1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 KMS 8 * 9 * This is the general code for implementing KMS mode setting that 10 * doesn't clearly associate with any of the other objects (plane, 11 * crtc, HDMI encoder). 12 */ 13 14 #include <linux/clk.h> 15 16 #include <drm/drm_atomic.h> 17 #include <drm/drm_atomic_helper.h> 18 #include <drm/drm_crtc.h> 19 #include <drm/drm_gem_framebuffer_helper.h> 20 #include <drm/drm_plane_helper.h> 21 #include <drm/drm_probe_helper.h> 22 #include <drm/drm_vblank.h> 23 24 #include "vc4_drv.h" 25 #include "vc4_regs.h" 26 27 #define HVS_NUM_CHANNELS 3 28 29 struct vc4_ctm_state { 30 struct drm_private_state base; 31 struct drm_color_ctm *ctm; 32 int fifo; 33 }; 34 35 static struct vc4_ctm_state * 36 to_vc4_ctm_state(const struct drm_private_state *priv) 37 { 38 return container_of(priv, struct vc4_ctm_state, base); 39 } 40 41 struct vc4_hvs_state { 42 struct drm_private_state base; 43 unsigned long core_clock_rate; 44 45 struct { 46 unsigned in_use: 1; 47 unsigned long fifo_load; 48 struct drm_crtc_commit *pending_commit; 49 } fifo_state[HVS_NUM_CHANNELS]; 50 }; 51 52 static struct vc4_hvs_state * 53 to_vc4_hvs_state(const struct drm_private_state *priv) 54 { 55 return container_of(priv, struct vc4_hvs_state, base); 56 } 57 58 struct vc4_load_tracker_state { 59 struct drm_private_state base; 60 u64 hvs_load; 61 u64 membus_load; 62 }; 63 64 static struct vc4_load_tracker_state * 65 to_vc4_load_tracker_state(const struct drm_private_state *priv) 66 { 67 return container_of(priv, struct vc4_load_tracker_state, base); 68 } 69 70 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state, 71 struct drm_private_obj *manager) 72 { 73 struct drm_device *dev = state->dev; 74 struct vc4_dev *vc4 = to_vc4_dev(dev); 75 struct drm_private_state *priv_state; 76 int ret; 77 78 ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx); 79 if (ret) 80 return ERR_PTR(ret); 81 82 priv_state = drm_atomic_get_private_obj_state(state, manager); 83 if (IS_ERR(priv_state)) 84 return ERR_CAST(priv_state); 85 86 return to_vc4_ctm_state(priv_state); 87 } 88 89 static struct drm_private_state * 90 vc4_ctm_duplicate_state(struct drm_private_obj *obj) 91 { 92 struct vc4_ctm_state *state; 93 94 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); 95 if (!state) 96 return NULL; 97 98 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 99 100 return &state->base; 101 } 102 103 static void vc4_ctm_destroy_state(struct drm_private_obj *obj, 104 struct drm_private_state *state) 105 { 106 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state); 107 108 kfree(ctm_state); 109 } 110 111 static const struct drm_private_state_funcs vc4_ctm_state_funcs = { 112 .atomic_duplicate_state = vc4_ctm_duplicate_state, 113 .atomic_destroy_state = vc4_ctm_destroy_state, 114 }; 115 116 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused) 117 { 118 struct vc4_dev *vc4 = to_vc4_dev(dev); 119 120 drm_atomic_private_obj_fini(&vc4->ctm_manager); 121 } 122 123 static int vc4_ctm_obj_init(struct vc4_dev *vc4) 124 { 125 struct vc4_ctm_state *ctm_state; 126 127 drm_modeset_lock_init(&vc4->ctm_state_lock); 128 129 ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL); 130 if (!ctm_state) 131 return -ENOMEM; 132 133 drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base, 134 &vc4_ctm_state_funcs); 135 136 return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL); 137 } 138 139 /* Converts a DRM S31.32 value to the HW S0.9 format. */ 140 static u16 vc4_ctm_s31_32_to_s0_9(u64 in) 141 { 142 u16 r; 143 144 /* Sign bit. */ 145 r = in & BIT_ULL(63) ? BIT(9) : 0; 146 147 if ((in & GENMASK_ULL(62, 32)) > 0) { 148 /* We have zero integer bits so we can only saturate here. */ 149 r |= GENMASK(8, 0); 150 } else { 151 /* Otherwise take the 9 most important fractional bits. */ 152 r |= (in >> 23) & GENMASK(8, 0); 153 } 154 155 return r; 156 } 157 158 static void 159 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state) 160 { 161 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state); 162 struct drm_color_ctm *ctm = ctm_state->ctm; 163 164 if (ctm_state->fifo) { 165 HVS_WRITE(SCALER_OLEDCOEF2, 166 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]), 167 SCALER_OLEDCOEF2_R_TO_R) | 168 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]), 169 SCALER_OLEDCOEF2_R_TO_G) | 170 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]), 171 SCALER_OLEDCOEF2_R_TO_B)); 172 HVS_WRITE(SCALER_OLEDCOEF1, 173 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]), 174 SCALER_OLEDCOEF1_G_TO_R) | 175 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]), 176 SCALER_OLEDCOEF1_G_TO_G) | 177 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]), 178 SCALER_OLEDCOEF1_G_TO_B)); 179 HVS_WRITE(SCALER_OLEDCOEF0, 180 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]), 181 SCALER_OLEDCOEF0_B_TO_R) | 182 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]), 183 SCALER_OLEDCOEF0_B_TO_G) | 184 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]), 185 SCALER_OLEDCOEF0_B_TO_B)); 186 } 187 188 HVS_WRITE(SCALER_OLEDOFFS, 189 VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO)); 190 } 191 192 static struct vc4_hvs_state * 193 vc4_hvs_get_new_global_state(struct drm_atomic_state *state) 194 { 195 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 196 struct drm_private_state *priv_state; 197 198 priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels); 199 if (IS_ERR(priv_state)) 200 return ERR_CAST(priv_state); 201 202 return to_vc4_hvs_state(priv_state); 203 } 204 205 static struct vc4_hvs_state * 206 vc4_hvs_get_old_global_state(struct drm_atomic_state *state) 207 { 208 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 209 struct drm_private_state *priv_state; 210 211 priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels); 212 if (IS_ERR(priv_state)) 213 return ERR_CAST(priv_state); 214 215 return to_vc4_hvs_state(priv_state); 216 } 217 218 static struct vc4_hvs_state * 219 vc4_hvs_get_global_state(struct drm_atomic_state *state) 220 { 221 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 222 struct drm_private_state *priv_state; 223 224 priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels); 225 if (IS_ERR(priv_state)) 226 return ERR_CAST(priv_state); 227 228 return to_vc4_hvs_state(priv_state); 229 } 230 231 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4, 232 struct drm_atomic_state *state) 233 { 234 struct drm_crtc_state *crtc_state; 235 struct drm_crtc *crtc; 236 unsigned int i; 237 238 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 239 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 240 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); 241 u32 dispctrl; 242 u32 dsp3_mux; 243 244 if (!crtc_state->active) 245 continue; 246 247 if (vc4_state->assigned_channel != 2) 248 continue; 249 250 /* 251 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to 252 * FIFO X'. 253 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'. 254 * 255 * DSP3 is connected to FIFO2 unless the transposer is 256 * enabled. In this case, FIFO 2 is directly accessed by the 257 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1 258 * route. 259 */ 260 if (vc4_crtc->feeds_txp) 261 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX); 262 else 263 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX); 264 265 dispctrl = HVS_READ(SCALER_DISPCTRL) & 266 ~SCALER_DISPCTRL_DSP3_MUX_MASK; 267 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux); 268 } 269 } 270 271 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4, 272 struct drm_atomic_state *state) 273 { 274 struct drm_crtc_state *crtc_state; 275 struct drm_crtc *crtc; 276 unsigned char mux; 277 unsigned int i; 278 u32 reg; 279 280 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 281 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); 282 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 283 284 if (!vc4_state->update_muxing) 285 continue; 286 287 switch (vc4_crtc->data->hvs_output) { 288 case 2: 289 mux = (vc4_state->assigned_channel == 2) ? 0 : 1; 290 reg = HVS_READ(SCALER_DISPECTRL); 291 HVS_WRITE(SCALER_DISPECTRL, 292 (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) | 293 VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX)); 294 break; 295 296 case 3: 297 if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED) 298 mux = 3; 299 else 300 mux = vc4_state->assigned_channel; 301 302 reg = HVS_READ(SCALER_DISPCTRL); 303 HVS_WRITE(SCALER_DISPCTRL, 304 (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) | 305 VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX)); 306 break; 307 308 case 4: 309 if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED) 310 mux = 3; 311 else 312 mux = vc4_state->assigned_channel; 313 314 reg = HVS_READ(SCALER_DISPEOLN); 315 HVS_WRITE(SCALER_DISPEOLN, 316 (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) | 317 VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX)); 318 319 break; 320 321 case 5: 322 if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED) 323 mux = 3; 324 else 325 mux = vc4_state->assigned_channel; 326 327 reg = HVS_READ(SCALER_DISPDITHER); 328 HVS_WRITE(SCALER_DISPDITHER, 329 (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) | 330 VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX)); 331 break; 332 333 default: 334 break; 335 } 336 } 337 } 338 339 static void vc4_atomic_commit_tail(struct drm_atomic_state *state) 340 { 341 struct drm_device *dev = state->dev; 342 struct vc4_dev *vc4 = to_vc4_dev(dev); 343 struct vc4_hvs *hvs = vc4->hvs; 344 struct drm_crtc_state *new_crtc_state; 345 struct vc4_hvs_state *new_hvs_state; 346 struct drm_crtc *crtc; 347 struct vc4_hvs_state *old_hvs_state; 348 unsigned int channel; 349 int i; 350 351 old_hvs_state = vc4_hvs_get_old_global_state(state); 352 if (WARN_ON(IS_ERR(old_hvs_state))) 353 return; 354 355 new_hvs_state = vc4_hvs_get_new_global_state(state); 356 if (WARN_ON(IS_ERR(new_hvs_state))) 357 return; 358 359 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 360 struct vc4_crtc_state *vc4_crtc_state; 361 362 if (!new_crtc_state->commit) 363 continue; 364 365 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state); 366 vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel); 367 } 368 369 for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) { 370 struct drm_crtc_commit *commit; 371 int ret; 372 373 if (!old_hvs_state->fifo_state[channel].in_use) 374 continue; 375 376 commit = old_hvs_state->fifo_state[channel].pending_commit; 377 if (!commit) 378 continue; 379 380 ret = drm_crtc_commit_wait(commit); 381 if (ret) 382 drm_err(dev, "Timed out waiting for commit\n"); 383 384 drm_crtc_commit_put(commit); 385 old_hvs_state->fifo_state[channel].pending_commit = NULL; 386 } 387 388 if (vc4->hvs->hvs5) { 389 unsigned long core_rate = max_t(unsigned long, 390 500000000, 391 new_hvs_state->core_clock_rate); 392 393 clk_set_min_rate(hvs->core_clk, core_rate); 394 } 395 drm_atomic_helper_commit_modeset_disables(dev, state); 396 397 vc4_ctm_commit(vc4, state); 398 399 if (vc4->hvs->hvs5) 400 vc5_hvs_pv_muxing_commit(vc4, state); 401 else 402 vc4_hvs_pv_muxing_commit(vc4, state); 403 404 drm_atomic_helper_commit_planes(dev, state, 0); 405 406 drm_atomic_helper_commit_modeset_enables(dev, state); 407 408 drm_atomic_helper_fake_vblank(state); 409 410 drm_atomic_helper_commit_hw_done(state); 411 412 drm_atomic_helper_wait_for_flip_done(dev, state); 413 414 drm_atomic_helper_cleanup_planes(dev, state); 415 416 if (vc4->hvs->hvs5) { 417 drm_dbg(dev, "Running the core clock at %lu Hz\n", 418 new_hvs_state->core_clock_rate); 419 420 clk_set_min_rate(hvs->core_clk, new_hvs_state->core_clock_rate); 421 } 422 } 423 424 static int vc4_atomic_commit_setup(struct drm_atomic_state *state) 425 { 426 struct drm_crtc_state *crtc_state; 427 struct vc4_hvs_state *hvs_state; 428 struct drm_crtc *crtc; 429 unsigned int i; 430 431 hvs_state = vc4_hvs_get_new_global_state(state); 432 if (WARN_ON(IS_ERR(hvs_state))) 433 return PTR_ERR(hvs_state); 434 435 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 436 struct vc4_crtc_state *vc4_crtc_state = 437 to_vc4_crtc_state(crtc_state); 438 unsigned int channel = 439 vc4_crtc_state->assigned_channel; 440 441 if (channel == VC4_HVS_CHANNEL_DISABLED) 442 continue; 443 444 if (!hvs_state->fifo_state[channel].in_use) 445 continue; 446 447 hvs_state->fifo_state[channel].pending_commit = 448 drm_crtc_commit_get(crtc_state->commit); 449 } 450 451 return 0; 452 } 453 454 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev, 455 struct drm_file *file_priv, 456 const struct drm_mode_fb_cmd2 *mode_cmd) 457 { 458 struct drm_mode_fb_cmd2 mode_cmd_local; 459 460 /* If the user didn't specify a modifier, use the 461 * vc4_set_tiling_ioctl() state for the BO. 462 */ 463 if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) { 464 struct drm_gem_object *gem_obj; 465 struct vc4_bo *bo; 466 467 gem_obj = drm_gem_object_lookup(file_priv, 468 mode_cmd->handles[0]); 469 if (!gem_obj) { 470 DRM_DEBUG("Failed to look up GEM BO %d\n", 471 mode_cmd->handles[0]); 472 return ERR_PTR(-ENOENT); 473 } 474 bo = to_vc4_bo(gem_obj); 475 476 mode_cmd_local = *mode_cmd; 477 478 if (bo->t_format) { 479 mode_cmd_local.modifier[0] = 480 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED; 481 } else { 482 mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE; 483 } 484 485 drm_gem_object_put(gem_obj); 486 487 mode_cmd = &mode_cmd_local; 488 } 489 490 return drm_gem_fb_create(dev, file_priv, mode_cmd); 491 } 492 493 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC 494 * at a time and the HW only supports S0.9 scalars. To account for the latter, 495 * we don't allow userland to set a CTM that we have no hope of approximating. 496 */ 497 static int 498 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 499 { 500 struct vc4_dev *vc4 = to_vc4_dev(dev); 501 struct vc4_ctm_state *ctm_state = NULL; 502 struct drm_crtc *crtc; 503 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 504 struct drm_color_ctm *ctm; 505 int i; 506 507 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 508 /* CTM is being disabled. */ 509 if (!new_crtc_state->ctm && old_crtc_state->ctm) { 510 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager); 511 if (IS_ERR(ctm_state)) 512 return PTR_ERR(ctm_state); 513 ctm_state->fifo = 0; 514 } 515 } 516 517 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 518 if (new_crtc_state->ctm == old_crtc_state->ctm) 519 continue; 520 521 if (!ctm_state) { 522 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager); 523 if (IS_ERR(ctm_state)) 524 return PTR_ERR(ctm_state); 525 } 526 527 /* CTM is being enabled or the matrix changed. */ 528 if (new_crtc_state->ctm) { 529 struct vc4_crtc_state *vc4_crtc_state = 530 to_vc4_crtc_state(new_crtc_state); 531 532 /* fifo is 1-based since 0 disables CTM. */ 533 int fifo = vc4_crtc_state->assigned_channel + 1; 534 535 /* Check userland isn't trying to turn on CTM for more 536 * than one CRTC at a time. 537 */ 538 if (ctm_state->fifo && ctm_state->fifo != fifo) { 539 DRM_DEBUG_DRIVER("Too many CTM configured\n"); 540 return -EINVAL; 541 } 542 543 /* Check we can approximate the specified CTM. 544 * We disallow scalars |c| > 1.0 since the HW has 545 * no integer bits. 546 */ 547 ctm = new_crtc_state->ctm->data; 548 for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) { 549 u64 val = ctm->matrix[i]; 550 551 val &= ~BIT_ULL(63); 552 if (val > BIT_ULL(32)) 553 return -EINVAL; 554 } 555 556 ctm_state->fifo = fifo; 557 ctm_state->ctm = ctm; 558 } 559 } 560 561 return 0; 562 } 563 564 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state) 565 { 566 struct drm_plane_state *old_plane_state, *new_plane_state; 567 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 568 struct vc4_load_tracker_state *load_state; 569 struct drm_private_state *priv_state; 570 struct drm_plane *plane; 571 int i; 572 573 priv_state = drm_atomic_get_private_obj_state(state, 574 &vc4->load_tracker); 575 if (IS_ERR(priv_state)) 576 return PTR_ERR(priv_state); 577 578 load_state = to_vc4_load_tracker_state(priv_state); 579 for_each_oldnew_plane_in_state(state, plane, old_plane_state, 580 new_plane_state, i) { 581 struct vc4_plane_state *vc4_plane_state; 582 583 if (old_plane_state->fb && old_plane_state->crtc) { 584 vc4_plane_state = to_vc4_plane_state(old_plane_state); 585 load_state->membus_load -= vc4_plane_state->membus_load; 586 load_state->hvs_load -= vc4_plane_state->hvs_load; 587 } 588 589 if (new_plane_state->fb && new_plane_state->crtc) { 590 vc4_plane_state = to_vc4_plane_state(new_plane_state); 591 load_state->membus_load += vc4_plane_state->membus_load; 592 load_state->hvs_load += vc4_plane_state->hvs_load; 593 } 594 } 595 596 /* Don't check the load when the tracker is disabled. */ 597 if (!vc4->load_tracker_enabled) 598 return 0; 599 600 /* The absolute limit is 2Gbyte/sec, but let's take a margin to let 601 * the system work when other blocks are accessing the memory. 602 */ 603 if (load_state->membus_load > SZ_1G + SZ_512M) 604 return -ENOSPC; 605 606 /* HVS clock is supposed to run @ 250Mhz, let's take a margin and 607 * consider the maximum number of cycles is 240M. 608 */ 609 if (load_state->hvs_load > 240000000ULL) 610 return -ENOSPC; 611 612 return 0; 613 } 614 615 static struct drm_private_state * 616 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj) 617 { 618 struct vc4_load_tracker_state *state; 619 620 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); 621 if (!state) 622 return NULL; 623 624 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 625 626 return &state->base; 627 } 628 629 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj, 630 struct drm_private_state *state) 631 { 632 struct vc4_load_tracker_state *load_state; 633 634 load_state = to_vc4_load_tracker_state(state); 635 kfree(load_state); 636 } 637 638 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = { 639 .atomic_duplicate_state = vc4_load_tracker_duplicate_state, 640 .atomic_destroy_state = vc4_load_tracker_destroy_state, 641 }; 642 643 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused) 644 { 645 struct vc4_dev *vc4 = to_vc4_dev(dev); 646 647 drm_atomic_private_obj_fini(&vc4->load_tracker); 648 } 649 650 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4) 651 { 652 struct vc4_load_tracker_state *load_state; 653 654 load_state = kzalloc(sizeof(*load_state), GFP_KERNEL); 655 if (!load_state) 656 return -ENOMEM; 657 658 drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker, 659 &load_state->base, 660 &vc4_load_tracker_state_funcs); 661 662 return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL); 663 } 664 665 static struct drm_private_state * 666 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj) 667 { 668 struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state); 669 struct vc4_hvs_state *state; 670 unsigned int i; 671 672 state = kzalloc(sizeof(*state), GFP_KERNEL); 673 if (!state) 674 return NULL; 675 676 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 677 678 for (i = 0; i < HVS_NUM_CHANNELS; i++) { 679 state->fifo_state[i].in_use = old_state->fifo_state[i].in_use; 680 state->fifo_state[i].fifo_load = old_state->fifo_state[i].fifo_load; 681 } 682 683 state->core_clock_rate = old_state->core_clock_rate; 684 685 return &state->base; 686 } 687 688 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj, 689 struct drm_private_state *state) 690 { 691 struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state); 692 unsigned int i; 693 694 for (i = 0; i < HVS_NUM_CHANNELS; i++) { 695 if (!hvs_state->fifo_state[i].pending_commit) 696 continue; 697 698 drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit); 699 } 700 701 kfree(hvs_state); 702 } 703 704 static void vc4_hvs_channels_print_state(struct drm_printer *p, 705 const struct drm_private_state *state) 706 { 707 struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state); 708 unsigned int i; 709 710 drm_printf(p, "HVS State\n"); 711 drm_printf(p, "\tCore Clock Rate: %lu\n", hvs_state->core_clock_rate); 712 713 for (i = 0; i < HVS_NUM_CHANNELS; i++) { 714 drm_printf(p, "\tChannel %d\n", i); 715 drm_printf(p, "\t\tin use=%d\n", hvs_state->fifo_state[i].in_use); 716 drm_printf(p, "\t\tload=%lu\n", hvs_state->fifo_state[i].fifo_load); 717 } 718 } 719 720 static const struct drm_private_state_funcs vc4_hvs_state_funcs = { 721 .atomic_duplicate_state = vc4_hvs_channels_duplicate_state, 722 .atomic_destroy_state = vc4_hvs_channels_destroy_state, 723 .atomic_print_state = vc4_hvs_channels_print_state, 724 }; 725 726 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused) 727 { 728 struct vc4_dev *vc4 = to_vc4_dev(dev); 729 730 drm_atomic_private_obj_fini(&vc4->hvs_channels); 731 } 732 733 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4) 734 { 735 struct vc4_hvs_state *state; 736 737 state = kzalloc(sizeof(*state), GFP_KERNEL); 738 if (!state) 739 return -ENOMEM; 740 741 drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels, 742 &state->base, 743 &vc4_hvs_state_funcs); 744 745 return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL); 746 } 747 748 /* 749 * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and 750 * the TXP (and therefore all the CRTCs found on that platform). 751 * 752 * The naive (and our initial) implementation would just iterate over 753 * all the active CRTCs, try to find a suitable FIFO, and then remove it 754 * from the pool of available FIFOs. However, there are a few corner 755 * cases that need to be considered: 756 * 757 * - When running in a dual-display setup (so with two CRTCs involved), 758 * we can update the state of a single CRTC (for example by changing 759 * its mode using xrandr under X11) without affecting the other. In 760 * this case, the other CRTC wouldn't be in the state at all, so we 761 * need to consider all the running CRTCs in the DRM device to assign 762 * a FIFO, not just the one in the state. 763 * 764 * - To fix the above, we can't use drm_atomic_get_crtc_state on all 765 * enabled CRTCs to pull their CRTC state into the global state, since 766 * a page flip would start considering their vblank to complete. Since 767 * we don't have a guarantee that they are actually active, that 768 * vblank might never happen, and shouldn't even be considered if we 769 * want to do a page flip on a single CRTC. That can be tested by 770 * doing a modetest -v first on HDMI1 and then on HDMI0. 771 * 772 * - Since we need the pixelvalve to be disabled and enabled back when 773 * the FIFO is changed, we should keep the FIFO assigned for as long 774 * as the CRTC is enabled, only considering it free again once that 775 * CRTC has been disabled. This can be tested by booting X11 on a 776 * single display, and changing the resolution down and then back up. 777 */ 778 static int vc4_pv_muxing_atomic_check(struct drm_device *dev, 779 struct drm_atomic_state *state) 780 { 781 struct vc4_hvs_state *hvs_new_state; 782 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 783 struct drm_crtc *crtc; 784 unsigned int unassigned_channels = 0; 785 unsigned int i; 786 787 hvs_new_state = vc4_hvs_get_global_state(state); 788 if (IS_ERR(hvs_new_state)) 789 return PTR_ERR(hvs_new_state); 790 791 for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++) 792 if (!hvs_new_state->fifo_state[i].in_use) 793 unassigned_channels |= BIT(i); 794 795 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 796 struct vc4_crtc_state *old_vc4_crtc_state = 797 to_vc4_crtc_state(old_crtc_state); 798 struct vc4_crtc_state *new_vc4_crtc_state = 799 to_vc4_crtc_state(new_crtc_state); 800 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 801 unsigned int matching_channels; 802 unsigned int channel; 803 804 /* Nothing to do here, let's skip it */ 805 if (old_crtc_state->enable == new_crtc_state->enable) 806 continue; 807 808 /* Muxing will need to be modified, mark it as such */ 809 new_vc4_crtc_state->update_muxing = true; 810 811 /* If we're disabling our CRTC, we put back our channel */ 812 if (!new_crtc_state->enable) { 813 channel = old_vc4_crtc_state->assigned_channel; 814 hvs_new_state->fifo_state[channel].in_use = false; 815 new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED; 816 continue; 817 } 818 819 /* 820 * The problem we have to solve here is that we have 821 * up to 7 encoders, connected to up to 6 CRTCs. 822 * 823 * Those CRTCs, depending on the instance, can be 824 * routed to 1, 2 or 3 HVS FIFOs, and we need to set 825 * the change the muxing between FIFOs and outputs in 826 * the HVS accordingly. 827 * 828 * It would be pretty hard to come up with an 829 * algorithm that would generically solve 830 * this. However, the current routing trees we support 831 * allow us to simplify a bit the problem. 832 * 833 * Indeed, with the current supported layouts, if we 834 * try to assign in the ascending crtc index order the 835 * FIFOs, we can't fall into the situation where an 836 * earlier CRTC that had multiple routes is assigned 837 * one that was the only option for a later CRTC. 838 * 839 * If the layout changes and doesn't give us that in 840 * the future, we will need to have something smarter, 841 * but it works so far. 842 */ 843 matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels; 844 if (!matching_channels) 845 return -EINVAL; 846 847 channel = ffs(matching_channels) - 1; 848 new_vc4_crtc_state->assigned_channel = channel; 849 unassigned_channels &= ~BIT(channel); 850 hvs_new_state->fifo_state[channel].in_use = true; 851 } 852 853 return 0; 854 } 855 856 static int 857 vc4_core_clock_atomic_check(struct drm_atomic_state *state) 858 { 859 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 860 struct drm_private_state *priv_state; 861 struct vc4_hvs_state *hvs_new_state; 862 struct vc4_load_tracker_state *load_state; 863 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 864 struct drm_crtc *crtc; 865 unsigned int num_outputs; 866 unsigned long pixel_rate; 867 unsigned long cob_rate; 868 unsigned int i; 869 870 priv_state = drm_atomic_get_private_obj_state(state, 871 &vc4->load_tracker); 872 if (IS_ERR(priv_state)) 873 return PTR_ERR(priv_state); 874 875 load_state = to_vc4_load_tracker_state(priv_state); 876 877 hvs_new_state = vc4_hvs_get_global_state(state); 878 if (IS_ERR(hvs_new_state)) 879 return PTR_ERR(hvs_new_state); 880 881 for_each_oldnew_crtc_in_state(state, crtc, 882 old_crtc_state, 883 new_crtc_state, 884 i) { 885 if (old_crtc_state->active) { 886 struct vc4_crtc_state *old_vc4_state = 887 to_vc4_crtc_state(old_crtc_state); 888 unsigned int channel = old_vc4_state->assigned_channel; 889 890 hvs_new_state->fifo_state[channel].fifo_load = 0; 891 } 892 893 if (new_crtc_state->active) { 894 struct vc4_crtc_state *new_vc4_state = 895 to_vc4_crtc_state(new_crtc_state); 896 unsigned int channel = new_vc4_state->assigned_channel; 897 898 hvs_new_state->fifo_state[channel].fifo_load = 899 new_vc4_state->hvs_load; 900 } 901 } 902 903 cob_rate = 0; 904 num_outputs = 0; 905 for (i = 0; i < HVS_NUM_CHANNELS; i++) { 906 if (!hvs_new_state->fifo_state[i].in_use) 907 continue; 908 909 num_outputs++; 910 cob_rate += hvs_new_state->fifo_state[i].fifo_load; 911 } 912 913 pixel_rate = load_state->hvs_load; 914 if (num_outputs > 1) { 915 pixel_rate = (pixel_rate * 40) / 100; 916 } else { 917 pixel_rate = (pixel_rate * 60) / 100; 918 } 919 920 hvs_new_state->core_clock_rate = max(cob_rate, pixel_rate); 921 922 return 0; 923 } 924 925 926 static int 927 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 928 { 929 int ret; 930 931 ret = vc4_pv_muxing_atomic_check(dev, state); 932 if (ret) 933 return ret; 934 935 ret = vc4_ctm_atomic_check(dev, state); 936 if (ret < 0) 937 return ret; 938 939 ret = drm_atomic_helper_check(dev, state); 940 if (ret) 941 return ret; 942 943 ret = vc4_load_tracker_atomic_check(state); 944 if (ret) 945 return ret; 946 947 return vc4_core_clock_atomic_check(state); 948 } 949 950 static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = { 951 .atomic_commit_setup = vc4_atomic_commit_setup, 952 .atomic_commit_tail = vc4_atomic_commit_tail, 953 }; 954 955 static const struct drm_mode_config_funcs vc4_mode_funcs = { 956 .atomic_check = vc4_atomic_check, 957 .atomic_commit = drm_atomic_helper_commit, 958 .fb_create = vc4_fb_create, 959 }; 960 961 int vc4_kms_load(struct drm_device *dev) 962 { 963 struct vc4_dev *vc4 = to_vc4_dev(dev); 964 bool is_vc5 = of_device_is_compatible(dev->dev->of_node, 965 "brcm,bcm2711-vc5"); 966 int ret; 967 968 /* 969 * The limits enforced by the load tracker aren't relevant for 970 * the BCM2711, but the load tracker computations are used for 971 * the core clock rate calculation. 972 */ 973 if (!is_vc5) { 974 /* Start with the load tracker enabled. Can be 975 * disabled through the debugfs load_tracker file. 976 */ 977 vc4->load_tracker_enabled = true; 978 } 979 980 /* Set support for vblank irq fast disable, before drm_vblank_init() */ 981 dev->vblank_disable_immediate = true; 982 983 ret = drm_vblank_init(dev, dev->mode_config.num_crtc); 984 if (ret < 0) { 985 dev_err(dev->dev, "failed to initialize vblank\n"); 986 return ret; 987 } 988 989 if (is_vc5) { 990 dev->mode_config.max_width = 7680; 991 dev->mode_config.max_height = 7680; 992 } else { 993 dev->mode_config.max_width = 2048; 994 dev->mode_config.max_height = 2048; 995 } 996 997 dev->mode_config.funcs = &vc4_mode_funcs; 998 dev->mode_config.helper_private = &vc4_mode_config_helpers; 999 dev->mode_config.preferred_depth = 24; 1000 dev->mode_config.async_page_flip = true; 1001 1002 ret = vc4_ctm_obj_init(vc4); 1003 if (ret) 1004 return ret; 1005 1006 ret = vc4_load_tracker_obj_init(vc4); 1007 if (ret) 1008 return ret; 1009 1010 ret = vc4_hvs_channels_obj_init(vc4); 1011 if (ret) 1012 return ret; 1013 1014 drm_mode_config_reset(dev); 1015 1016 drm_kms_helper_poll_init(dev); 1017 1018 return 0; 1019 } 1020