xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_kms.c (revision dd21bfa4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 KMS
8  *
9  * This is the general code for implementing KMS mode setting that
10  * doesn't clearly associate with any of the other objects (plane,
11  * crtc, HDMI encoder).
12  */
13 
14 #include <linux/clk.h>
15 
16 #include <drm/drm_atomic.h>
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_gem_framebuffer_helper.h>
20 #include <drm/drm_plane_helper.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_vblank.h>
23 
24 #include "vc4_drv.h"
25 #include "vc4_regs.h"
26 
27 #define HVS_NUM_CHANNELS 3
28 
29 struct vc4_ctm_state {
30 	struct drm_private_state base;
31 	struct drm_color_ctm *ctm;
32 	int fifo;
33 };
34 
35 static struct vc4_ctm_state *to_vc4_ctm_state(struct drm_private_state *priv)
36 {
37 	return container_of(priv, struct vc4_ctm_state, base);
38 }
39 
40 struct vc4_hvs_state {
41 	struct drm_private_state base;
42 	unsigned long core_clock_rate;
43 
44 	struct {
45 		unsigned in_use: 1;
46 		unsigned long fifo_load;
47 		struct drm_crtc_commit *pending_commit;
48 	} fifo_state[HVS_NUM_CHANNELS];
49 };
50 
51 static struct vc4_hvs_state *
52 to_vc4_hvs_state(struct drm_private_state *priv)
53 {
54 	return container_of(priv, struct vc4_hvs_state, base);
55 }
56 
57 struct vc4_load_tracker_state {
58 	struct drm_private_state base;
59 	u64 hvs_load;
60 	u64 membus_load;
61 };
62 
63 static struct vc4_load_tracker_state *
64 to_vc4_load_tracker_state(struct drm_private_state *priv)
65 {
66 	return container_of(priv, struct vc4_load_tracker_state, base);
67 }
68 
69 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
70 					       struct drm_private_obj *manager)
71 {
72 	struct drm_device *dev = state->dev;
73 	struct vc4_dev *vc4 = to_vc4_dev(dev);
74 	struct drm_private_state *priv_state;
75 	int ret;
76 
77 	ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
78 	if (ret)
79 		return ERR_PTR(ret);
80 
81 	priv_state = drm_atomic_get_private_obj_state(state, manager);
82 	if (IS_ERR(priv_state))
83 		return ERR_CAST(priv_state);
84 
85 	return to_vc4_ctm_state(priv_state);
86 }
87 
88 static struct drm_private_state *
89 vc4_ctm_duplicate_state(struct drm_private_obj *obj)
90 {
91 	struct vc4_ctm_state *state;
92 
93 	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
94 	if (!state)
95 		return NULL;
96 
97 	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
98 
99 	return &state->base;
100 }
101 
102 static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
103 				  struct drm_private_state *state)
104 {
105 	struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
106 
107 	kfree(ctm_state);
108 }
109 
110 static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
111 	.atomic_duplicate_state = vc4_ctm_duplicate_state,
112 	.atomic_destroy_state = vc4_ctm_destroy_state,
113 };
114 
115 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
116 {
117 	struct vc4_dev *vc4 = to_vc4_dev(dev);
118 
119 	drm_atomic_private_obj_fini(&vc4->ctm_manager);
120 }
121 
122 static int vc4_ctm_obj_init(struct vc4_dev *vc4)
123 {
124 	struct vc4_ctm_state *ctm_state;
125 
126 	drm_modeset_lock_init(&vc4->ctm_state_lock);
127 
128 	ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
129 	if (!ctm_state)
130 		return -ENOMEM;
131 
132 	drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
133 				    &vc4_ctm_state_funcs);
134 
135 	return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
136 }
137 
138 /* Converts a DRM S31.32 value to the HW S0.9 format. */
139 static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
140 {
141 	u16 r;
142 
143 	/* Sign bit. */
144 	r = in & BIT_ULL(63) ? BIT(9) : 0;
145 
146 	if ((in & GENMASK_ULL(62, 32)) > 0) {
147 		/* We have zero integer bits so we can only saturate here. */
148 		r |= GENMASK(8, 0);
149 	} else {
150 		/* Otherwise take the 9 most important fractional bits. */
151 		r |= (in >> 23) & GENMASK(8, 0);
152 	}
153 
154 	return r;
155 }
156 
157 static void
158 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
159 {
160 	struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
161 	struct drm_color_ctm *ctm = ctm_state->ctm;
162 
163 	if (ctm_state->fifo) {
164 		HVS_WRITE(SCALER_OLEDCOEF2,
165 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
166 					SCALER_OLEDCOEF2_R_TO_R) |
167 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
168 					SCALER_OLEDCOEF2_R_TO_G) |
169 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
170 					SCALER_OLEDCOEF2_R_TO_B));
171 		HVS_WRITE(SCALER_OLEDCOEF1,
172 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
173 					SCALER_OLEDCOEF1_G_TO_R) |
174 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
175 					SCALER_OLEDCOEF1_G_TO_G) |
176 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
177 					SCALER_OLEDCOEF1_G_TO_B));
178 		HVS_WRITE(SCALER_OLEDCOEF0,
179 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
180 					SCALER_OLEDCOEF0_B_TO_R) |
181 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
182 					SCALER_OLEDCOEF0_B_TO_G) |
183 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
184 					SCALER_OLEDCOEF0_B_TO_B));
185 	}
186 
187 	HVS_WRITE(SCALER_OLEDOFFS,
188 		  VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
189 }
190 
191 static struct vc4_hvs_state *
192 vc4_hvs_get_new_global_state(struct drm_atomic_state *state)
193 {
194 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
195 	struct drm_private_state *priv_state;
196 
197 	priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels);
198 	if (IS_ERR(priv_state))
199 		return ERR_CAST(priv_state);
200 
201 	return to_vc4_hvs_state(priv_state);
202 }
203 
204 static struct vc4_hvs_state *
205 vc4_hvs_get_old_global_state(struct drm_atomic_state *state)
206 {
207 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
208 	struct drm_private_state *priv_state;
209 
210 	priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels);
211 	if (IS_ERR(priv_state))
212 		return ERR_CAST(priv_state);
213 
214 	return to_vc4_hvs_state(priv_state);
215 }
216 
217 static struct vc4_hvs_state *
218 vc4_hvs_get_global_state(struct drm_atomic_state *state)
219 {
220 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
221 	struct drm_private_state *priv_state;
222 
223 	priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
224 	if (IS_ERR(priv_state))
225 		return ERR_CAST(priv_state);
226 
227 	return to_vc4_hvs_state(priv_state);
228 }
229 
230 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
231 				     struct drm_atomic_state *state)
232 {
233 	struct drm_crtc_state *crtc_state;
234 	struct drm_crtc *crtc;
235 	unsigned int i;
236 
237 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
238 		struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
239 		struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
240 		u32 dispctrl;
241 		u32 dsp3_mux;
242 
243 		if (!crtc_state->active)
244 			continue;
245 
246 		if (vc4_state->assigned_channel != 2)
247 			continue;
248 
249 		/*
250 		 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
251 		 * FIFO X'.
252 		 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
253 		 *
254 		 * DSP3 is connected to FIFO2 unless the transposer is
255 		 * enabled. In this case, FIFO 2 is directly accessed by the
256 		 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
257 		 * route.
258 		 */
259 		if (vc4_crtc->feeds_txp)
260 			dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
261 		else
262 			dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
263 
264 		dispctrl = HVS_READ(SCALER_DISPCTRL) &
265 			   ~SCALER_DISPCTRL_DSP3_MUX_MASK;
266 		HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
267 	}
268 }
269 
270 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
271 				     struct drm_atomic_state *state)
272 {
273 	struct drm_crtc_state *crtc_state;
274 	struct drm_crtc *crtc;
275 	unsigned char mux;
276 	unsigned int i;
277 	u32 reg;
278 
279 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
280 		struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
281 		struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
282 
283 		if (!vc4_state->update_muxing)
284 			continue;
285 
286 		switch (vc4_crtc->data->hvs_output) {
287 		case 2:
288 			mux = (vc4_state->assigned_channel == 2) ? 0 : 1;
289 			reg = HVS_READ(SCALER_DISPECTRL);
290 			HVS_WRITE(SCALER_DISPECTRL,
291 				  (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
292 				  VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
293 			break;
294 
295 		case 3:
296 			if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
297 				mux = 3;
298 			else
299 				mux = vc4_state->assigned_channel;
300 
301 			reg = HVS_READ(SCALER_DISPCTRL);
302 			HVS_WRITE(SCALER_DISPCTRL,
303 				  (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
304 				  VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
305 			break;
306 
307 		case 4:
308 			if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
309 				mux = 3;
310 			else
311 				mux = vc4_state->assigned_channel;
312 
313 			reg = HVS_READ(SCALER_DISPEOLN);
314 			HVS_WRITE(SCALER_DISPEOLN,
315 				  (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
316 				  VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
317 
318 			break;
319 
320 		case 5:
321 			if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
322 				mux = 3;
323 			else
324 				mux = vc4_state->assigned_channel;
325 
326 			reg = HVS_READ(SCALER_DISPDITHER);
327 			HVS_WRITE(SCALER_DISPDITHER,
328 				  (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
329 				  VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
330 			break;
331 
332 		default:
333 			break;
334 		}
335 	}
336 }
337 
338 static void vc4_atomic_commit_tail(struct drm_atomic_state *state)
339 {
340 	struct drm_device *dev = state->dev;
341 	struct vc4_dev *vc4 = to_vc4_dev(dev);
342 	struct vc4_hvs *hvs = vc4->hvs;
343 	struct drm_crtc_state *new_crtc_state;
344 	struct vc4_hvs_state *new_hvs_state;
345 	struct drm_crtc *crtc;
346 	struct vc4_hvs_state *old_hvs_state;
347 	unsigned int channel;
348 	int i;
349 
350 	old_hvs_state = vc4_hvs_get_old_global_state(state);
351 	if (WARN_ON(IS_ERR(old_hvs_state)))
352 		return;
353 
354 	new_hvs_state = vc4_hvs_get_new_global_state(state);
355 	if (WARN_ON(IS_ERR(new_hvs_state)))
356 		return;
357 
358 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
359 		struct vc4_crtc_state *vc4_crtc_state;
360 
361 		if (!new_crtc_state->commit)
362 			continue;
363 
364 		vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
365 		vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel);
366 	}
367 
368 	for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) {
369 		struct drm_crtc_commit *commit;
370 		int ret;
371 
372 		if (!old_hvs_state->fifo_state[channel].in_use)
373 			continue;
374 
375 		commit = old_hvs_state->fifo_state[channel].pending_commit;
376 		if (!commit)
377 			continue;
378 
379 		ret = drm_crtc_commit_wait(commit);
380 		if (ret)
381 			drm_err(dev, "Timed out waiting for commit\n");
382 
383 		drm_crtc_commit_put(commit);
384 		old_hvs_state->fifo_state[channel].pending_commit = NULL;
385 	}
386 
387 	if (vc4->hvs->hvs5) {
388 		unsigned long core_rate = max_t(unsigned long,
389 						500000000,
390 						new_hvs_state->core_clock_rate);
391 
392 		clk_set_min_rate(hvs->core_clk, core_rate);
393 	}
394 	drm_atomic_helper_commit_modeset_disables(dev, state);
395 
396 	vc4_ctm_commit(vc4, state);
397 
398 	if (vc4->hvs->hvs5)
399 		vc5_hvs_pv_muxing_commit(vc4, state);
400 	else
401 		vc4_hvs_pv_muxing_commit(vc4, state);
402 
403 	drm_atomic_helper_commit_planes(dev, state, 0);
404 
405 	drm_atomic_helper_commit_modeset_enables(dev, state);
406 
407 	drm_atomic_helper_fake_vblank(state);
408 
409 	drm_atomic_helper_commit_hw_done(state);
410 
411 	drm_atomic_helper_wait_for_flip_done(dev, state);
412 
413 	drm_atomic_helper_cleanup_planes(dev, state);
414 
415 	if (vc4->hvs->hvs5) {
416 		drm_dbg(dev, "Running the core clock at %lu Hz\n",
417 			new_hvs_state->core_clock_rate);
418 
419 		clk_set_min_rate(hvs->core_clk, new_hvs_state->core_clock_rate);
420 	}
421 }
422 
423 static int vc4_atomic_commit_setup(struct drm_atomic_state *state)
424 {
425 	struct drm_crtc_state *crtc_state;
426 	struct vc4_hvs_state *hvs_state;
427 	struct drm_crtc *crtc;
428 	unsigned int i;
429 
430 	hvs_state = vc4_hvs_get_new_global_state(state);
431 	if (WARN_ON(IS_ERR(hvs_state)))
432 		return PTR_ERR(hvs_state);
433 
434 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
435 		struct vc4_crtc_state *vc4_crtc_state =
436 			to_vc4_crtc_state(crtc_state);
437 		unsigned int channel =
438 			vc4_crtc_state->assigned_channel;
439 
440 		if (channel == VC4_HVS_CHANNEL_DISABLED)
441 			continue;
442 
443 		if (!hvs_state->fifo_state[channel].in_use)
444 			continue;
445 
446 		hvs_state->fifo_state[channel].pending_commit =
447 			drm_crtc_commit_get(crtc_state->commit);
448 	}
449 
450 	return 0;
451 }
452 
453 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
454 					     struct drm_file *file_priv,
455 					     const struct drm_mode_fb_cmd2 *mode_cmd)
456 {
457 	struct drm_mode_fb_cmd2 mode_cmd_local;
458 
459 	/* If the user didn't specify a modifier, use the
460 	 * vc4_set_tiling_ioctl() state for the BO.
461 	 */
462 	if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
463 		struct drm_gem_object *gem_obj;
464 		struct vc4_bo *bo;
465 
466 		gem_obj = drm_gem_object_lookup(file_priv,
467 						mode_cmd->handles[0]);
468 		if (!gem_obj) {
469 			DRM_DEBUG("Failed to look up GEM BO %d\n",
470 				  mode_cmd->handles[0]);
471 			return ERR_PTR(-ENOENT);
472 		}
473 		bo = to_vc4_bo(gem_obj);
474 
475 		mode_cmd_local = *mode_cmd;
476 
477 		if (bo->t_format) {
478 			mode_cmd_local.modifier[0] =
479 				DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
480 		} else {
481 			mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
482 		}
483 
484 		drm_gem_object_put(gem_obj);
485 
486 		mode_cmd = &mode_cmd_local;
487 	}
488 
489 	return drm_gem_fb_create(dev, file_priv, mode_cmd);
490 }
491 
492 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC
493  * at a time and the HW only supports S0.9 scalars. To account for the latter,
494  * we don't allow userland to set a CTM that we have no hope of approximating.
495  */
496 static int
497 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
498 {
499 	struct vc4_dev *vc4 = to_vc4_dev(dev);
500 	struct vc4_ctm_state *ctm_state = NULL;
501 	struct drm_crtc *crtc;
502 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
503 	struct drm_color_ctm *ctm;
504 	int i;
505 
506 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
507 		/* CTM is being disabled. */
508 		if (!new_crtc_state->ctm && old_crtc_state->ctm) {
509 			ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
510 			if (IS_ERR(ctm_state))
511 				return PTR_ERR(ctm_state);
512 			ctm_state->fifo = 0;
513 		}
514 	}
515 
516 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
517 		if (new_crtc_state->ctm == old_crtc_state->ctm)
518 			continue;
519 
520 		if (!ctm_state) {
521 			ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
522 			if (IS_ERR(ctm_state))
523 				return PTR_ERR(ctm_state);
524 		}
525 
526 		/* CTM is being enabled or the matrix changed. */
527 		if (new_crtc_state->ctm) {
528 			struct vc4_crtc_state *vc4_crtc_state =
529 				to_vc4_crtc_state(new_crtc_state);
530 
531 			/* fifo is 1-based since 0 disables CTM. */
532 			int fifo = vc4_crtc_state->assigned_channel + 1;
533 
534 			/* Check userland isn't trying to turn on CTM for more
535 			 * than one CRTC at a time.
536 			 */
537 			if (ctm_state->fifo && ctm_state->fifo != fifo) {
538 				DRM_DEBUG_DRIVER("Too many CTM configured\n");
539 				return -EINVAL;
540 			}
541 
542 			/* Check we can approximate the specified CTM.
543 			 * We disallow scalars |c| > 1.0 since the HW has
544 			 * no integer bits.
545 			 */
546 			ctm = new_crtc_state->ctm->data;
547 			for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
548 				u64 val = ctm->matrix[i];
549 
550 				val &= ~BIT_ULL(63);
551 				if (val > BIT_ULL(32))
552 					return -EINVAL;
553 			}
554 
555 			ctm_state->fifo = fifo;
556 			ctm_state->ctm = ctm;
557 		}
558 	}
559 
560 	return 0;
561 }
562 
563 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
564 {
565 	struct drm_plane_state *old_plane_state, *new_plane_state;
566 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
567 	struct vc4_load_tracker_state *load_state;
568 	struct drm_private_state *priv_state;
569 	struct drm_plane *plane;
570 	int i;
571 
572 	priv_state = drm_atomic_get_private_obj_state(state,
573 						      &vc4->load_tracker);
574 	if (IS_ERR(priv_state))
575 		return PTR_ERR(priv_state);
576 
577 	load_state = to_vc4_load_tracker_state(priv_state);
578 	for_each_oldnew_plane_in_state(state, plane, old_plane_state,
579 				       new_plane_state, i) {
580 		struct vc4_plane_state *vc4_plane_state;
581 
582 		if (old_plane_state->fb && old_plane_state->crtc) {
583 			vc4_plane_state = to_vc4_plane_state(old_plane_state);
584 			load_state->membus_load -= vc4_plane_state->membus_load;
585 			load_state->hvs_load -= vc4_plane_state->hvs_load;
586 		}
587 
588 		if (new_plane_state->fb && new_plane_state->crtc) {
589 			vc4_plane_state = to_vc4_plane_state(new_plane_state);
590 			load_state->membus_load += vc4_plane_state->membus_load;
591 			load_state->hvs_load += vc4_plane_state->hvs_load;
592 		}
593 	}
594 
595 	/* Don't check the load when the tracker is disabled. */
596 	if (!vc4->load_tracker_enabled)
597 		return 0;
598 
599 	/* The absolute limit is 2Gbyte/sec, but let's take a margin to let
600 	 * the system work when other blocks are accessing the memory.
601 	 */
602 	if (load_state->membus_load > SZ_1G + SZ_512M)
603 		return -ENOSPC;
604 
605 	/* HVS clock is supposed to run @ 250Mhz, let's take a margin and
606 	 * consider the maximum number of cycles is 240M.
607 	 */
608 	if (load_state->hvs_load > 240000000ULL)
609 		return -ENOSPC;
610 
611 	return 0;
612 }
613 
614 static struct drm_private_state *
615 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
616 {
617 	struct vc4_load_tracker_state *state;
618 
619 	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
620 	if (!state)
621 		return NULL;
622 
623 	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
624 
625 	return &state->base;
626 }
627 
628 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
629 					   struct drm_private_state *state)
630 {
631 	struct vc4_load_tracker_state *load_state;
632 
633 	load_state = to_vc4_load_tracker_state(state);
634 	kfree(load_state);
635 }
636 
637 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
638 	.atomic_duplicate_state = vc4_load_tracker_duplicate_state,
639 	.atomic_destroy_state = vc4_load_tracker_destroy_state,
640 };
641 
642 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
643 {
644 	struct vc4_dev *vc4 = to_vc4_dev(dev);
645 
646 	drm_atomic_private_obj_fini(&vc4->load_tracker);
647 }
648 
649 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
650 {
651 	struct vc4_load_tracker_state *load_state;
652 
653 	load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
654 	if (!load_state)
655 		return -ENOMEM;
656 
657 	drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
658 				    &load_state->base,
659 				    &vc4_load_tracker_state_funcs);
660 
661 	return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
662 }
663 
664 static struct drm_private_state *
665 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
666 {
667 	struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
668 	struct vc4_hvs_state *state;
669 	unsigned int i;
670 
671 	state = kzalloc(sizeof(*state), GFP_KERNEL);
672 	if (!state)
673 		return NULL;
674 
675 	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
676 
677 	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
678 		state->fifo_state[i].in_use = old_state->fifo_state[i].in_use;
679 		state->fifo_state[i].fifo_load = old_state->fifo_state[i].fifo_load;
680 	}
681 
682 	state->core_clock_rate = old_state->core_clock_rate;
683 
684 	return &state->base;
685 }
686 
687 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
688 					   struct drm_private_state *state)
689 {
690 	struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
691 	unsigned int i;
692 
693 	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
694 		if (!hvs_state->fifo_state[i].pending_commit)
695 			continue;
696 
697 		drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit);
698 	}
699 
700 	kfree(hvs_state);
701 }
702 
703 static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
704 	.atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
705 	.atomic_destroy_state = vc4_hvs_channels_destroy_state,
706 };
707 
708 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
709 {
710 	struct vc4_dev *vc4 = to_vc4_dev(dev);
711 
712 	drm_atomic_private_obj_fini(&vc4->hvs_channels);
713 }
714 
715 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
716 {
717 	struct vc4_hvs_state *state;
718 
719 	state = kzalloc(sizeof(*state), GFP_KERNEL);
720 	if (!state)
721 		return -ENOMEM;
722 
723 	drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
724 				    &state->base,
725 				    &vc4_hvs_state_funcs);
726 
727 	return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
728 }
729 
730 /*
731  * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
732  * the TXP (and therefore all the CRTCs found on that platform).
733  *
734  * The naive (and our initial) implementation would just iterate over
735  * all the active CRTCs, try to find a suitable FIFO, and then remove it
736  * from the pool of available FIFOs. However, there are a few corner
737  * cases that need to be considered:
738  *
739  * - When running in a dual-display setup (so with two CRTCs involved),
740  *   we can update the state of a single CRTC (for example by changing
741  *   its mode using xrandr under X11) without affecting the other. In
742  *   this case, the other CRTC wouldn't be in the state at all, so we
743  *   need to consider all the running CRTCs in the DRM device to assign
744  *   a FIFO, not just the one in the state.
745  *
746  * - To fix the above, we can't use drm_atomic_get_crtc_state on all
747  *   enabled CRTCs to pull their CRTC state into the global state, since
748  *   a page flip would start considering their vblank to complete. Since
749  *   we don't have a guarantee that they are actually active, that
750  *   vblank might never happen, and shouldn't even be considered if we
751  *   want to do a page flip on a single CRTC. That can be tested by
752  *   doing a modetest -v first on HDMI1 and then on HDMI0.
753  *
754  * - Since we need the pixelvalve to be disabled and enabled back when
755  *   the FIFO is changed, we should keep the FIFO assigned for as long
756  *   as the CRTC is enabled, only considering it free again once that
757  *   CRTC has been disabled. This can be tested by booting X11 on a
758  *   single display, and changing the resolution down and then back up.
759  */
760 static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
761 				      struct drm_atomic_state *state)
762 {
763 	struct vc4_hvs_state *hvs_new_state;
764 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
765 	struct drm_crtc *crtc;
766 	unsigned int unassigned_channels = 0;
767 	unsigned int i;
768 
769 	hvs_new_state = vc4_hvs_get_global_state(state);
770 	if (IS_ERR(hvs_new_state))
771 		return PTR_ERR(hvs_new_state);
772 
773 	for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++)
774 		if (!hvs_new_state->fifo_state[i].in_use)
775 			unassigned_channels |= BIT(i);
776 
777 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
778 		struct vc4_crtc_state *old_vc4_crtc_state =
779 			to_vc4_crtc_state(old_crtc_state);
780 		struct vc4_crtc_state *new_vc4_crtc_state =
781 			to_vc4_crtc_state(new_crtc_state);
782 		struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
783 		unsigned int matching_channels;
784 		unsigned int channel;
785 
786 		/* Nothing to do here, let's skip it */
787 		if (old_crtc_state->enable == new_crtc_state->enable)
788 			continue;
789 
790 		/* Muxing will need to be modified, mark it as such */
791 		new_vc4_crtc_state->update_muxing = true;
792 
793 		/* If we're disabling our CRTC, we put back our channel */
794 		if (!new_crtc_state->enable) {
795 			channel = old_vc4_crtc_state->assigned_channel;
796 			hvs_new_state->fifo_state[channel].in_use = false;
797 			new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
798 			continue;
799 		}
800 
801 		/*
802 		 * The problem we have to solve here is that we have
803 		 * up to 7 encoders, connected to up to 6 CRTCs.
804 		 *
805 		 * Those CRTCs, depending on the instance, can be
806 		 * routed to 1, 2 or 3 HVS FIFOs, and we need to set
807 		 * the change the muxing between FIFOs and outputs in
808 		 * the HVS accordingly.
809 		 *
810 		 * It would be pretty hard to come up with an
811 		 * algorithm that would generically solve
812 		 * this. However, the current routing trees we support
813 		 * allow us to simplify a bit the problem.
814 		 *
815 		 * Indeed, with the current supported layouts, if we
816 		 * try to assign in the ascending crtc index order the
817 		 * FIFOs, we can't fall into the situation where an
818 		 * earlier CRTC that had multiple routes is assigned
819 		 * one that was the only option for a later CRTC.
820 		 *
821 		 * If the layout changes and doesn't give us that in
822 		 * the future, we will need to have something smarter,
823 		 * but it works so far.
824 		 */
825 		matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
826 		if (!matching_channels)
827 			return -EINVAL;
828 
829 		channel = ffs(matching_channels) - 1;
830 		new_vc4_crtc_state->assigned_channel = channel;
831 		unassigned_channels &= ~BIT(channel);
832 		hvs_new_state->fifo_state[channel].in_use = true;
833 	}
834 
835 	return 0;
836 }
837 
838 static int
839 vc4_core_clock_atomic_check(struct drm_atomic_state *state)
840 {
841 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
842 	struct drm_private_state *priv_state;
843 	struct vc4_hvs_state *hvs_new_state;
844 	struct vc4_load_tracker_state *load_state;
845 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
846 	struct drm_crtc *crtc;
847 	unsigned int num_outputs;
848 	unsigned long pixel_rate;
849 	unsigned long cob_rate;
850 	unsigned int i;
851 
852 	priv_state = drm_atomic_get_private_obj_state(state,
853 						      &vc4->load_tracker);
854 	if (IS_ERR(priv_state))
855 		return PTR_ERR(priv_state);
856 
857 	load_state = to_vc4_load_tracker_state(priv_state);
858 
859 	hvs_new_state = vc4_hvs_get_global_state(state);
860 	if (IS_ERR(hvs_new_state))
861 		return PTR_ERR(hvs_new_state);
862 
863 	for_each_oldnew_crtc_in_state(state, crtc,
864 				      old_crtc_state,
865 				      new_crtc_state,
866 				      i) {
867 		if (old_crtc_state->active) {
868 			struct vc4_crtc_state *old_vc4_state =
869 				to_vc4_crtc_state(old_crtc_state);
870 			unsigned int channel = old_vc4_state->assigned_channel;
871 
872 			hvs_new_state->fifo_state[channel].fifo_load = 0;
873 		}
874 
875 		if (new_crtc_state->active) {
876 			struct vc4_crtc_state *new_vc4_state =
877 				to_vc4_crtc_state(new_crtc_state);
878 			unsigned int channel = new_vc4_state->assigned_channel;
879 
880 			hvs_new_state->fifo_state[channel].fifo_load =
881 				new_vc4_state->hvs_load;
882 		}
883 	}
884 
885 	cob_rate = 0;
886 	num_outputs = 0;
887 	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
888 		if (!hvs_new_state->fifo_state[i].in_use)
889 			continue;
890 
891 		num_outputs++;
892 		cob_rate += hvs_new_state->fifo_state[i].fifo_load;
893 	}
894 
895 	pixel_rate = load_state->hvs_load;
896 	if (num_outputs > 1) {
897 		pixel_rate = (pixel_rate * 40) / 100;
898 	} else {
899 		pixel_rate = (pixel_rate * 60) / 100;
900 	}
901 
902 	hvs_new_state->core_clock_rate = max(cob_rate, pixel_rate);
903 
904 	return 0;
905 }
906 
907 
908 static int
909 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
910 {
911 	int ret;
912 
913 	ret = vc4_pv_muxing_atomic_check(dev, state);
914 	if (ret)
915 		return ret;
916 
917 	ret = vc4_ctm_atomic_check(dev, state);
918 	if (ret < 0)
919 		return ret;
920 
921 	ret = drm_atomic_helper_check(dev, state);
922 	if (ret)
923 		return ret;
924 
925 	ret = vc4_load_tracker_atomic_check(state);
926 	if (ret)
927 		return ret;
928 
929 	return vc4_core_clock_atomic_check(state);
930 }
931 
932 static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = {
933 	.atomic_commit_setup	= vc4_atomic_commit_setup,
934 	.atomic_commit_tail	= vc4_atomic_commit_tail,
935 };
936 
937 static const struct drm_mode_config_funcs vc4_mode_funcs = {
938 	.atomic_check = vc4_atomic_check,
939 	.atomic_commit = drm_atomic_helper_commit,
940 	.fb_create = vc4_fb_create,
941 };
942 
943 int vc4_kms_load(struct drm_device *dev)
944 {
945 	struct vc4_dev *vc4 = to_vc4_dev(dev);
946 	bool is_vc5 = of_device_is_compatible(dev->dev->of_node,
947 					      "brcm,bcm2711-vc5");
948 	int ret;
949 
950 	/*
951 	 * The limits enforced by the load tracker aren't relevant for
952 	 * the BCM2711, but the load tracker computations are used for
953 	 * the core clock rate calculation.
954 	 */
955 	if (!is_vc5) {
956 		/* Start with the load tracker enabled. Can be
957 		 * disabled through the debugfs load_tracker file.
958 		 */
959 		vc4->load_tracker_enabled = true;
960 	}
961 
962 	/* Set support for vblank irq fast disable, before drm_vblank_init() */
963 	dev->vblank_disable_immediate = true;
964 
965 	ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
966 	if (ret < 0) {
967 		dev_err(dev->dev, "failed to initialize vblank\n");
968 		return ret;
969 	}
970 
971 	if (is_vc5) {
972 		dev->mode_config.max_width = 7680;
973 		dev->mode_config.max_height = 7680;
974 	} else {
975 		dev->mode_config.max_width = 2048;
976 		dev->mode_config.max_height = 2048;
977 	}
978 
979 	dev->mode_config.funcs = &vc4_mode_funcs;
980 	dev->mode_config.helper_private = &vc4_mode_config_helpers;
981 	dev->mode_config.preferred_depth = 24;
982 	dev->mode_config.async_page_flip = true;
983 
984 	ret = vc4_ctm_obj_init(vc4);
985 	if (ret)
986 		return ret;
987 
988 	ret = vc4_load_tracker_obj_init(vc4);
989 	if (ret)
990 		return ret;
991 
992 	ret = vc4_hvs_channels_obj_init(vc4);
993 	if (ret)
994 		return ret;
995 
996 	drm_mode_config_reset(dev);
997 
998 	drm_kms_helper_poll_init(dev);
999 
1000 	return 0;
1001 }
1002