1 /* 2 * Copyright (C) 2015 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 /** 10 * DOC: VC4 plane module 11 * 12 * Each DRM plane is a layer of pixels being scanned out by the HVS. 13 * 14 * At atomic modeset check time, we compute the HVS display element 15 * state that would be necessary for displaying the plane (giving us a 16 * chance to figure out if a plane configuration is invalid), then at 17 * atomic flush time the CRTC will ask us to write our element state 18 * into the region of the HVS that it has allocated for us. 19 */ 20 21 #include "vc4_drv.h" 22 #include "vc4_regs.h" 23 #include "drm_atomic_helper.h" 24 #include "drm_fb_cma_helper.h" 25 #include "drm_plane_helper.h" 26 27 enum vc4_scaling_mode { 28 VC4_SCALING_NONE, 29 VC4_SCALING_TPZ, 30 VC4_SCALING_PPF, 31 }; 32 33 struct vc4_plane_state { 34 struct drm_plane_state base; 35 /* System memory copy of the display list for this element, computed 36 * at atomic_check time. 37 */ 38 u32 *dlist; 39 u32 dlist_size; /* Number of dwords allocated for the display list */ 40 u32 dlist_count; /* Number of used dwords in the display list. */ 41 42 /* Offset in the dlist to various words, for pageflip or 43 * cursor updates. 44 */ 45 u32 pos0_offset; 46 u32 pos2_offset; 47 u32 ptr0_offset; 48 49 /* Offset where the plane's dlist was last stored in the 50 * hardware at vc4_crtc_atomic_flush() time. 51 */ 52 u32 __iomem *hw_dlist; 53 54 /* Clipped coordinates of the plane on the display. */ 55 int crtc_x, crtc_y, crtc_w, crtc_h; 56 /* Clipped area being scanned from in the FB. */ 57 u32 src_x, src_y; 58 59 u32 src_w[2], src_h[2]; 60 61 /* Scaling selection for the RGB/Y plane and the Cb/Cr planes. */ 62 enum vc4_scaling_mode x_scaling[2], y_scaling[2]; 63 bool is_unity; 64 bool is_yuv; 65 66 /* Offset to start scanning out from the start of the plane's 67 * BO. 68 */ 69 u32 offsets[3]; 70 71 /* Our allocation in LBM for temporary storage during scaling. */ 72 struct drm_mm_node lbm; 73 }; 74 75 static inline struct vc4_plane_state * 76 to_vc4_plane_state(struct drm_plane_state *state) 77 { 78 return (struct vc4_plane_state *)state; 79 } 80 81 static const struct hvs_format { 82 u32 drm; /* DRM_FORMAT_* */ 83 u32 hvs; /* HVS_FORMAT_* */ 84 u32 pixel_order; 85 bool has_alpha; 86 bool flip_cbcr; 87 } hvs_formats[] = { 88 { 89 .drm = DRM_FORMAT_XRGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, 90 .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = false, 91 }, 92 { 93 .drm = DRM_FORMAT_ARGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, 94 .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = true, 95 }, 96 { 97 .drm = DRM_FORMAT_RGB565, .hvs = HVS_PIXEL_FORMAT_RGB565, 98 .pixel_order = HVS_PIXEL_ORDER_XRGB, .has_alpha = false, 99 }, 100 { 101 .drm = DRM_FORMAT_BGR565, .hvs = HVS_PIXEL_FORMAT_RGB565, 102 .pixel_order = HVS_PIXEL_ORDER_XBGR, .has_alpha = false, 103 }, 104 { 105 .drm = DRM_FORMAT_ARGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551, 106 .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = true, 107 }, 108 { 109 .drm = DRM_FORMAT_XRGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551, 110 .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = false, 111 }, 112 { 113 .drm = DRM_FORMAT_YUV422, 114 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE, 115 }, 116 { 117 .drm = DRM_FORMAT_YVU422, 118 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE, 119 .flip_cbcr = true, 120 }, 121 { 122 .drm = DRM_FORMAT_YUV420, 123 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE, 124 }, 125 { 126 .drm = DRM_FORMAT_YVU420, 127 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE, 128 .flip_cbcr = true, 129 }, 130 { 131 .drm = DRM_FORMAT_NV12, 132 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE, 133 }, 134 { 135 .drm = DRM_FORMAT_NV16, 136 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE, 137 }, 138 }; 139 140 static const struct hvs_format *vc4_get_hvs_format(u32 drm_format) 141 { 142 unsigned i; 143 144 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) { 145 if (hvs_formats[i].drm == drm_format) 146 return &hvs_formats[i]; 147 } 148 149 return NULL; 150 } 151 152 static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst) 153 { 154 if (dst > src) 155 return VC4_SCALING_PPF; 156 else if (dst < src) 157 return VC4_SCALING_TPZ; 158 else 159 return VC4_SCALING_NONE; 160 } 161 162 static bool plane_enabled(struct drm_plane_state *state) 163 { 164 return state->fb && state->crtc; 165 } 166 167 static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane) 168 { 169 struct vc4_plane_state *vc4_state; 170 171 if (WARN_ON(!plane->state)) 172 return NULL; 173 174 vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL); 175 if (!vc4_state) 176 return NULL; 177 178 memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm)); 179 180 __drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base); 181 182 if (vc4_state->dlist) { 183 vc4_state->dlist = kmemdup(vc4_state->dlist, 184 vc4_state->dlist_count * 4, 185 GFP_KERNEL); 186 if (!vc4_state->dlist) { 187 kfree(vc4_state); 188 return NULL; 189 } 190 vc4_state->dlist_size = vc4_state->dlist_count; 191 } 192 193 return &vc4_state->base; 194 } 195 196 static void vc4_plane_destroy_state(struct drm_plane *plane, 197 struct drm_plane_state *state) 198 { 199 struct vc4_dev *vc4 = to_vc4_dev(plane->dev); 200 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 201 202 if (vc4_state->lbm.allocated) { 203 unsigned long irqflags; 204 205 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags); 206 drm_mm_remove_node(&vc4_state->lbm); 207 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags); 208 } 209 210 kfree(vc4_state->dlist); 211 __drm_atomic_helper_plane_destroy_state(&vc4_state->base); 212 kfree(state); 213 } 214 215 /* Called during init to allocate the plane's atomic state. */ 216 static void vc4_plane_reset(struct drm_plane *plane) 217 { 218 struct vc4_plane_state *vc4_state; 219 220 WARN_ON(plane->state); 221 222 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 223 if (!vc4_state) 224 return; 225 226 plane->state = &vc4_state->base; 227 vc4_state->base.plane = plane; 228 } 229 230 static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val) 231 { 232 if (vc4_state->dlist_count == vc4_state->dlist_size) { 233 u32 new_size = max(4u, vc4_state->dlist_count * 2); 234 u32 *new_dlist = kmalloc(new_size * 4, GFP_KERNEL); 235 236 if (!new_dlist) 237 return; 238 memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4); 239 240 kfree(vc4_state->dlist); 241 vc4_state->dlist = new_dlist; 242 vc4_state->dlist_size = new_size; 243 } 244 245 vc4_state->dlist[vc4_state->dlist_count++] = val; 246 } 247 248 /* Returns the scl0/scl1 field based on whether the dimensions need to 249 * be up/down/non-scaled. 250 * 251 * This is a replication of a table from the spec. 252 */ 253 static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane) 254 { 255 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 256 257 switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) { 258 case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF: 259 return SCALER_CTL0_SCL_H_PPF_V_PPF; 260 case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF: 261 return SCALER_CTL0_SCL_H_TPZ_V_PPF; 262 case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ: 263 return SCALER_CTL0_SCL_H_PPF_V_TPZ; 264 case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ: 265 return SCALER_CTL0_SCL_H_TPZ_V_TPZ; 266 case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE: 267 return SCALER_CTL0_SCL_H_PPF_V_NONE; 268 case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF: 269 return SCALER_CTL0_SCL_H_NONE_V_PPF; 270 case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ: 271 return SCALER_CTL0_SCL_H_NONE_V_TPZ; 272 case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE: 273 return SCALER_CTL0_SCL_H_TPZ_V_NONE; 274 default: 275 case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE: 276 /* The unity case is independently handled by 277 * SCALER_CTL0_UNITY. 278 */ 279 return 0; 280 } 281 } 282 283 static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state) 284 { 285 struct drm_plane *plane = state->plane; 286 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 287 struct drm_framebuffer *fb = state->fb; 288 struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0); 289 u32 subpixel_src_mask = (1 << 16) - 1; 290 u32 format = fb->pixel_format; 291 int num_planes = drm_format_num_planes(format); 292 u32 h_subsample = 1; 293 u32 v_subsample = 1; 294 int i; 295 296 for (i = 0; i < num_planes; i++) 297 vc4_state->offsets[i] = bo->paddr + fb->offsets[i]; 298 299 /* We don't support subpixel source positioning for scaling. */ 300 if ((state->src_x & subpixel_src_mask) || 301 (state->src_y & subpixel_src_mask) || 302 (state->src_w & subpixel_src_mask) || 303 (state->src_h & subpixel_src_mask)) { 304 return -EINVAL; 305 } 306 307 vc4_state->src_x = state->src_x >> 16; 308 vc4_state->src_y = state->src_y >> 16; 309 vc4_state->src_w[0] = state->src_w >> 16; 310 vc4_state->src_h[0] = state->src_h >> 16; 311 312 vc4_state->crtc_x = state->crtc_x; 313 vc4_state->crtc_y = state->crtc_y; 314 vc4_state->crtc_w = state->crtc_w; 315 vc4_state->crtc_h = state->crtc_h; 316 317 vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0], 318 vc4_state->crtc_w); 319 vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0], 320 vc4_state->crtc_h); 321 322 if (num_planes > 1) { 323 vc4_state->is_yuv = true; 324 325 h_subsample = drm_format_horz_chroma_subsampling(format); 326 v_subsample = drm_format_vert_chroma_subsampling(format); 327 vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample; 328 vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample; 329 330 vc4_state->x_scaling[1] = 331 vc4_get_scaling_mode(vc4_state->src_w[1], 332 vc4_state->crtc_w); 333 vc4_state->y_scaling[1] = 334 vc4_get_scaling_mode(vc4_state->src_h[1], 335 vc4_state->crtc_h); 336 337 /* YUV conversion requires that scaling be enabled, 338 * even on a plane that's otherwise 1:1. Choose TPZ 339 * for simplicity. 340 */ 341 if (vc4_state->x_scaling[0] == VC4_SCALING_NONE) 342 vc4_state->x_scaling[0] = VC4_SCALING_TPZ; 343 if (vc4_state->y_scaling[0] == VC4_SCALING_NONE) 344 vc4_state->y_scaling[0] = VC4_SCALING_TPZ; 345 } 346 347 vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE && 348 vc4_state->y_scaling[0] == VC4_SCALING_NONE && 349 vc4_state->x_scaling[1] == VC4_SCALING_NONE && 350 vc4_state->y_scaling[1] == VC4_SCALING_NONE); 351 352 /* No configuring scaling on the cursor plane, since it gets 353 non-vblank-synced updates, and scaling requires requires 354 LBM changes which have to be vblank-synced. 355 */ 356 if (plane->type == DRM_PLANE_TYPE_CURSOR && !vc4_state->is_unity) 357 return -EINVAL; 358 359 /* Clamp the on-screen start x/y to 0. The hardware doesn't 360 * support negative y, and negative x wastes bandwidth. 361 */ 362 if (vc4_state->crtc_x < 0) { 363 for (i = 0; i < num_planes; i++) { 364 u32 cpp = drm_format_plane_cpp(fb->pixel_format, i); 365 u32 subs = ((i == 0) ? 1 : h_subsample); 366 367 vc4_state->offsets[i] += (cpp * 368 (-vc4_state->crtc_x) / subs); 369 } 370 vc4_state->src_w[0] += vc4_state->crtc_x; 371 vc4_state->src_w[1] += vc4_state->crtc_x / h_subsample; 372 vc4_state->crtc_x = 0; 373 } 374 375 if (vc4_state->crtc_y < 0) { 376 for (i = 0; i < num_planes; i++) { 377 u32 subs = ((i == 0) ? 1 : v_subsample); 378 379 vc4_state->offsets[i] += (fb->pitches[i] * 380 (-vc4_state->crtc_y) / subs); 381 } 382 vc4_state->src_h[0] += vc4_state->crtc_y; 383 vc4_state->src_h[1] += vc4_state->crtc_y / v_subsample; 384 vc4_state->crtc_y = 0; 385 } 386 387 return 0; 388 } 389 390 static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst) 391 { 392 u32 scale, recip; 393 394 scale = (1 << 16) * src / dst; 395 396 /* The specs note that while the reciprocal would be defined 397 * as (1<<32)/scale, ~0 is close enough. 398 */ 399 recip = ~0 / scale; 400 401 vc4_dlist_write(vc4_state, 402 VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) | 403 VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE)); 404 vc4_dlist_write(vc4_state, 405 VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP)); 406 } 407 408 static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst) 409 { 410 u32 scale = (1 << 16) * src / dst; 411 412 vc4_dlist_write(vc4_state, 413 SCALER_PPF_AGC | 414 VC4_SET_FIELD(scale, SCALER_PPF_SCALE) | 415 VC4_SET_FIELD(0, SCALER_PPF_IPHASE)); 416 } 417 418 static u32 vc4_lbm_size(struct drm_plane_state *state) 419 { 420 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 421 /* This is the worst case number. One of the two sizes will 422 * be used depending on the scaling configuration. 423 */ 424 u32 pix_per_line = max(vc4_state->src_w[0], (u32)vc4_state->crtc_w); 425 u32 lbm; 426 427 if (!vc4_state->is_yuv) { 428 if (vc4_state->is_unity) 429 return 0; 430 else if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ) 431 lbm = pix_per_line * 8; 432 else { 433 /* In special cases, this multiplier might be 12. */ 434 lbm = pix_per_line * 16; 435 } 436 } else { 437 /* There are cases for this going down to a multiplier 438 * of 2, but according to the firmware source, the 439 * table in the docs is somewhat wrong. 440 */ 441 lbm = pix_per_line * 16; 442 } 443 444 lbm = roundup(lbm, 32); 445 446 return lbm; 447 } 448 449 static void vc4_write_scaling_parameters(struct drm_plane_state *state, 450 int channel) 451 { 452 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 453 454 /* Ch0 H-PPF Word 0: Scaling Parameters */ 455 if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) { 456 vc4_write_ppf(vc4_state, 457 vc4_state->src_w[channel], vc4_state->crtc_w); 458 } 459 460 /* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */ 461 if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) { 462 vc4_write_ppf(vc4_state, 463 vc4_state->src_h[channel], vc4_state->crtc_h); 464 vc4_dlist_write(vc4_state, 0xc0c0c0c0); 465 } 466 467 /* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */ 468 if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) { 469 vc4_write_tpz(vc4_state, 470 vc4_state->src_w[channel], vc4_state->crtc_w); 471 } 472 473 /* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */ 474 if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) { 475 vc4_write_tpz(vc4_state, 476 vc4_state->src_h[channel], vc4_state->crtc_h); 477 vc4_dlist_write(vc4_state, 0xc0c0c0c0); 478 } 479 } 480 481 /* Writes out a full display list for an active plane to the plane's 482 * private dlist state. 483 */ 484 static int vc4_plane_mode_set(struct drm_plane *plane, 485 struct drm_plane_state *state) 486 { 487 struct vc4_dev *vc4 = to_vc4_dev(plane->dev); 488 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 489 struct drm_framebuffer *fb = state->fb; 490 u32 ctl0_offset = vc4_state->dlist_count; 491 const struct hvs_format *format = vc4_get_hvs_format(fb->pixel_format); 492 int num_planes = drm_format_num_planes(format->drm); 493 u32 scl0, scl1; 494 u32 lbm_size; 495 unsigned long irqflags; 496 int ret, i; 497 498 ret = vc4_plane_setup_clipping_and_scaling(state); 499 if (ret) 500 return ret; 501 502 /* Allocate the LBM memory that the HVS will use for temporary 503 * storage due to our scaling/format conversion. 504 */ 505 lbm_size = vc4_lbm_size(state); 506 if (lbm_size) { 507 if (!vc4_state->lbm.allocated) { 508 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags); 509 ret = drm_mm_insert_node(&vc4->hvs->lbm_mm, 510 &vc4_state->lbm, 511 lbm_size, 32, 0); 512 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags); 513 } else { 514 WARN_ON_ONCE(lbm_size != vc4_state->lbm.size); 515 } 516 } 517 518 if (ret) 519 return ret; 520 521 /* SCL1 is used for Cb/Cr scaling of planar formats. For RGB 522 * and 4:4:4, scl1 should be set to scl0 so both channels of 523 * the scaler do the same thing. For YUV, the Y plane needs 524 * to be put in channel 1 and Cb/Cr in channel 0, so we swap 525 * the scl fields here. 526 */ 527 if (num_planes == 1) { 528 scl0 = vc4_get_scl_field(state, 1); 529 scl1 = scl0; 530 } else { 531 scl0 = vc4_get_scl_field(state, 1); 532 scl1 = vc4_get_scl_field(state, 0); 533 } 534 535 /* Control word */ 536 vc4_dlist_write(vc4_state, 537 SCALER_CTL0_VALID | 538 (format->pixel_order << SCALER_CTL0_ORDER_SHIFT) | 539 (format->hvs << SCALER_CTL0_PIXEL_FORMAT_SHIFT) | 540 (vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) | 541 VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) | 542 VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1)); 543 544 /* Position Word 0: Image Positions and Alpha Value */ 545 vc4_state->pos0_offset = vc4_state->dlist_count; 546 vc4_dlist_write(vc4_state, 547 VC4_SET_FIELD(0xff, SCALER_POS0_FIXED_ALPHA) | 548 VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) | 549 VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y)); 550 551 /* Position Word 1: Scaled Image Dimensions. */ 552 if (!vc4_state->is_unity) { 553 vc4_dlist_write(vc4_state, 554 VC4_SET_FIELD(vc4_state->crtc_w, 555 SCALER_POS1_SCL_WIDTH) | 556 VC4_SET_FIELD(vc4_state->crtc_h, 557 SCALER_POS1_SCL_HEIGHT)); 558 } 559 560 /* Position Word 2: Source Image Size, Alpha Mode */ 561 vc4_state->pos2_offset = vc4_state->dlist_count; 562 vc4_dlist_write(vc4_state, 563 VC4_SET_FIELD(format->has_alpha ? 564 SCALER_POS2_ALPHA_MODE_PIPELINE : 565 SCALER_POS2_ALPHA_MODE_FIXED, 566 SCALER_POS2_ALPHA_MODE) | 567 VC4_SET_FIELD(vc4_state->src_w[0], SCALER_POS2_WIDTH) | 568 VC4_SET_FIELD(vc4_state->src_h[0], SCALER_POS2_HEIGHT)); 569 570 /* Position Word 3: Context. Written by the HVS. */ 571 vc4_dlist_write(vc4_state, 0xc0c0c0c0); 572 573 574 /* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers 575 * 576 * The pointers may be any byte address. 577 */ 578 vc4_state->ptr0_offset = vc4_state->dlist_count; 579 if (!format->flip_cbcr) { 580 for (i = 0; i < num_planes; i++) 581 vc4_dlist_write(vc4_state, vc4_state->offsets[i]); 582 } else { 583 WARN_ON_ONCE(num_planes != 3); 584 vc4_dlist_write(vc4_state, vc4_state->offsets[0]); 585 vc4_dlist_write(vc4_state, vc4_state->offsets[2]); 586 vc4_dlist_write(vc4_state, vc4_state->offsets[1]); 587 } 588 589 /* Pointer Context Word 0/1/2: Written by the HVS */ 590 for (i = 0; i < num_planes; i++) 591 vc4_dlist_write(vc4_state, 0xc0c0c0c0); 592 593 /* Pitch word 0/1/2 */ 594 for (i = 0; i < num_planes; i++) { 595 vc4_dlist_write(vc4_state, 596 VC4_SET_FIELD(fb->pitches[i], SCALER_SRC_PITCH)); 597 } 598 599 /* Colorspace conversion words */ 600 if (vc4_state->is_yuv) { 601 vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5); 602 vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5); 603 vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5); 604 } 605 606 if (!vc4_state->is_unity) { 607 /* LBM Base Address. */ 608 if (vc4_state->y_scaling[0] != VC4_SCALING_NONE || 609 vc4_state->y_scaling[1] != VC4_SCALING_NONE) { 610 vc4_dlist_write(vc4_state, vc4_state->lbm.start); 611 } 612 613 if (num_planes > 1) { 614 /* Emit Cb/Cr as channel 0 and Y as channel 615 * 1. This matches how we set up scl0/scl1 616 * above. 617 */ 618 vc4_write_scaling_parameters(state, 1); 619 } 620 vc4_write_scaling_parameters(state, 0); 621 622 /* If any PPF setup was done, then all the kernel 623 * pointers get uploaded. 624 */ 625 if (vc4_state->x_scaling[0] == VC4_SCALING_PPF || 626 vc4_state->y_scaling[0] == VC4_SCALING_PPF || 627 vc4_state->x_scaling[1] == VC4_SCALING_PPF || 628 vc4_state->y_scaling[1] == VC4_SCALING_PPF) { 629 u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start, 630 SCALER_PPF_KERNEL_OFFSET); 631 632 /* HPPF plane 0 */ 633 vc4_dlist_write(vc4_state, kernel); 634 /* VPPF plane 0 */ 635 vc4_dlist_write(vc4_state, kernel); 636 /* HPPF plane 1 */ 637 vc4_dlist_write(vc4_state, kernel); 638 /* VPPF plane 1 */ 639 vc4_dlist_write(vc4_state, kernel); 640 } 641 } 642 643 vc4_state->dlist[ctl0_offset] |= 644 VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE); 645 646 return 0; 647 } 648 649 /* If a modeset involves changing the setup of a plane, the atomic 650 * infrastructure will call this to validate a proposed plane setup. 651 * However, if a plane isn't getting updated, this (and the 652 * corresponding vc4_plane_atomic_update) won't get called. Thus, we 653 * compute the dlist here and have all active plane dlists get updated 654 * in the CRTC's flush. 655 */ 656 static int vc4_plane_atomic_check(struct drm_plane *plane, 657 struct drm_plane_state *state) 658 { 659 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 660 661 vc4_state->dlist_count = 0; 662 663 if (plane_enabled(state)) 664 return vc4_plane_mode_set(plane, state); 665 else 666 return 0; 667 } 668 669 static void vc4_plane_atomic_update(struct drm_plane *plane, 670 struct drm_plane_state *old_state) 671 { 672 /* No contents here. Since we don't know where in the CRTC's 673 * dlist we should be stored, our dlist is uploaded to the 674 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush 675 * time. 676 */ 677 } 678 679 u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist) 680 { 681 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state); 682 int i; 683 684 vc4_state->hw_dlist = dlist; 685 686 /* Can't memcpy_toio() because it needs to be 32-bit writes. */ 687 for (i = 0; i < vc4_state->dlist_count; i++) 688 writel(vc4_state->dlist[i], &dlist[i]); 689 690 return vc4_state->dlist_count; 691 } 692 693 u32 vc4_plane_dlist_size(struct drm_plane_state *state) 694 { 695 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); 696 697 return vc4_state->dlist_count; 698 } 699 700 /* Updates the plane to immediately (well, once the FIFO needs 701 * refilling) scan out from at a new framebuffer. 702 */ 703 void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb) 704 { 705 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state); 706 struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0); 707 uint32_t addr; 708 709 /* We're skipping the address adjustment for negative origin, 710 * because this is only called on the primary plane. 711 */ 712 WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0); 713 addr = bo->paddr + fb->offsets[0]; 714 715 /* Write the new address into the hardware immediately. The 716 * scanout will start from this address as soon as the FIFO 717 * needs to refill with pixels. 718 */ 719 writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]); 720 721 /* Also update the CPU-side dlist copy, so that any later 722 * atomic updates that don't do a new modeset on our plane 723 * also use our updated address. 724 */ 725 vc4_state->dlist[vc4_state->ptr0_offset] = addr; 726 } 727 728 static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = { 729 .prepare_fb = NULL, 730 .cleanup_fb = NULL, 731 .atomic_check = vc4_plane_atomic_check, 732 .atomic_update = vc4_plane_atomic_update, 733 }; 734 735 static void vc4_plane_destroy(struct drm_plane *plane) 736 { 737 drm_plane_helper_disable(plane); 738 drm_plane_cleanup(plane); 739 } 740 741 /* Implements immediate (non-vblank-synced) updates of the cursor 742 * position, or falls back to the atomic helper otherwise. 743 */ 744 static int 745 vc4_update_plane(struct drm_plane *plane, 746 struct drm_crtc *crtc, 747 struct drm_framebuffer *fb, 748 int crtc_x, int crtc_y, 749 unsigned int crtc_w, unsigned int crtc_h, 750 uint32_t src_x, uint32_t src_y, 751 uint32_t src_w, uint32_t src_h) 752 { 753 struct drm_plane_state *plane_state; 754 struct vc4_plane_state *vc4_state; 755 756 if (plane != crtc->cursor) 757 goto out; 758 759 plane_state = plane->state; 760 vc4_state = to_vc4_plane_state(plane_state); 761 762 if (!plane_state) 763 goto out; 764 765 /* If we're changing the cursor contents, do that in the 766 * normal vblank-synced atomic path. 767 */ 768 if (fb != plane_state->fb) 769 goto out; 770 771 /* No configuring new scaling in the fast path. */ 772 if (crtc_w != plane_state->crtc_w || 773 crtc_h != plane_state->crtc_h || 774 src_w != plane_state->src_w || 775 src_h != plane_state->src_h) { 776 goto out; 777 } 778 779 /* Set the cursor's position on the screen. This is the 780 * expected change from the drm_mode_cursor_universal() 781 * helper. 782 */ 783 plane_state->crtc_x = crtc_x; 784 plane_state->crtc_y = crtc_y; 785 786 /* Allow changing the start position within the cursor BO, if 787 * that matters. 788 */ 789 plane_state->src_x = src_x; 790 plane_state->src_y = src_y; 791 792 /* Update the display list based on the new crtc_x/y. */ 793 vc4_plane_atomic_check(plane, plane_state); 794 795 /* Note that we can't just call vc4_plane_write_dlist() 796 * because that would smash the context data that the HVS is 797 * currently using. 798 */ 799 writel(vc4_state->dlist[vc4_state->pos0_offset], 800 &vc4_state->hw_dlist[vc4_state->pos0_offset]); 801 writel(vc4_state->dlist[vc4_state->pos2_offset], 802 &vc4_state->hw_dlist[vc4_state->pos2_offset]); 803 writel(vc4_state->dlist[vc4_state->ptr0_offset], 804 &vc4_state->hw_dlist[vc4_state->ptr0_offset]); 805 806 return 0; 807 808 out: 809 return drm_atomic_helper_update_plane(plane, crtc, fb, 810 crtc_x, crtc_y, 811 crtc_w, crtc_h, 812 src_x, src_y, 813 src_w, src_h); 814 } 815 816 static const struct drm_plane_funcs vc4_plane_funcs = { 817 .update_plane = vc4_update_plane, 818 .disable_plane = drm_atomic_helper_disable_plane, 819 .destroy = vc4_plane_destroy, 820 .set_property = NULL, 821 .reset = vc4_plane_reset, 822 .atomic_duplicate_state = vc4_plane_duplicate_state, 823 .atomic_destroy_state = vc4_plane_destroy_state, 824 }; 825 826 struct drm_plane *vc4_plane_init(struct drm_device *dev, 827 enum drm_plane_type type) 828 { 829 struct drm_plane *plane = NULL; 830 struct vc4_plane *vc4_plane; 831 u32 formats[ARRAY_SIZE(hvs_formats)]; 832 u32 num_formats = 0; 833 int ret = 0; 834 unsigned i; 835 836 vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane), 837 GFP_KERNEL); 838 if (!vc4_plane) { 839 ret = -ENOMEM; 840 goto fail; 841 } 842 843 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) { 844 /* Don't allow YUV in cursor planes, since that means 845 * tuning on the scaler, which we don't allow for the 846 * cursor. 847 */ 848 if (type != DRM_PLANE_TYPE_CURSOR || 849 hvs_formats[i].hvs < HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE) { 850 formats[num_formats++] = hvs_formats[i].drm; 851 } 852 } 853 plane = &vc4_plane->base; 854 ret = drm_universal_plane_init(dev, plane, 0xff, 855 &vc4_plane_funcs, 856 formats, num_formats, 857 type, NULL); 858 859 drm_plane_helper_add(plane, &vc4_plane_helper_funcs); 860 861 return plane; 862 fail: 863 if (plane) 864 vc4_plane_destroy(plane); 865 866 return ERR_PTR(ret); 867 } 868