xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_kms.c (revision a80de066)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 KMS
8  *
9  * This is the general code for implementing KMS mode setting that
10  * doesn't clearly associate with any of the other objects (plane,
11  * crtc, HDMI encoder).
12  */
13 
14 #include <linux/clk.h>
15 
16 #include <drm/drm_atomic.h>
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_fourcc.h>
20 #include <drm/drm_gem_framebuffer_helper.h>
21 #include <drm/drm_plane_helper.h>
22 #include <drm/drm_probe_helper.h>
23 #include <drm/drm_vblank.h>
24 
25 #include "vc4_drv.h"
26 #include "vc4_regs.h"
27 
28 #define HVS_NUM_CHANNELS 3
29 
30 struct vc4_ctm_state {
31 	struct drm_private_state base;
32 	struct drm_color_ctm *ctm;
33 	int fifo;
34 };
35 
36 static struct vc4_ctm_state *
37 to_vc4_ctm_state(const struct drm_private_state *priv)
38 {
39 	return container_of(priv, struct vc4_ctm_state, base);
40 }
41 
42 struct vc4_hvs_state {
43 	struct drm_private_state base;
44 	unsigned long core_clock_rate;
45 
46 	struct {
47 		unsigned in_use: 1;
48 		unsigned long fifo_load;
49 		struct drm_crtc_commit *pending_commit;
50 	} fifo_state[HVS_NUM_CHANNELS];
51 };
52 
53 static struct vc4_hvs_state *
54 to_vc4_hvs_state(const struct drm_private_state *priv)
55 {
56 	return container_of(priv, struct vc4_hvs_state, base);
57 }
58 
59 struct vc4_load_tracker_state {
60 	struct drm_private_state base;
61 	u64 hvs_load;
62 	u64 membus_load;
63 };
64 
65 static struct vc4_load_tracker_state *
66 to_vc4_load_tracker_state(const struct drm_private_state *priv)
67 {
68 	return container_of(priv, struct vc4_load_tracker_state, base);
69 }
70 
71 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
72 					       struct drm_private_obj *manager)
73 {
74 	struct drm_device *dev = state->dev;
75 	struct vc4_dev *vc4 = to_vc4_dev(dev);
76 	struct drm_private_state *priv_state;
77 	int ret;
78 
79 	ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
80 	if (ret)
81 		return ERR_PTR(ret);
82 
83 	priv_state = drm_atomic_get_private_obj_state(state, manager);
84 	if (IS_ERR(priv_state))
85 		return ERR_CAST(priv_state);
86 
87 	return to_vc4_ctm_state(priv_state);
88 }
89 
90 static struct drm_private_state *
91 vc4_ctm_duplicate_state(struct drm_private_obj *obj)
92 {
93 	struct vc4_ctm_state *state;
94 
95 	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
96 	if (!state)
97 		return NULL;
98 
99 	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
100 
101 	return &state->base;
102 }
103 
104 static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
105 				  struct drm_private_state *state)
106 {
107 	struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
108 
109 	kfree(ctm_state);
110 }
111 
112 static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
113 	.atomic_duplicate_state = vc4_ctm_duplicate_state,
114 	.atomic_destroy_state = vc4_ctm_destroy_state,
115 };
116 
117 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
118 {
119 	struct vc4_dev *vc4 = to_vc4_dev(dev);
120 
121 	drm_atomic_private_obj_fini(&vc4->ctm_manager);
122 }
123 
124 static int vc4_ctm_obj_init(struct vc4_dev *vc4)
125 {
126 	struct vc4_ctm_state *ctm_state;
127 
128 	drm_modeset_lock_init(&vc4->ctm_state_lock);
129 
130 	ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
131 	if (!ctm_state)
132 		return -ENOMEM;
133 
134 	drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
135 				    &vc4_ctm_state_funcs);
136 
137 	return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
138 }
139 
140 /* Converts a DRM S31.32 value to the HW S0.9 format. */
141 static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
142 {
143 	u16 r;
144 
145 	/* Sign bit. */
146 	r = in & BIT_ULL(63) ? BIT(9) : 0;
147 
148 	if ((in & GENMASK_ULL(62, 32)) > 0) {
149 		/* We have zero integer bits so we can only saturate here. */
150 		r |= GENMASK(8, 0);
151 	} else {
152 		/* Otherwise take the 9 most important fractional bits. */
153 		r |= (in >> 23) & GENMASK(8, 0);
154 	}
155 
156 	return r;
157 }
158 
159 static void
160 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
161 {
162 	struct vc4_hvs *hvs = vc4->hvs;
163 	struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
164 	struct drm_color_ctm *ctm = ctm_state->ctm;
165 
166 	if (ctm_state->fifo) {
167 		HVS_WRITE(SCALER_OLEDCOEF2,
168 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
169 					SCALER_OLEDCOEF2_R_TO_R) |
170 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
171 					SCALER_OLEDCOEF2_R_TO_G) |
172 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
173 					SCALER_OLEDCOEF2_R_TO_B));
174 		HVS_WRITE(SCALER_OLEDCOEF1,
175 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
176 					SCALER_OLEDCOEF1_G_TO_R) |
177 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
178 					SCALER_OLEDCOEF1_G_TO_G) |
179 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
180 					SCALER_OLEDCOEF1_G_TO_B));
181 		HVS_WRITE(SCALER_OLEDCOEF0,
182 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
183 					SCALER_OLEDCOEF0_B_TO_R) |
184 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
185 					SCALER_OLEDCOEF0_B_TO_G) |
186 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
187 					SCALER_OLEDCOEF0_B_TO_B));
188 	}
189 
190 	HVS_WRITE(SCALER_OLEDOFFS,
191 		  VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
192 }
193 
194 static struct vc4_hvs_state *
195 vc4_hvs_get_new_global_state(struct drm_atomic_state *state)
196 {
197 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
198 	struct drm_private_state *priv_state;
199 
200 	priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels);
201 	if (IS_ERR(priv_state))
202 		return ERR_CAST(priv_state);
203 
204 	return to_vc4_hvs_state(priv_state);
205 }
206 
207 static struct vc4_hvs_state *
208 vc4_hvs_get_old_global_state(struct drm_atomic_state *state)
209 {
210 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
211 	struct drm_private_state *priv_state;
212 
213 	priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels);
214 	if (IS_ERR(priv_state))
215 		return ERR_CAST(priv_state);
216 
217 	return to_vc4_hvs_state(priv_state);
218 }
219 
220 static struct vc4_hvs_state *
221 vc4_hvs_get_global_state(struct drm_atomic_state *state)
222 {
223 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
224 	struct drm_private_state *priv_state;
225 
226 	priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
227 	if (IS_ERR(priv_state))
228 		return ERR_CAST(priv_state);
229 
230 	return to_vc4_hvs_state(priv_state);
231 }
232 
233 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
234 				     struct drm_atomic_state *state)
235 {
236 	struct vc4_hvs *hvs = vc4->hvs;
237 	struct drm_crtc_state *crtc_state;
238 	struct drm_crtc *crtc;
239 	unsigned int i;
240 
241 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
242 		struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
243 		struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
244 		u32 dispctrl;
245 		u32 dsp3_mux;
246 
247 		if (!crtc_state->active)
248 			continue;
249 
250 		if (vc4_state->assigned_channel != 2)
251 			continue;
252 
253 		/*
254 		 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
255 		 * FIFO X'.
256 		 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
257 		 *
258 		 * DSP3 is connected to FIFO2 unless the transposer is
259 		 * enabled. In this case, FIFO 2 is directly accessed by the
260 		 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
261 		 * route.
262 		 */
263 		if (vc4_crtc->feeds_txp)
264 			dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
265 		else
266 			dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
267 
268 		dispctrl = HVS_READ(SCALER_DISPCTRL) &
269 			   ~SCALER_DISPCTRL_DSP3_MUX_MASK;
270 		HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
271 	}
272 }
273 
274 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
275 				     struct drm_atomic_state *state)
276 {
277 	struct vc4_hvs *hvs = vc4->hvs;
278 	struct drm_crtc_state *crtc_state;
279 	struct drm_crtc *crtc;
280 	unsigned char mux;
281 	unsigned int i;
282 	u32 reg;
283 
284 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
285 		struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
286 		struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
287 		unsigned int channel = vc4_state->assigned_channel;
288 
289 		if (!vc4_state->update_muxing)
290 			continue;
291 
292 		switch (vc4_crtc->data->hvs_output) {
293 		case 2:
294 			drm_WARN_ON(&vc4->base,
295 				    VC4_GET_FIELD(HVS_READ(SCALER_DISPCTRL),
296 						  SCALER_DISPCTRL_DSP3_MUX) == channel);
297 
298 			mux = (channel == 2) ? 0 : 1;
299 			reg = HVS_READ(SCALER_DISPECTRL);
300 			HVS_WRITE(SCALER_DISPECTRL,
301 				  (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
302 				  VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
303 			break;
304 
305 		case 3:
306 			if (channel == VC4_HVS_CHANNEL_DISABLED)
307 				mux = 3;
308 			else
309 				mux = channel;
310 
311 			reg = HVS_READ(SCALER_DISPCTRL);
312 			HVS_WRITE(SCALER_DISPCTRL,
313 				  (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
314 				  VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
315 			break;
316 
317 		case 4:
318 			if (channel == VC4_HVS_CHANNEL_DISABLED)
319 				mux = 3;
320 			else
321 				mux = channel;
322 
323 			reg = HVS_READ(SCALER_DISPEOLN);
324 			HVS_WRITE(SCALER_DISPEOLN,
325 				  (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
326 				  VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
327 
328 			break;
329 
330 		case 5:
331 			if (channel == VC4_HVS_CHANNEL_DISABLED)
332 				mux = 3;
333 			else
334 				mux = channel;
335 
336 			reg = HVS_READ(SCALER_DISPDITHER);
337 			HVS_WRITE(SCALER_DISPDITHER,
338 				  (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
339 				  VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
340 			break;
341 
342 		default:
343 			break;
344 		}
345 	}
346 }
347 
348 static void vc4_atomic_commit_tail(struct drm_atomic_state *state)
349 {
350 	struct drm_device *dev = state->dev;
351 	struct vc4_dev *vc4 = to_vc4_dev(dev);
352 	struct vc4_hvs *hvs = vc4->hvs;
353 	struct drm_crtc_state *new_crtc_state;
354 	struct vc4_hvs_state *new_hvs_state;
355 	struct drm_crtc *crtc;
356 	struct vc4_hvs_state *old_hvs_state;
357 	unsigned int channel;
358 	int i;
359 
360 	old_hvs_state = vc4_hvs_get_old_global_state(state);
361 	if (WARN_ON(IS_ERR(old_hvs_state)))
362 		return;
363 
364 	new_hvs_state = vc4_hvs_get_new_global_state(state);
365 	if (WARN_ON(IS_ERR(new_hvs_state)))
366 		return;
367 
368 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
369 		struct vc4_crtc_state *vc4_crtc_state;
370 
371 		if (!new_crtc_state->commit)
372 			continue;
373 
374 		vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
375 		vc4_hvs_mask_underrun(hvs, vc4_crtc_state->assigned_channel);
376 	}
377 
378 	for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) {
379 		struct drm_crtc_commit *commit;
380 		int ret;
381 
382 		if (!old_hvs_state->fifo_state[channel].in_use)
383 			continue;
384 
385 		commit = old_hvs_state->fifo_state[channel].pending_commit;
386 		if (!commit)
387 			continue;
388 
389 		ret = drm_crtc_commit_wait(commit);
390 		if (ret)
391 			drm_err(dev, "Timed out waiting for commit\n");
392 
393 		drm_crtc_commit_put(commit);
394 		old_hvs_state->fifo_state[channel].pending_commit = NULL;
395 	}
396 
397 	if (vc4->is_vc5) {
398 		unsigned long state_rate = max(old_hvs_state->core_clock_rate,
399 					       new_hvs_state->core_clock_rate);
400 		unsigned long core_rate = max_t(unsigned long,
401 						500000000, state_rate);
402 
403 		drm_dbg(dev, "Raising the core clock at %lu Hz\n", core_rate);
404 
405 		/*
406 		 * Do a temporary request on the core clock during the
407 		 * modeset.
408 		 */
409 		WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
410 	}
411 
412 	drm_atomic_helper_commit_modeset_disables(dev, state);
413 
414 	vc4_ctm_commit(vc4, state);
415 
416 	if (vc4->is_vc5)
417 		vc5_hvs_pv_muxing_commit(vc4, state);
418 	else
419 		vc4_hvs_pv_muxing_commit(vc4, state);
420 
421 	drm_atomic_helper_commit_planes(dev, state,
422 					DRM_PLANE_COMMIT_ACTIVE_ONLY);
423 
424 	drm_atomic_helper_commit_modeset_enables(dev, state);
425 
426 	drm_atomic_helper_fake_vblank(state);
427 
428 	drm_atomic_helper_commit_hw_done(state);
429 
430 	drm_atomic_helper_wait_for_flip_done(dev, state);
431 
432 	drm_atomic_helper_cleanup_planes(dev, state);
433 
434 	if (vc4->is_vc5) {
435 		drm_dbg(dev, "Running the core clock at %lu Hz\n",
436 			new_hvs_state->core_clock_rate);
437 
438 		/*
439 		 * Request a clock rate based on the current HVS
440 		 * requirements.
441 		 */
442 		WARN_ON(clk_set_min_rate(hvs->core_clk, new_hvs_state->core_clock_rate));
443 
444 		drm_dbg(dev, "Core clock actual rate: %lu Hz\n",
445 			clk_get_rate(hvs->core_clk));
446 	}
447 }
448 
449 static int vc4_atomic_commit_setup(struct drm_atomic_state *state)
450 {
451 	struct drm_crtc_state *crtc_state;
452 	struct vc4_hvs_state *hvs_state;
453 	struct drm_crtc *crtc;
454 	unsigned int i;
455 
456 	hvs_state = vc4_hvs_get_new_global_state(state);
457 	if (WARN_ON(IS_ERR(hvs_state)))
458 		return PTR_ERR(hvs_state);
459 
460 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
461 		struct vc4_crtc_state *vc4_crtc_state =
462 			to_vc4_crtc_state(crtc_state);
463 		unsigned int channel =
464 			vc4_crtc_state->assigned_channel;
465 
466 		if (channel == VC4_HVS_CHANNEL_DISABLED)
467 			continue;
468 
469 		if (!hvs_state->fifo_state[channel].in_use)
470 			continue;
471 
472 		hvs_state->fifo_state[channel].pending_commit =
473 			drm_crtc_commit_get(crtc_state->commit);
474 	}
475 
476 	return 0;
477 }
478 
479 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
480 					     struct drm_file *file_priv,
481 					     const struct drm_mode_fb_cmd2 *mode_cmd)
482 {
483 	struct vc4_dev *vc4 = to_vc4_dev(dev);
484 	struct drm_mode_fb_cmd2 mode_cmd_local;
485 
486 	if (WARN_ON_ONCE(vc4->is_vc5))
487 		return ERR_PTR(-ENODEV);
488 
489 	/* If the user didn't specify a modifier, use the
490 	 * vc4_set_tiling_ioctl() state for the BO.
491 	 */
492 	if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
493 		struct drm_gem_object *gem_obj;
494 		struct vc4_bo *bo;
495 
496 		gem_obj = drm_gem_object_lookup(file_priv,
497 						mode_cmd->handles[0]);
498 		if (!gem_obj) {
499 			DRM_DEBUG("Failed to look up GEM BO %d\n",
500 				  mode_cmd->handles[0]);
501 			return ERR_PTR(-ENOENT);
502 		}
503 		bo = to_vc4_bo(gem_obj);
504 
505 		mode_cmd_local = *mode_cmd;
506 
507 		if (bo->t_format) {
508 			mode_cmd_local.modifier[0] =
509 				DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
510 		} else {
511 			mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
512 		}
513 
514 		drm_gem_object_put(gem_obj);
515 
516 		mode_cmd = &mode_cmd_local;
517 	}
518 
519 	return drm_gem_fb_create(dev, file_priv, mode_cmd);
520 }
521 
522 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC
523  * at a time and the HW only supports S0.9 scalars. To account for the latter,
524  * we don't allow userland to set a CTM that we have no hope of approximating.
525  */
526 static int
527 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
528 {
529 	struct vc4_dev *vc4 = to_vc4_dev(dev);
530 	struct vc4_ctm_state *ctm_state = NULL;
531 	struct drm_crtc *crtc;
532 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
533 	struct drm_color_ctm *ctm;
534 	int i;
535 
536 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
537 		/* CTM is being disabled. */
538 		if (!new_crtc_state->ctm && old_crtc_state->ctm) {
539 			ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
540 			if (IS_ERR(ctm_state))
541 				return PTR_ERR(ctm_state);
542 			ctm_state->fifo = 0;
543 		}
544 	}
545 
546 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
547 		if (new_crtc_state->ctm == old_crtc_state->ctm)
548 			continue;
549 
550 		if (!ctm_state) {
551 			ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
552 			if (IS_ERR(ctm_state))
553 				return PTR_ERR(ctm_state);
554 		}
555 
556 		/* CTM is being enabled or the matrix changed. */
557 		if (new_crtc_state->ctm) {
558 			struct vc4_crtc_state *vc4_crtc_state =
559 				to_vc4_crtc_state(new_crtc_state);
560 
561 			/* fifo is 1-based since 0 disables CTM. */
562 			int fifo = vc4_crtc_state->assigned_channel + 1;
563 
564 			/* Check userland isn't trying to turn on CTM for more
565 			 * than one CRTC at a time.
566 			 */
567 			if (ctm_state->fifo && ctm_state->fifo != fifo) {
568 				DRM_DEBUG_DRIVER("Too many CTM configured\n");
569 				return -EINVAL;
570 			}
571 
572 			/* Check we can approximate the specified CTM.
573 			 * We disallow scalars |c| > 1.0 since the HW has
574 			 * no integer bits.
575 			 */
576 			ctm = new_crtc_state->ctm->data;
577 			for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
578 				u64 val = ctm->matrix[i];
579 
580 				val &= ~BIT_ULL(63);
581 				if (val > BIT_ULL(32))
582 					return -EINVAL;
583 			}
584 
585 			ctm_state->fifo = fifo;
586 			ctm_state->ctm = ctm;
587 		}
588 	}
589 
590 	return 0;
591 }
592 
593 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
594 {
595 	struct drm_plane_state *old_plane_state, *new_plane_state;
596 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
597 	struct vc4_load_tracker_state *load_state;
598 	struct drm_private_state *priv_state;
599 	struct drm_plane *plane;
600 	int i;
601 
602 	priv_state = drm_atomic_get_private_obj_state(state,
603 						      &vc4->load_tracker);
604 	if (IS_ERR(priv_state))
605 		return PTR_ERR(priv_state);
606 
607 	load_state = to_vc4_load_tracker_state(priv_state);
608 	for_each_oldnew_plane_in_state(state, plane, old_plane_state,
609 				       new_plane_state, i) {
610 		struct vc4_plane_state *vc4_plane_state;
611 
612 		if (old_plane_state->fb && old_plane_state->crtc) {
613 			vc4_plane_state = to_vc4_plane_state(old_plane_state);
614 			load_state->membus_load -= vc4_plane_state->membus_load;
615 			load_state->hvs_load -= vc4_plane_state->hvs_load;
616 		}
617 
618 		if (new_plane_state->fb && new_plane_state->crtc) {
619 			vc4_plane_state = to_vc4_plane_state(new_plane_state);
620 			load_state->membus_load += vc4_plane_state->membus_load;
621 			load_state->hvs_load += vc4_plane_state->hvs_load;
622 		}
623 	}
624 
625 	/* Don't check the load when the tracker is disabled. */
626 	if (!vc4->load_tracker_enabled)
627 		return 0;
628 
629 	/* The absolute limit is 2Gbyte/sec, but let's take a margin to let
630 	 * the system work when other blocks are accessing the memory.
631 	 */
632 	if (load_state->membus_load > SZ_1G + SZ_512M)
633 		return -ENOSPC;
634 
635 	/* HVS clock is supposed to run @ 250Mhz, let's take a margin and
636 	 * consider the maximum number of cycles is 240M.
637 	 */
638 	if (load_state->hvs_load > 240000000ULL)
639 		return -ENOSPC;
640 
641 	return 0;
642 }
643 
644 static struct drm_private_state *
645 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
646 {
647 	struct vc4_load_tracker_state *state;
648 
649 	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
650 	if (!state)
651 		return NULL;
652 
653 	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
654 
655 	return &state->base;
656 }
657 
658 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
659 					   struct drm_private_state *state)
660 {
661 	struct vc4_load_tracker_state *load_state;
662 
663 	load_state = to_vc4_load_tracker_state(state);
664 	kfree(load_state);
665 }
666 
667 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
668 	.atomic_duplicate_state = vc4_load_tracker_duplicate_state,
669 	.atomic_destroy_state = vc4_load_tracker_destroy_state,
670 };
671 
672 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
673 {
674 	struct vc4_dev *vc4 = to_vc4_dev(dev);
675 
676 	drm_atomic_private_obj_fini(&vc4->load_tracker);
677 }
678 
679 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
680 {
681 	struct vc4_load_tracker_state *load_state;
682 
683 	load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
684 	if (!load_state)
685 		return -ENOMEM;
686 
687 	drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
688 				    &load_state->base,
689 				    &vc4_load_tracker_state_funcs);
690 
691 	return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
692 }
693 
694 static struct drm_private_state *
695 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
696 {
697 	struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
698 	struct vc4_hvs_state *state;
699 	unsigned int i;
700 
701 	state = kzalloc(sizeof(*state), GFP_KERNEL);
702 	if (!state)
703 		return NULL;
704 
705 	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
706 
707 	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
708 		state->fifo_state[i].in_use = old_state->fifo_state[i].in_use;
709 		state->fifo_state[i].fifo_load = old_state->fifo_state[i].fifo_load;
710 	}
711 
712 	state->core_clock_rate = old_state->core_clock_rate;
713 
714 	return &state->base;
715 }
716 
717 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
718 					   struct drm_private_state *state)
719 {
720 	struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
721 	unsigned int i;
722 
723 	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
724 		if (!hvs_state->fifo_state[i].pending_commit)
725 			continue;
726 
727 		drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit);
728 	}
729 
730 	kfree(hvs_state);
731 }
732 
733 static void vc4_hvs_channels_print_state(struct drm_printer *p,
734 					 const struct drm_private_state *state)
735 {
736 	struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
737 	unsigned int i;
738 
739 	drm_printf(p, "HVS State\n");
740 	drm_printf(p, "\tCore Clock Rate: %lu\n", hvs_state->core_clock_rate);
741 
742 	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
743 		drm_printf(p, "\tChannel %d\n", i);
744 		drm_printf(p, "\t\tin use=%d\n", hvs_state->fifo_state[i].in_use);
745 		drm_printf(p, "\t\tload=%lu\n", hvs_state->fifo_state[i].fifo_load);
746 	}
747 }
748 
749 static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
750 	.atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
751 	.atomic_destroy_state = vc4_hvs_channels_destroy_state,
752 	.atomic_print_state = vc4_hvs_channels_print_state,
753 };
754 
755 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
756 {
757 	struct vc4_dev *vc4 = to_vc4_dev(dev);
758 
759 	drm_atomic_private_obj_fini(&vc4->hvs_channels);
760 }
761 
762 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
763 {
764 	struct vc4_hvs_state *state;
765 
766 	state = kzalloc(sizeof(*state), GFP_KERNEL);
767 	if (!state)
768 		return -ENOMEM;
769 
770 	drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
771 				    &state->base,
772 				    &vc4_hvs_state_funcs);
773 
774 	return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
775 }
776 
777 /*
778  * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
779  * the TXP (and therefore all the CRTCs found on that platform).
780  *
781  * The naive (and our initial) implementation would just iterate over
782  * all the active CRTCs, try to find a suitable FIFO, and then remove it
783  * from the pool of available FIFOs. However, there are a few corner
784  * cases that need to be considered:
785  *
786  * - When running in a dual-display setup (so with two CRTCs involved),
787  *   we can update the state of a single CRTC (for example by changing
788  *   its mode using xrandr under X11) without affecting the other. In
789  *   this case, the other CRTC wouldn't be in the state at all, so we
790  *   need to consider all the running CRTCs in the DRM device to assign
791  *   a FIFO, not just the one in the state.
792  *
793  * - To fix the above, we can't use drm_atomic_get_crtc_state on all
794  *   enabled CRTCs to pull their CRTC state into the global state, since
795  *   a page flip would start considering their vblank to complete. Since
796  *   we don't have a guarantee that they are actually active, that
797  *   vblank might never happen, and shouldn't even be considered if we
798  *   want to do a page flip on a single CRTC. That can be tested by
799  *   doing a modetest -v first on HDMI1 and then on HDMI0.
800  *
801  * - Since we need the pixelvalve to be disabled and enabled back when
802  *   the FIFO is changed, we should keep the FIFO assigned for as long
803  *   as the CRTC is enabled, only considering it free again once that
804  *   CRTC has been disabled. This can be tested by booting X11 on a
805  *   single display, and changing the resolution down and then back up.
806  */
807 static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
808 				      struct drm_atomic_state *state)
809 {
810 	struct vc4_hvs_state *hvs_new_state;
811 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
812 	struct drm_crtc *crtc;
813 	unsigned int unassigned_channels = 0;
814 	unsigned int i;
815 
816 	hvs_new_state = vc4_hvs_get_global_state(state);
817 	if (IS_ERR(hvs_new_state))
818 		return PTR_ERR(hvs_new_state);
819 
820 	for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++)
821 		if (!hvs_new_state->fifo_state[i].in_use)
822 			unassigned_channels |= BIT(i);
823 
824 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
825 		struct vc4_crtc_state *old_vc4_crtc_state =
826 			to_vc4_crtc_state(old_crtc_state);
827 		struct vc4_crtc_state *new_vc4_crtc_state =
828 			to_vc4_crtc_state(new_crtc_state);
829 		struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
830 		unsigned int matching_channels;
831 		unsigned int channel;
832 
833 		drm_dbg(dev, "%s: Trying to find a channel.\n", crtc->name);
834 
835 		/* Nothing to do here, let's skip it */
836 		if (old_crtc_state->enable == new_crtc_state->enable) {
837 			if (new_crtc_state->enable)
838 				drm_dbg(dev, "%s: Already enabled, reusing channel %d.\n",
839 					crtc->name, new_vc4_crtc_state->assigned_channel);
840 			else
841 				drm_dbg(dev, "%s: Disabled, ignoring.\n", crtc->name);
842 
843 			continue;
844 		}
845 
846 		/* Muxing will need to be modified, mark it as such */
847 		new_vc4_crtc_state->update_muxing = true;
848 
849 		/* If we're disabling our CRTC, we put back our channel */
850 		if (!new_crtc_state->enable) {
851 			channel = old_vc4_crtc_state->assigned_channel;
852 
853 			drm_dbg(dev, "%s: Disabling, Freeing channel %d\n",
854 				crtc->name, channel);
855 
856 			hvs_new_state->fifo_state[channel].in_use = false;
857 			new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
858 			continue;
859 		}
860 
861 		/*
862 		 * The problem we have to solve here is that we have
863 		 * up to 7 encoders, connected to up to 6 CRTCs.
864 		 *
865 		 * Those CRTCs, depending on the instance, can be
866 		 * routed to 1, 2 or 3 HVS FIFOs, and we need to set
867 		 * the change the muxing between FIFOs and outputs in
868 		 * the HVS accordingly.
869 		 *
870 		 * It would be pretty hard to come up with an
871 		 * algorithm that would generically solve
872 		 * this. However, the current routing trees we support
873 		 * allow us to simplify a bit the problem.
874 		 *
875 		 * Indeed, with the current supported layouts, if we
876 		 * try to assign in the ascending crtc index order the
877 		 * FIFOs, we can't fall into the situation where an
878 		 * earlier CRTC that had multiple routes is assigned
879 		 * one that was the only option for a later CRTC.
880 		 *
881 		 * If the layout changes and doesn't give us that in
882 		 * the future, we will need to have something smarter,
883 		 * but it works so far.
884 		 */
885 		matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
886 		if (!matching_channels)
887 			return -EINVAL;
888 
889 		channel = ffs(matching_channels) - 1;
890 
891 		drm_dbg(dev, "Assigned HVS channel %d to CRTC %s\n", channel, crtc->name);
892 		new_vc4_crtc_state->assigned_channel = channel;
893 		unassigned_channels &= ~BIT(channel);
894 		hvs_new_state->fifo_state[channel].in_use = true;
895 	}
896 
897 	return 0;
898 }
899 
900 static int
901 vc4_core_clock_atomic_check(struct drm_atomic_state *state)
902 {
903 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
904 	struct drm_private_state *priv_state;
905 	struct vc4_hvs_state *hvs_new_state;
906 	struct vc4_load_tracker_state *load_state;
907 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
908 	struct drm_crtc *crtc;
909 	unsigned int num_outputs;
910 	unsigned long pixel_rate;
911 	unsigned long cob_rate;
912 	unsigned int i;
913 
914 	priv_state = drm_atomic_get_private_obj_state(state,
915 						      &vc4->load_tracker);
916 	if (IS_ERR(priv_state))
917 		return PTR_ERR(priv_state);
918 
919 	load_state = to_vc4_load_tracker_state(priv_state);
920 
921 	hvs_new_state = vc4_hvs_get_global_state(state);
922 	if (IS_ERR(hvs_new_state))
923 		return PTR_ERR(hvs_new_state);
924 
925 	for_each_oldnew_crtc_in_state(state, crtc,
926 				      old_crtc_state,
927 				      new_crtc_state,
928 				      i) {
929 		if (old_crtc_state->active) {
930 			struct vc4_crtc_state *old_vc4_state =
931 				to_vc4_crtc_state(old_crtc_state);
932 			unsigned int channel = old_vc4_state->assigned_channel;
933 
934 			hvs_new_state->fifo_state[channel].fifo_load = 0;
935 		}
936 
937 		if (new_crtc_state->active) {
938 			struct vc4_crtc_state *new_vc4_state =
939 				to_vc4_crtc_state(new_crtc_state);
940 			unsigned int channel = new_vc4_state->assigned_channel;
941 
942 			hvs_new_state->fifo_state[channel].fifo_load =
943 				new_vc4_state->hvs_load;
944 		}
945 	}
946 
947 	cob_rate = 0;
948 	num_outputs = 0;
949 	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
950 		if (!hvs_new_state->fifo_state[i].in_use)
951 			continue;
952 
953 		num_outputs++;
954 		cob_rate = max_t(unsigned long,
955 				 hvs_new_state->fifo_state[i].fifo_load,
956 				 cob_rate);
957 	}
958 
959 	pixel_rate = load_state->hvs_load;
960 	if (num_outputs > 1) {
961 		pixel_rate = (pixel_rate * 40) / 100;
962 	} else {
963 		pixel_rate = (pixel_rate * 60) / 100;
964 	}
965 
966 	hvs_new_state->core_clock_rate = max(cob_rate, pixel_rate);
967 
968 	return 0;
969 }
970 
971 
972 static int
973 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
974 {
975 	int ret;
976 
977 	ret = vc4_pv_muxing_atomic_check(dev, state);
978 	if (ret)
979 		return ret;
980 
981 	ret = vc4_ctm_atomic_check(dev, state);
982 	if (ret < 0)
983 		return ret;
984 
985 	ret = drm_atomic_helper_check(dev, state);
986 	if (ret)
987 		return ret;
988 
989 	ret = vc4_load_tracker_atomic_check(state);
990 	if (ret)
991 		return ret;
992 
993 	return vc4_core_clock_atomic_check(state);
994 }
995 
996 static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = {
997 	.atomic_commit_setup	= vc4_atomic_commit_setup,
998 	.atomic_commit_tail	= vc4_atomic_commit_tail,
999 };
1000 
1001 static const struct drm_mode_config_funcs vc4_mode_funcs = {
1002 	.atomic_check = vc4_atomic_check,
1003 	.atomic_commit = drm_atomic_helper_commit,
1004 	.fb_create = vc4_fb_create,
1005 };
1006 
1007 static const struct drm_mode_config_funcs vc5_mode_funcs = {
1008 	.atomic_check = vc4_atomic_check,
1009 	.atomic_commit = drm_atomic_helper_commit,
1010 	.fb_create = drm_gem_fb_create,
1011 };
1012 
1013 int vc4_kms_load(struct drm_device *dev)
1014 {
1015 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1016 	int ret;
1017 
1018 	/*
1019 	 * The limits enforced by the load tracker aren't relevant for
1020 	 * the BCM2711, but the load tracker computations are used for
1021 	 * the core clock rate calculation.
1022 	 */
1023 	if (!vc4->is_vc5) {
1024 		/* Start with the load tracker enabled. Can be
1025 		 * disabled through the debugfs load_tracker file.
1026 		 */
1027 		vc4->load_tracker_enabled = true;
1028 	}
1029 
1030 	/* Set support for vblank irq fast disable, before drm_vblank_init() */
1031 	dev->vblank_disable_immediate = true;
1032 
1033 	ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
1034 	if (ret < 0) {
1035 		dev_err(dev->dev, "failed to initialize vblank\n");
1036 		return ret;
1037 	}
1038 
1039 	if (vc4->is_vc5) {
1040 		dev->mode_config.max_width = 7680;
1041 		dev->mode_config.max_height = 7680;
1042 	} else {
1043 		dev->mode_config.max_width = 2048;
1044 		dev->mode_config.max_height = 2048;
1045 	}
1046 
1047 	dev->mode_config.funcs = vc4->is_vc5 ? &vc5_mode_funcs : &vc4_mode_funcs;
1048 	dev->mode_config.helper_private = &vc4_mode_config_helpers;
1049 	dev->mode_config.preferred_depth = 24;
1050 	dev->mode_config.async_page_flip = true;
1051 
1052 	ret = vc4_ctm_obj_init(vc4);
1053 	if (ret)
1054 		return ret;
1055 
1056 	ret = vc4_load_tracker_obj_init(vc4);
1057 	if (ret)
1058 		return ret;
1059 
1060 	ret = vc4_hvs_channels_obj_init(vc4);
1061 	if (ret)
1062 		return ret;
1063 
1064 	drm_mode_config_reset(dev);
1065 
1066 	drm_kms_helper_poll_init(dev);
1067 
1068 	return 0;
1069 }
1070