1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 KMS 8 * 9 * This is the general code for implementing KMS mode setting that 10 * doesn't clearly associate with any of the other objects (plane, 11 * crtc, HDMI encoder). 12 */ 13 14 #include <linux/clk.h> 15 16 #include <drm/drm_atomic.h> 17 #include <drm/drm_atomic_helper.h> 18 #include <drm/drm_crtc.h> 19 #include <drm/drm_gem_framebuffer_helper.h> 20 #include <drm/drm_plane_helper.h> 21 #include <drm/drm_probe_helper.h> 22 #include <drm/drm_vblank.h> 23 24 #include "vc4_drv.h" 25 #include "vc4_regs.h" 26 27 #define HVS_NUM_CHANNELS 3 28 29 struct vc4_ctm_state { 30 struct drm_private_state base; 31 struct drm_color_ctm *ctm; 32 int fifo; 33 }; 34 35 static struct vc4_ctm_state * 36 to_vc4_ctm_state(const struct drm_private_state *priv) 37 { 38 return container_of(priv, struct vc4_ctm_state, base); 39 } 40 41 struct vc4_hvs_state { 42 struct drm_private_state base; 43 unsigned long core_clock_rate; 44 45 struct { 46 unsigned in_use: 1; 47 unsigned long fifo_load; 48 struct drm_crtc_commit *pending_commit; 49 } fifo_state[HVS_NUM_CHANNELS]; 50 }; 51 52 static struct vc4_hvs_state * 53 to_vc4_hvs_state(const struct drm_private_state *priv) 54 { 55 return container_of(priv, struct vc4_hvs_state, base); 56 } 57 58 struct vc4_load_tracker_state { 59 struct drm_private_state base; 60 u64 hvs_load; 61 u64 membus_load; 62 }; 63 64 static struct vc4_load_tracker_state * 65 to_vc4_load_tracker_state(const struct drm_private_state *priv) 66 { 67 return container_of(priv, struct vc4_load_tracker_state, base); 68 } 69 70 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state, 71 struct drm_private_obj *manager) 72 { 73 struct drm_device *dev = state->dev; 74 struct vc4_dev *vc4 = to_vc4_dev(dev); 75 struct drm_private_state *priv_state; 76 int ret; 77 78 ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx); 79 if (ret) 80 return ERR_PTR(ret); 81 82 priv_state = drm_atomic_get_private_obj_state(state, manager); 83 if (IS_ERR(priv_state)) 84 return ERR_CAST(priv_state); 85 86 return to_vc4_ctm_state(priv_state); 87 } 88 89 static struct drm_private_state * 90 vc4_ctm_duplicate_state(struct drm_private_obj *obj) 91 { 92 struct vc4_ctm_state *state; 93 94 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); 95 if (!state) 96 return NULL; 97 98 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 99 100 return &state->base; 101 } 102 103 static void vc4_ctm_destroy_state(struct drm_private_obj *obj, 104 struct drm_private_state *state) 105 { 106 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state); 107 108 kfree(ctm_state); 109 } 110 111 static const struct drm_private_state_funcs vc4_ctm_state_funcs = { 112 .atomic_duplicate_state = vc4_ctm_duplicate_state, 113 .atomic_destroy_state = vc4_ctm_destroy_state, 114 }; 115 116 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused) 117 { 118 struct vc4_dev *vc4 = to_vc4_dev(dev); 119 120 drm_atomic_private_obj_fini(&vc4->ctm_manager); 121 } 122 123 static int vc4_ctm_obj_init(struct vc4_dev *vc4) 124 { 125 struct vc4_ctm_state *ctm_state; 126 127 drm_modeset_lock_init(&vc4->ctm_state_lock); 128 129 ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL); 130 if (!ctm_state) 131 return -ENOMEM; 132 133 drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base, 134 &vc4_ctm_state_funcs); 135 136 return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL); 137 } 138 139 /* Converts a DRM S31.32 value to the HW S0.9 format. */ 140 static u16 vc4_ctm_s31_32_to_s0_9(u64 in) 141 { 142 u16 r; 143 144 /* Sign bit. */ 145 r = in & BIT_ULL(63) ? BIT(9) : 0; 146 147 if ((in & GENMASK_ULL(62, 32)) > 0) { 148 /* We have zero integer bits so we can only saturate here. */ 149 r |= GENMASK(8, 0); 150 } else { 151 /* Otherwise take the 9 most important fractional bits. */ 152 r |= (in >> 23) & GENMASK(8, 0); 153 } 154 155 return r; 156 } 157 158 static void 159 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state) 160 { 161 struct vc4_hvs *hvs = vc4->hvs; 162 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state); 163 struct drm_color_ctm *ctm = ctm_state->ctm; 164 165 if (ctm_state->fifo) { 166 HVS_WRITE(SCALER_OLEDCOEF2, 167 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]), 168 SCALER_OLEDCOEF2_R_TO_R) | 169 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]), 170 SCALER_OLEDCOEF2_R_TO_G) | 171 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]), 172 SCALER_OLEDCOEF2_R_TO_B)); 173 HVS_WRITE(SCALER_OLEDCOEF1, 174 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]), 175 SCALER_OLEDCOEF1_G_TO_R) | 176 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]), 177 SCALER_OLEDCOEF1_G_TO_G) | 178 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]), 179 SCALER_OLEDCOEF1_G_TO_B)); 180 HVS_WRITE(SCALER_OLEDCOEF0, 181 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]), 182 SCALER_OLEDCOEF0_B_TO_R) | 183 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]), 184 SCALER_OLEDCOEF0_B_TO_G) | 185 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]), 186 SCALER_OLEDCOEF0_B_TO_B)); 187 } 188 189 HVS_WRITE(SCALER_OLEDOFFS, 190 VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO)); 191 } 192 193 static struct vc4_hvs_state * 194 vc4_hvs_get_new_global_state(struct drm_atomic_state *state) 195 { 196 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 197 struct drm_private_state *priv_state; 198 199 priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels); 200 if (IS_ERR(priv_state)) 201 return ERR_CAST(priv_state); 202 203 return to_vc4_hvs_state(priv_state); 204 } 205 206 static struct vc4_hvs_state * 207 vc4_hvs_get_old_global_state(struct drm_atomic_state *state) 208 { 209 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 210 struct drm_private_state *priv_state; 211 212 priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels); 213 if (IS_ERR(priv_state)) 214 return ERR_CAST(priv_state); 215 216 return to_vc4_hvs_state(priv_state); 217 } 218 219 static struct vc4_hvs_state * 220 vc4_hvs_get_global_state(struct drm_atomic_state *state) 221 { 222 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 223 struct drm_private_state *priv_state; 224 225 priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels); 226 if (IS_ERR(priv_state)) 227 return ERR_CAST(priv_state); 228 229 return to_vc4_hvs_state(priv_state); 230 } 231 232 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4, 233 struct drm_atomic_state *state) 234 { 235 struct vc4_hvs *hvs = vc4->hvs; 236 struct drm_crtc_state *crtc_state; 237 struct drm_crtc *crtc; 238 unsigned int i; 239 240 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 241 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 242 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); 243 u32 dispctrl; 244 u32 dsp3_mux; 245 246 if (!crtc_state->active) 247 continue; 248 249 if (vc4_state->assigned_channel != 2) 250 continue; 251 252 /* 253 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to 254 * FIFO X'. 255 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'. 256 * 257 * DSP3 is connected to FIFO2 unless the transposer is 258 * enabled. In this case, FIFO 2 is directly accessed by the 259 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1 260 * route. 261 */ 262 if (vc4_crtc->feeds_txp) 263 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX); 264 else 265 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX); 266 267 dispctrl = HVS_READ(SCALER_DISPCTRL) & 268 ~SCALER_DISPCTRL_DSP3_MUX_MASK; 269 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux); 270 } 271 } 272 273 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4, 274 struct drm_atomic_state *state) 275 { 276 struct vc4_hvs *hvs = vc4->hvs; 277 struct drm_crtc_state *crtc_state; 278 struct drm_crtc *crtc; 279 unsigned char mux; 280 unsigned int i; 281 u32 reg; 282 283 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 284 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); 285 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 286 unsigned int channel = vc4_state->assigned_channel; 287 288 if (!vc4_state->update_muxing) 289 continue; 290 291 switch (vc4_crtc->data->hvs_output) { 292 case 2: 293 drm_WARN_ON(&vc4->base, 294 VC4_GET_FIELD(HVS_READ(SCALER_DISPCTRL), 295 SCALER_DISPCTRL_DSP3_MUX) == channel); 296 297 mux = (channel == 2) ? 0 : 1; 298 reg = HVS_READ(SCALER_DISPECTRL); 299 HVS_WRITE(SCALER_DISPECTRL, 300 (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) | 301 VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX)); 302 break; 303 304 case 3: 305 if (channel == VC4_HVS_CHANNEL_DISABLED) 306 mux = 3; 307 else 308 mux = channel; 309 310 reg = HVS_READ(SCALER_DISPCTRL); 311 HVS_WRITE(SCALER_DISPCTRL, 312 (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) | 313 VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX)); 314 break; 315 316 case 4: 317 if (channel == VC4_HVS_CHANNEL_DISABLED) 318 mux = 3; 319 else 320 mux = channel; 321 322 reg = HVS_READ(SCALER_DISPEOLN); 323 HVS_WRITE(SCALER_DISPEOLN, 324 (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) | 325 VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX)); 326 327 break; 328 329 case 5: 330 if (channel == VC4_HVS_CHANNEL_DISABLED) 331 mux = 3; 332 else 333 mux = channel; 334 335 reg = HVS_READ(SCALER_DISPDITHER); 336 HVS_WRITE(SCALER_DISPDITHER, 337 (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) | 338 VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX)); 339 break; 340 341 default: 342 break; 343 } 344 } 345 } 346 347 static void vc4_atomic_commit_tail(struct drm_atomic_state *state) 348 { 349 struct drm_device *dev = state->dev; 350 struct vc4_dev *vc4 = to_vc4_dev(dev); 351 struct vc4_hvs *hvs = vc4->hvs; 352 struct drm_crtc_state *new_crtc_state; 353 struct vc4_hvs_state *new_hvs_state; 354 struct drm_crtc *crtc; 355 struct vc4_hvs_state *old_hvs_state; 356 unsigned int channel; 357 int i; 358 359 old_hvs_state = vc4_hvs_get_old_global_state(state); 360 if (WARN_ON(IS_ERR(old_hvs_state))) 361 return; 362 363 new_hvs_state = vc4_hvs_get_new_global_state(state); 364 if (WARN_ON(IS_ERR(new_hvs_state))) 365 return; 366 367 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 368 struct vc4_crtc_state *vc4_crtc_state; 369 370 if (!new_crtc_state->commit) 371 continue; 372 373 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state); 374 vc4_hvs_mask_underrun(hvs, vc4_crtc_state->assigned_channel); 375 } 376 377 for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) { 378 struct drm_crtc_commit *commit; 379 int ret; 380 381 if (!old_hvs_state->fifo_state[channel].in_use) 382 continue; 383 384 commit = old_hvs_state->fifo_state[channel].pending_commit; 385 if (!commit) 386 continue; 387 388 ret = drm_crtc_commit_wait(commit); 389 if (ret) 390 drm_err(dev, "Timed out waiting for commit\n"); 391 392 drm_crtc_commit_put(commit); 393 old_hvs_state->fifo_state[channel].pending_commit = NULL; 394 } 395 396 if (vc4->hvs->hvs5) { 397 unsigned long state_rate = max(old_hvs_state->core_clock_rate, 398 new_hvs_state->core_clock_rate); 399 unsigned long core_rate = max_t(unsigned long, 400 500000000, state_rate); 401 402 drm_dbg(dev, "Raising the core clock at %lu Hz\n", core_rate); 403 404 /* 405 * Do a temporary request on the core clock during the 406 * modeset. 407 */ 408 clk_set_min_rate(hvs->core_clk, core_rate); 409 } 410 411 drm_atomic_helper_commit_modeset_disables(dev, state); 412 413 vc4_ctm_commit(vc4, state); 414 415 if (vc4->hvs->hvs5) 416 vc5_hvs_pv_muxing_commit(vc4, state); 417 else 418 vc4_hvs_pv_muxing_commit(vc4, state); 419 420 drm_atomic_helper_commit_planes(dev, state, 421 DRM_PLANE_COMMIT_ACTIVE_ONLY); 422 423 drm_atomic_helper_commit_modeset_enables(dev, state); 424 425 drm_atomic_helper_fake_vblank(state); 426 427 drm_atomic_helper_commit_hw_done(state); 428 429 drm_atomic_helper_wait_for_flip_done(dev, state); 430 431 drm_atomic_helper_cleanup_planes(dev, state); 432 433 if (vc4->hvs->hvs5) { 434 drm_dbg(dev, "Running the core clock at %lu Hz\n", 435 new_hvs_state->core_clock_rate); 436 437 /* 438 * Request a clock rate based on the current HVS 439 * requirements. 440 */ 441 clk_set_min_rate(hvs->core_clk, new_hvs_state->core_clock_rate); 442 443 drm_dbg(dev, "Core clock actual rate: %lu Hz\n", 444 clk_get_rate(hvs->core_clk)); 445 } 446 } 447 448 static int vc4_atomic_commit_setup(struct drm_atomic_state *state) 449 { 450 struct drm_crtc_state *crtc_state; 451 struct vc4_hvs_state *hvs_state; 452 struct drm_crtc *crtc; 453 unsigned int i; 454 455 hvs_state = vc4_hvs_get_new_global_state(state); 456 if (WARN_ON(IS_ERR(hvs_state))) 457 return PTR_ERR(hvs_state); 458 459 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 460 struct vc4_crtc_state *vc4_crtc_state = 461 to_vc4_crtc_state(crtc_state); 462 unsigned int channel = 463 vc4_crtc_state->assigned_channel; 464 465 if (channel == VC4_HVS_CHANNEL_DISABLED) 466 continue; 467 468 if (!hvs_state->fifo_state[channel].in_use) 469 continue; 470 471 hvs_state->fifo_state[channel].pending_commit = 472 drm_crtc_commit_get(crtc_state->commit); 473 } 474 475 return 0; 476 } 477 478 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev, 479 struct drm_file *file_priv, 480 const struct drm_mode_fb_cmd2 *mode_cmd) 481 { 482 struct drm_mode_fb_cmd2 mode_cmd_local; 483 484 /* If the user didn't specify a modifier, use the 485 * vc4_set_tiling_ioctl() state for the BO. 486 */ 487 if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) { 488 struct drm_gem_object *gem_obj; 489 struct vc4_bo *bo; 490 491 gem_obj = drm_gem_object_lookup(file_priv, 492 mode_cmd->handles[0]); 493 if (!gem_obj) { 494 DRM_DEBUG("Failed to look up GEM BO %d\n", 495 mode_cmd->handles[0]); 496 return ERR_PTR(-ENOENT); 497 } 498 bo = to_vc4_bo(gem_obj); 499 500 mode_cmd_local = *mode_cmd; 501 502 if (bo->t_format) { 503 mode_cmd_local.modifier[0] = 504 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED; 505 } else { 506 mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE; 507 } 508 509 drm_gem_object_put(gem_obj); 510 511 mode_cmd = &mode_cmd_local; 512 } 513 514 return drm_gem_fb_create(dev, file_priv, mode_cmd); 515 } 516 517 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC 518 * at a time and the HW only supports S0.9 scalars. To account for the latter, 519 * we don't allow userland to set a CTM that we have no hope of approximating. 520 */ 521 static int 522 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 523 { 524 struct vc4_dev *vc4 = to_vc4_dev(dev); 525 struct vc4_ctm_state *ctm_state = NULL; 526 struct drm_crtc *crtc; 527 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 528 struct drm_color_ctm *ctm; 529 int i; 530 531 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 532 /* CTM is being disabled. */ 533 if (!new_crtc_state->ctm && old_crtc_state->ctm) { 534 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager); 535 if (IS_ERR(ctm_state)) 536 return PTR_ERR(ctm_state); 537 ctm_state->fifo = 0; 538 } 539 } 540 541 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 542 if (new_crtc_state->ctm == old_crtc_state->ctm) 543 continue; 544 545 if (!ctm_state) { 546 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager); 547 if (IS_ERR(ctm_state)) 548 return PTR_ERR(ctm_state); 549 } 550 551 /* CTM is being enabled or the matrix changed. */ 552 if (new_crtc_state->ctm) { 553 struct vc4_crtc_state *vc4_crtc_state = 554 to_vc4_crtc_state(new_crtc_state); 555 556 /* fifo is 1-based since 0 disables CTM. */ 557 int fifo = vc4_crtc_state->assigned_channel + 1; 558 559 /* Check userland isn't trying to turn on CTM for more 560 * than one CRTC at a time. 561 */ 562 if (ctm_state->fifo && ctm_state->fifo != fifo) { 563 DRM_DEBUG_DRIVER("Too many CTM configured\n"); 564 return -EINVAL; 565 } 566 567 /* Check we can approximate the specified CTM. 568 * We disallow scalars |c| > 1.0 since the HW has 569 * no integer bits. 570 */ 571 ctm = new_crtc_state->ctm->data; 572 for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) { 573 u64 val = ctm->matrix[i]; 574 575 val &= ~BIT_ULL(63); 576 if (val > BIT_ULL(32)) 577 return -EINVAL; 578 } 579 580 ctm_state->fifo = fifo; 581 ctm_state->ctm = ctm; 582 } 583 } 584 585 return 0; 586 } 587 588 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state) 589 { 590 struct drm_plane_state *old_plane_state, *new_plane_state; 591 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 592 struct vc4_load_tracker_state *load_state; 593 struct drm_private_state *priv_state; 594 struct drm_plane *plane; 595 int i; 596 597 priv_state = drm_atomic_get_private_obj_state(state, 598 &vc4->load_tracker); 599 if (IS_ERR(priv_state)) 600 return PTR_ERR(priv_state); 601 602 load_state = to_vc4_load_tracker_state(priv_state); 603 for_each_oldnew_plane_in_state(state, plane, old_plane_state, 604 new_plane_state, i) { 605 struct vc4_plane_state *vc4_plane_state; 606 607 if (old_plane_state->fb && old_plane_state->crtc) { 608 vc4_plane_state = to_vc4_plane_state(old_plane_state); 609 load_state->membus_load -= vc4_plane_state->membus_load; 610 load_state->hvs_load -= vc4_plane_state->hvs_load; 611 } 612 613 if (new_plane_state->fb && new_plane_state->crtc) { 614 vc4_plane_state = to_vc4_plane_state(new_plane_state); 615 load_state->membus_load += vc4_plane_state->membus_load; 616 load_state->hvs_load += vc4_plane_state->hvs_load; 617 } 618 } 619 620 /* Don't check the load when the tracker is disabled. */ 621 if (!vc4->load_tracker_enabled) 622 return 0; 623 624 /* The absolute limit is 2Gbyte/sec, but let's take a margin to let 625 * the system work when other blocks are accessing the memory. 626 */ 627 if (load_state->membus_load > SZ_1G + SZ_512M) 628 return -ENOSPC; 629 630 /* HVS clock is supposed to run @ 250Mhz, let's take a margin and 631 * consider the maximum number of cycles is 240M. 632 */ 633 if (load_state->hvs_load > 240000000ULL) 634 return -ENOSPC; 635 636 return 0; 637 } 638 639 static struct drm_private_state * 640 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj) 641 { 642 struct vc4_load_tracker_state *state; 643 644 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); 645 if (!state) 646 return NULL; 647 648 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 649 650 return &state->base; 651 } 652 653 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj, 654 struct drm_private_state *state) 655 { 656 struct vc4_load_tracker_state *load_state; 657 658 load_state = to_vc4_load_tracker_state(state); 659 kfree(load_state); 660 } 661 662 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = { 663 .atomic_duplicate_state = vc4_load_tracker_duplicate_state, 664 .atomic_destroy_state = vc4_load_tracker_destroy_state, 665 }; 666 667 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused) 668 { 669 struct vc4_dev *vc4 = to_vc4_dev(dev); 670 671 drm_atomic_private_obj_fini(&vc4->load_tracker); 672 } 673 674 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4) 675 { 676 struct vc4_load_tracker_state *load_state; 677 678 load_state = kzalloc(sizeof(*load_state), GFP_KERNEL); 679 if (!load_state) 680 return -ENOMEM; 681 682 drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker, 683 &load_state->base, 684 &vc4_load_tracker_state_funcs); 685 686 return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL); 687 } 688 689 static struct drm_private_state * 690 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj) 691 { 692 struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state); 693 struct vc4_hvs_state *state; 694 unsigned int i; 695 696 state = kzalloc(sizeof(*state), GFP_KERNEL); 697 if (!state) 698 return NULL; 699 700 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 701 702 for (i = 0; i < HVS_NUM_CHANNELS; i++) { 703 state->fifo_state[i].in_use = old_state->fifo_state[i].in_use; 704 state->fifo_state[i].fifo_load = old_state->fifo_state[i].fifo_load; 705 } 706 707 state->core_clock_rate = old_state->core_clock_rate; 708 709 return &state->base; 710 } 711 712 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj, 713 struct drm_private_state *state) 714 { 715 struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state); 716 unsigned int i; 717 718 for (i = 0; i < HVS_NUM_CHANNELS; i++) { 719 if (!hvs_state->fifo_state[i].pending_commit) 720 continue; 721 722 drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit); 723 } 724 725 kfree(hvs_state); 726 } 727 728 static void vc4_hvs_channels_print_state(struct drm_printer *p, 729 const struct drm_private_state *state) 730 { 731 struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state); 732 unsigned int i; 733 734 drm_printf(p, "HVS State\n"); 735 drm_printf(p, "\tCore Clock Rate: %lu\n", hvs_state->core_clock_rate); 736 737 for (i = 0; i < HVS_NUM_CHANNELS; i++) { 738 drm_printf(p, "\tChannel %d\n", i); 739 drm_printf(p, "\t\tin use=%d\n", hvs_state->fifo_state[i].in_use); 740 drm_printf(p, "\t\tload=%lu\n", hvs_state->fifo_state[i].fifo_load); 741 } 742 } 743 744 static const struct drm_private_state_funcs vc4_hvs_state_funcs = { 745 .atomic_duplicate_state = vc4_hvs_channels_duplicate_state, 746 .atomic_destroy_state = vc4_hvs_channels_destroy_state, 747 .atomic_print_state = vc4_hvs_channels_print_state, 748 }; 749 750 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused) 751 { 752 struct vc4_dev *vc4 = to_vc4_dev(dev); 753 754 drm_atomic_private_obj_fini(&vc4->hvs_channels); 755 } 756 757 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4) 758 { 759 struct vc4_hvs_state *state; 760 761 state = kzalloc(sizeof(*state), GFP_KERNEL); 762 if (!state) 763 return -ENOMEM; 764 765 drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels, 766 &state->base, 767 &vc4_hvs_state_funcs); 768 769 return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL); 770 } 771 772 /* 773 * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and 774 * the TXP (and therefore all the CRTCs found on that platform). 775 * 776 * The naive (and our initial) implementation would just iterate over 777 * all the active CRTCs, try to find a suitable FIFO, and then remove it 778 * from the pool of available FIFOs. However, there are a few corner 779 * cases that need to be considered: 780 * 781 * - When running in a dual-display setup (so with two CRTCs involved), 782 * we can update the state of a single CRTC (for example by changing 783 * its mode using xrandr under X11) without affecting the other. In 784 * this case, the other CRTC wouldn't be in the state at all, so we 785 * need to consider all the running CRTCs in the DRM device to assign 786 * a FIFO, not just the one in the state. 787 * 788 * - To fix the above, we can't use drm_atomic_get_crtc_state on all 789 * enabled CRTCs to pull their CRTC state into the global state, since 790 * a page flip would start considering their vblank to complete. Since 791 * we don't have a guarantee that they are actually active, that 792 * vblank might never happen, and shouldn't even be considered if we 793 * want to do a page flip on a single CRTC. That can be tested by 794 * doing a modetest -v first on HDMI1 and then on HDMI0. 795 * 796 * - Since we need the pixelvalve to be disabled and enabled back when 797 * the FIFO is changed, we should keep the FIFO assigned for as long 798 * as the CRTC is enabled, only considering it free again once that 799 * CRTC has been disabled. This can be tested by booting X11 on a 800 * single display, and changing the resolution down and then back up. 801 */ 802 static int vc4_pv_muxing_atomic_check(struct drm_device *dev, 803 struct drm_atomic_state *state) 804 { 805 struct vc4_hvs_state *hvs_new_state; 806 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 807 struct drm_crtc *crtc; 808 unsigned int unassigned_channels = 0; 809 unsigned int i; 810 811 hvs_new_state = vc4_hvs_get_global_state(state); 812 if (IS_ERR(hvs_new_state)) 813 return PTR_ERR(hvs_new_state); 814 815 for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++) 816 if (!hvs_new_state->fifo_state[i].in_use) 817 unassigned_channels |= BIT(i); 818 819 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 820 struct vc4_crtc_state *old_vc4_crtc_state = 821 to_vc4_crtc_state(old_crtc_state); 822 struct vc4_crtc_state *new_vc4_crtc_state = 823 to_vc4_crtc_state(new_crtc_state); 824 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 825 unsigned int matching_channels; 826 unsigned int channel; 827 828 drm_dbg(dev, "%s: Trying to find a channel.\n", crtc->name); 829 830 /* Nothing to do here, let's skip it */ 831 if (old_crtc_state->enable == new_crtc_state->enable) { 832 if (new_crtc_state->enable) 833 drm_dbg(dev, "%s: Already enabled, reusing channel %d.\n", 834 crtc->name, new_vc4_crtc_state->assigned_channel); 835 else 836 drm_dbg(dev, "%s: Disabled, ignoring.\n", crtc->name); 837 838 continue; 839 } 840 841 /* Muxing will need to be modified, mark it as such */ 842 new_vc4_crtc_state->update_muxing = true; 843 844 /* If we're disabling our CRTC, we put back our channel */ 845 if (!new_crtc_state->enable) { 846 channel = old_vc4_crtc_state->assigned_channel; 847 848 drm_dbg(dev, "%s: Disabling, Freeing channel %d\n", 849 crtc->name, channel); 850 851 hvs_new_state->fifo_state[channel].in_use = false; 852 new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED; 853 continue; 854 } 855 856 /* 857 * The problem we have to solve here is that we have 858 * up to 7 encoders, connected to up to 6 CRTCs. 859 * 860 * Those CRTCs, depending on the instance, can be 861 * routed to 1, 2 or 3 HVS FIFOs, and we need to set 862 * the change the muxing between FIFOs and outputs in 863 * the HVS accordingly. 864 * 865 * It would be pretty hard to come up with an 866 * algorithm that would generically solve 867 * this. However, the current routing trees we support 868 * allow us to simplify a bit the problem. 869 * 870 * Indeed, with the current supported layouts, if we 871 * try to assign in the ascending crtc index order the 872 * FIFOs, we can't fall into the situation where an 873 * earlier CRTC that had multiple routes is assigned 874 * one that was the only option for a later CRTC. 875 * 876 * If the layout changes and doesn't give us that in 877 * the future, we will need to have something smarter, 878 * but it works so far. 879 */ 880 matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels; 881 if (!matching_channels) 882 return -EINVAL; 883 884 channel = ffs(matching_channels) - 1; 885 886 drm_dbg(dev, "Assigned HVS channel %d to CRTC %s\n", channel, crtc->name); 887 new_vc4_crtc_state->assigned_channel = channel; 888 unassigned_channels &= ~BIT(channel); 889 hvs_new_state->fifo_state[channel].in_use = true; 890 } 891 892 return 0; 893 } 894 895 static int 896 vc4_core_clock_atomic_check(struct drm_atomic_state *state) 897 { 898 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 899 struct drm_private_state *priv_state; 900 struct vc4_hvs_state *hvs_new_state; 901 struct vc4_load_tracker_state *load_state; 902 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 903 struct drm_crtc *crtc; 904 unsigned int num_outputs; 905 unsigned long pixel_rate; 906 unsigned long cob_rate; 907 unsigned int i; 908 909 priv_state = drm_atomic_get_private_obj_state(state, 910 &vc4->load_tracker); 911 if (IS_ERR(priv_state)) 912 return PTR_ERR(priv_state); 913 914 load_state = to_vc4_load_tracker_state(priv_state); 915 916 hvs_new_state = vc4_hvs_get_global_state(state); 917 if (IS_ERR(hvs_new_state)) 918 return PTR_ERR(hvs_new_state); 919 920 for_each_oldnew_crtc_in_state(state, crtc, 921 old_crtc_state, 922 new_crtc_state, 923 i) { 924 if (old_crtc_state->active) { 925 struct vc4_crtc_state *old_vc4_state = 926 to_vc4_crtc_state(old_crtc_state); 927 unsigned int channel = old_vc4_state->assigned_channel; 928 929 hvs_new_state->fifo_state[channel].fifo_load = 0; 930 } 931 932 if (new_crtc_state->active) { 933 struct vc4_crtc_state *new_vc4_state = 934 to_vc4_crtc_state(new_crtc_state); 935 unsigned int channel = new_vc4_state->assigned_channel; 936 937 hvs_new_state->fifo_state[channel].fifo_load = 938 new_vc4_state->hvs_load; 939 } 940 } 941 942 cob_rate = 0; 943 num_outputs = 0; 944 for (i = 0; i < HVS_NUM_CHANNELS; i++) { 945 if (!hvs_new_state->fifo_state[i].in_use) 946 continue; 947 948 num_outputs++; 949 cob_rate += hvs_new_state->fifo_state[i].fifo_load; 950 } 951 952 pixel_rate = load_state->hvs_load; 953 if (num_outputs > 1) { 954 pixel_rate = (pixel_rate * 40) / 100; 955 } else { 956 pixel_rate = (pixel_rate * 60) / 100; 957 } 958 959 hvs_new_state->core_clock_rate = max(cob_rate, pixel_rate); 960 961 return 0; 962 } 963 964 965 static int 966 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 967 { 968 int ret; 969 970 ret = vc4_pv_muxing_atomic_check(dev, state); 971 if (ret) 972 return ret; 973 974 ret = vc4_ctm_atomic_check(dev, state); 975 if (ret < 0) 976 return ret; 977 978 ret = drm_atomic_helper_check(dev, state); 979 if (ret) 980 return ret; 981 982 ret = vc4_load_tracker_atomic_check(state); 983 if (ret) 984 return ret; 985 986 return vc4_core_clock_atomic_check(state); 987 } 988 989 static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = { 990 .atomic_commit_setup = vc4_atomic_commit_setup, 991 .atomic_commit_tail = vc4_atomic_commit_tail, 992 }; 993 994 static const struct drm_mode_config_funcs vc4_mode_funcs = { 995 .atomic_check = vc4_atomic_check, 996 .atomic_commit = drm_atomic_helper_commit, 997 .fb_create = vc4_fb_create, 998 }; 999 1000 int vc4_kms_load(struct drm_device *dev) 1001 { 1002 struct vc4_dev *vc4 = to_vc4_dev(dev); 1003 bool is_vc5 = of_device_is_compatible(dev->dev->of_node, 1004 "brcm,bcm2711-vc5"); 1005 int ret; 1006 1007 /* 1008 * The limits enforced by the load tracker aren't relevant for 1009 * the BCM2711, but the load tracker computations are used for 1010 * the core clock rate calculation. 1011 */ 1012 if (!is_vc5) { 1013 /* Start with the load tracker enabled. Can be 1014 * disabled through the debugfs load_tracker file. 1015 */ 1016 vc4->load_tracker_enabled = true; 1017 } 1018 1019 /* Set support for vblank irq fast disable, before drm_vblank_init() */ 1020 dev->vblank_disable_immediate = true; 1021 1022 ret = drm_vblank_init(dev, dev->mode_config.num_crtc); 1023 if (ret < 0) { 1024 dev_err(dev->dev, "failed to initialize vblank\n"); 1025 return ret; 1026 } 1027 1028 if (is_vc5) { 1029 dev->mode_config.max_width = 7680; 1030 dev->mode_config.max_height = 7680; 1031 } else { 1032 dev->mode_config.max_width = 2048; 1033 dev->mode_config.max_height = 2048; 1034 } 1035 1036 dev->mode_config.funcs = &vc4_mode_funcs; 1037 dev->mode_config.helper_private = &vc4_mode_config_helpers; 1038 dev->mode_config.preferred_depth = 24; 1039 dev->mode_config.async_page_flip = true; 1040 1041 ret = vc4_ctm_obj_init(vc4); 1042 if (ret) 1043 return ret; 1044 1045 ret = vc4_load_tracker_obj_init(vc4); 1046 if (ret) 1047 return ret; 1048 1049 ret = vc4_hvs_channels_obj_init(vc4); 1050 if (ret) 1051 return ret; 1052 1053 drm_mode_config_reset(dev); 1054 1055 drm_kms_helper_poll_init(dev); 1056 1057 return 0; 1058 } 1059