xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_kms.c (revision 88a6f899)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 KMS
8  *
9  * This is the general code for implementing KMS mode setting that
10  * doesn't clearly associate with any of the other objects (plane,
11  * crtc, HDMI encoder).
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/sort.h>
16 
17 #include <drm/drm_atomic.h>
18 #include <drm/drm_atomic_helper.h>
19 #include <drm/drm_crtc.h>
20 #include <drm/drm_fourcc.h>
21 #include <drm/drm_gem_framebuffer_helper.h>
22 #include <drm/drm_probe_helper.h>
23 #include <drm/drm_vblank.h>
24 
25 #include "vc4_drv.h"
26 #include "vc4_regs.h"
27 
28 struct vc4_ctm_state {
29 	struct drm_private_state base;
30 	struct drm_color_ctm *ctm;
31 	int fifo;
32 };
33 
34 #define to_vc4_ctm_state(_state)				\
35 	container_of_const(_state, struct vc4_ctm_state, base)
36 
37 struct vc4_load_tracker_state {
38 	struct drm_private_state base;
39 	u64 hvs_load;
40 	u64 membus_load;
41 };
42 
43 #define to_vc4_load_tracker_state(_state)				\
44 	container_of_const(_state, struct vc4_load_tracker_state, base)
45 
46 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
47 					       struct drm_private_obj *manager)
48 {
49 	struct drm_device *dev = state->dev;
50 	struct vc4_dev *vc4 = to_vc4_dev(dev);
51 	struct drm_private_state *priv_state;
52 	int ret;
53 
54 	ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
55 	if (ret)
56 		return ERR_PTR(ret);
57 
58 	priv_state = drm_atomic_get_private_obj_state(state, manager);
59 	if (IS_ERR(priv_state))
60 		return ERR_CAST(priv_state);
61 
62 	return to_vc4_ctm_state(priv_state);
63 }
64 
65 static struct drm_private_state *
66 vc4_ctm_duplicate_state(struct drm_private_obj *obj)
67 {
68 	struct vc4_ctm_state *state;
69 
70 	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
71 	if (!state)
72 		return NULL;
73 
74 	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
75 
76 	return &state->base;
77 }
78 
79 static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
80 				  struct drm_private_state *state)
81 {
82 	struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
83 
84 	kfree(ctm_state);
85 }
86 
87 static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
88 	.atomic_duplicate_state = vc4_ctm_duplicate_state,
89 	.atomic_destroy_state = vc4_ctm_destroy_state,
90 };
91 
92 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
93 {
94 	struct vc4_dev *vc4 = to_vc4_dev(dev);
95 
96 	drm_atomic_private_obj_fini(&vc4->ctm_manager);
97 }
98 
99 static int vc4_ctm_obj_init(struct vc4_dev *vc4)
100 {
101 	struct vc4_ctm_state *ctm_state;
102 
103 	drm_modeset_lock_init(&vc4->ctm_state_lock);
104 
105 	ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
106 	if (!ctm_state)
107 		return -ENOMEM;
108 
109 	drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
110 				    &vc4_ctm_state_funcs);
111 
112 	return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
113 }
114 
115 /* Converts a DRM S31.32 value to the HW S0.9 format. */
116 static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
117 {
118 	u16 r;
119 
120 	/* Sign bit. */
121 	r = in & BIT_ULL(63) ? BIT(9) : 0;
122 
123 	if ((in & GENMASK_ULL(62, 32)) > 0) {
124 		/* We have zero integer bits so we can only saturate here. */
125 		r |= GENMASK(8, 0);
126 	} else {
127 		/* Otherwise take the 9 most important fractional bits. */
128 		r |= (in >> 23) & GENMASK(8, 0);
129 	}
130 
131 	return r;
132 }
133 
134 static void
135 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
136 {
137 	struct vc4_hvs *hvs = vc4->hvs;
138 	struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
139 	struct drm_color_ctm *ctm = ctm_state->ctm;
140 
141 	if (ctm_state->fifo) {
142 		HVS_WRITE(SCALER_OLEDCOEF2,
143 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
144 					SCALER_OLEDCOEF2_R_TO_R) |
145 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
146 					SCALER_OLEDCOEF2_R_TO_G) |
147 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
148 					SCALER_OLEDCOEF2_R_TO_B));
149 		HVS_WRITE(SCALER_OLEDCOEF1,
150 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
151 					SCALER_OLEDCOEF1_G_TO_R) |
152 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
153 					SCALER_OLEDCOEF1_G_TO_G) |
154 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
155 					SCALER_OLEDCOEF1_G_TO_B));
156 		HVS_WRITE(SCALER_OLEDCOEF0,
157 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
158 					SCALER_OLEDCOEF0_B_TO_R) |
159 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
160 					SCALER_OLEDCOEF0_B_TO_G) |
161 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
162 					SCALER_OLEDCOEF0_B_TO_B));
163 	}
164 
165 	HVS_WRITE(SCALER_OLEDOFFS,
166 		  VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
167 }
168 
169 struct vc4_hvs_state *
170 vc4_hvs_get_new_global_state(const struct drm_atomic_state *state)
171 {
172 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
173 	struct drm_private_state *priv_state;
174 
175 	priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels);
176 	if (!priv_state)
177 		return ERR_PTR(-EINVAL);
178 
179 	return to_vc4_hvs_state(priv_state);
180 }
181 
182 struct vc4_hvs_state *
183 vc4_hvs_get_old_global_state(const struct drm_atomic_state *state)
184 {
185 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
186 	struct drm_private_state *priv_state;
187 
188 	priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels);
189 	if (!priv_state)
190 		return ERR_PTR(-EINVAL);
191 
192 	return to_vc4_hvs_state(priv_state);
193 }
194 
195 struct vc4_hvs_state *
196 vc4_hvs_get_global_state(struct drm_atomic_state *state)
197 {
198 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
199 	struct drm_private_state *priv_state;
200 
201 	priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
202 	if (IS_ERR(priv_state))
203 		return ERR_CAST(priv_state);
204 
205 	return to_vc4_hvs_state(priv_state);
206 }
207 
208 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
209 				     struct drm_atomic_state *state)
210 {
211 	struct vc4_hvs *hvs = vc4->hvs;
212 	struct drm_crtc_state *crtc_state;
213 	struct drm_crtc *crtc;
214 	unsigned int i;
215 
216 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
217 		struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
218 		struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
219 		u32 dispctrl;
220 		u32 dsp3_mux;
221 
222 		if (!crtc_state->active)
223 			continue;
224 
225 		if (vc4_state->assigned_channel != 2)
226 			continue;
227 
228 		/*
229 		 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
230 		 * FIFO X'.
231 		 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
232 		 *
233 		 * DSP3 is connected to FIFO2 unless the transposer is
234 		 * enabled. In this case, FIFO 2 is directly accessed by the
235 		 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
236 		 * route.
237 		 */
238 		if (vc4_crtc->feeds_txp)
239 			dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
240 		else
241 			dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
242 
243 		dispctrl = HVS_READ(SCALER_DISPCTRL) &
244 			   ~SCALER_DISPCTRL_DSP3_MUX_MASK;
245 		HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
246 	}
247 }
248 
249 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
250 				     struct drm_atomic_state *state)
251 {
252 	struct vc4_hvs *hvs = vc4->hvs;
253 	struct drm_crtc_state *crtc_state;
254 	struct drm_crtc *crtc;
255 	unsigned char mux;
256 	unsigned int i;
257 	u32 reg;
258 
259 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
260 		struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
261 		struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
262 		unsigned int channel = vc4_state->assigned_channel;
263 
264 		if (!vc4_state->update_muxing)
265 			continue;
266 
267 		switch (vc4_crtc->data->hvs_output) {
268 		case 2:
269 			drm_WARN_ON(&vc4->base,
270 				    VC4_GET_FIELD(HVS_READ(SCALER_DISPCTRL),
271 						  SCALER_DISPCTRL_DSP3_MUX) == channel);
272 
273 			mux = (channel == 2) ? 0 : 1;
274 			reg = HVS_READ(SCALER_DISPECTRL);
275 			HVS_WRITE(SCALER_DISPECTRL,
276 				  (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
277 				  VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
278 			break;
279 
280 		case 3:
281 			if (channel == VC4_HVS_CHANNEL_DISABLED)
282 				mux = 3;
283 			else
284 				mux = channel;
285 
286 			reg = HVS_READ(SCALER_DISPCTRL);
287 			HVS_WRITE(SCALER_DISPCTRL,
288 				  (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
289 				  VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
290 			break;
291 
292 		case 4:
293 			if (channel == VC4_HVS_CHANNEL_DISABLED)
294 				mux = 3;
295 			else
296 				mux = channel;
297 
298 			reg = HVS_READ(SCALER_DISPEOLN);
299 			HVS_WRITE(SCALER_DISPEOLN,
300 				  (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
301 				  VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
302 
303 			break;
304 
305 		case 5:
306 			if (channel == VC4_HVS_CHANNEL_DISABLED)
307 				mux = 3;
308 			else
309 				mux = channel;
310 
311 			reg = HVS_READ(SCALER_DISPDITHER);
312 			HVS_WRITE(SCALER_DISPDITHER,
313 				  (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
314 				  VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
315 			break;
316 
317 		default:
318 			break;
319 		}
320 	}
321 }
322 
323 static void vc4_atomic_commit_tail(struct drm_atomic_state *state)
324 {
325 	struct drm_device *dev = state->dev;
326 	struct vc4_dev *vc4 = to_vc4_dev(dev);
327 	struct vc4_hvs *hvs = vc4->hvs;
328 	struct drm_crtc_state *new_crtc_state;
329 	struct vc4_hvs_state *new_hvs_state;
330 	struct drm_crtc *crtc;
331 	struct vc4_hvs_state *old_hvs_state;
332 	unsigned int channel;
333 	int i;
334 
335 	old_hvs_state = vc4_hvs_get_old_global_state(state);
336 	if (WARN_ON(IS_ERR(old_hvs_state)))
337 		return;
338 
339 	new_hvs_state = vc4_hvs_get_new_global_state(state);
340 	if (WARN_ON(IS_ERR(new_hvs_state)))
341 		return;
342 
343 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
344 		struct vc4_crtc_state *vc4_crtc_state;
345 
346 		if (!new_crtc_state->commit)
347 			continue;
348 
349 		vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
350 		vc4_hvs_mask_underrun(hvs, vc4_crtc_state->assigned_channel);
351 	}
352 
353 	for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) {
354 		struct drm_crtc_commit *commit;
355 		int ret;
356 
357 		if (!old_hvs_state->fifo_state[channel].in_use)
358 			continue;
359 
360 		commit = old_hvs_state->fifo_state[channel].pending_commit;
361 		if (!commit)
362 			continue;
363 
364 		ret = drm_crtc_commit_wait(commit);
365 		if (ret)
366 			drm_err(dev, "Timed out waiting for commit\n");
367 
368 		drm_crtc_commit_put(commit);
369 		old_hvs_state->fifo_state[channel].pending_commit = NULL;
370 	}
371 
372 	if (vc4->is_vc5) {
373 		unsigned long state_rate = max(old_hvs_state->core_clock_rate,
374 					       new_hvs_state->core_clock_rate);
375 		unsigned long core_rate = clamp_t(unsigned long, state_rate,
376 						  500000000, hvs->max_core_rate);
377 
378 		drm_dbg(dev, "Raising the core clock at %lu Hz\n", core_rate);
379 
380 		/*
381 		 * Do a temporary request on the core clock during the
382 		 * modeset.
383 		 */
384 		WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
385 	}
386 
387 	drm_atomic_helper_commit_modeset_disables(dev, state);
388 
389 	vc4_ctm_commit(vc4, state);
390 
391 	if (vc4->is_vc5)
392 		vc5_hvs_pv_muxing_commit(vc4, state);
393 	else
394 		vc4_hvs_pv_muxing_commit(vc4, state);
395 
396 	drm_atomic_helper_commit_planes(dev, state,
397 					DRM_PLANE_COMMIT_ACTIVE_ONLY);
398 
399 	drm_atomic_helper_commit_modeset_enables(dev, state);
400 
401 	drm_atomic_helper_fake_vblank(state);
402 
403 	drm_atomic_helper_commit_hw_done(state);
404 
405 	drm_atomic_helper_wait_for_flip_done(dev, state);
406 
407 	drm_atomic_helper_cleanup_planes(dev, state);
408 
409 	if (vc4->is_vc5) {
410 		unsigned long core_rate = min_t(unsigned long,
411 						hvs->max_core_rate,
412 						new_hvs_state->core_clock_rate);
413 
414 		drm_dbg(dev, "Running the core clock at %lu Hz\n", core_rate);
415 
416 		/*
417 		 * Request a clock rate based on the current HVS
418 		 * requirements.
419 		 */
420 		WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
421 
422 		drm_dbg(dev, "Core clock actual rate: %lu Hz\n",
423 			clk_get_rate(hvs->core_clk));
424 	}
425 }
426 
427 static int vc4_atomic_commit_setup(struct drm_atomic_state *state)
428 {
429 	struct drm_crtc_state *crtc_state;
430 	struct vc4_hvs_state *hvs_state;
431 	struct drm_crtc *crtc;
432 	unsigned int i;
433 
434 	hvs_state = vc4_hvs_get_new_global_state(state);
435 	if (WARN_ON(IS_ERR(hvs_state)))
436 		return PTR_ERR(hvs_state);
437 
438 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
439 		struct vc4_crtc_state *vc4_crtc_state =
440 			to_vc4_crtc_state(crtc_state);
441 		unsigned int channel =
442 			vc4_crtc_state->assigned_channel;
443 
444 		if (channel == VC4_HVS_CHANNEL_DISABLED)
445 			continue;
446 
447 		if (!hvs_state->fifo_state[channel].in_use)
448 			continue;
449 
450 		hvs_state->fifo_state[channel].pending_commit =
451 			drm_crtc_commit_get(crtc_state->commit);
452 	}
453 
454 	return 0;
455 }
456 
457 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
458 					     struct drm_file *file_priv,
459 					     const struct drm_mode_fb_cmd2 *mode_cmd)
460 {
461 	struct vc4_dev *vc4 = to_vc4_dev(dev);
462 	struct drm_mode_fb_cmd2 mode_cmd_local;
463 
464 	if (WARN_ON_ONCE(vc4->is_vc5))
465 		return ERR_PTR(-ENODEV);
466 
467 	/* If the user didn't specify a modifier, use the
468 	 * vc4_set_tiling_ioctl() state for the BO.
469 	 */
470 	if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
471 		struct drm_gem_object *gem_obj;
472 		struct vc4_bo *bo;
473 
474 		gem_obj = drm_gem_object_lookup(file_priv,
475 						mode_cmd->handles[0]);
476 		if (!gem_obj) {
477 			DRM_DEBUG("Failed to look up GEM BO %d\n",
478 				  mode_cmd->handles[0]);
479 			return ERR_PTR(-ENOENT);
480 		}
481 		bo = to_vc4_bo(gem_obj);
482 
483 		mode_cmd_local = *mode_cmd;
484 
485 		if (bo->t_format) {
486 			mode_cmd_local.modifier[0] =
487 				DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
488 		} else {
489 			mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
490 		}
491 
492 		drm_gem_object_put(gem_obj);
493 
494 		mode_cmd = &mode_cmd_local;
495 	}
496 
497 	return drm_gem_fb_create(dev, file_priv, mode_cmd);
498 }
499 
500 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC
501  * at a time and the HW only supports S0.9 scalars. To account for the latter,
502  * we don't allow userland to set a CTM that we have no hope of approximating.
503  */
504 static int
505 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
506 {
507 	struct vc4_dev *vc4 = to_vc4_dev(dev);
508 	struct vc4_ctm_state *ctm_state = NULL;
509 	struct drm_crtc *crtc;
510 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
511 	struct drm_color_ctm *ctm;
512 	int i;
513 
514 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
515 		/* CTM is being disabled. */
516 		if (!new_crtc_state->ctm && old_crtc_state->ctm) {
517 			ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
518 			if (IS_ERR(ctm_state))
519 				return PTR_ERR(ctm_state);
520 			ctm_state->fifo = 0;
521 		}
522 	}
523 
524 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
525 		if (new_crtc_state->ctm == old_crtc_state->ctm)
526 			continue;
527 
528 		if (!ctm_state) {
529 			ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
530 			if (IS_ERR(ctm_state))
531 				return PTR_ERR(ctm_state);
532 		}
533 
534 		/* CTM is being enabled or the matrix changed. */
535 		if (new_crtc_state->ctm) {
536 			struct vc4_crtc_state *vc4_crtc_state =
537 				to_vc4_crtc_state(new_crtc_state);
538 
539 			/* fifo is 1-based since 0 disables CTM. */
540 			int fifo = vc4_crtc_state->assigned_channel + 1;
541 
542 			/* Check userland isn't trying to turn on CTM for more
543 			 * than one CRTC at a time.
544 			 */
545 			if (ctm_state->fifo && ctm_state->fifo != fifo) {
546 				DRM_DEBUG_DRIVER("Too many CTM configured\n");
547 				return -EINVAL;
548 			}
549 
550 			/* Check we can approximate the specified CTM.
551 			 * We disallow scalars |c| > 1.0 since the HW has
552 			 * no integer bits.
553 			 */
554 			ctm = new_crtc_state->ctm->data;
555 			for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
556 				u64 val = ctm->matrix[i];
557 
558 				val &= ~BIT_ULL(63);
559 				if (val > BIT_ULL(32))
560 					return -EINVAL;
561 			}
562 
563 			ctm_state->fifo = fifo;
564 			ctm_state->ctm = ctm;
565 		}
566 	}
567 
568 	return 0;
569 }
570 
571 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
572 {
573 	struct drm_plane_state *old_plane_state, *new_plane_state;
574 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
575 	struct vc4_load_tracker_state *load_state;
576 	struct drm_private_state *priv_state;
577 	struct drm_plane *plane;
578 	int i;
579 
580 	priv_state = drm_atomic_get_private_obj_state(state,
581 						      &vc4->load_tracker);
582 	if (IS_ERR(priv_state))
583 		return PTR_ERR(priv_state);
584 
585 	load_state = to_vc4_load_tracker_state(priv_state);
586 	for_each_oldnew_plane_in_state(state, plane, old_plane_state,
587 				       new_plane_state, i) {
588 		struct vc4_plane_state *vc4_plane_state;
589 
590 		if (old_plane_state->fb && old_plane_state->crtc) {
591 			vc4_plane_state = to_vc4_plane_state(old_plane_state);
592 			load_state->membus_load -= vc4_plane_state->membus_load;
593 			load_state->hvs_load -= vc4_plane_state->hvs_load;
594 		}
595 
596 		if (new_plane_state->fb && new_plane_state->crtc) {
597 			vc4_plane_state = to_vc4_plane_state(new_plane_state);
598 			load_state->membus_load += vc4_plane_state->membus_load;
599 			load_state->hvs_load += vc4_plane_state->hvs_load;
600 		}
601 	}
602 
603 	/* Don't check the load when the tracker is disabled. */
604 	if (!vc4->load_tracker_enabled)
605 		return 0;
606 
607 	/* The absolute limit is 2Gbyte/sec, but let's take a margin to let
608 	 * the system work when other blocks are accessing the memory.
609 	 */
610 	if (load_state->membus_load > SZ_1G + SZ_512M)
611 		return -ENOSPC;
612 
613 	/* HVS clock is supposed to run @ 250Mhz, let's take a margin and
614 	 * consider the maximum number of cycles is 240M.
615 	 */
616 	if (load_state->hvs_load > 240000000ULL)
617 		return -ENOSPC;
618 
619 	return 0;
620 }
621 
622 static struct drm_private_state *
623 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
624 {
625 	struct vc4_load_tracker_state *state;
626 
627 	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
628 	if (!state)
629 		return NULL;
630 
631 	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
632 
633 	return &state->base;
634 }
635 
636 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
637 					   struct drm_private_state *state)
638 {
639 	struct vc4_load_tracker_state *load_state;
640 
641 	load_state = to_vc4_load_tracker_state(state);
642 	kfree(load_state);
643 }
644 
645 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
646 	.atomic_duplicate_state = vc4_load_tracker_duplicate_state,
647 	.atomic_destroy_state = vc4_load_tracker_destroy_state,
648 };
649 
650 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
651 {
652 	struct vc4_dev *vc4 = to_vc4_dev(dev);
653 
654 	drm_atomic_private_obj_fini(&vc4->load_tracker);
655 }
656 
657 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
658 {
659 	struct vc4_load_tracker_state *load_state;
660 
661 	load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
662 	if (!load_state)
663 		return -ENOMEM;
664 
665 	drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
666 				    &load_state->base,
667 				    &vc4_load_tracker_state_funcs);
668 
669 	return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
670 }
671 
672 static struct drm_private_state *
673 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
674 {
675 	struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
676 	struct vc4_hvs_state *state;
677 	unsigned int i;
678 
679 	state = kzalloc(sizeof(*state), GFP_KERNEL);
680 	if (!state)
681 		return NULL;
682 
683 	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
684 
685 	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
686 		state->fifo_state[i].in_use = old_state->fifo_state[i].in_use;
687 		state->fifo_state[i].fifo_load = old_state->fifo_state[i].fifo_load;
688 	}
689 
690 	state->core_clock_rate = old_state->core_clock_rate;
691 
692 	return &state->base;
693 }
694 
695 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
696 					   struct drm_private_state *state)
697 {
698 	struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
699 	unsigned int i;
700 
701 	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
702 		if (!hvs_state->fifo_state[i].pending_commit)
703 			continue;
704 
705 		drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit);
706 	}
707 
708 	kfree(hvs_state);
709 }
710 
711 static void vc4_hvs_channels_print_state(struct drm_printer *p,
712 					 const struct drm_private_state *state)
713 {
714 	const struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
715 	unsigned int i;
716 
717 	drm_printf(p, "HVS State\n");
718 	drm_printf(p, "\tCore Clock Rate: %lu\n", hvs_state->core_clock_rate);
719 
720 	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
721 		drm_printf(p, "\tChannel %d\n", i);
722 		drm_printf(p, "\t\tin use=%d\n", hvs_state->fifo_state[i].in_use);
723 		drm_printf(p, "\t\tload=%lu\n", hvs_state->fifo_state[i].fifo_load);
724 	}
725 }
726 
727 static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
728 	.atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
729 	.atomic_destroy_state = vc4_hvs_channels_destroy_state,
730 	.atomic_print_state = vc4_hvs_channels_print_state,
731 };
732 
733 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
734 {
735 	struct vc4_dev *vc4 = to_vc4_dev(dev);
736 
737 	drm_atomic_private_obj_fini(&vc4->hvs_channels);
738 }
739 
740 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
741 {
742 	struct vc4_hvs_state *state;
743 
744 	state = kzalloc(sizeof(*state), GFP_KERNEL);
745 	if (!state)
746 		return -ENOMEM;
747 
748 	drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
749 				    &state->base,
750 				    &vc4_hvs_state_funcs);
751 
752 	return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
753 }
754 
755 static int cmp_vc4_crtc_hvs_output(const void *a, const void *b)
756 {
757 	const struct vc4_crtc *crtc_a =
758 		to_vc4_crtc(*(const struct drm_crtc **)a);
759 	const struct vc4_crtc_data *data_a =
760 		vc4_crtc_to_vc4_crtc_data(crtc_a);
761 	const struct vc4_crtc *crtc_b =
762 		to_vc4_crtc(*(const struct drm_crtc **)b);
763 	const struct vc4_crtc_data *data_b =
764 		vc4_crtc_to_vc4_crtc_data(crtc_b);
765 
766 	return data_a->hvs_output - data_b->hvs_output;
767 }
768 
769 /*
770  * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
771  * the TXP (and therefore all the CRTCs found on that platform).
772  *
773  * The naive (and our initial) implementation would just iterate over
774  * all the active CRTCs, try to find a suitable FIFO, and then remove it
775  * from the pool of available FIFOs. However, there are a few corner
776  * cases that need to be considered:
777  *
778  * - When running in a dual-display setup (so with two CRTCs involved),
779  *   we can update the state of a single CRTC (for example by changing
780  *   its mode using xrandr under X11) without affecting the other. In
781  *   this case, the other CRTC wouldn't be in the state at all, so we
782  *   need to consider all the running CRTCs in the DRM device to assign
783  *   a FIFO, not just the one in the state.
784  *
785  * - To fix the above, we can't use drm_atomic_get_crtc_state on all
786  *   enabled CRTCs to pull their CRTC state into the global state, since
787  *   a page flip would start considering their vblank to complete. Since
788  *   we don't have a guarantee that they are actually active, that
789  *   vblank might never happen, and shouldn't even be considered if we
790  *   want to do a page flip on a single CRTC. That can be tested by
791  *   doing a modetest -v first on HDMI1 and then on HDMI0.
792  *
793  * - Since we need the pixelvalve to be disabled and enabled back when
794  *   the FIFO is changed, we should keep the FIFO assigned for as long
795  *   as the CRTC is enabled, only considering it free again once that
796  *   CRTC has been disabled. This can be tested by booting X11 on a
797  *   single display, and changing the resolution down and then back up.
798  */
799 static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
800 				      struct drm_atomic_state *state)
801 {
802 	struct vc4_hvs_state *hvs_new_state;
803 	struct drm_crtc **sorted_crtcs;
804 	struct drm_crtc *crtc;
805 	unsigned int unassigned_channels = 0;
806 	unsigned int i;
807 	int ret;
808 
809 	hvs_new_state = vc4_hvs_get_global_state(state);
810 	if (IS_ERR(hvs_new_state))
811 		return PTR_ERR(hvs_new_state);
812 
813 	for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++)
814 		if (!hvs_new_state->fifo_state[i].in_use)
815 			unassigned_channels |= BIT(i);
816 
817 	/*
818 	 * The problem we have to solve here is that we have up to 7
819 	 * encoders, connected to up to 6 CRTCs.
820 	 *
821 	 * Those CRTCs, depending on the instance, can be routed to 1, 2
822 	 * or 3 HVS FIFOs, and we need to set the muxing between FIFOs and
823 	 * outputs in the HVS accordingly.
824 	 *
825 	 * It would be pretty hard to come up with an algorithm that
826 	 * would generically solve this. However, the current routing
827 	 * trees we support allow us to simplify a bit the problem.
828 	 *
829 	 * Indeed, with the current supported layouts, if we try to
830 	 * assign in the ascending crtc index order the FIFOs, we can't
831 	 * fall into the situation where an earlier CRTC that had
832 	 * multiple routes is assigned one that was the only option for
833 	 * a later CRTC.
834 	 *
835 	 * If the layout changes and doesn't give us that in the future,
836 	 * we will need to have something smarter, but it works so far.
837 	 */
838 	sorted_crtcs = kmalloc_array(dev->num_crtcs, sizeof(*sorted_crtcs), GFP_KERNEL);
839 	if (!sorted_crtcs)
840 		return -ENOMEM;
841 
842 	i = 0;
843 	drm_for_each_crtc(crtc, dev)
844 		sorted_crtcs[i++] = crtc;
845 
846 	sort(sorted_crtcs, i, sizeof(*sorted_crtcs), cmp_vc4_crtc_hvs_output, NULL);
847 
848 	for (i = 0; i < dev->num_crtcs; i++) {
849 		struct vc4_crtc_state *old_vc4_crtc_state, *new_vc4_crtc_state;
850 		struct drm_crtc_state *old_crtc_state, *new_crtc_state;
851 		struct vc4_crtc *vc4_crtc;
852 		unsigned int matching_channels;
853 		unsigned int channel;
854 
855 		crtc = sorted_crtcs[i];
856 		if (!crtc)
857 			continue;
858 		vc4_crtc = to_vc4_crtc(crtc);
859 
860 		old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
861 		if (!old_crtc_state)
862 			continue;
863 		old_vc4_crtc_state = to_vc4_crtc_state(old_crtc_state);
864 
865 		new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
866 		if (!new_crtc_state)
867 			continue;
868 		new_vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
869 
870 		drm_dbg(dev, "%s: Trying to find a channel.\n", crtc->name);
871 
872 		/* Nothing to do here, let's skip it */
873 		if (old_crtc_state->enable == new_crtc_state->enable) {
874 			if (new_crtc_state->enable)
875 				drm_dbg(dev, "%s: Already enabled, reusing channel %d.\n",
876 					crtc->name, new_vc4_crtc_state->assigned_channel);
877 			else
878 				drm_dbg(dev, "%s: Disabled, ignoring.\n", crtc->name);
879 
880 			continue;
881 		}
882 
883 		/* Muxing will need to be modified, mark it as such */
884 		new_vc4_crtc_state->update_muxing = true;
885 
886 		/* If we're disabling our CRTC, we put back our channel */
887 		if (!new_crtc_state->enable) {
888 			channel = old_vc4_crtc_state->assigned_channel;
889 
890 			drm_dbg(dev, "%s: Disabling, Freeing channel %d\n",
891 				crtc->name, channel);
892 
893 			hvs_new_state->fifo_state[channel].in_use = false;
894 			new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
895 			continue;
896 		}
897 
898 		matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
899 		if (!matching_channels) {
900 			ret = -EINVAL;
901 			goto err_free_crtc_array;
902 		}
903 
904 		channel = ffs(matching_channels) - 1;
905 
906 		drm_dbg(dev, "Assigned HVS channel %d to CRTC %s\n", channel, crtc->name);
907 		new_vc4_crtc_state->assigned_channel = channel;
908 		unassigned_channels &= ~BIT(channel);
909 		hvs_new_state->fifo_state[channel].in_use = true;
910 	}
911 
912 	kfree(sorted_crtcs);
913 	return 0;
914 
915 err_free_crtc_array:
916 	kfree(sorted_crtcs);
917 	return ret;
918 }
919 
920 static int
921 vc4_core_clock_atomic_check(struct drm_atomic_state *state)
922 {
923 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
924 	struct drm_private_state *priv_state;
925 	struct vc4_hvs_state *hvs_new_state;
926 	struct vc4_load_tracker_state *load_state;
927 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
928 	struct drm_crtc *crtc;
929 	unsigned int num_outputs;
930 	unsigned long pixel_rate;
931 	unsigned long cob_rate;
932 	unsigned int i;
933 
934 	priv_state = drm_atomic_get_private_obj_state(state,
935 						      &vc4->load_tracker);
936 	if (IS_ERR(priv_state))
937 		return PTR_ERR(priv_state);
938 
939 	load_state = to_vc4_load_tracker_state(priv_state);
940 
941 	hvs_new_state = vc4_hvs_get_global_state(state);
942 	if (IS_ERR(hvs_new_state))
943 		return PTR_ERR(hvs_new_state);
944 
945 	for_each_oldnew_crtc_in_state(state, crtc,
946 				      old_crtc_state,
947 				      new_crtc_state,
948 				      i) {
949 		if (old_crtc_state->active) {
950 			struct vc4_crtc_state *old_vc4_state =
951 				to_vc4_crtc_state(old_crtc_state);
952 			unsigned int channel = old_vc4_state->assigned_channel;
953 
954 			hvs_new_state->fifo_state[channel].fifo_load = 0;
955 		}
956 
957 		if (new_crtc_state->active) {
958 			struct vc4_crtc_state *new_vc4_state =
959 				to_vc4_crtc_state(new_crtc_state);
960 			unsigned int channel = new_vc4_state->assigned_channel;
961 
962 			hvs_new_state->fifo_state[channel].fifo_load =
963 				new_vc4_state->hvs_load;
964 		}
965 	}
966 
967 	cob_rate = 0;
968 	num_outputs = 0;
969 	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
970 		if (!hvs_new_state->fifo_state[i].in_use)
971 			continue;
972 
973 		num_outputs++;
974 		cob_rate = max_t(unsigned long,
975 				 hvs_new_state->fifo_state[i].fifo_load,
976 				 cob_rate);
977 	}
978 
979 	pixel_rate = load_state->hvs_load;
980 	if (num_outputs > 1) {
981 		pixel_rate = (pixel_rate * 40) / 100;
982 	} else {
983 		pixel_rate = (pixel_rate * 60) / 100;
984 	}
985 
986 	hvs_new_state->core_clock_rate = max(cob_rate, pixel_rate);
987 
988 	return 0;
989 }
990 
991 
992 static int
993 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
994 {
995 	int ret;
996 
997 	ret = vc4_pv_muxing_atomic_check(dev, state);
998 	if (ret)
999 		return ret;
1000 
1001 	ret = vc4_ctm_atomic_check(dev, state);
1002 	if (ret < 0)
1003 		return ret;
1004 
1005 	ret = drm_atomic_helper_check(dev, state);
1006 	if (ret)
1007 		return ret;
1008 
1009 	ret = vc4_load_tracker_atomic_check(state);
1010 	if (ret)
1011 		return ret;
1012 
1013 	return vc4_core_clock_atomic_check(state);
1014 }
1015 
1016 static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = {
1017 	.atomic_commit_setup	= vc4_atomic_commit_setup,
1018 	.atomic_commit_tail	= vc4_atomic_commit_tail,
1019 };
1020 
1021 static const struct drm_mode_config_funcs vc4_mode_funcs = {
1022 	.atomic_check = vc4_atomic_check,
1023 	.atomic_commit = drm_atomic_helper_commit,
1024 	.fb_create = vc4_fb_create,
1025 };
1026 
1027 static const struct drm_mode_config_funcs vc5_mode_funcs = {
1028 	.atomic_check = vc4_atomic_check,
1029 	.atomic_commit = drm_atomic_helper_commit,
1030 	.fb_create = drm_gem_fb_create,
1031 };
1032 
1033 int vc4_kms_load(struct drm_device *dev)
1034 {
1035 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1036 	int ret;
1037 
1038 	/*
1039 	 * The limits enforced by the load tracker aren't relevant for
1040 	 * the BCM2711, but the load tracker computations are used for
1041 	 * the core clock rate calculation.
1042 	 */
1043 	if (!vc4->is_vc5) {
1044 		/* Start with the load tracker enabled. Can be
1045 		 * disabled through the debugfs load_tracker file.
1046 		 */
1047 		vc4->load_tracker_enabled = true;
1048 	}
1049 
1050 	/* Set support for vblank irq fast disable, before drm_vblank_init() */
1051 	dev->vblank_disable_immediate = true;
1052 
1053 	ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
1054 	if (ret < 0) {
1055 		dev_err(dev->dev, "failed to initialize vblank\n");
1056 		return ret;
1057 	}
1058 
1059 	if (vc4->is_vc5) {
1060 		dev->mode_config.max_width = 7680;
1061 		dev->mode_config.max_height = 7680;
1062 	} else {
1063 		dev->mode_config.max_width = 2048;
1064 		dev->mode_config.max_height = 2048;
1065 	}
1066 
1067 	dev->mode_config.funcs = vc4->is_vc5 ? &vc5_mode_funcs : &vc4_mode_funcs;
1068 	dev->mode_config.helper_private = &vc4_mode_config_helpers;
1069 	dev->mode_config.preferred_depth = 24;
1070 	dev->mode_config.async_page_flip = true;
1071 	dev->mode_config.normalize_zpos = true;
1072 
1073 	ret = vc4_ctm_obj_init(vc4);
1074 	if (ret)
1075 		return ret;
1076 
1077 	ret = vc4_load_tracker_obj_init(vc4);
1078 	if (ret)
1079 		return ret;
1080 
1081 	ret = vc4_hvs_channels_obj_init(vc4);
1082 	if (ret)
1083 		return ret;
1084 
1085 	drm_mode_config_reset(dev);
1086 
1087 	drm_kms_helper_poll_init(dev);
1088 
1089 	return 0;
1090 }
1091