1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 KMS 8 * 9 * This is the general code for implementing KMS mode setting that 10 * doesn't clearly associate with any of the other objects (plane, 11 * crtc, HDMI encoder). 12 */ 13 14 #include <linux/clk.h> 15 16 #include <drm/drm_atomic.h> 17 #include <drm/drm_atomic_helper.h> 18 #include <drm/drm_crtc.h> 19 #include <drm/drm_gem_framebuffer_helper.h> 20 #include <drm/drm_plane_helper.h> 21 #include <drm/drm_probe_helper.h> 22 #include <drm/drm_vblank.h> 23 24 #include "vc4_drv.h" 25 #include "vc4_regs.h" 26 27 struct vc4_ctm_state { 28 struct drm_private_state base; 29 struct drm_color_ctm *ctm; 30 int fifo; 31 }; 32 33 static struct vc4_ctm_state *to_vc4_ctm_state(struct drm_private_state *priv) 34 { 35 return container_of(priv, struct vc4_ctm_state, base); 36 } 37 38 struct vc4_load_tracker_state { 39 struct drm_private_state base; 40 u64 hvs_load; 41 u64 membus_load; 42 }; 43 44 static struct vc4_load_tracker_state * 45 to_vc4_load_tracker_state(struct drm_private_state *priv) 46 { 47 return container_of(priv, struct vc4_load_tracker_state, base); 48 } 49 50 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state, 51 struct drm_private_obj *manager) 52 { 53 struct drm_device *dev = state->dev; 54 struct vc4_dev *vc4 = to_vc4_dev(dev); 55 struct drm_private_state *priv_state; 56 int ret; 57 58 ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx); 59 if (ret) 60 return ERR_PTR(ret); 61 62 priv_state = drm_atomic_get_private_obj_state(state, manager); 63 if (IS_ERR(priv_state)) 64 return ERR_CAST(priv_state); 65 66 return to_vc4_ctm_state(priv_state); 67 } 68 69 static struct drm_private_state * 70 vc4_ctm_duplicate_state(struct drm_private_obj *obj) 71 { 72 struct vc4_ctm_state *state; 73 74 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); 75 if (!state) 76 return NULL; 77 78 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 79 80 return &state->base; 81 } 82 83 static void vc4_ctm_destroy_state(struct drm_private_obj *obj, 84 struct drm_private_state *state) 85 { 86 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state); 87 88 kfree(ctm_state); 89 } 90 91 static const struct drm_private_state_funcs vc4_ctm_state_funcs = { 92 .atomic_duplicate_state = vc4_ctm_duplicate_state, 93 .atomic_destroy_state = vc4_ctm_destroy_state, 94 }; 95 96 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused) 97 { 98 struct vc4_dev *vc4 = to_vc4_dev(dev); 99 100 drm_atomic_private_obj_fini(&vc4->ctm_manager); 101 } 102 103 static int vc4_ctm_obj_init(struct vc4_dev *vc4) 104 { 105 struct vc4_ctm_state *ctm_state; 106 107 drm_modeset_lock_init(&vc4->ctm_state_lock); 108 109 ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL); 110 if (!ctm_state) 111 return -ENOMEM; 112 113 drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base, 114 &vc4_ctm_state_funcs); 115 116 return drmm_add_action(&vc4->base, vc4_ctm_obj_fini, NULL); 117 } 118 119 /* Converts a DRM S31.32 value to the HW S0.9 format. */ 120 static u16 vc4_ctm_s31_32_to_s0_9(u64 in) 121 { 122 u16 r; 123 124 /* Sign bit. */ 125 r = in & BIT_ULL(63) ? BIT(9) : 0; 126 127 if ((in & GENMASK_ULL(62, 32)) > 0) { 128 /* We have zero integer bits so we can only saturate here. */ 129 r |= GENMASK(8, 0); 130 } else { 131 /* Otherwise take the 9 most important fractional bits. */ 132 r |= (in >> 23) & GENMASK(8, 0); 133 } 134 135 return r; 136 } 137 138 static void 139 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state) 140 { 141 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state); 142 struct drm_color_ctm *ctm = ctm_state->ctm; 143 144 if (ctm_state->fifo) { 145 HVS_WRITE(SCALER_OLEDCOEF2, 146 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]), 147 SCALER_OLEDCOEF2_R_TO_R) | 148 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]), 149 SCALER_OLEDCOEF2_R_TO_G) | 150 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]), 151 SCALER_OLEDCOEF2_R_TO_B)); 152 HVS_WRITE(SCALER_OLEDCOEF1, 153 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]), 154 SCALER_OLEDCOEF1_G_TO_R) | 155 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]), 156 SCALER_OLEDCOEF1_G_TO_G) | 157 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]), 158 SCALER_OLEDCOEF1_G_TO_B)); 159 HVS_WRITE(SCALER_OLEDCOEF0, 160 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]), 161 SCALER_OLEDCOEF0_B_TO_R) | 162 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]), 163 SCALER_OLEDCOEF0_B_TO_G) | 164 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]), 165 SCALER_OLEDCOEF0_B_TO_B)); 166 } 167 168 HVS_WRITE(SCALER_OLEDOFFS, 169 VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO)); 170 } 171 172 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4, 173 struct drm_atomic_state *state) 174 { 175 struct drm_crtc_state *crtc_state; 176 struct drm_crtc *crtc; 177 unsigned int i; 178 179 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 180 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); 181 u32 dispctrl; 182 u32 dsp3_mux; 183 184 if (!crtc_state->active) 185 continue; 186 187 if (vc4_state->assigned_channel != 2) 188 continue; 189 190 /* 191 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to 192 * FIFO X'. 193 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'. 194 * 195 * DSP3 is connected to FIFO2 unless the transposer is 196 * enabled. In this case, FIFO 2 is directly accessed by the 197 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1 198 * route. 199 */ 200 if (vc4_state->feed_txp) 201 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX); 202 else 203 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX); 204 205 dispctrl = HVS_READ(SCALER_DISPCTRL) & 206 ~SCALER_DISPCTRL_DSP3_MUX_MASK; 207 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux); 208 } 209 } 210 211 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4, 212 struct drm_atomic_state *state) 213 { 214 struct drm_crtc_state *crtc_state; 215 struct drm_crtc *crtc; 216 unsigned char dsp2_mux = 0; 217 unsigned char dsp3_mux = 3; 218 unsigned char dsp4_mux = 3; 219 unsigned char dsp5_mux = 3; 220 unsigned int i; 221 u32 reg; 222 223 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 224 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); 225 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 226 227 if (!crtc_state->active) 228 continue; 229 230 switch (vc4_crtc->data->hvs_output) { 231 case 2: 232 dsp2_mux = (vc4_state->assigned_channel == 2) ? 0 : 1; 233 break; 234 235 case 3: 236 dsp3_mux = vc4_state->assigned_channel; 237 break; 238 239 case 4: 240 dsp4_mux = vc4_state->assigned_channel; 241 break; 242 243 case 5: 244 dsp5_mux = vc4_state->assigned_channel; 245 break; 246 247 default: 248 break; 249 } 250 } 251 252 reg = HVS_READ(SCALER_DISPECTRL); 253 HVS_WRITE(SCALER_DISPECTRL, 254 (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) | 255 VC4_SET_FIELD(dsp2_mux, SCALER_DISPECTRL_DSP2_MUX)); 256 257 reg = HVS_READ(SCALER_DISPCTRL); 258 HVS_WRITE(SCALER_DISPCTRL, 259 (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) | 260 VC4_SET_FIELD(dsp3_mux, SCALER_DISPCTRL_DSP3_MUX)); 261 262 reg = HVS_READ(SCALER_DISPEOLN); 263 HVS_WRITE(SCALER_DISPEOLN, 264 (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) | 265 VC4_SET_FIELD(dsp4_mux, SCALER_DISPEOLN_DSP4_MUX)); 266 267 reg = HVS_READ(SCALER_DISPDITHER); 268 HVS_WRITE(SCALER_DISPDITHER, 269 (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) | 270 VC4_SET_FIELD(dsp5_mux, SCALER_DISPDITHER_DSP5_MUX)); 271 } 272 273 static void 274 vc4_atomic_complete_commit(struct drm_atomic_state *state) 275 { 276 struct drm_device *dev = state->dev; 277 struct vc4_dev *vc4 = to_vc4_dev(dev); 278 struct vc4_hvs *hvs = vc4->hvs; 279 struct drm_crtc_state *new_crtc_state; 280 struct drm_crtc *crtc; 281 int i; 282 283 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 284 struct vc4_crtc_state *vc4_crtc_state; 285 286 if (!new_crtc_state->commit) 287 continue; 288 289 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state); 290 vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel); 291 } 292 293 if (vc4->hvs->hvs5) 294 clk_set_min_rate(hvs->core_clk, 500000000); 295 296 drm_atomic_helper_wait_for_fences(dev, state, false); 297 298 drm_atomic_helper_wait_for_dependencies(state); 299 300 drm_atomic_helper_commit_modeset_disables(dev, state); 301 302 vc4_ctm_commit(vc4, state); 303 304 if (vc4->hvs->hvs5) 305 vc5_hvs_pv_muxing_commit(vc4, state); 306 else 307 vc4_hvs_pv_muxing_commit(vc4, state); 308 309 drm_atomic_helper_commit_planes(dev, state, 0); 310 311 drm_atomic_helper_commit_modeset_enables(dev, state); 312 313 drm_atomic_helper_fake_vblank(state); 314 315 drm_atomic_helper_commit_hw_done(state); 316 317 drm_atomic_helper_wait_for_flip_done(dev, state); 318 319 drm_atomic_helper_cleanup_planes(dev, state); 320 321 drm_atomic_helper_commit_cleanup_done(state); 322 323 if (vc4->hvs->hvs5) 324 clk_set_min_rate(hvs->core_clk, 0); 325 326 drm_atomic_state_put(state); 327 328 up(&vc4->async_modeset); 329 } 330 331 static void commit_work(struct work_struct *work) 332 { 333 struct drm_atomic_state *state = container_of(work, 334 struct drm_atomic_state, 335 commit_work); 336 vc4_atomic_complete_commit(state); 337 } 338 339 /** 340 * vc4_atomic_commit - commit validated state object 341 * @dev: DRM device 342 * @state: the driver state object 343 * @nonblock: nonblocking commit 344 * 345 * This function commits a with drm_atomic_helper_check() pre-validated state 346 * object. This can still fail when e.g. the framebuffer reservation fails. For 347 * now this doesn't implement asynchronous commits. 348 * 349 * RETURNS 350 * Zero for success or -errno. 351 */ 352 static int vc4_atomic_commit(struct drm_device *dev, 353 struct drm_atomic_state *state, 354 bool nonblock) 355 { 356 struct vc4_dev *vc4 = to_vc4_dev(dev); 357 int ret; 358 359 if (state->async_update) { 360 ret = down_interruptible(&vc4->async_modeset); 361 if (ret) 362 return ret; 363 364 ret = drm_atomic_helper_prepare_planes(dev, state); 365 if (ret) { 366 up(&vc4->async_modeset); 367 return ret; 368 } 369 370 drm_atomic_helper_async_commit(dev, state); 371 372 drm_atomic_helper_cleanup_planes(dev, state); 373 374 up(&vc4->async_modeset); 375 376 return 0; 377 } 378 379 /* We know for sure we don't want an async update here. Set 380 * state->legacy_cursor_update to false to prevent 381 * drm_atomic_helper_setup_commit() from auto-completing 382 * commit->flip_done. 383 */ 384 state->legacy_cursor_update = false; 385 ret = drm_atomic_helper_setup_commit(state, nonblock); 386 if (ret) 387 return ret; 388 389 INIT_WORK(&state->commit_work, commit_work); 390 391 ret = down_interruptible(&vc4->async_modeset); 392 if (ret) 393 return ret; 394 395 ret = drm_atomic_helper_prepare_planes(dev, state); 396 if (ret) { 397 up(&vc4->async_modeset); 398 return ret; 399 } 400 401 if (!nonblock) { 402 ret = drm_atomic_helper_wait_for_fences(dev, state, true); 403 if (ret) { 404 drm_atomic_helper_cleanup_planes(dev, state); 405 up(&vc4->async_modeset); 406 return ret; 407 } 408 } 409 410 /* 411 * This is the point of no return - everything below never fails except 412 * when the hw goes bonghits. Which means we can commit the new state on 413 * the software side now. 414 */ 415 416 BUG_ON(drm_atomic_helper_swap_state(state, false) < 0); 417 418 /* 419 * Everything below can be run asynchronously without the need to grab 420 * any modeset locks at all under one condition: It must be guaranteed 421 * that the asynchronous work has either been cancelled (if the driver 422 * supports it, which at least requires that the framebuffers get 423 * cleaned up with drm_atomic_helper_cleanup_planes()) or completed 424 * before the new state gets committed on the software side with 425 * drm_atomic_helper_swap_state(). 426 * 427 * This scheme allows new atomic state updates to be prepared and 428 * checked in parallel to the asynchronous completion of the previous 429 * update. Which is important since compositors need to figure out the 430 * composition of the next frame right after having submitted the 431 * current layout. 432 */ 433 434 drm_atomic_state_get(state); 435 if (nonblock) 436 queue_work(system_unbound_wq, &state->commit_work); 437 else 438 vc4_atomic_complete_commit(state); 439 440 return 0; 441 } 442 443 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev, 444 struct drm_file *file_priv, 445 const struct drm_mode_fb_cmd2 *mode_cmd) 446 { 447 struct drm_mode_fb_cmd2 mode_cmd_local; 448 449 /* If the user didn't specify a modifier, use the 450 * vc4_set_tiling_ioctl() state for the BO. 451 */ 452 if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) { 453 struct drm_gem_object *gem_obj; 454 struct vc4_bo *bo; 455 456 gem_obj = drm_gem_object_lookup(file_priv, 457 mode_cmd->handles[0]); 458 if (!gem_obj) { 459 DRM_DEBUG("Failed to look up GEM BO %d\n", 460 mode_cmd->handles[0]); 461 return ERR_PTR(-ENOENT); 462 } 463 bo = to_vc4_bo(gem_obj); 464 465 mode_cmd_local = *mode_cmd; 466 467 if (bo->t_format) { 468 mode_cmd_local.modifier[0] = 469 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED; 470 } else { 471 mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE; 472 } 473 474 drm_gem_object_put(gem_obj); 475 476 mode_cmd = &mode_cmd_local; 477 } 478 479 return drm_gem_fb_create(dev, file_priv, mode_cmd); 480 } 481 482 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC 483 * at a time and the HW only supports S0.9 scalars. To account for the latter, 484 * we don't allow userland to set a CTM that we have no hope of approximating. 485 */ 486 static int 487 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 488 { 489 struct vc4_dev *vc4 = to_vc4_dev(dev); 490 struct vc4_ctm_state *ctm_state = NULL; 491 struct drm_crtc *crtc; 492 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 493 struct drm_color_ctm *ctm; 494 int i; 495 496 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 497 /* CTM is being disabled. */ 498 if (!new_crtc_state->ctm && old_crtc_state->ctm) { 499 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager); 500 if (IS_ERR(ctm_state)) 501 return PTR_ERR(ctm_state); 502 ctm_state->fifo = 0; 503 } 504 } 505 506 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 507 if (new_crtc_state->ctm == old_crtc_state->ctm) 508 continue; 509 510 if (!ctm_state) { 511 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager); 512 if (IS_ERR(ctm_state)) 513 return PTR_ERR(ctm_state); 514 } 515 516 /* CTM is being enabled or the matrix changed. */ 517 if (new_crtc_state->ctm) { 518 struct vc4_crtc_state *vc4_crtc_state = 519 to_vc4_crtc_state(new_crtc_state); 520 521 /* fifo is 1-based since 0 disables CTM. */ 522 int fifo = vc4_crtc_state->assigned_channel + 1; 523 524 /* Check userland isn't trying to turn on CTM for more 525 * than one CRTC at a time. 526 */ 527 if (ctm_state->fifo && ctm_state->fifo != fifo) { 528 DRM_DEBUG_DRIVER("Too many CTM configured\n"); 529 return -EINVAL; 530 } 531 532 /* Check we can approximate the specified CTM. 533 * We disallow scalars |c| > 1.0 since the HW has 534 * no integer bits. 535 */ 536 ctm = new_crtc_state->ctm->data; 537 for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) { 538 u64 val = ctm->matrix[i]; 539 540 val &= ~BIT_ULL(63); 541 if (val > BIT_ULL(32)) 542 return -EINVAL; 543 } 544 545 ctm_state->fifo = fifo; 546 ctm_state->ctm = ctm; 547 } 548 } 549 550 return 0; 551 } 552 553 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state) 554 { 555 struct drm_plane_state *old_plane_state, *new_plane_state; 556 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 557 struct vc4_load_tracker_state *load_state; 558 struct drm_private_state *priv_state; 559 struct drm_plane *plane; 560 int i; 561 562 if (!vc4->load_tracker_available) 563 return 0; 564 565 priv_state = drm_atomic_get_private_obj_state(state, 566 &vc4->load_tracker); 567 if (IS_ERR(priv_state)) 568 return PTR_ERR(priv_state); 569 570 load_state = to_vc4_load_tracker_state(priv_state); 571 for_each_oldnew_plane_in_state(state, plane, old_plane_state, 572 new_plane_state, i) { 573 struct vc4_plane_state *vc4_plane_state; 574 575 if (old_plane_state->fb && old_plane_state->crtc) { 576 vc4_plane_state = to_vc4_plane_state(old_plane_state); 577 load_state->membus_load -= vc4_plane_state->membus_load; 578 load_state->hvs_load -= vc4_plane_state->hvs_load; 579 } 580 581 if (new_plane_state->fb && new_plane_state->crtc) { 582 vc4_plane_state = to_vc4_plane_state(new_plane_state); 583 load_state->membus_load += vc4_plane_state->membus_load; 584 load_state->hvs_load += vc4_plane_state->hvs_load; 585 } 586 } 587 588 /* Don't check the load when the tracker is disabled. */ 589 if (!vc4->load_tracker_enabled) 590 return 0; 591 592 /* The absolute limit is 2Gbyte/sec, but let's take a margin to let 593 * the system work when other blocks are accessing the memory. 594 */ 595 if (load_state->membus_load > SZ_1G + SZ_512M) 596 return -ENOSPC; 597 598 /* HVS clock is supposed to run @ 250Mhz, let's take a margin and 599 * consider the maximum number of cycles is 240M. 600 */ 601 if (load_state->hvs_load > 240000000ULL) 602 return -ENOSPC; 603 604 return 0; 605 } 606 607 static struct drm_private_state * 608 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj) 609 { 610 struct vc4_load_tracker_state *state; 611 612 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); 613 if (!state) 614 return NULL; 615 616 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 617 618 return &state->base; 619 } 620 621 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj, 622 struct drm_private_state *state) 623 { 624 struct vc4_load_tracker_state *load_state; 625 626 load_state = to_vc4_load_tracker_state(state); 627 kfree(load_state); 628 } 629 630 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = { 631 .atomic_duplicate_state = vc4_load_tracker_duplicate_state, 632 .atomic_destroy_state = vc4_load_tracker_destroy_state, 633 }; 634 635 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused) 636 { 637 struct vc4_dev *vc4 = to_vc4_dev(dev); 638 639 if (!vc4->load_tracker_available) 640 return; 641 642 drm_atomic_private_obj_fini(&vc4->load_tracker); 643 } 644 645 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4) 646 { 647 struct vc4_load_tracker_state *load_state; 648 649 if (!vc4->load_tracker_available) 650 return 0; 651 652 load_state = kzalloc(sizeof(*load_state), GFP_KERNEL); 653 if (!load_state) 654 return -ENOMEM; 655 656 drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker, 657 &load_state->base, 658 &vc4_load_tracker_state_funcs); 659 660 return drmm_add_action(&vc4->base, vc4_load_tracker_obj_fini, NULL); 661 } 662 663 #define NUM_OUTPUTS 6 664 #define NUM_CHANNELS 3 665 666 static int 667 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 668 { 669 unsigned long unassigned_channels = GENMASK(NUM_CHANNELS - 1, 0); 670 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 671 struct drm_crtc *crtc; 672 int i, ret; 673 674 /* 675 * Since the HVS FIFOs are shared across all the pixelvalves and 676 * the TXP (and thus all the CRTCs), we need to pull the current 677 * state of all the enabled CRTCs so that an update to a single 678 * CRTC still keeps the previous FIFOs enabled and assigned to 679 * the same CRTCs, instead of evaluating only the CRTC being 680 * modified. 681 */ 682 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 683 struct drm_crtc_state *crtc_state; 684 685 if (!crtc->state->enable) 686 continue; 687 688 crtc_state = drm_atomic_get_crtc_state(state, crtc); 689 if (IS_ERR(crtc_state)) 690 return PTR_ERR(crtc_state); 691 } 692 693 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 694 struct vc4_crtc_state *new_vc4_crtc_state = 695 to_vc4_crtc_state(new_crtc_state); 696 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 697 unsigned int matching_channels; 698 699 if (old_crtc_state->enable && !new_crtc_state->enable) 700 new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED; 701 702 if (!new_crtc_state->enable) 703 continue; 704 705 if (new_vc4_crtc_state->assigned_channel != VC4_HVS_CHANNEL_DISABLED) { 706 unassigned_channels &= ~BIT(new_vc4_crtc_state->assigned_channel); 707 continue; 708 } 709 710 /* 711 * The problem we have to solve here is that we have 712 * up to 7 encoders, connected to up to 6 CRTCs. 713 * 714 * Those CRTCs, depending on the instance, can be 715 * routed to 1, 2 or 3 HVS FIFOs, and we need to set 716 * the change the muxing between FIFOs and outputs in 717 * the HVS accordingly. 718 * 719 * It would be pretty hard to come up with an 720 * algorithm that would generically solve 721 * this. However, the current routing trees we support 722 * allow us to simplify a bit the problem. 723 * 724 * Indeed, with the current supported layouts, if we 725 * try to assign in the ascending crtc index order the 726 * FIFOs, we can't fall into the situation where an 727 * earlier CRTC that had multiple routes is assigned 728 * one that was the only option for a later CRTC. 729 * 730 * If the layout changes and doesn't give us that in 731 * the future, we will need to have something smarter, 732 * but it works so far. 733 */ 734 matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels; 735 if (matching_channels) { 736 unsigned int channel = ffs(matching_channels) - 1; 737 738 new_vc4_crtc_state->assigned_channel = channel; 739 unassigned_channels &= ~BIT(channel); 740 } else { 741 return -EINVAL; 742 } 743 } 744 745 ret = vc4_ctm_atomic_check(dev, state); 746 if (ret < 0) 747 return ret; 748 749 ret = drm_atomic_helper_check(dev, state); 750 if (ret) 751 return ret; 752 753 return vc4_load_tracker_atomic_check(state); 754 } 755 756 static const struct drm_mode_config_funcs vc4_mode_funcs = { 757 .atomic_check = vc4_atomic_check, 758 .atomic_commit = vc4_atomic_commit, 759 .fb_create = vc4_fb_create, 760 }; 761 762 int vc4_kms_load(struct drm_device *dev) 763 { 764 struct vc4_dev *vc4 = to_vc4_dev(dev); 765 bool is_vc5 = of_device_is_compatible(dev->dev->of_node, 766 "brcm,bcm2711-vc5"); 767 int ret; 768 769 if (!is_vc5) { 770 vc4->load_tracker_available = true; 771 772 /* Start with the load tracker enabled. Can be 773 * disabled through the debugfs load_tracker file. 774 */ 775 vc4->load_tracker_enabled = true; 776 } 777 778 sema_init(&vc4->async_modeset, 1); 779 780 /* Set support for vblank irq fast disable, before drm_vblank_init() */ 781 dev->vblank_disable_immediate = true; 782 783 dev->irq_enabled = true; 784 ret = drm_vblank_init(dev, dev->mode_config.num_crtc); 785 if (ret < 0) { 786 dev_err(dev->dev, "failed to initialize vblank\n"); 787 return ret; 788 } 789 790 if (is_vc5) { 791 dev->mode_config.max_width = 7680; 792 dev->mode_config.max_height = 7680; 793 } else { 794 dev->mode_config.max_width = 2048; 795 dev->mode_config.max_height = 2048; 796 } 797 798 dev->mode_config.funcs = &vc4_mode_funcs; 799 dev->mode_config.preferred_depth = 24; 800 dev->mode_config.async_page_flip = true; 801 dev->mode_config.allow_fb_modifiers = true; 802 803 ret = vc4_ctm_obj_init(vc4); 804 if (ret) 805 return ret; 806 807 ret = vc4_load_tracker_obj_init(vc4); 808 if (ret) 809 return ret; 810 811 drm_mode_config_reset(dev); 812 813 drm_kms_helper_poll_init(dev); 814 815 return 0; 816 } 817