1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 KMS 8 * 9 * This is the general code for implementing KMS mode setting that 10 * doesn't clearly associate with any of the other objects (plane, 11 * crtc, HDMI encoder). 12 */ 13 14 #include <linux/clk.h> 15 16 #include <drm/drm_atomic.h> 17 #include <drm/drm_atomic_helper.h> 18 #include <drm/drm_crtc.h> 19 #include <drm/drm_gem_framebuffer_helper.h> 20 #include <drm/drm_plane_helper.h> 21 #include <drm/drm_probe_helper.h> 22 #include <drm/drm_vblank.h> 23 24 #include "vc4_drv.h" 25 #include "vc4_regs.h" 26 27 #define HVS_NUM_CHANNELS 3 28 29 struct vc4_ctm_state { 30 struct drm_private_state base; 31 struct drm_color_ctm *ctm; 32 int fifo; 33 }; 34 35 static struct vc4_ctm_state *to_vc4_ctm_state(struct drm_private_state *priv) 36 { 37 return container_of(priv, struct vc4_ctm_state, base); 38 } 39 40 struct vc4_hvs_state { 41 struct drm_private_state base; 42 43 struct { 44 unsigned in_use: 1; 45 struct drm_crtc_commit *pending_commit; 46 } fifo_state[HVS_NUM_CHANNELS]; 47 }; 48 49 static struct vc4_hvs_state * 50 to_vc4_hvs_state(struct drm_private_state *priv) 51 { 52 return container_of(priv, struct vc4_hvs_state, base); 53 } 54 55 struct vc4_load_tracker_state { 56 struct drm_private_state base; 57 u64 hvs_load; 58 u64 membus_load; 59 }; 60 61 static struct vc4_load_tracker_state * 62 to_vc4_load_tracker_state(struct drm_private_state *priv) 63 { 64 return container_of(priv, struct vc4_load_tracker_state, base); 65 } 66 67 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state, 68 struct drm_private_obj *manager) 69 { 70 struct drm_device *dev = state->dev; 71 struct vc4_dev *vc4 = to_vc4_dev(dev); 72 struct drm_private_state *priv_state; 73 int ret; 74 75 ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx); 76 if (ret) 77 return ERR_PTR(ret); 78 79 priv_state = drm_atomic_get_private_obj_state(state, manager); 80 if (IS_ERR(priv_state)) 81 return ERR_CAST(priv_state); 82 83 return to_vc4_ctm_state(priv_state); 84 } 85 86 static struct drm_private_state * 87 vc4_ctm_duplicate_state(struct drm_private_obj *obj) 88 { 89 struct vc4_ctm_state *state; 90 91 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); 92 if (!state) 93 return NULL; 94 95 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 96 97 return &state->base; 98 } 99 100 static void vc4_ctm_destroy_state(struct drm_private_obj *obj, 101 struct drm_private_state *state) 102 { 103 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state); 104 105 kfree(ctm_state); 106 } 107 108 static const struct drm_private_state_funcs vc4_ctm_state_funcs = { 109 .atomic_duplicate_state = vc4_ctm_duplicate_state, 110 .atomic_destroy_state = vc4_ctm_destroy_state, 111 }; 112 113 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused) 114 { 115 struct vc4_dev *vc4 = to_vc4_dev(dev); 116 117 drm_atomic_private_obj_fini(&vc4->ctm_manager); 118 } 119 120 static int vc4_ctm_obj_init(struct vc4_dev *vc4) 121 { 122 struct vc4_ctm_state *ctm_state; 123 124 drm_modeset_lock_init(&vc4->ctm_state_lock); 125 126 ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL); 127 if (!ctm_state) 128 return -ENOMEM; 129 130 drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base, 131 &vc4_ctm_state_funcs); 132 133 return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL); 134 } 135 136 /* Converts a DRM S31.32 value to the HW S0.9 format. */ 137 static u16 vc4_ctm_s31_32_to_s0_9(u64 in) 138 { 139 u16 r; 140 141 /* Sign bit. */ 142 r = in & BIT_ULL(63) ? BIT(9) : 0; 143 144 if ((in & GENMASK_ULL(62, 32)) > 0) { 145 /* We have zero integer bits so we can only saturate here. */ 146 r |= GENMASK(8, 0); 147 } else { 148 /* Otherwise take the 9 most important fractional bits. */ 149 r |= (in >> 23) & GENMASK(8, 0); 150 } 151 152 return r; 153 } 154 155 static void 156 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state) 157 { 158 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state); 159 struct drm_color_ctm *ctm = ctm_state->ctm; 160 161 if (ctm_state->fifo) { 162 HVS_WRITE(SCALER_OLEDCOEF2, 163 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]), 164 SCALER_OLEDCOEF2_R_TO_R) | 165 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]), 166 SCALER_OLEDCOEF2_R_TO_G) | 167 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]), 168 SCALER_OLEDCOEF2_R_TO_B)); 169 HVS_WRITE(SCALER_OLEDCOEF1, 170 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]), 171 SCALER_OLEDCOEF1_G_TO_R) | 172 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]), 173 SCALER_OLEDCOEF1_G_TO_G) | 174 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]), 175 SCALER_OLEDCOEF1_G_TO_B)); 176 HVS_WRITE(SCALER_OLEDCOEF0, 177 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]), 178 SCALER_OLEDCOEF0_B_TO_R) | 179 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]), 180 SCALER_OLEDCOEF0_B_TO_G) | 181 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]), 182 SCALER_OLEDCOEF0_B_TO_B)); 183 } 184 185 HVS_WRITE(SCALER_OLEDOFFS, 186 VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO)); 187 } 188 189 static struct vc4_hvs_state * 190 vc4_hvs_get_new_global_state(struct drm_atomic_state *state) 191 { 192 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 193 struct drm_private_state *priv_state; 194 195 priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels); 196 if (IS_ERR(priv_state)) 197 return ERR_CAST(priv_state); 198 199 return to_vc4_hvs_state(priv_state); 200 } 201 202 static struct vc4_hvs_state * 203 vc4_hvs_get_old_global_state(struct drm_atomic_state *state) 204 { 205 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 206 struct drm_private_state *priv_state; 207 208 priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels); 209 if (IS_ERR(priv_state)) 210 return ERR_CAST(priv_state); 211 212 return to_vc4_hvs_state(priv_state); 213 } 214 215 static struct vc4_hvs_state * 216 vc4_hvs_get_global_state(struct drm_atomic_state *state) 217 { 218 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 219 struct drm_private_state *priv_state; 220 221 priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels); 222 if (IS_ERR(priv_state)) 223 return ERR_CAST(priv_state); 224 225 return to_vc4_hvs_state(priv_state); 226 } 227 228 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4, 229 struct drm_atomic_state *state) 230 { 231 struct drm_crtc_state *crtc_state; 232 struct drm_crtc *crtc; 233 unsigned int i; 234 235 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 236 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); 237 u32 dispctrl; 238 u32 dsp3_mux; 239 240 if (!crtc_state->active) 241 continue; 242 243 if (vc4_state->assigned_channel != 2) 244 continue; 245 246 /* 247 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to 248 * FIFO X'. 249 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'. 250 * 251 * DSP3 is connected to FIFO2 unless the transposer is 252 * enabled. In this case, FIFO 2 is directly accessed by the 253 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1 254 * route. 255 */ 256 if (vc4_state->feed_txp) 257 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX); 258 else 259 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX); 260 261 dispctrl = HVS_READ(SCALER_DISPCTRL) & 262 ~SCALER_DISPCTRL_DSP3_MUX_MASK; 263 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux); 264 } 265 } 266 267 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4, 268 struct drm_atomic_state *state) 269 { 270 struct drm_crtc_state *crtc_state; 271 struct drm_crtc *crtc; 272 unsigned char mux; 273 unsigned int i; 274 u32 reg; 275 276 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 277 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); 278 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 279 280 if (!vc4_state->update_muxing) 281 continue; 282 283 switch (vc4_crtc->data->hvs_output) { 284 case 2: 285 mux = (vc4_state->assigned_channel == 2) ? 0 : 1; 286 reg = HVS_READ(SCALER_DISPECTRL); 287 HVS_WRITE(SCALER_DISPECTRL, 288 (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) | 289 VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX)); 290 break; 291 292 case 3: 293 if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED) 294 mux = 3; 295 else 296 mux = vc4_state->assigned_channel; 297 298 reg = HVS_READ(SCALER_DISPCTRL); 299 HVS_WRITE(SCALER_DISPCTRL, 300 (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) | 301 VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX)); 302 break; 303 304 case 4: 305 if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED) 306 mux = 3; 307 else 308 mux = vc4_state->assigned_channel; 309 310 reg = HVS_READ(SCALER_DISPEOLN); 311 HVS_WRITE(SCALER_DISPEOLN, 312 (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) | 313 VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX)); 314 315 break; 316 317 case 5: 318 if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED) 319 mux = 3; 320 else 321 mux = vc4_state->assigned_channel; 322 323 reg = HVS_READ(SCALER_DISPDITHER); 324 HVS_WRITE(SCALER_DISPDITHER, 325 (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) | 326 VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX)); 327 break; 328 329 default: 330 break; 331 } 332 } 333 } 334 335 static void vc4_atomic_commit_tail(struct drm_atomic_state *state) 336 { 337 struct drm_device *dev = state->dev; 338 struct vc4_dev *vc4 = to_vc4_dev(dev); 339 struct vc4_hvs *hvs = vc4->hvs; 340 struct drm_crtc_state *old_crtc_state; 341 struct drm_crtc_state *new_crtc_state; 342 struct drm_crtc *crtc; 343 struct vc4_hvs_state *old_hvs_state; 344 int i; 345 346 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 347 struct vc4_crtc_state *vc4_crtc_state; 348 349 if (!new_crtc_state->commit) 350 continue; 351 352 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state); 353 vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel); 354 } 355 356 if (vc4->hvs->hvs5) 357 clk_set_min_rate(hvs->core_clk, 500000000); 358 359 old_hvs_state = vc4_hvs_get_old_global_state(state); 360 if (!old_hvs_state) 361 return; 362 363 for_each_old_crtc_in_state(state, crtc, old_crtc_state, i) { 364 struct vc4_crtc_state *vc4_crtc_state = 365 to_vc4_crtc_state(old_crtc_state); 366 unsigned int channel = vc4_crtc_state->assigned_channel; 367 int ret; 368 369 if (channel == VC4_HVS_CHANNEL_DISABLED) 370 continue; 371 372 if (!old_hvs_state->fifo_state[channel].in_use) 373 continue; 374 375 ret = drm_crtc_commit_wait(old_hvs_state->fifo_state[channel].pending_commit); 376 if (ret) 377 drm_err(dev, "Timed out waiting for commit\n"); 378 } 379 380 drm_atomic_helper_commit_modeset_disables(dev, state); 381 382 vc4_ctm_commit(vc4, state); 383 384 if (vc4->hvs->hvs5) 385 vc5_hvs_pv_muxing_commit(vc4, state); 386 else 387 vc4_hvs_pv_muxing_commit(vc4, state); 388 389 drm_atomic_helper_commit_planes(dev, state, 0); 390 391 drm_atomic_helper_commit_modeset_enables(dev, state); 392 393 drm_atomic_helper_fake_vblank(state); 394 395 drm_atomic_helper_commit_hw_done(state); 396 397 drm_atomic_helper_wait_for_flip_done(dev, state); 398 399 drm_atomic_helper_cleanup_planes(dev, state); 400 401 if (vc4->hvs->hvs5) 402 clk_set_min_rate(hvs->core_clk, 0); 403 } 404 405 static int vc4_atomic_commit_setup(struct drm_atomic_state *state) 406 { 407 struct drm_crtc_state *crtc_state; 408 struct vc4_hvs_state *hvs_state; 409 struct drm_crtc *crtc; 410 unsigned int i; 411 412 hvs_state = vc4_hvs_get_new_global_state(state); 413 if (!hvs_state) 414 return -EINVAL; 415 416 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 417 struct vc4_crtc_state *vc4_crtc_state = 418 to_vc4_crtc_state(crtc_state); 419 unsigned int channel = 420 vc4_crtc_state->assigned_channel; 421 422 if (channel == VC4_HVS_CHANNEL_DISABLED) 423 continue; 424 425 if (!hvs_state->fifo_state[channel].in_use) 426 continue; 427 428 hvs_state->fifo_state[channel].pending_commit = 429 drm_crtc_commit_get(crtc_state->commit); 430 } 431 432 return 0; 433 } 434 435 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev, 436 struct drm_file *file_priv, 437 const struct drm_mode_fb_cmd2 *mode_cmd) 438 { 439 struct drm_mode_fb_cmd2 mode_cmd_local; 440 441 /* If the user didn't specify a modifier, use the 442 * vc4_set_tiling_ioctl() state for the BO. 443 */ 444 if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) { 445 struct drm_gem_object *gem_obj; 446 struct vc4_bo *bo; 447 448 gem_obj = drm_gem_object_lookup(file_priv, 449 mode_cmd->handles[0]); 450 if (!gem_obj) { 451 DRM_DEBUG("Failed to look up GEM BO %d\n", 452 mode_cmd->handles[0]); 453 return ERR_PTR(-ENOENT); 454 } 455 bo = to_vc4_bo(gem_obj); 456 457 mode_cmd_local = *mode_cmd; 458 459 if (bo->t_format) { 460 mode_cmd_local.modifier[0] = 461 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED; 462 } else { 463 mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE; 464 } 465 466 drm_gem_object_put(gem_obj); 467 468 mode_cmd = &mode_cmd_local; 469 } 470 471 return drm_gem_fb_create(dev, file_priv, mode_cmd); 472 } 473 474 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC 475 * at a time and the HW only supports S0.9 scalars. To account for the latter, 476 * we don't allow userland to set a CTM that we have no hope of approximating. 477 */ 478 static int 479 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 480 { 481 struct vc4_dev *vc4 = to_vc4_dev(dev); 482 struct vc4_ctm_state *ctm_state = NULL; 483 struct drm_crtc *crtc; 484 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 485 struct drm_color_ctm *ctm; 486 int i; 487 488 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 489 /* CTM is being disabled. */ 490 if (!new_crtc_state->ctm && old_crtc_state->ctm) { 491 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager); 492 if (IS_ERR(ctm_state)) 493 return PTR_ERR(ctm_state); 494 ctm_state->fifo = 0; 495 } 496 } 497 498 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 499 if (new_crtc_state->ctm == old_crtc_state->ctm) 500 continue; 501 502 if (!ctm_state) { 503 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager); 504 if (IS_ERR(ctm_state)) 505 return PTR_ERR(ctm_state); 506 } 507 508 /* CTM is being enabled or the matrix changed. */ 509 if (new_crtc_state->ctm) { 510 struct vc4_crtc_state *vc4_crtc_state = 511 to_vc4_crtc_state(new_crtc_state); 512 513 /* fifo is 1-based since 0 disables CTM. */ 514 int fifo = vc4_crtc_state->assigned_channel + 1; 515 516 /* Check userland isn't trying to turn on CTM for more 517 * than one CRTC at a time. 518 */ 519 if (ctm_state->fifo && ctm_state->fifo != fifo) { 520 DRM_DEBUG_DRIVER("Too many CTM configured\n"); 521 return -EINVAL; 522 } 523 524 /* Check we can approximate the specified CTM. 525 * We disallow scalars |c| > 1.0 since the HW has 526 * no integer bits. 527 */ 528 ctm = new_crtc_state->ctm->data; 529 for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) { 530 u64 val = ctm->matrix[i]; 531 532 val &= ~BIT_ULL(63); 533 if (val > BIT_ULL(32)) 534 return -EINVAL; 535 } 536 537 ctm_state->fifo = fifo; 538 ctm_state->ctm = ctm; 539 } 540 } 541 542 return 0; 543 } 544 545 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state) 546 { 547 struct drm_plane_state *old_plane_state, *new_plane_state; 548 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 549 struct vc4_load_tracker_state *load_state; 550 struct drm_private_state *priv_state; 551 struct drm_plane *plane; 552 int i; 553 554 if (!vc4->load_tracker_available) 555 return 0; 556 557 priv_state = drm_atomic_get_private_obj_state(state, 558 &vc4->load_tracker); 559 if (IS_ERR(priv_state)) 560 return PTR_ERR(priv_state); 561 562 load_state = to_vc4_load_tracker_state(priv_state); 563 for_each_oldnew_plane_in_state(state, plane, old_plane_state, 564 new_plane_state, i) { 565 struct vc4_plane_state *vc4_plane_state; 566 567 if (old_plane_state->fb && old_plane_state->crtc) { 568 vc4_plane_state = to_vc4_plane_state(old_plane_state); 569 load_state->membus_load -= vc4_plane_state->membus_load; 570 load_state->hvs_load -= vc4_plane_state->hvs_load; 571 } 572 573 if (new_plane_state->fb && new_plane_state->crtc) { 574 vc4_plane_state = to_vc4_plane_state(new_plane_state); 575 load_state->membus_load += vc4_plane_state->membus_load; 576 load_state->hvs_load += vc4_plane_state->hvs_load; 577 } 578 } 579 580 /* Don't check the load when the tracker is disabled. */ 581 if (!vc4->load_tracker_enabled) 582 return 0; 583 584 /* The absolute limit is 2Gbyte/sec, but let's take a margin to let 585 * the system work when other blocks are accessing the memory. 586 */ 587 if (load_state->membus_load > SZ_1G + SZ_512M) 588 return -ENOSPC; 589 590 /* HVS clock is supposed to run @ 250Mhz, let's take a margin and 591 * consider the maximum number of cycles is 240M. 592 */ 593 if (load_state->hvs_load > 240000000ULL) 594 return -ENOSPC; 595 596 return 0; 597 } 598 599 static struct drm_private_state * 600 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj) 601 { 602 struct vc4_load_tracker_state *state; 603 604 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); 605 if (!state) 606 return NULL; 607 608 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 609 610 return &state->base; 611 } 612 613 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj, 614 struct drm_private_state *state) 615 { 616 struct vc4_load_tracker_state *load_state; 617 618 load_state = to_vc4_load_tracker_state(state); 619 kfree(load_state); 620 } 621 622 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = { 623 .atomic_duplicate_state = vc4_load_tracker_duplicate_state, 624 .atomic_destroy_state = vc4_load_tracker_destroy_state, 625 }; 626 627 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused) 628 { 629 struct vc4_dev *vc4 = to_vc4_dev(dev); 630 631 if (!vc4->load_tracker_available) 632 return; 633 634 drm_atomic_private_obj_fini(&vc4->load_tracker); 635 } 636 637 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4) 638 { 639 struct vc4_load_tracker_state *load_state; 640 641 if (!vc4->load_tracker_available) 642 return 0; 643 644 load_state = kzalloc(sizeof(*load_state), GFP_KERNEL); 645 if (!load_state) 646 return -ENOMEM; 647 648 drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker, 649 &load_state->base, 650 &vc4_load_tracker_state_funcs); 651 652 return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL); 653 } 654 655 static struct drm_private_state * 656 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj) 657 { 658 struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state); 659 struct vc4_hvs_state *state; 660 unsigned int i; 661 662 state = kzalloc(sizeof(*state), GFP_KERNEL); 663 if (!state) 664 return NULL; 665 666 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 667 668 669 for (i = 0; i < HVS_NUM_CHANNELS; i++) { 670 state->fifo_state[i].in_use = old_state->fifo_state[i].in_use; 671 672 if (!old_state->fifo_state[i].pending_commit) 673 continue; 674 675 state->fifo_state[i].pending_commit = 676 drm_crtc_commit_get(old_state->fifo_state[i].pending_commit); 677 } 678 679 return &state->base; 680 } 681 682 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj, 683 struct drm_private_state *state) 684 { 685 struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state); 686 unsigned int i; 687 688 for (i = 0; i < HVS_NUM_CHANNELS; i++) { 689 if (!hvs_state->fifo_state[i].pending_commit) 690 continue; 691 692 drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit); 693 } 694 695 kfree(hvs_state); 696 } 697 698 static const struct drm_private_state_funcs vc4_hvs_state_funcs = { 699 .atomic_duplicate_state = vc4_hvs_channels_duplicate_state, 700 .atomic_destroy_state = vc4_hvs_channels_destroy_state, 701 }; 702 703 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused) 704 { 705 struct vc4_dev *vc4 = to_vc4_dev(dev); 706 707 drm_atomic_private_obj_fini(&vc4->hvs_channels); 708 } 709 710 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4) 711 { 712 struct vc4_hvs_state *state; 713 714 state = kzalloc(sizeof(*state), GFP_KERNEL); 715 if (!state) 716 return -ENOMEM; 717 718 drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels, 719 &state->base, 720 &vc4_hvs_state_funcs); 721 722 return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL); 723 } 724 725 /* 726 * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and 727 * the TXP (and therefore all the CRTCs found on that platform). 728 * 729 * The naive (and our initial) implementation would just iterate over 730 * all the active CRTCs, try to find a suitable FIFO, and then remove it 731 * from the pool of available FIFOs. However, there are a few corner 732 * cases that need to be considered: 733 * 734 * - When running in a dual-display setup (so with two CRTCs involved), 735 * we can update the state of a single CRTC (for example by changing 736 * its mode using xrandr under X11) without affecting the other. In 737 * this case, the other CRTC wouldn't be in the state at all, so we 738 * need to consider all the running CRTCs in the DRM device to assign 739 * a FIFO, not just the one in the state. 740 * 741 * - To fix the above, we can't use drm_atomic_get_crtc_state on all 742 * enabled CRTCs to pull their CRTC state into the global state, since 743 * a page flip would start considering their vblank to complete. Since 744 * we don't have a guarantee that they are actually active, that 745 * vblank might never happen, and shouldn't even be considered if we 746 * want to do a page flip on a single CRTC. That can be tested by 747 * doing a modetest -v first on HDMI1 and then on HDMI0. 748 * 749 * - Since we need the pixelvalve to be disabled and enabled back when 750 * the FIFO is changed, we should keep the FIFO assigned for as long 751 * as the CRTC is enabled, only considering it free again once that 752 * CRTC has been disabled. This can be tested by booting X11 on a 753 * single display, and changing the resolution down and then back up. 754 */ 755 static int vc4_pv_muxing_atomic_check(struct drm_device *dev, 756 struct drm_atomic_state *state) 757 { 758 struct vc4_hvs_state *hvs_new_state; 759 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 760 struct drm_crtc *crtc; 761 unsigned int unassigned_channels = 0; 762 unsigned int i; 763 764 hvs_new_state = vc4_hvs_get_global_state(state); 765 if (!hvs_new_state) 766 return -EINVAL; 767 768 for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++) 769 if (!hvs_new_state->fifo_state[i].in_use) 770 unassigned_channels |= BIT(i); 771 772 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 773 struct vc4_crtc_state *old_vc4_crtc_state = 774 to_vc4_crtc_state(old_crtc_state); 775 struct vc4_crtc_state *new_vc4_crtc_state = 776 to_vc4_crtc_state(new_crtc_state); 777 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 778 unsigned int matching_channels; 779 unsigned int channel; 780 781 /* Nothing to do here, let's skip it */ 782 if (old_crtc_state->enable == new_crtc_state->enable) 783 continue; 784 785 /* Muxing will need to be modified, mark it as such */ 786 new_vc4_crtc_state->update_muxing = true; 787 788 /* If we're disabling our CRTC, we put back our channel */ 789 if (!new_crtc_state->enable) { 790 channel = old_vc4_crtc_state->assigned_channel; 791 hvs_new_state->fifo_state[channel].in_use = false; 792 new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED; 793 continue; 794 } 795 796 /* 797 * The problem we have to solve here is that we have 798 * up to 7 encoders, connected to up to 6 CRTCs. 799 * 800 * Those CRTCs, depending on the instance, can be 801 * routed to 1, 2 or 3 HVS FIFOs, and we need to set 802 * the change the muxing between FIFOs and outputs in 803 * the HVS accordingly. 804 * 805 * It would be pretty hard to come up with an 806 * algorithm that would generically solve 807 * this. However, the current routing trees we support 808 * allow us to simplify a bit the problem. 809 * 810 * Indeed, with the current supported layouts, if we 811 * try to assign in the ascending crtc index order the 812 * FIFOs, we can't fall into the situation where an 813 * earlier CRTC that had multiple routes is assigned 814 * one that was the only option for a later CRTC. 815 * 816 * If the layout changes and doesn't give us that in 817 * the future, we will need to have something smarter, 818 * but it works so far. 819 */ 820 matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels; 821 if (!matching_channels) 822 return -EINVAL; 823 824 channel = ffs(matching_channels) - 1; 825 new_vc4_crtc_state->assigned_channel = channel; 826 unassigned_channels &= ~BIT(channel); 827 hvs_new_state->fifo_state[channel].in_use = true; 828 } 829 830 return 0; 831 } 832 833 static int 834 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 835 { 836 int ret; 837 838 ret = vc4_pv_muxing_atomic_check(dev, state); 839 if (ret) 840 return ret; 841 842 ret = vc4_ctm_atomic_check(dev, state); 843 if (ret < 0) 844 return ret; 845 846 ret = drm_atomic_helper_check(dev, state); 847 if (ret) 848 return ret; 849 850 return vc4_load_tracker_atomic_check(state); 851 } 852 853 static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = { 854 .atomic_commit_setup = vc4_atomic_commit_setup, 855 .atomic_commit_tail = vc4_atomic_commit_tail, 856 }; 857 858 static const struct drm_mode_config_funcs vc4_mode_funcs = { 859 .atomic_check = vc4_atomic_check, 860 .atomic_commit = drm_atomic_helper_commit, 861 .fb_create = vc4_fb_create, 862 }; 863 864 int vc4_kms_load(struct drm_device *dev) 865 { 866 struct vc4_dev *vc4 = to_vc4_dev(dev); 867 bool is_vc5 = of_device_is_compatible(dev->dev->of_node, 868 "brcm,bcm2711-vc5"); 869 int ret; 870 871 if (!is_vc5) { 872 vc4->load_tracker_available = true; 873 874 /* Start with the load tracker enabled. Can be 875 * disabled through the debugfs load_tracker file. 876 */ 877 vc4->load_tracker_enabled = true; 878 } 879 880 /* Set support for vblank irq fast disable, before drm_vblank_init() */ 881 dev->vblank_disable_immediate = true; 882 883 dev->irq_enabled = true; 884 ret = drm_vblank_init(dev, dev->mode_config.num_crtc); 885 if (ret < 0) { 886 dev_err(dev->dev, "failed to initialize vblank\n"); 887 return ret; 888 } 889 890 if (is_vc5) { 891 dev->mode_config.max_width = 7680; 892 dev->mode_config.max_height = 7680; 893 } else { 894 dev->mode_config.max_width = 2048; 895 dev->mode_config.max_height = 2048; 896 } 897 898 dev->mode_config.funcs = &vc4_mode_funcs; 899 dev->mode_config.helper_private = &vc4_mode_config_helpers; 900 dev->mode_config.preferred_depth = 24; 901 dev->mode_config.async_page_flip = true; 902 903 ret = vc4_ctm_obj_init(vc4); 904 if (ret) 905 return ret; 906 907 ret = vc4_load_tracker_obj_init(vc4); 908 if (ret) 909 return ret; 910 911 ret = vc4_hvs_channels_obj_init(vc4); 912 if (ret) 913 return ret; 914 915 drm_mode_config_reset(dev); 916 917 drm_kms_helper_poll_init(dev); 918 919 return 0; 920 } 921