1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 KMS 8 * 9 * This is the general code for implementing KMS mode setting that 10 * doesn't clearly associate with any of the other objects (plane, 11 * crtc, HDMI encoder). 12 */ 13 14 #include <linux/clk.h> 15 16 #include <drm/drm_atomic.h> 17 #include <drm/drm_atomic_helper.h> 18 #include <drm/drm_crtc.h> 19 #include <drm/drm_gem_framebuffer_helper.h> 20 #include <drm/drm_plane_helper.h> 21 #include <drm/drm_probe_helper.h> 22 #include <drm/drm_vblank.h> 23 24 #include "vc4_drv.h" 25 #include "vc4_regs.h" 26 27 #define HVS_NUM_CHANNELS 3 28 29 struct vc4_ctm_state { 30 struct drm_private_state base; 31 struct drm_color_ctm *ctm; 32 int fifo; 33 }; 34 35 static struct vc4_ctm_state *to_vc4_ctm_state(struct drm_private_state *priv) 36 { 37 return container_of(priv, struct vc4_ctm_state, base); 38 } 39 40 struct vc4_hvs_state { 41 struct drm_private_state base; 42 43 struct { 44 unsigned in_use: 1; 45 struct drm_crtc_commit *pending_commit; 46 } fifo_state[HVS_NUM_CHANNELS]; 47 }; 48 49 static struct vc4_hvs_state * 50 to_vc4_hvs_state(struct drm_private_state *priv) 51 { 52 return container_of(priv, struct vc4_hvs_state, base); 53 } 54 55 struct vc4_load_tracker_state { 56 struct drm_private_state base; 57 u64 hvs_load; 58 u64 membus_load; 59 }; 60 61 static struct vc4_load_tracker_state * 62 to_vc4_load_tracker_state(struct drm_private_state *priv) 63 { 64 return container_of(priv, struct vc4_load_tracker_state, base); 65 } 66 67 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state, 68 struct drm_private_obj *manager) 69 { 70 struct drm_device *dev = state->dev; 71 struct vc4_dev *vc4 = to_vc4_dev(dev); 72 struct drm_private_state *priv_state; 73 int ret; 74 75 ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx); 76 if (ret) 77 return ERR_PTR(ret); 78 79 priv_state = drm_atomic_get_private_obj_state(state, manager); 80 if (IS_ERR(priv_state)) 81 return ERR_CAST(priv_state); 82 83 return to_vc4_ctm_state(priv_state); 84 } 85 86 static struct drm_private_state * 87 vc4_ctm_duplicate_state(struct drm_private_obj *obj) 88 { 89 struct vc4_ctm_state *state; 90 91 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); 92 if (!state) 93 return NULL; 94 95 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 96 97 return &state->base; 98 } 99 100 static void vc4_ctm_destroy_state(struct drm_private_obj *obj, 101 struct drm_private_state *state) 102 { 103 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state); 104 105 kfree(ctm_state); 106 } 107 108 static const struct drm_private_state_funcs vc4_ctm_state_funcs = { 109 .atomic_duplicate_state = vc4_ctm_duplicate_state, 110 .atomic_destroy_state = vc4_ctm_destroy_state, 111 }; 112 113 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused) 114 { 115 struct vc4_dev *vc4 = to_vc4_dev(dev); 116 117 drm_atomic_private_obj_fini(&vc4->ctm_manager); 118 } 119 120 static int vc4_ctm_obj_init(struct vc4_dev *vc4) 121 { 122 struct vc4_ctm_state *ctm_state; 123 124 drm_modeset_lock_init(&vc4->ctm_state_lock); 125 126 ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL); 127 if (!ctm_state) 128 return -ENOMEM; 129 130 drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base, 131 &vc4_ctm_state_funcs); 132 133 return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL); 134 } 135 136 /* Converts a DRM S31.32 value to the HW S0.9 format. */ 137 static u16 vc4_ctm_s31_32_to_s0_9(u64 in) 138 { 139 u16 r; 140 141 /* Sign bit. */ 142 r = in & BIT_ULL(63) ? BIT(9) : 0; 143 144 if ((in & GENMASK_ULL(62, 32)) > 0) { 145 /* We have zero integer bits so we can only saturate here. */ 146 r |= GENMASK(8, 0); 147 } else { 148 /* Otherwise take the 9 most important fractional bits. */ 149 r |= (in >> 23) & GENMASK(8, 0); 150 } 151 152 return r; 153 } 154 155 static void 156 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state) 157 { 158 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state); 159 struct drm_color_ctm *ctm = ctm_state->ctm; 160 161 if (ctm_state->fifo) { 162 HVS_WRITE(SCALER_OLEDCOEF2, 163 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]), 164 SCALER_OLEDCOEF2_R_TO_R) | 165 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]), 166 SCALER_OLEDCOEF2_R_TO_G) | 167 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]), 168 SCALER_OLEDCOEF2_R_TO_B)); 169 HVS_WRITE(SCALER_OLEDCOEF1, 170 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]), 171 SCALER_OLEDCOEF1_G_TO_R) | 172 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]), 173 SCALER_OLEDCOEF1_G_TO_G) | 174 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]), 175 SCALER_OLEDCOEF1_G_TO_B)); 176 HVS_WRITE(SCALER_OLEDCOEF0, 177 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]), 178 SCALER_OLEDCOEF0_B_TO_R) | 179 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]), 180 SCALER_OLEDCOEF0_B_TO_G) | 181 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]), 182 SCALER_OLEDCOEF0_B_TO_B)); 183 } 184 185 HVS_WRITE(SCALER_OLEDOFFS, 186 VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO)); 187 } 188 189 static struct vc4_hvs_state * 190 vc4_hvs_get_new_global_state(struct drm_atomic_state *state) 191 { 192 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 193 struct drm_private_state *priv_state; 194 195 priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels); 196 if (IS_ERR(priv_state)) 197 return ERR_CAST(priv_state); 198 199 return to_vc4_hvs_state(priv_state); 200 } 201 202 static struct vc4_hvs_state * 203 vc4_hvs_get_old_global_state(struct drm_atomic_state *state) 204 { 205 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 206 struct drm_private_state *priv_state; 207 208 priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels); 209 if (IS_ERR(priv_state)) 210 return ERR_CAST(priv_state); 211 212 return to_vc4_hvs_state(priv_state); 213 } 214 215 static struct vc4_hvs_state * 216 vc4_hvs_get_global_state(struct drm_atomic_state *state) 217 { 218 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 219 struct drm_private_state *priv_state; 220 221 priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels); 222 if (IS_ERR(priv_state)) 223 return ERR_CAST(priv_state); 224 225 return to_vc4_hvs_state(priv_state); 226 } 227 228 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4, 229 struct drm_atomic_state *state) 230 { 231 struct drm_crtc_state *crtc_state; 232 struct drm_crtc *crtc; 233 unsigned int i; 234 235 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 236 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); 237 u32 dispctrl; 238 u32 dsp3_mux; 239 240 if (!crtc_state->active) 241 continue; 242 243 if (vc4_state->assigned_channel != 2) 244 continue; 245 246 /* 247 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to 248 * FIFO X'. 249 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'. 250 * 251 * DSP3 is connected to FIFO2 unless the transposer is 252 * enabled. In this case, FIFO 2 is directly accessed by the 253 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1 254 * route. 255 */ 256 if (vc4_state->feed_txp) 257 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX); 258 else 259 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX); 260 261 dispctrl = HVS_READ(SCALER_DISPCTRL) & 262 ~SCALER_DISPCTRL_DSP3_MUX_MASK; 263 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux); 264 } 265 } 266 267 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4, 268 struct drm_atomic_state *state) 269 { 270 struct drm_crtc_state *crtc_state; 271 struct drm_crtc *crtc; 272 unsigned char mux; 273 unsigned int i; 274 u32 reg; 275 276 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 277 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); 278 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 279 280 if (!vc4_state->update_muxing) 281 continue; 282 283 switch (vc4_crtc->data->hvs_output) { 284 case 2: 285 mux = (vc4_state->assigned_channel == 2) ? 0 : 1; 286 reg = HVS_READ(SCALER_DISPECTRL); 287 HVS_WRITE(SCALER_DISPECTRL, 288 (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) | 289 VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX)); 290 break; 291 292 case 3: 293 if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED) 294 mux = 3; 295 else 296 mux = vc4_state->assigned_channel; 297 298 reg = HVS_READ(SCALER_DISPCTRL); 299 HVS_WRITE(SCALER_DISPCTRL, 300 (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) | 301 VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX)); 302 break; 303 304 case 4: 305 if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED) 306 mux = 3; 307 else 308 mux = vc4_state->assigned_channel; 309 310 reg = HVS_READ(SCALER_DISPEOLN); 311 HVS_WRITE(SCALER_DISPEOLN, 312 (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) | 313 VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX)); 314 315 break; 316 317 case 5: 318 if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED) 319 mux = 3; 320 else 321 mux = vc4_state->assigned_channel; 322 323 reg = HVS_READ(SCALER_DISPDITHER); 324 HVS_WRITE(SCALER_DISPDITHER, 325 (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) | 326 VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX)); 327 break; 328 329 default: 330 break; 331 } 332 } 333 } 334 335 static void vc4_atomic_commit_tail(struct drm_atomic_state *state) 336 { 337 struct drm_device *dev = state->dev; 338 struct vc4_dev *vc4 = to_vc4_dev(dev); 339 struct vc4_hvs *hvs = vc4->hvs; 340 struct drm_crtc_state *old_crtc_state; 341 struct drm_crtc_state *new_crtc_state; 342 struct drm_crtc *crtc; 343 struct vc4_hvs_state *old_hvs_state; 344 int i; 345 346 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 347 struct vc4_crtc_state *vc4_crtc_state; 348 349 if (!new_crtc_state->commit) 350 continue; 351 352 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state); 353 vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel); 354 } 355 356 if (vc4->hvs->hvs5) 357 clk_set_min_rate(hvs->core_clk, 500000000); 358 359 old_hvs_state = vc4_hvs_get_old_global_state(state); 360 if (!old_hvs_state) 361 return; 362 363 for_each_old_crtc_in_state(state, crtc, old_crtc_state, i) { 364 struct vc4_crtc_state *vc4_crtc_state = 365 to_vc4_crtc_state(old_crtc_state); 366 struct drm_crtc_commit *commit; 367 unsigned int channel = vc4_crtc_state->assigned_channel; 368 unsigned long done; 369 370 if (channel == VC4_HVS_CHANNEL_DISABLED) 371 continue; 372 373 if (!old_hvs_state->fifo_state[channel].in_use) 374 continue; 375 376 commit = old_hvs_state->fifo_state[i].pending_commit; 377 if (!commit) 378 continue; 379 380 done = wait_for_completion_timeout(&commit->hw_done, 10 * HZ); 381 if (!done) 382 drm_err(dev, "Timed out waiting for hw_done\n"); 383 384 done = wait_for_completion_timeout(&commit->flip_done, 10 * HZ); 385 if (!done) 386 drm_err(dev, "Timed out waiting for flip_done\n"); 387 } 388 389 drm_atomic_helper_commit_modeset_disables(dev, state); 390 391 vc4_ctm_commit(vc4, state); 392 393 if (vc4->hvs->hvs5) 394 vc5_hvs_pv_muxing_commit(vc4, state); 395 else 396 vc4_hvs_pv_muxing_commit(vc4, state); 397 398 drm_atomic_helper_commit_planes(dev, state, 0); 399 400 drm_atomic_helper_commit_modeset_enables(dev, state); 401 402 drm_atomic_helper_fake_vblank(state); 403 404 drm_atomic_helper_commit_hw_done(state); 405 406 drm_atomic_helper_wait_for_flip_done(dev, state); 407 408 drm_atomic_helper_cleanup_planes(dev, state); 409 410 if (vc4->hvs->hvs5) 411 clk_set_min_rate(hvs->core_clk, 0); 412 } 413 414 static int vc4_atomic_commit_setup(struct drm_atomic_state *state) 415 { 416 struct drm_crtc_state *crtc_state; 417 struct vc4_hvs_state *hvs_state; 418 struct drm_crtc *crtc; 419 unsigned int i; 420 421 hvs_state = vc4_hvs_get_new_global_state(state); 422 if (!hvs_state) 423 return -EINVAL; 424 425 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 426 struct vc4_crtc_state *vc4_crtc_state = 427 to_vc4_crtc_state(crtc_state); 428 unsigned int channel = 429 vc4_crtc_state->assigned_channel; 430 431 if (channel == VC4_HVS_CHANNEL_DISABLED) 432 continue; 433 434 if (!hvs_state->fifo_state[channel].in_use) 435 continue; 436 437 hvs_state->fifo_state[channel].pending_commit = 438 drm_crtc_commit_get(crtc_state->commit); 439 } 440 441 return 0; 442 } 443 444 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev, 445 struct drm_file *file_priv, 446 const struct drm_mode_fb_cmd2 *mode_cmd) 447 { 448 struct drm_mode_fb_cmd2 mode_cmd_local; 449 450 /* If the user didn't specify a modifier, use the 451 * vc4_set_tiling_ioctl() state for the BO. 452 */ 453 if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) { 454 struct drm_gem_object *gem_obj; 455 struct vc4_bo *bo; 456 457 gem_obj = drm_gem_object_lookup(file_priv, 458 mode_cmd->handles[0]); 459 if (!gem_obj) { 460 DRM_DEBUG("Failed to look up GEM BO %d\n", 461 mode_cmd->handles[0]); 462 return ERR_PTR(-ENOENT); 463 } 464 bo = to_vc4_bo(gem_obj); 465 466 mode_cmd_local = *mode_cmd; 467 468 if (bo->t_format) { 469 mode_cmd_local.modifier[0] = 470 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED; 471 } else { 472 mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE; 473 } 474 475 drm_gem_object_put(gem_obj); 476 477 mode_cmd = &mode_cmd_local; 478 } 479 480 return drm_gem_fb_create(dev, file_priv, mode_cmd); 481 } 482 483 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC 484 * at a time and the HW only supports S0.9 scalars. To account for the latter, 485 * we don't allow userland to set a CTM that we have no hope of approximating. 486 */ 487 static int 488 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 489 { 490 struct vc4_dev *vc4 = to_vc4_dev(dev); 491 struct vc4_ctm_state *ctm_state = NULL; 492 struct drm_crtc *crtc; 493 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 494 struct drm_color_ctm *ctm; 495 int i; 496 497 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 498 /* CTM is being disabled. */ 499 if (!new_crtc_state->ctm && old_crtc_state->ctm) { 500 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager); 501 if (IS_ERR(ctm_state)) 502 return PTR_ERR(ctm_state); 503 ctm_state->fifo = 0; 504 } 505 } 506 507 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 508 if (new_crtc_state->ctm == old_crtc_state->ctm) 509 continue; 510 511 if (!ctm_state) { 512 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager); 513 if (IS_ERR(ctm_state)) 514 return PTR_ERR(ctm_state); 515 } 516 517 /* CTM is being enabled or the matrix changed. */ 518 if (new_crtc_state->ctm) { 519 struct vc4_crtc_state *vc4_crtc_state = 520 to_vc4_crtc_state(new_crtc_state); 521 522 /* fifo is 1-based since 0 disables CTM. */ 523 int fifo = vc4_crtc_state->assigned_channel + 1; 524 525 /* Check userland isn't trying to turn on CTM for more 526 * than one CRTC at a time. 527 */ 528 if (ctm_state->fifo && ctm_state->fifo != fifo) { 529 DRM_DEBUG_DRIVER("Too many CTM configured\n"); 530 return -EINVAL; 531 } 532 533 /* Check we can approximate the specified CTM. 534 * We disallow scalars |c| > 1.0 since the HW has 535 * no integer bits. 536 */ 537 ctm = new_crtc_state->ctm->data; 538 for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) { 539 u64 val = ctm->matrix[i]; 540 541 val &= ~BIT_ULL(63); 542 if (val > BIT_ULL(32)) 543 return -EINVAL; 544 } 545 546 ctm_state->fifo = fifo; 547 ctm_state->ctm = ctm; 548 } 549 } 550 551 return 0; 552 } 553 554 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state) 555 { 556 struct drm_plane_state *old_plane_state, *new_plane_state; 557 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 558 struct vc4_load_tracker_state *load_state; 559 struct drm_private_state *priv_state; 560 struct drm_plane *plane; 561 int i; 562 563 if (!vc4->load_tracker_available) 564 return 0; 565 566 priv_state = drm_atomic_get_private_obj_state(state, 567 &vc4->load_tracker); 568 if (IS_ERR(priv_state)) 569 return PTR_ERR(priv_state); 570 571 load_state = to_vc4_load_tracker_state(priv_state); 572 for_each_oldnew_plane_in_state(state, plane, old_plane_state, 573 new_plane_state, i) { 574 struct vc4_plane_state *vc4_plane_state; 575 576 if (old_plane_state->fb && old_plane_state->crtc) { 577 vc4_plane_state = to_vc4_plane_state(old_plane_state); 578 load_state->membus_load -= vc4_plane_state->membus_load; 579 load_state->hvs_load -= vc4_plane_state->hvs_load; 580 } 581 582 if (new_plane_state->fb && new_plane_state->crtc) { 583 vc4_plane_state = to_vc4_plane_state(new_plane_state); 584 load_state->membus_load += vc4_plane_state->membus_load; 585 load_state->hvs_load += vc4_plane_state->hvs_load; 586 } 587 } 588 589 /* Don't check the load when the tracker is disabled. */ 590 if (!vc4->load_tracker_enabled) 591 return 0; 592 593 /* The absolute limit is 2Gbyte/sec, but let's take a margin to let 594 * the system work when other blocks are accessing the memory. 595 */ 596 if (load_state->membus_load > SZ_1G + SZ_512M) 597 return -ENOSPC; 598 599 /* HVS clock is supposed to run @ 250Mhz, let's take a margin and 600 * consider the maximum number of cycles is 240M. 601 */ 602 if (load_state->hvs_load > 240000000ULL) 603 return -ENOSPC; 604 605 return 0; 606 } 607 608 static struct drm_private_state * 609 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj) 610 { 611 struct vc4_load_tracker_state *state; 612 613 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); 614 if (!state) 615 return NULL; 616 617 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 618 619 return &state->base; 620 } 621 622 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj, 623 struct drm_private_state *state) 624 { 625 struct vc4_load_tracker_state *load_state; 626 627 load_state = to_vc4_load_tracker_state(state); 628 kfree(load_state); 629 } 630 631 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = { 632 .atomic_duplicate_state = vc4_load_tracker_duplicate_state, 633 .atomic_destroy_state = vc4_load_tracker_destroy_state, 634 }; 635 636 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused) 637 { 638 struct vc4_dev *vc4 = to_vc4_dev(dev); 639 640 if (!vc4->load_tracker_available) 641 return; 642 643 drm_atomic_private_obj_fini(&vc4->load_tracker); 644 } 645 646 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4) 647 { 648 struct vc4_load_tracker_state *load_state; 649 650 if (!vc4->load_tracker_available) 651 return 0; 652 653 load_state = kzalloc(sizeof(*load_state), GFP_KERNEL); 654 if (!load_state) 655 return -ENOMEM; 656 657 drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker, 658 &load_state->base, 659 &vc4_load_tracker_state_funcs); 660 661 return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL); 662 } 663 664 static struct drm_private_state * 665 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj) 666 { 667 struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state); 668 struct vc4_hvs_state *state; 669 unsigned int i; 670 671 state = kzalloc(sizeof(*state), GFP_KERNEL); 672 if (!state) 673 return NULL; 674 675 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 676 677 678 for (i = 0; i < HVS_NUM_CHANNELS; i++) { 679 state->fifo_state[i].in_use = old_state->fifo_state[i].in_use; 680 681 if (!old_state->fifo_state[i].pending_commit) 682 continue; 683 684 state->fifo_state[i].pending_commit = 685 drm_crtc_commit_get(old_state->fifo_state[i].pending_commit); 686 } 687 688 return &state->base; 689 } 690 691 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj, 692 struct drm_private_state *state) 693 { 694 struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state); 695 unsigned int i; 696 697 for (i = 0; i < HVS_NUM_CHANNELS; i++) { 698 if (!hvs_state->fifo_state[i].pending_commit) 699 continue; 700 701 drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit); 702 } 703 704 kfree(hvs_state); 705 } 706 707 static const struct drm_private_state_funcs vc4_hvs_state_funcs = { 708 .atomic_duplicate_state = vc4_hvs_channels_duplicate_state, 709 .atomic_destroy_state = vc4_hvs_channels_destroy_state, 710 }; 711 712 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused) 713 { 714 struct vc4_dev *vc4 = to_vc4_dev(dev); 715 716 drm_atomic_private_obj_fini(&vc4->hvs_channels); 717 } 718 719 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4) 720 { 721 struct vc4_hvs_state *state; 722 723 state = kzalloc(sizeof(*state), GFP_KERNEL); 724 if (!state) 725 return -ENOMEM; 726 727 drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels, 728 &state->base, 729 &vc4_hvs_state_funcs); 730 731 return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL); 732 } 733 734 /* 735 * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and 736 * the TXP (and therefore all the CRTCs found on that platform). 737 * 738 * The naive (and our initial) implementation would just iterate over 739 * all the active CRTCs, try to find a suitable FIFO, and then remove it 740 * from the pool of available FIFOs. However, there are a few corner 741 * cases that need to be considered: 742 * 743 * - When running in a dual-display setup (so with two CRTCs involved), 744 * we can update the state of a single CRTC (for example by changing 745 * its mode using xrandr under X11) without affecting the other. In 746 * this case, the other CRTC wouldn't be in the state at all, so we 747 * need to consider all the running CRTCs in the DRM device to assign 748 * a FIFO, not just the one in the state. 749 * 750 * - To fix the above, we can't use drm_atomic_get_crtc_state on all 751 * enabled CRTCs to pull their CRTC state into the global state, since 752 * a page flip would start considering their vblank to complete. Since 753 * we don't have a guarantee that they are actually active, that 754 * vblank might never happen, and shouldn't even be considered if we 755 * want to do a page flip on a single CRTC. That can be tested by 756 * doing a modetest -v first on HDMI1 and then on HDMI0. 757 * 758 * - Since we need the pixelvalve to be disabled and enabled back when 759 * the FIFO is changed, we should keep the FIFO assigned for as long 760 * as the CRTC is enabled, only considering it free again once that 761 * CRTC has been disabled. This can be tested by booting X11 on a 762 * single display, and changing the resolution down and then back up. 763 */ 764 static int vc4_pv_muxing_atomic_check(struct drm_device *dev, 765 struct drm_atomic_state *state) 766 { 767 struct vc4_hvs_state *hvs_new_state; 768 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 769 struct drm_crtc *crtc; 770 unsigned int unassigned_channels = 0; 771 unsigned int i; 772 773 hvs_new_state = vc4_hvs_get_global_state(state); 774 if (!hvs_new_state) 775 return -EINVAL; 776 777 for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++) 778 if (!hvs_new_state->fifo_state[i].in_use) 779 unassigned_channels |= BIT(i); 780 781 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 782 struct vc4_crtc_state *old_vc4_crtc_state = 783 to_vc4_crtc_state(old_crtc_state); 784 struct vc4_crtc_state *new_vc4_crtc_state = 785 to_vc4_crtc_state(new_crtc_state); 786 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 787 unsigned int matching_channels; 788 unsigned int channel; 789 790 /* Nothing to do here, let's skip it */ 791 if (old_crtc_state->enable == new_crtc_state->enable) 792 continue; 793 794 /* Muxing will need to be modified, mark it as such */ 795 new_vc4_crtc_state->update_muxing = true; 796 797 /* If we're disabling our CRTC, we put back our channel */ 798 if (!new_crtc_state->enable) { 799 channel = old_vc4_crtc_state->assigned_channel; 800 hvs_new_state->fifo_state[channel].in_use = false; 801 new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED; 802 continue; 803 } 804 805 /* 806 * The problem we have to solve here is that we have 807 * up to 7 encoders, connected to up to 6 CRTCs. 808 * 809 * Those CRTCs, depending on the instance, can be 810 * routed to 1, 2 or 3 HVS FIFOs, and we need to set 811 * the change the muxing between FIFOs and outputs in 812 * the HVS accordingly. 813 * 814 * It would be pretty hard to come up with an 815 * algorithm that would generically solve 816 * this. However, the current routing trees we support 817 * allow us to simplify a bit the problem. 818 * 819 * Indeed, with the current supported layouts, if we 820 * try to assign in the ascending crtc index order the 821 * FIFOs, we can't fall into the situation where an 822 * earlier CRTC that had multiple routes is assigned 823 * one that was the only option for a later CRTC. 824 * 825 * If the layout changes and doesn't give us that in 826 * the future, we will need to have something smarter, 827 * but it works so far. 828 */ 829 matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels; 830 if (!matching_channels) 831 return -EINVAL; 832 833 channel = ffs(matching_channels) - 1; 834 new_vc4_crtc_state->assigned_channel = channel; 835 unassigned_channels &= ~BIT(channel); 836 hvs_new_state->fifo_state[channel].in_use = true; 837 } 838 839 return 0; 840 } 841 842 static int 843 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 844 { 845 int ret; 846 847 ret = vc4_pv_muxing_atomic_check(dev, state); 848 if (ret) 849 return ret; 850 851 ret = vc4_ctm_atomic_check(dev, state); 852 if (ret < 0) 853 return ret; 854 855 ret = drm_atomic_helper_check(dev, state); 856 if (ret) 857 return ret; 858 859 return vc4_load_tracker_atomic_check(state); 860 } 861 862 static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = { 863 .atomic_commit_setup = vc4_atomic_commit_setup, 864 .atomic_commit_tail = vc4_atomic_commit_tail, 865 }; 866 867 static const struct drm_mode_config_funcs vc4_mode_funcs = { 868 .atomic_check = vc4_atomic_check, 869 .atomic_commit = drm_atomic_helper_commit, 870 .fb_create = vc4_fb_create, 871 }; 872 873 int vc4_kms_load(struct drm_device *dev) 874 { 875 struct vc4_dev *vc4 = to_vc4_dev(dev); 876 bool is_vc5 = of_device_is_compatible(dev->dev->of_node, 877 "brcm,bcm2711-vc5"); 878 int ret; 879 880 if (!is_vc5) { 881 vc4->load_tracker_available = true; 882 883 /* Start with the load tracker enabled. Can be 884 * disabled through the debugfs load_tracker file. 885 */ 886 vc4->load_tracker_enabled = true; 887 } 888 889 /* Set support for vblank irq fast disable, before drm_vblank_init() */ 890 dev->vblank_disable_immediate = true; 891 892 dev->irq_enabled = true; 893 ret = drm_vblank_init(dev, dev->mode_config.num_crtc); 894 if (ret < 0) { 895 dev_err(dev->dev, "failed to initialize vblank\n"); 896 return ret; 897 } 898 899 if (is_vc5) { 900 dev->mode_config.max_width = 7680; 901 dev->mode_config.max_height = 7680; 902 } else { 903 dev->mode_config.max_width = 2048; 904 dev->mode_config.max_height = 2048; 905 } 906 907 dev->mode_config.funcs = &vc4_mode_funcs; 908 dev->mode_config.helper_private = &vc4_mode_config_helpers; 909 dev->mode_config.preferred_depth = 24; 910 dev->mode_config.async_page_flip = true; 911 dev->mode_config.allow_fb_modifiers = true; 912 913 ret = vc4_ctm_obj_init(vc4); 914 if (ret) 915 return ret; 916 917 ret = vc4_load_tracker_obj_init(vc4); 918 if (ret) 919 return ret; 920 921 ret = vc4_hvs_channels_obj_init(vc4); 922 if (ret) 923 return ret; 924 925 drm_mode_config_reset(dev); 926 927 drm_kms_helper_poll_init(dev); 928 929 return 0; 930 } 931