w[1],
375 					     vc4_state->crtc_w);
376 		vc4_state->y_scaling[1] =
377 			vc4_get_scaling_mode(vc4_state->src_h[1],
378 					     vc4_state->crtc_h);
379 
380 		/* YUV conversion requires that horizontal scaling be enabled
381 		 * on the UV plane even if vc4_get_scaling_mode() returned
382 		 * VC4_SCALING_NONE (which can happen when the down-scaling
383 		 * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
384 		 * case.
385 		 */
386 		if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
387 			vc4_state->x_scaling[1] = VC4_SCALING_PPF;
388 	} else {
389 		vc4_state->is_yuv = false;
390 		vc4_state->x_scaling[1] = VC4_SCALING_NONE;
391 		vc4_state->y_scaling[1] = VC4_SCALING_NONE;
392 	}
393 
394 	return 0;
395 }
396 
397 static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
398 {
399 	u32 scale, recip;
400 
401 	scale = (1 << 16) * src / dst;
402 
403 	/* The specs note that while the reciprocal would be defined
404 	 * as (1<<32)/scale, ~0 is close enough.
405 	 */
406 	recip = ~0 / scale;
407 
408 	vc4_dlist_write(vc4_state,
409 			VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
410 			VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
411 	vc4_dlist_write(vc4_state,
412 			VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
413 }
414 
415 static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
416 {
417 	u32 scale = (1 << 16) * src / dst;
418 
419 	vc4_dlist_write(vc4_state,
420 			SCALER_PPF_AGC |
421 			VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
422 			VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
423 }
424 
425 static u32 vc4_lbm_size(struct drm_plane_state *state)
426 {
427 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
428 	/* This is the worst case number.  One of the two sizes will
429 	 * be used depending on the scaling configuration.
430 	 */
431 	u32 pix_per_line = max(vc4_state->src_w[0], (u32)vc4_state->crtc_w);
432 	u32 lbm;
433 
434 	/* LBM is not needed when there's no vertical scaling. */
435 	if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
436 	    vc4_state->y_scaling[1] == VC4_SCALING_NONE)
437 		return 0;
438 
439 	if (!vc4_state->is_yuv) {
440 		if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
441 			lbm = pix_per_line * 8;
442 		else {
443 			/* In special cases, this multiplier might be 12. */
444 			lbm = pix_per_line * 16;
445 		}
446 	} else {
447 		/* There are cases for this going down to a multiplier
448 		 * of 2, but according to the firmware source, the
449 		 * table in the docs is somewhat wrong.
450 		 */
451 		lbm = pix_per_line * 16;
452 	}
453 
454 	lbm = roundup(lbm, 32);
455 
456 	return lbm;
457 }
458 
459 static void vc4_write_scaling_parameters(struct drm_plane_state *state,
460 					 int channel)
461 {
462 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
463 
464 	/* Ch0 H-PPF Word 0: Scaling Parameters */
465 	if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
466 		vc4_write_ppf(vc4_state,
467 			      vc4_state->src_w[channel], vc4_state->crtc_w);
468 	}
469 
470 	/* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
471 	if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
472 		vc4_write_ppf(vc4_state,
473 			      vc4_state->src_h[channel], vc4_state->crtc_h);
474 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
475 	}
476 
477 	/* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
478 	if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
479 		vc4_write_tpz(vc4_state,
480 			      vc4_state->src_w[channel], vc4_state->crtc_w);
481 	}
482 
483 	/* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
484 	if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
485 		vc4_write_tpz(vc4_state,
486 			      vc4_state->src_h[channel], vc4_state->crtc_h);
487 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
488 	}
489 }
490 
491 static void vc4_plane_calc_load(struct drm_plane_state *state)
492 {
493 	unsigned int hvs_load_shift, vrefresh, i;
494 	struct drm_framebuffer *fb = state->fb;
495 	struct vc4_plane_state *vc4_state;
496 	struct drm_crtc_state *crtc_state;
497 	unsigned int vscale_factor;
498 
499 	vc4_state = to_vc4_plane_state(state);
500 	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
501 							state->crtc);
502 	vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode);
503 
504 	/* The HVS is able to process 2 pixels/cycle when scaling the source,
505 	 * 4 pixels/cycle otherwise.
506 	 * Alpha blending step seems to be pipelined and it's always operating
507 	 * at 4 pixels/cycle, so the limiting aspect here seems to be the
508 	 * scaler block.
509 	 * HVS load is expressed in clk-cycles/sec (AKA Hz).
510 	 */
511 	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
512 	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
513 	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
514 	    vc4_state->y_scaling[1] != VC4_SCALING_NONE)
515 		hvs_load_shift = 1;
516 	else
517 		hvs_load_shift = 2;
518 
519 	vc4_state->membus_load = 0;
520 	vc4_state->hvs_load = 0;
521 	for (i = 0; i < fb->format->num_planes; i++) {
522 		/* Even if the bandwidth/plane required for a single frame is
523 		 *
524 		 * vc4_state->src_w[i] * vc4_state->src_h[i] * cpp * vrefresh
525 		 *
526 		 * when downscaling, we have to read more pixels per line in
527 		 * the time frame reserved for a single line, so the bandwidth
528 		 * demand can be punctually higher. To account for that, we
529 		 * calculate the down-scaling factor and multiply the plane
530 		 * load by this number. We're likely over-estimating the read
531 		 * demand, but that's better than under-estimating it.
532 		 */
533 		vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i],
534 					     vc4_state->crtc_h);
535 		vc4_state->membus_load += vc4_state->src_w[i] *
536 					  vc4_state->src_h[i] * vscale_factor *
537 					  fb->format->cpp[i];
538 		vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w;
539 	}
540 
541 	vc4_state->hvs_load *= vrefresh;
542 	vc4_state->hvs_load >>= hvs_load_shift;
543 	vc4_state->membus_load *= vrefresh;
544 }
545 
546 static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
547 {
548 	struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
549 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
550 	unsigned long irqflags;
551 	u32 lbm_size;
552 
553 	lbm_size = vc4_lbm_size(state);
554 	if (!lbm_size)
555 		return 0;
556 
557 	if (WARN_ON(!vc4_state->lbm_offset))
558 		return -EINVAL;
559 
560 	/* Allocate the LBM memory that the HVS will use for temporary
561 	 * storage due to our scaling/format conversion.
562 	 */
563 	if (!vc4_state->lbm.allocated) {
564 		int ret;
565 
566 		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
567 		ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
568 						 &vc4_state->lbm,
569 						 lbm_size, 32, 0, 0);
570 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
571 
572 		if (ret)
573 			return ret;
574 	} else {
575 		WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
576 	}
577 
578 	vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;
579 
580 	return 0;
581 }
582 
583 /* Writes out a full display list for an active plane to the plane's
584  * private dlist state.
585  */
586 static int vc4_plane_mode_set(struct drm_plane *plane,
587 			      struct drm_plane_state *state)
588 {
589 	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
590 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
591 	struct drm_framebuffer *fb = state->fb;
592 	u32 ctl0_offset = vc4_state->dlist_count;
593 	const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
594 	u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
595 	int num_planes = drm_format_num_planes(format->drm);
596 	u32 h_subsample, v_subsample;
597 	bool mix_plane_alpha;
598 	bool covers_screen;
599 	u32 scl0, scl1, pitch0;
600 	u32 tiling, src_y;
601 	u32 hvs_format = format->hvs;
602 	unsigned int rotation;
603 	int ret, i;
604 
605 	if (vc4_state->dlist_initialized)
606 		return 0;
607 
608 	ret = vc4_plane_setup_clipping_and_scaling(state);
609 	if (ret)
610 		return ret;
611 
612 	/* SCL1 is used for Cb/Cr scaling of planar formats.  For RGB
613 	 * and 4:4:4, scl1 should be set to scl0 so both channels of
614 	 * the scaler do the same thing.  For YUV, the Y plane needs
615 	 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
616 	 * the scl fields here.
617 	 */
618 	if (num_planes == 1) {
619 		scl0 = vc4_get_scl_field(state, 0);
620 		scl1 = scl0;
621 	} else {
622 		scl0 = vc4_get_scl_field(state, 1);
623 		scl1 = vc4_get_scl_field(state, 0);
624 	}
625 
626 	h_subsample = drm_format_horz_chroma_subsampling(format->drm);
627 	v_subsample = drm_format_vert_chroma_subsampling(format->drm);
628 
629 	rotation = drm_rotation_simplify(state->rotation,
630 					 DRM_MODE_ROTATE_0 |
631 					 DRM_MODE_REFLECT_X |
632 					 DRM_MODE_REFLECT_Y);
633 
634 	/* We must point to the last line when Y reflection is enabled. */
635 	src_y = vc4_state->src_y;
636 	if (rotation & DRM_MODE_REFLECT_Y)
637 		src_y += vc4_state->src_h[0] - 1;
638 
639 	switch (base_format_mod) {
640 	case DRM_FORMAT_MOD_LINEAR:
641 		tiling = SCALER_CTL0_TILING_LINEAR;
642 		pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
643 
644 		/* Adjust the base pointer to the first pixel to be scanned
645 		 * out.
646 		 */
647 		for (i = 0; i < num_planes; i++) {
648 			vc4_state->offsets[i] += src_y /
649 						 (i ? v_subsample : 1) *
650 						 fb->pitches[i];
651 
652 			vc4_state->offsets[i] += vc4_state->src_x /
653 						 (i ? h_subsample : 1) *
654 						 fb->format->cpp[i];
655 		}
656 
657 		break;
658 
659 	case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
660 		u32 tile_size_shift = 12; /* T tiles are 4kb */
661 		/* Whole-tile offsets, mostly for setting the pitch. */
662 		u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
663 		u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
664 		u32 tile_w_mask = (1 << tile_w_shift) - 1;
665 		/* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
666 		 * the height (in pixels) of a 4k tile.
667 		 */
668 		u32 tile_h_mask = (2 << tile_h_shift) - 1;
669 		/* For T-tiled, the FB pitch is "how many bytes from one row to
670 		 * the next, such that
671 		 *
672 		 *	pitch * tile_h == tile_size * tiles_per_row
673 		 */
674 		u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
675 		u32 tiles_l = vc4_state->src_x >> tile_w_shift;
676 		u32 tiles_r = tiles_w - tiles_l;
677 		u32 tiles_t = src_y >> tile_h_shift;
678 		/* Intra-tile offsets, which modify the base address (the
679 		 * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
680 		 * base address).
681 		 */
682 		u32 tile_y = (src_y >> 4) & 1;
683 		u32 subtile_y = (src_y >> 2) & 3;
684 		u32 utile_y = src_y & 3;
685 		u32 x_off = vc4_state->src_x & tile_w_mask;
686 		u32 y_off = src_y & tile_h_mask;
687 
688 		/* When Y reflection is requested we must set the
689 		 * SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines
690 		 * after the initial one should be fetched in descending order,
691 		 * which makes sense since we start from the last line and go
692 		 * backward.
693 		 * Don't know why we need y_off = max_y_off - y_off, but it's
694 		 * definitely required (I guess it's also related to the "going
695 		 * backward" situation).
696 		 */
697 		if (rotation & DRM_MODE_REFLECT_Y) {
698 			y_off = tile_h_mask - y_off;
699 			pitch0 = SCALER_PITCH0_TILE_LINE_DIR;
700 		} else {
701 			pitch0 = 0;
702 		}
703 
704 		tiling = SCALER_CTL0_TILING_256B_OR_T;
705 		pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
706 			   VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
707 			   VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
708 			   VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
709 		vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift);
710 		vc4_state->offsets[0] += subtile_y << 8;
711 		vc4_state->offsets[0] += utile_y << 4;
712 
713 		/* Rows of tiles alternate left-to-right and right-to-left. */
714 		if (tiles_t & 1) {
715 			pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
716 			vc4_state->offsets[0] += (tiles_w - tiles_l) <<
717 						 tile_size_shift;
718 			vc4_state->offsets[0] -= (1 + !tile_y) << 10;
719 		} else {
720 			vc4_state->offsets[0] += tiles_l << tile_size_shift;
721 			vc4_state->offsets[0] += tile_y << 10;
722 		}
723 
724 		break;
725 	}
726 
727 	case DRM_FORMAT_MOD_BROADCOM_SAND64:
728 	case DRM_FORMAT_MOD_BROADCOM_SAND128:
729 	case DRM_FORMAT_MOD_BROADCOM_SAND256: {
730 		uint32_t param = fourcc_mod_broadcom_param(fb->modifier);
731 		u32 tile_w, tile, x_off, pix_per_tile;
732 
733 		hvs_format = HVS_PIXEL_FORMAT_H264;
734 
735 		switch (base_format_mod) {
736 		case DRM_FORMAT_MOD_BROADCOM_SAND64:
737 			tiling = SCALER_CTL0_TILING_64B;
738 			tile_w = 64;
739 			break;
740 		case DRM_FORMAT_MOD_BROADCOM_SAND128:
741 			tiling = SCALER_CTL0_TILING_128B;
742 			tile_w = 128;
743 			break;
744 		case DRM_FORMAT_MOD_BROADCOM_SAND256:
745 			tiling = SCALER_CTL0_TILING_256B_OR_T;
746 			tile_w = 256;
747 			break;
748 		default:
749 			break;
750 		}
751 
752 		if (param > SCALER_TILE_HEIGHT_MASK) {
753 			DRM_DEBUG_KMS("SAND height too large (%d)\n", param);
754 			return -EINVAL;
755 		}
756 
757 		pix_per_tile = tile_w / fb->format->cpp[0];
758 		tile = vc4_state->src_x / pix_per_tile;
759 		x_off = vc4_state->src_x % pix_per_tile;
760 
761 		/* Adjust the base pointer to the first pixel to be scanned
762 		 * out.
763 		 */
764 		for (i = 0; i < num_planes; i++) {
765 			vc4_state->offsets[i] += param * tile_w * tile;
766 			vc4_state->offsets[i] += src_y /
767 						 (i ? v_subsample : 1) *
768 						 tile_w;
769 			vc4_state->offsets[i] += x_off /
770 						 (i ? h_subsample : 1) *
771 						 fb->format->cpp[i];
772 		}
773 
774 		pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
775 		break;
776 	}
777 
778 	default:
779 		DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
780 			      (long long)fb->modifier);
781 		return -EINVAL;
782 	}
783 
784 	/* Control word */
785 	vc4_dlist_write(vc4_state,
786 			SCALER_CTL0_VALID |
787 			(rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) |
788 			(rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) |
789 			VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
790 			(format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
791 			(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
792 			VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
793 			(vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
794 			VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
795 			VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
796 
797 	/* Position Word 0: Image Positions and Alpha Value */
798 	vc4_state->pos0_offset = vc4_state->dlist_count;
799 	vc4_dlist_write(vc4_state,
800 			VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
801 			VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
802 			VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
803 
804 	/* Position Word 1: Scaled Image Dimensions. */
805 	if (!vc4_state->is_unity) {
806 		vc4_dlist_write(vc4_state,
807 				VC4_SET_FIELD(vc4_state->crtc_w,
808 					      SCALER_POS1_SCL_WIDTH) |
809 				VC4_SET_FIELD(vc4_state->crtc_h,
810 					      SCALER_POS1_SCL_HEIGHT));
811 	}
812 
813 	/* Don't waste cycles mixing with plane alpha if the set alpha
814 	 * is opaque or there is no per-pixel alpha information.
815 	 * In any case we use the alpha property value as the fixed alpha.
816 	 */
817 	mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
818 			  fb->format->has_alpha;
819 
820 	/* Position Word 2: Source Image Size, Alpha */
821 	vc4_state->pos2_offset = vc4_state->dlist_count;
822 	vc4_dlist_write(vc4_state,
823 			VC4_SET_FIELD(fb->format->has_alpha ?
824 				      SCALER_POS2_ALPHA_MODE_PIPELINE :
825 				      SCALER_POS2_ALPHA_MODE_FIXED,
826 				      SCALER_POS2_ALPHA_MODE) |
827 			(mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
828 			(fb->format->has_alpha ? SCALER_POS2_ALPHA_PREMULT : 0) |
829 			VC4_SET_FIELD(vc4_state->src_w[0], SCALER_POS2_WIDTH) |
830 			VC4_SET_FIELD(vc4_state->src_h[0], SCALER_POS2_HEIGHT));
831 
832 	/* Position Word 3: Context.  Written by the HVS. */
833 	vc4_dlist_write(vc4_state, 0xc0c0c0c0);
834 
835 
836 	/* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
837 	 *
838 	 * The pointers may be any byte address.
839 	 */
840 	vc4_state->ptr0_offset = vc4_state->dlist_count;
841 	for (i = 0; i < num_planes; i++)
842 		vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
843 
844 	/* Pointer Context Word 0/1/2: Written by the HVS */
845 	for (i = 0; i < num_planes; i++)
846 		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
847 
848 	/* Pitch word 0 */
849 	vc4_dlist_write(vc4_state, pitch0);
850 
851 	/* Pitch word 1/2 */
852 	for (i = 1; i < num_planes; i++) {
853 		if (hvs_format != HVS_PIXEL_FORMAT_H264) {
854 			vc4_dlist_write(vc4_state,
855 					VC4_SET_FIELD(fb->pitches[i],
856 						      SCALER_SRC_PITCH));
857 		} else {
858 			vc4_dlist_write(vc4_state, pitch0);
859 		}
860 	}
861 
862 	/* Colorspace conversion words */
863 	if (vc4_state->is_yuv) {
864 		vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
865 		vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
866 		vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
867 	}
868 
869 	vc4_state->lbm_offset = 0;
870 
871 	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
872 	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
873 	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
874 	    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
875 		/* Reserve a slot for the LBM Base Address. The real value will
876 		 * be set when calling vc4_plane_allocate_lbm().
877 		 */
878 		if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
879 		    vc4_state->y_scaling[1] != VC4_SCALING_NONE)
880 			vc4_state->lbm_offset = vc4_state->dlist_count++;
881 
882 		if (num_planes > 1) {
883 			/* Emit Cb/Cr as channel 0 and Y as channel
884 			 * 1. This matches how we set up scl0/scl1
885 			 * above.
886 			 */
887 			vc4_write_scaling_parameters(state, 1);
888 		}
889 		vc4_write_scaling_parameters(state, 0);
890 
891 		/* If any PPF setup was done, then all the kernel
892 		 * pointers get uploaded.
893 		 */
894 		if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
895 		    vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
896 		    vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
897 		    vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
898 			u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
899 						   SCALER_PPF_KERNEL_OFFSET);
900 
901 			/* HPPF plane 0 */
902 			vc4_dlist_write(vc4_state, kernel);
903 			/* VPPF plane 0 */
904 			vc4_dlist_write(vc4_state, kernel);
905 			/* HPPF plane 1 */
906 			vc4_dlist_write(vc4_state, kernel);
907 			/* VPPF plane 1 */
908 			vc4_dlist_write(vc4_state, kernel);
909 		}
910 	}
911 
912 	vc4_state->dlist[ctl0_offset] |=
913 		VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
914 
915 	/* crtc_* are already clipped coordinates. */
916 	covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
917 			vc4_state->crtc_w == state->crtc->mode.hdisplay &&
918 			vc4_state->crtc_h == state->crtc->mode.vdisplay;
919 	/* Background fill might be necessary when the plane has per-pixel
920 	 * alpha content or a non-opaque plane alpha and could blend from the
921 	 * background or does not cover the entire screen.
922 	 */
923 	vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
924 				   state->alpha != DRM_BLEND_ALPHA_OPAQUE;
925 
926 	/* Flag the dlist as initialized to avoid checking it twice in case
927 	 * the async update check already called vc4_plane_mode_set() and
928 	 * decided to fallback to sync update because async update was not
929 	 * possible.
930 	 */
931 	vc4_state->dlist_initialized = 1;
932 
933 	vc4_plane_calc_load(state);
934 
935 	return 0;
936 }
937 
938 /* If a modeset involves changing the setup of a plane, the atomic
939  * infrastructure will call this to validate a proposed plane setup.
940  * However, if a plane isn't getting updated, this (and the
941  * corresponding vc4_plane_atomic_update) won't get called.  Thus, we
942  * compute the dlist here and have all active plane dlists get updated
943  * in the CRTC's flush.
944  */
945 static int vc4_plane_atomic_check(struct drm_plane *plane,
946 				  struct drm_plane_state *state)
947 {
948 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
949 	int ret;
950 
951 	vc4_state->dlist_count = 0;
952 
953 	if (!plane_enabled(state))
954 		return 0;
955 
956 	ret = vc4_plane_mode_set(plane, state);
957 	if (ret)
958 		return ret;
959 
960 	return vc4_plane_allocate_lbm(state);
961 }
962 
963 static void vc4_plane_atomic_update(struct drm_plane *plane,
964 				    struct drm_plane_state *old_state)
965 {
966 	/* No contents here.  Since we don't know where in the CRTC's
967 	 * dlist we should be stored, our dlist is uploaded to the
968 	 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
969 	 * time.
970 	 */
971 }
972 
973 u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
974 {
975 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
976 	int i;
977 
978 	vc4_state->hw_dlist = dlist;
979 
980 	/* Can't memcpy_toio() because it needs to be 32-bit writes. */
981 	for (i = 0; i < vc4_state->dlist_count; i++)
982 		writel(vc4_state->dlist[i], &dlist[i]);
983 
984 	return vc4_state->dlist_count;
985 }
986 
987 u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
988 {
989 	const struct vc4_plane_state *vc4_state =
990 		container_of(state, typeof(*vc4_state), base);
991 
992 	return vc4_state->dlist_count;
993 }
994 
995 /* Updates the plane to immediately (well, once the FIFO needs
996  * refilling) scan out from at a new framebuffer.
997  */
998 void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
999 {
1000 	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1001 	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
1002 	uint32_t addr;
1003 
1004 	/* We're skipping the address adjustment for negative origin,
1005 	 * because this is only called on the primary plane.
1006 	 */
1007 	WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
1008 	addr = bo->paddr + fb->offsets[0];
1009 
1010 	/* Write the new address into the hardware immediately.  The
1011 	 * scanout will start from this address as soon as the FIFO
1012 	 * needs to refill with pixels.
1013 	 */
1014 	writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1015 
1016 	/* Also update the CPU-side dlist copy, so that any later
1017 	 * atomic updates that don't do a new modeset on our plane
1018 	 * also use our updated address.
1019 	 */
1020 	vc4_state->dlist[vc4_state->ptr0_offset] = addr;
1021 }
1022 
1023 static void vc4_plane_atomic_async_update(struct drm_plane *plane,
1024 					  struct drm_plane_state *state)
1025 {
1026 	struct vc4_plane_state *vc4_state, *new_vc4_state;
1027 
1028 	drm_atomic_set_fb_for_plane(plane->state, state->fb);
1029 	plane->state->crtc_x = state->crtc_x;
1030 	plane->state->crtc_y = state->crtc_y;
1031 	plane->state->crtc_w = state->crtc_w;
1032 	plane->state->crtc_h = state->crtc_h;
1033 	plane->state->src_x = state->src_x;
1034 	plane->state->src_y = state->src_y;
1035 	plane->state->src_w = state->src_w;
1036 	plane->state->src_h = state->src_h;
1037 	plane->state->src_h = state->src_h;
1038 	plane->state->alpha = state->alpha;
1039 	plane->state->pixel_blend_mode = state->pixel_blend_mode;
1040 	plane->state->rotation = state->rotation;
1041 	plane->state->zpos = state->zpos;
1042 	plane->state->normalized_zpos = state->normalized_zpos;
1043 	plane->state->color_encoding = state->color_encoding;
1044 	plane->state->color_range = state->color_range;
1045 	plane->state->src = state->src;
1046 	plane->state->dst = state->dst;
1047 	plane->state->visible = state->visible;
1048 
1049 	new_vc4_state = to_vc4_plane_state(state);
1050 	vc4_state = to_vc4_plane_state(plane->state);
1051 
1052 	vc4_state->crtc_x = new_vc4_state->crtc_x;
1053 	vc4_state->crtc_y = new_vc4_state->crtc_y;
1054 	vc4_state->crtc_h = new_vc4_state->crtc_h;
1055 	vc4_state->crtc_w = new_vc4_state->crtc_w;
1056 	vc4_state->src_x = new_vc4_state->src_x;
1057 	vc4_state->src_y = new_vc4_state->src_y;
1058 	memcpy(vc4_state->src_w, new_vc4_state->src_w,
1059 	       sizeof(vc4_state->src_w));
1060 	memcpy(vc4_state->src_h, new_vc4_state->src_h,
1061 	       sizeof(vc4_state->src_h));
1062 	memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling,
1063 	       sizeof(vc4_state->x_scaling));
1064 	memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling,
1065 	       sizeof(vc4_state->y_scaling));
1066 	vc4_state->is_unity = new_vc4_state->is_unity;
1067 	vc4_state->is_yuv = new_vc4_state->is_yuv;
1068 	memcpy(vc4_state->offsets, new_vc4_state->offsets,
1069 	       sizeof(vc4_state->offsets));
1070 	vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill;
1071 
1072 	/* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
1073 	vc4_state->dlist[vc4_state->pos0_offset] =
1074 		new_vc4_state->dlist[vc4_state->pos0_offset];
1075 	vc4_state->dlist[vc4_state->pos2_offset] =
1076 		new_vc4_state->dlist[vc4_state->pos2_offset];
1077 	vc4_state->dlist[vc4_state->ptr0_offset] =
1078 		new_vc4_state->dlist[vc4_state->ptr0_offset];
1079 
1080 	/* Note that we can't just call vc4_plane_write_dlist()
1081 	 * because that would smash the context data that the HVS is
1082 	 * currently using.
1083 	 */
1084 	writel(vc4_state->dlist[vc4_state->pos0_offset],
1085 	       &vc4_state->hw_dlist[vc4_state->pos0_offset]);
1086 	writel(vc4_state->dlist[vc4_state->pos2_offset],
1087 	       &vc4_state->hw_dlist[vc4_state->pos2_offset]);
1088 	writel(vc4_state->dlist[vc4_state->ptr0_offset],
1089 	       &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1090 }
1091 
1092 static int vc4_plane_atomic_async_check(struct drm_plane *plane,
1093 					struct drm_plane_state *state)
1094 {
1095 	struct vc4_plane_state *old_vc4_state, *new_vc4_state;
1096 	int ret;
1097 	u32 i;
1098 
1099 	ret = vc4_plane_mode_set(plane, state);
1100 	if (ret)
1101 		return ret;
1102 
1103 	old_vc4_state = to_vc4_plane_state(plane->state);
1104 	new_vc4_state = to_vc4_plane_state(state);
1105 	if (old_vc4_state->dlist_count != new_vc4_state->dlist_count ||
1106 	    old_vc4_state->pos0_offset != new_vc4_state->pos0_offset ||
1107 	    old_vc4_state->pos2_offset != new_vc4_state->pos2_offset ||
1108 	    old_vc4_state->ptr0_offset != new_vc4_state->ptr0_offset ||
1109 	    vc4_lbm_size(plane->state) != vc4_lbm_size(state))
1110 		return -EINVAL;
1111 
1112 	/* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update
1113 	 * if anything else has changed, fallback to a sync update.
1114 	 */
1115 	for (i = 0; i < new_vc4_state->dlist_count; i++) {
1116 		if (i == new_vc4_state->pos0_offset ||
1117 		    i == new_vc4_state->pos2_offset ||
1118 		    i == new_vc4_state->ptr0_offset ||
1119 		    (new_vc4_state->lbm_offset &&
1120 		     i == new_vc4_state->lbm_offset))
1121 			continue;
1122 
1123 		if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i])
1124 			return -EINVAL;
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 static int vc4_prepare_fb(struct drm_plane *plane,
1131 			  struct drm_plane_state *state)
1132 {
1133 	struct vc4_bo *bo;
1134 	struct dma_fence *fence;
1135 	int ret;
1136 
1137 	if (!state->fb)
1138 		return 0;
1139 
1140 	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1141 
1142 	fence = reservation_object_get_excl_rcu(bo->base.base.resv);
1143 	drm_atomic_set_fence_for_plane(state, fence);
1144 
1145 	if (plane->state->fb == state->fb)
1146 		return 0;
1147 
1148 	ret = vc4_bo_inc_usecnt(bo);
1149 	if (ret)
1150 		return ret;
1151 
1152 	return 0;
1153 }
1154 
1155 static void vc4_cleanup_fb(struct drm_plane *plane,
1156 			   struct drm_plane_state *state)
1157 {
1158 	struct vc4_bo *bo;
1159 
1160 	if (plane->state->fb == state->fb || !state->fb)
1161 		return;
1162 
1163 	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1164 	vc4_bo_dec_usecnt(bo);
1165 }
1166 
1167 static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
1168 	.atomic_check = vc4_plane_atomic_check,
1169 	.atomic_update = vc4_plane_atomic_update,
1170 	.prepare_fb = vc4_prepare_fb,
1171 	.cleanup_fb = vc4_cleanup_fb,
1172 	.atomic_async_check = vc4_plane_atomic_async_check,
1173 	.atomic_async_update = vc4_plane_atomic_async_update,
1174 };
1175 
1176 static void vc4_plane_destroy(struct drm_plane *plane)
1177 {
1178 	drm_plane_cleanup(plane);
1179 }
1180 
1181 static bool vc4_format_mod_supported(struct drm_plane *plane,
1182 				     uint32_t format,
1183 				     uint64_t modifier)
1184 {
1185 	/* Support T_TILING for RGB formats only. */
1186 	switch (format) {
1187 	case DRM_FORMAT_XRGB8888:
1188 	case DRM_FORMAT_ARGB8888:
1189 	case DRM_FORMAT_ABGR8888:
1190 	case DRM_FORMAT_XBGR8888:
1191 	case DRM_FORMAT_RGB565:
1192 	case DRM_FORMAT_BGR565:
1193 	case DRM_FORMAT_ARGB1555:
1194 	case DRM_FORMAT_XRGB1555:
1195 		switch (fourcc_mod_broadcom_mod(modifier)) {
1196 		case DRM_FORMAT_MOD_LINEAR:
1197 		case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
1198 			return true;
1199 		default:
1200 			return false;
1201 		}
1202 	case DRM_FORMAT_NV12:
1203 	case DRM_FORMAT_NV21:
1204 		switch (fourcc_mod_broadcom_mod(modifier)) {
1205 		case DRM_FORMAT_MOD_LINEAR:
1206 		case DRM_FORMAT_MOD_BROADCOM_SAND64:
1207 		case DRM_FORMAT_MOD_BROADCOM_SAND128:
1208 		case DRM_FORMAT_MOD_BROADCOM_SAND256:
1209 			return true;
1210 		default:
1211 			return false;
1212 		}
1213 	case DRM_FORMAT_YUV422:
1214 	case DRM_FORMAT_YVU422:
1215 	case DRM_FORMAT_YUV420:
1216 	case DRM_FORMAT_YVU420:
1217 	case DRM_FORMAT_NV16:
1218 	case DRM_FORMAT_NV61:
1219 	default:
1220 		return (modifier == DRM_FORMAT_MOD_LINEAR);
1221 	}
1222 }
1223 
1224 static const struct drm_plane_funcs vc4_plane_funcs = {
1225 	.update_plane = drm_atomic_helper_update_plane,
1226 	.disable_plane = drm_atomic_helper_disable_plane,
1227 	.destroy = vc4_plane_destroy,
1228 	.set_property = NULL,
1229 	.reset = vc4_plane_reset,
1230 	.atomic_duplicate_state = vc4_plane_duplicate_state,
1231 	.atomic_destroy_state = vc4_plane_destroy_state,
1232 	.format_mod_supported = vc4_format_mod_supported,
1233 };
1234 
1235 struct drm_plane *vc4_plane_init(struct drm_device *dev,
1236 				 enum drm_plane_type type)
1237 {
1238 	struct drm_plane *plane = NULL;
1239 	struct vc4_plane *vc4_plane;
1240 	u32 formats[ARRAY_SIZE(hvs_formats)];
1241 	int ret = 0;
1242 	unsigned i;
1243 	static const uint64_t modifiers[] = {
1244 		DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
1245 		DRM_FORMAT_MOD_BROADCOM_SAND128,
1246 		DRM_FORMAT_MOD_BROADCOM_SAND64,
1247 		DRM_FORMAT_MOD_BROADCOM_SAND256,
1248 		DRM_FORMAT_MOD_LINEAR,
1249 		DRM_FORMAT_MOD_INVALID
1250 	};
1251 
1252 	vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane),
1253 				 GFP_KERNEL);
1254 	if (!vc4_plane)
1255 		return ERR_PTR(-ENOMEM);
1256 
1257 	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++)
1258 		formats[i] = hvs_formats[i].drm;
1259 
1260 	plane = &vc4_plane->base;
1261 	ret = drm_universal_plane_init(dev, plane, 0,
1262 				       &vc4_plane_funcs,
1263 				       formats, ARRAY_SIZE(formats),
1264 				       modifiers, type, NULL);
1265 
1266 	drm_plane_helper_add(plane, &vc4_plane_helper_funcs);
1267 
1268 	drm_plane_create_alpha_property(plane);
1269 	drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1270 					   DRM_MODE_ROTATE_0 |
1271 					   DRM_MODE_ROTATE_180 |
1272 					   DRM_MODE_REFLECT_X |
1273 					   DRM_MODE_REFLECT_Y);
1274 
1275 	return plane;
1276 }
1277