1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 KMS 8 * 9 * This is the general code for implementing KMS mode setting that 10 * doesn't clearly associate with any of the other objects (plane, 11 * crtc, HDMI encoder). 12 */ 13 14 #include <linux/clk.h> 15 16 #include <drm/drm_atomic.h> 17 #include <drm/drm_atomic_helper.h> 18 #include <drm/drm_crtc.h> 19 #include <drm/drm_gem_framebuffer_helper.h> 20 #include <drm/drm_plane_helper.h> 21 #include <drm/drm_probe_helper.h> 22 #include <drm/drm_vblank.h> 23 24 #include "vc4_drv.h" 25 #include "vc4_regs.h" 26 27 #define HVS_NUM_CHANNELS 3 28 29 struct vc4_ctm_state { 30 struct drm_private_state base; 31 struct drm_color_ctm *ctm; 32 int fifo; 33 }; 34 35 static struct vc4_ctm_state *to_vc4_ctm_state(struct drm_private_state *priv) 36 { 37 return container_of(priv, struct vc4_ctm_state, base); 38 } 39 40 struct vc4_hvs_state { 41 struct drm_private_state base; 42 43 struct { 44 unsigned in_use: 1; 45 struct drm_crtc_commit *pending_commit; 46 } fifo_state[HVS_NUM_CHANNELS]; 47 }; 48 49 static struct vc4_hvs_state * 50 to_vc4_hvs_state(struct drm_private_state *priv) 51 { 52 return container_of(priv, struct vc4_hvs_state, base); 53 } 54 55 struct vc4_load_tracker_state { 56 struct drm_private_state base; 57 u64 hvs_load; 58 u64 membus_load; 59 }; 60 61 static struct vc4_load_tracker_state * 62 to_vc4_load_tracker_state(struct drm_private_state *priv) 63 { 64 return container_of(priv, struct vc4_load_tracker_state, base); 65 } 66 67 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state, 68 struct drm_private_obj *manager) 69 { 70 struct drm_device *dev = state->dev; 71 struct vc4_dev *vc4 = to_vc4_dev(dev); 72 struct drm_private_state *priv_state; 73 int ret; 74 75 ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx); 76 if (ret) 77 return ERR_PTR(ret); 78 79 priv_state = drm_atomic_get_private_obj_state(state, manager); 80 if (IS_ERR(priv_state)) 81 return ERR_CAST(priv_state); 82 83 return to_vc4_ctm_state(priv_state); 84 } 85 86 static struct drm_private_state * 87 vc4_ctm_duplicate_state(struct drm_private_obj *obj) 88 { 89 struct vc4_ctm_state *state; 90 91 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); 92 if (!state) 93 return NULL; 94 95 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 96 97 return &state->base; 98 } 99 100 static void vc4_ctm_destroy_state(struct drm_private_obj *obj, 101 struct drm_private_state *state) 102 { 103 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state); 104 105 kfree(ctm_state); 106 } 107 108 static const struct drm_private_state_funcs vc4_ctm_state_funcs = { 109 .atomic_duplicate_state = vc4_ctm_duplicate_state, 110 .atomic_destroy_state = vc4_ctm_destroy_state, 111 }; 112 113 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused) 114 { 115 struct vc4_dev *vc4 = to_vc4_dev(dev); 116 117 drm_atomic_private_obj_fini(&vc4->ctm_manager); 118 } 119 120 static int vc4_ctm_obj_init(struct vc4_dev *vc4) 121 { 122 struct vc4_ctm_state *ctm_state; 123 124 drm_modeset_lock_init(&vc4->ctm_state_lock); 125 126 ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL); 127 if (!ctm_state) 128 return -ENOMEM; 129 130 drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base, 131 &vc4_ctm_state_funcs); 132 133 return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL); 134 } 135 136 /* Converts a DRM S31.32 value to the HW S0.9 format. */ 137 static u16 vc4_ctm_s31_32_to_s0_9(u64 in) 138 { 139 u16 r; 140 141 /* Sign bit. */ 142 r = in & BIT_ULL(63) ? BIT(9) : 0; 143 144 if ((in & GENMASK_ULL(62, 32)) > 0) { 145 /* We have zero integer bits so we can only saturate here. */ 146 r |= GENMASK(8, 0); 147 } else { 148 /* Otherwise take the 9 most important fractional bits. */ 149 r |= (in >> 23) & GENMASK(8, 0); 150 } 151 152 return r; 153 } 154 155 static void 156 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state) 157 { 158 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state); 159 struct drm_color_ctm *ctm = ctm_state->ctm; 160 161 if (ctm_state->fifo) { 162 HVS_WRITE(SCALER_OLEDCOEF2, 163 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]), 164 SCALER_OLEDCOEF2_R_TO_R) | 165 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]), 166 SCALER_OLEDCOEF2_R_TO_G) | 167 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]), 168 SCALER_OLEDCOEF2_R_TO_B)); 169 HVS_WRITE(SCALER_OLEDCOEF1, 170 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]), 171 SCALER_OLEDCOEF1_G_TO_R) | 172 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]), 173 SCALER_OLEDCOEF1_G_TO_G) | 174 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]), 175 SCALER_OLEDCOEF1_G_TO_B)); 176 HVS_WRITE(SCALER_OLEDCOEF0, 177 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]), 178 SCALER_OLEDCOEF0_B_TO_R) | 179 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]), 180 SCALER_OLEDCOEF0_B_TO_G) | 181 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]), 182 SCALER_OLEDCOEF0_B_TO_B)); 183 } 184 185 HVS_WRITE(SCALER_OLEDOFFS, 186 VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO)); 187 } 188 189 static struct vc4_hvs_state * 190 vc4_hvs_get_new_global_state(struct drm_atomic_state *state) 191 { 192 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 193 struct drm_private_state *priv_state; 194 195 priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels); 196 if (IS_ERR(priv_state)) 197 return ERR_CAST(priv_state); 198 199 return to_vc4_hvs_state(priv_state); 200 } 201 202 static struct vc4_hvs_state * 203 vc4_hvs_get_old_global_state(struct drm_atomic_state *state) 204 { 205 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 206 struct drm_private_state *priv_state; 207 208 priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels); 209 if (IS_ERR(priv_state)) 210 return ERR_CAST(priv_state); 211 212 return to_vc4_hvs_state(priv_state); 213 } 214 215 static struct vc4_hvs_state * 216 vc4_hvs_get_global_state(struct drm_atomic_state *state) 217 { 218 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 219 struct drm_private_state *priv_state; 220 221 priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels); 222 if (IS_ERR(priv_state)) 223 return ERR_CAST(priv_state); 224 225 return to_vc4_hvs_state(priv_state); 226 } 227 228 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4, 229 struct drm_atomic_state *state) 230 { 231 struct drm_crtc_state *crtc_state; 232 struct drm_crtc *crtc; 233 unsigned int i; 234 235 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 236 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); 237 u32 dispctrl; 238 u32 dsp3_mux; 239 240 if (!crtc_state->active) 241 continue; 242 243 if (vc4_state->assigned_channel != 2) 244 continue; 245 246 /* 247 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to 248 * FIFO X'. 249 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'. 250 * 251 * DSP3 is connected to FIFO2 unless the transposer is 252 * enabled. In this case, FIFO 2 is directly accessed by the 253 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1 254 * route. 255 */ 256 if (vc4_state->feed_txp) 257 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX); 258 else 259 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX); 260 261 dispctrl = HVS_READ(SCALER_DISPCTRL) & 262 ~SCALER_DISPCTRL_DSP3_MUX_MASK; 263 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux); 264 } 265 } 266 267 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4, 268 struct drm_atomic_state *state) 269 { 270 struct drm_crtc_state *crtc_state; 271 struct drm_crtc *crtc; 272 unsigned char mux; 273 unsigned int i; 274 u32 reg; 275 276 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 277 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); 278 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 279 280 if (!vc4_state->update_muxing) 281 continue; 282 283 switch (vc4_crtc->data->hvs_output) { 284 case 2: 285 mux = (vc4_state->assigned_channel == 2) ? 0 : 1; 286 reg = HVS_READ(SCALER_DISPECTRL); 287 HVS_WRITE(SCALER_DISPECTRL, 288 (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) | 289 VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX)); 290 break; 291 292 case 3: 293 if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED) 294 mux = 3; 295 else 296 mux = vc4_state->assigned_channel; 297 298 reg = HVS_READ(SCALER_DISPCTRL); 299 HVS_WRITE(SCALER_DISPCTRL, 300 (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) | 301 VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX)); 302 break; 303 304 case 4: 305 if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED) 306 mux = 3; 307 else 308 mux = vc4_state->assigned_channel; 309 310 reg = HVS_READ(SCALER_DISPEOLN); 311 HVS_WRITE(SCALER_DISPEOLN, 312 (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) | 313 VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX)); 314 315 break; 316 317 case 5: 318 if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED) 319 mux = 3; 320 else 321 mux = vc4_state->assigned_channel; 322 323 reg = HVS_READ(SCALER_DISPDITHER); 324 HVS_WRITE(SCALER_DISPDITHER, 325 (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) | 326 VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX)); 327 break; 328 329 default: 330 break; 331 } 332 } 333 } 334 335 static void vc4_atomic_commit_tail(struct drm_atomic_state *state) 336 { 337 struct drm_device *dev = state->dev; 338 struct vc4_dev *vc4 = to_vc4_dev(dev); 339 struct vc4_hvs *hvs = vc4->hvs; 340 struct drm_crtc_state *new_crtc_state; 341 struct drm_crtc *crtc; 342 struct vc4_hvs_state *old_hvs_state; 343 unsigned int channel; 344 int i; 345 346 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 347 struct vc4_crtc_state *vc4_crtc_state; 348 349 if (!new_crtc_state->commit) 350 continue; 351 352 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state); 353 vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel); 354 } 355 356 old_hvs_state = vc4_hvs_get_old_global_state(state); 357 if (IS_ERR(old_hvs_state)) 358 return; 359 360 for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) { 361 struct drm_crtc_commit *commit; 362 int ret; 363 364 if (!old_hvs_state->fifo_state[channel].in_use) 365 continue; 366 367 commit = old_hvs_state->fifo_state[channel].pending_commit; 368 if (!commit) 369 continue; 370 371 ret = drm_crtc_commit_wait(commit); 372 if (ret) 373 drm_err(dev, "Timed out waiting for commit\n"); 374 375 drm_crtc_commit_put(commit); 376 old_hvs_state->fifo_state[channel].pending_commit = NULL; 377 } 378 379 if (vc4->hvs->hvs5) 380 clk_set_min_rate(hvs->core_clk, 500000000); 381 382 drm_atomic_helper_commit_modeset_disables(dev, state); 383 384 vc4_ctm_commit(vc4, state); 385 386 if (vc4->hvs->hvs5) 387 vc5_hvs_pv_muxing_commit(vc4, state); 388 else 389 vc4_hvs_pv_muxing_commit(vc4, state); 390 391 drm_atomic_helper_commit_planes(dev, state, 0); 392 393 drm_atomic_helper_commit_modeset_enables(dev, state); 394 395 drm_atomic_helper_fake_vblank(state); 396 397 drm_atomic_helper_commit_hw_done(state); 398 399 drm_atomic_helper_wait_for_flip_done(dev, state); 400 401 drm_atomic_helper_cleanup_planes(dev, state); 402 403 if (vc4->hvs->hvs5) 404 clk_set_min_rate(hvs->core_clk, 0); 405 } 406 407 static int vc4_atomic_commit_setup(struct drm_atomic_state *state) 408 { 409 struct drm_crtc_state *crtc_state; 410 struct vc4_hvs_state *hvs_state; 411 struct drm_crtc *crtc; 412 unsigned int i; 413 414 hvs_state = vc4_hvs_get_new_global_state(state); 415 if (WARN_ON(IS_ERR(hvs_state))) 416 return PTR_ERR(hvs_state); 417 418 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 419 struct vc4_crtc_state *vc4_crtc_state = 420 to_vc4_crtc_state(crtc_state); 421 unsigned int channel = 422 vc4_crtc_state->assigned_channel; 423 424 if (channel == VC4_HVS_CHANNEL_DISABLED) 425 continue; 426 427 if (!hvs_state->fifo_state[channel].in_use) 428 continue; 429 430 hvs_state->fifo_state[channel].pending_commit = 431 drm_crtc_commit_get(crtc_state->commit); 432 } 433 434 return 0; 435 } 436 437 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev, 438 struct drm_file *file_priv, 439 const struct drm_mode_fb_cmd2 *mode_cmd) 440 { 441 struct drm_mode_fb_cmd2 mode_cmd_local; 442 443 /* If the user didn't specify a modifier, use the 444 * vc4_set_tiling_ioctl() state for the BO. 445 */ 446 if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) { 447 struct drm_gem_object *gem_obj; 448 struct vc4_bo *bo; 449 450 gem_obj = drm_gem_object_lookup(file_priv, 451 mode_cmd->handles[0]); 452 if (!gem_obj) { 453 DRM_DEBUG("Failed to look up GEM BO %d\n", 454 mode_cmd->handles[0]); 455 return ERR_PTR(-ENOENT); 456 } 457 bo = to_vc4_bo(gem_obj); 458 459 mode_cmd_local = *mode_cmd; 460 461 if (bo->t_format) { 462 mode_cmd_local.modifier[0] = 463 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED; 464 } else { 465 mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE; 466 } 467 468 drm_gem_object_put(gem_obj); 469 470 mode_cmd = &mode_cmd_local; 471 } 472 473 return drm_gem_fb_create(dev, file_priv, mode_cmd); 474 } 475 476 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC 477 * at a time and the HW only supports S0.9 scalars. To account for the latter, 478 * we don't allow userland to set a CTM that we have no hope of approximating. 479 */ 480 static int 481 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 482 { 483 struct vc4_dev *vc4 = to_vc4_dev(dev); 484 struct vc4_ctm_state *ctm_state = NULL; 485 struct drm_crtc *crtc; 486 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 487 struct drm_color_ctm *ctm; 488 int i; 489 490 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 491 /* CTM is being disabled. */ 492 if (!new_crtc_state->ctm && old_crtc_state->ctm) { 493 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager); 494 if (IS_ERR(ctm_state)) 495 return PTR_ERR(ctm_state); 496 ctm_state->fifo = 0; 497 } 498 } 499 500 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 501 if (new_crtc_state->ctm == old_crtc_state->ctm) 502 continue; 503 504 if (!ctm_state) { 505 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager); 506 if (IS_ERR(ctm_state)) 507 return PTR_ERR(ctm_state); 508 } 509 510 /* CTM is being enabled or the matrix changed. */ 511 if (new_crtc_state->ctm) { 512 struct vc4_crtc_state *vc4_crtc_state = 513 to_vc4_crtc_state(new_crtc_state); 514 515 /* fifo is 1-based since 0 disables CTM. */ 516 int fifo = vc4_crtc_state->assigned_channel + 1; 517 518 /* Check userland isn't trying to turn on CTM for more 519 * than one CRTC at a time. 520 */ 521 if (ctm_state->fifo && ctm_state->fifo != fifo) { 522 DRM_DEBUG_DRIVER("Too many CTM configured\n"); 523 return -EINVAL; 524 } 525 526 /* Check we can approximate the specified CTM. 527 * We disallow scalars |c| > 1.0 since the HW has 528 * no integer bits. 529 */ 530 ctm = new_crtc_state->ctm->data; 531 for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) { 532 u64 val = ctm->matrix[i]; 533 534 val &= ~BIT_ULL(63); 535 if (val > BIT_ULL(32)) 536 return -EINVAL; 537 } 538 539 ctm_state->fifo = fifo; 540 ctm_state->ctm = ctm; 541 } 542 } 543 544 return 0; 545 } 546 547 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state) 548 { 549 struct drm_plane_state *old_plane_state, *new_plane_state; 550 struct vc4_dev *vc4 = to_vc4_dev(state->dev); 551 struct vc4_load_tracker_state *load_state; 552 struct drm_private_state *priv_state; 553 struct drm_plane *plane; 554 int i; 555 556 if (!vc4->load_tracker_available) 557 return 0; 558 559 priv_state = drm_atomic_get_private_obj_state(state, 560 &vc4->load_tracker); 561 if (IS_ERR(priv_state)) 562 return PTR_ERR(priv_state); 563 564 load_state = to_vc4_load_tracker_state(priv_state); 565 for_each_oldnew_plane_in_state(state, plane, old_plane_state, 566 new_plane_state, i) { 567 struct vc4_plane_state *vc4_plane_state; 568 569 if (old_plane_state->fb && old_plane_state->crtc) { 570 vc4_plane_state = to_vc4_plane_state(old_plane_state); 571 load_state->membus_load -= vc4_plane_state->membus_load; 572 load_state->hvs_load -= vc4_plane_state->hvs_load; 573 } 574 575 if (new_plane_state->fb && new_plane_state->crtc) { 576 vc4_plane_state = to_vc4_plane_state(new_plane_state); 577 load_state->membus_load += vc4_plane_state->membus_load; 578 load_state->hvs_load += vc4_plane_state->hvs_load; 579 } 580 } 581 582 /* Don't check the load when the tracker is disabled. */ 583 if (!vc4->load_tracker_enabled) 584 return 0; 585 586 /* The absolute limit is 2Gbyte/sec, but let's take a margin to let 587 * the system work when other blocks are accessing the memory. 588 */ 589 if (load_state->membus_load > SZ_1G + SZ_512M) 590 return -ENOSPC; 591 592 /* HVS clock is supposed to run @ 250Mhz, let's take a margin and 593 * consider the maximum number of cycles is 240M. 594 */ 595 if (load_state->hvs_load > 240000000ULL) 596 return -ENOSPC; 597 598 return 0; 599 } 600 601 static struct drm_private_state * 602 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj) 603 { 604 struct vc4_load_tracker_state *state; 605 606 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); 607 if (!state) 608 return NULL; 609 610 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 611 612 return &state->base; 613 } 614 615 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj, 616 struct drm_private_state *state) 617 { 618 struct vc4_load_tracker_state *load_state; 619 620 load_state = to_vc4_load_tracker_state(state); 621 kfree(load_state); 622 } 623 624 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = { 625 .atomic_duplicate_state = vc4_load_tracker_duplicate_state, 626 .atomic_destroy_state = vc4_load_tracker_destroy_state, 627 }; 628 629 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused) 630 { 631 struct vc4_dev *vc4 = to_vc4_dev(dev); 632 633 if (!vc4->load_tracker_available) 634 return; 635 636 drm_atomic_private_obj_fini(&vc4->load_tracker); 637 } 638 639 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4) 640 { 641 struct vc4_load_tracker_state *load_state; 642 643 if (!vc4->load_tracker_available) 644 return 0; 645 646 load_state = kzalloc(sizeof(*load_state), GFP_KERNEL); 647 if (!load_state) 648 return -ENOMEM; 649 650 drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker, 651 &load_state->base, 652 &vc4_load_tracker_state_funcs); 653 654 return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL); 655 } 656 657 static struct drm_private_state * 658 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj) 659 { 660 struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state); 661 struct vc4_hvs_state *state; 662 unsigned int i; 663 664 state = kzalloc(sizeof(*state), GFP_KERNEL); 665 if (!state) 666 return NULL; 667 668 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); 669 670 671 for (i = 0; i < HVS_NUM_CHANNELS; i++) { 672 state->fifo_state[i].in_use = old_state->fifo_state[i].in_use; 673 } 674 675 return &state->base; 676 } 677 678 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj, 679 struct drm_private_state *state) 680 { 681 struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state); 682 unsigned int i; 683 684 for (i = 0; i < HVS_NUM_CHANNELS; i++) { 685 if (!hvs_state->fifo_state[i].pending_commit) 686 continue; 687 688 drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit); 689 } 690 691 kfree(hvs_state); 692 } 693 694 static const struct drm_private_state_funcs vc4_hvs_state_funcs = { 695 .atomic_duplicate_state = vc4_hvs_channels_duplicate_state, 696 .atomic_destroy_state = vc4_hvs_channels_destroy_state, 697 }; 698 699 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused) 700 { 701 struct vc4_dev *vc4 = to_vc4_dev(dev); 702 703 drm_atomic_private_obj_fini(&vc4->hvs_channels); 704 } 705 706 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4) 707 { 708 struct vc4_hvs_state *state; 709 710 state = kzalloc(sizeof(*state), GFP_KERNEL); 711 if (!state) 712 return -ENOMEM; 713 714 drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels, 715 &state->base, 716 &vc4_hvs_state_funcs); 717 718 return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL); 719 } 720 721 /* 722 * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and 723 * the TXP (and therefore all the CRTCs found on that platform). 724 * 725 * The naive (and our initial) implementation would just iterate over 726 * all the active CRTCs, try to find a suitable FIFO, and then remove it 727 * from the pool of available FIFOs. However, there are a few corner 728 * cases that need to be considered: 729 * 730 * - When running in a dual-display setup (so with two CRTCs involved), 731 * we can update the state of a single CRTC (for example by changing 732 * its mode using xrandr under X11) without affecting the other. In 733 * this case, the other CRTC wouldn't be in the state at all, so we 734 * need to consider all the running CRTCs in the DRM device to assign 735 * a FIFO, not just the one in the state. 736 * 737 * - To fix the above, we can't use drm_atomic_get_crtc_state on all 738 * enabled CRTCs to pull their CRTC state into the global state, since 739 * a page flip would start considering their vblank to complete. Since 740 * we don't have a guarantee that they are actually active, that 741 * vblank might never happen, and shouldn't even be considered if we 742 * want to do a page flip on a single CRTC. That can be tested by 743 * doing a modetest -v first on HDMI1 and then on HDMI0. 744 * 745 * - Since we need the pixelvalve to be disabled and enabled back when 746 * the FIFO is changed, we should keep the FIFO assigned for as long 747 * as the CRTC is enabled, only considering it free again once that 748 * CRTC has been disabled. This can be tested by booting X11 on a 749 * single display, and changing the resolution down and then back up. 750 */ 751 static int vc4_pv_muxing_atomic_check(struct drm_device *dev, 752 struct drm_atomic_state *state) 753 { 754 struct vc4_hvs_state *hvs_new_state; 755 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 756 struct drm_crtc *crtc; 757 unsigned int unassigned_channels = 0; 758 unsigned int i; 759 760 hvs_new_state = vc4_hvs_get_global_state(state); 761 if (IS_ERR(hvs_new_state)) 762 return PTR_ERR(hvs_new_state); 763 764 for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++) 765 if (!hvs_new_state->fifo_state[i].in_use) 766 unassigned_channels |= BIT(i); 767 768 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 769 struct vc4_crtc_state *old_vc4_crtc_state = 770 to_vc4_crtc_state(old_crtc_state); 771 struct vc4_crtc_state *new_vc4_crtc_state = 772 to_vc4_crtc_state(new_crtc_state); 773 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 774 unsigned int matching_channels; 775 unsigned int channel; 776 777 /* Nothing to do here, let's skip it */ 778 if (old_crtc_state->enable == new_crtc_state->enable) 779 continue; 780 781 /* Muxing will need to be modified, mark it as such */ 782 new_vc4_crtc_state->update_muxing = true; 783 784 /* If we're disabling our CRTC, we put back our channel */ 785 if (!new_crtc_state->enable) { 786 channel = old_vc4_crtc_state->assigned_channel; 787 hvs_new_state->fifo_state[channel].in_use = false; 788 new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED; 789 continue; 790 } 791 792 /* 793 * The problem we have to solve here is that we have 794 * up to 7 encoders, connected to up to 6 CRTCs. 795 * 796 * Those CRTCs, depending on the instance, can be 797 * routed to 1, 2 or 3 HVS FIFOs, and we need to set 798 * the change the muxing between FIFOs and outputs in 799 * the HVS accordingly. 800 * 801 * It would be pretty hard to come up with an 802 * algorithm that would generically solve 803 * this. However, the current routing trees we support 804 * allow us to simplify a bit the problem. 805 * 806 * Indeed, with the current supported layouts, if we 807 * try to assign in the ascending crtc index order the 808 * FIFOs, we can't fall into the situation where an 809 * earlier CRTC that had multiple routes is assigned 810 * one that was the only option for a later CRTC. 811 * 812 * If the layout changes and doesn't give us that in 813 * the future, we will need to have something smarter, 814 * but it works so far. 815 */ 816 matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels; 817 if (!matching_channels) 818 return -EINVAL; 819 820 channel = ffs(matching_channels) - 1; 821 new_vc4_crtc_state->assigned_channel = channel; 822 unassigned_channels &= ~BIT(channel); 823 hvs_new_state->fifo_state[channel].in_use = true; 824 } 825 826 return 0; 827 } 828 829 static int 830 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 831 { 832 int ret; 833 834 ret = vc4_pv_muxing_atomic_check(dev, state); 835 if (ret) 836 return ret; 837 838 ret = vc4_ctm_atomic_check(dev, state); 839 if (ret < 0) 840 return ret; 841 842 ret = drm_atomic_helper_check(dev, state); 843 if (ret) 844 return ret; 845 846 return vc4_load_tracker_atomic_check(state); 847 } 848 849 static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = { 850 .atomic_commit_setup = vc4_atomic_commit_setup, 851 .atomic_commit_tail = vc4_atomic_commit_tail, 852 }; 853 854 static const struct drm_mode_config_funcs vc4_mode_funcs = { 855 .atomic_check = vc4_atomic_check, 856 .atomic_commit = drm_atomic_helper_commit, 857 .fb_create = vc4_fb_create, 858 }; 859 860 int vc4_kms_load(struct drm_device *dev) 861 { 862 struct vc4_dev *vc4 = to_vc4_dev(dev); 863 bool is_vc5 = of_device_is_compatible(dev->dev->of_node, 864 "brcm,bcm2711-vc5"); 865 int ret; 866 867 if (!is_vc5) { 868 vc4->load_tracker_available = true; 869 870 /* Start with the load tracker enabled. Can be 871 * disabled through the debugfs load_tracker file. 872 */ 873 vc4->load_tracker_enabled = true; 874 } 875 876 /* Set support for vblank irq fast disable, before drm_vblank_init() */ 877 dev->vblank_disable_immediate = true; 878 879 ret = drm_vblank_init(dev, dev->mode_config.num_crtc); 880 if (ret < 0) { 881 dev_err(dev->dev, "failed to initialize vblank\n"); 882 return ret; 883 } 884 885 if (is_vc5) { 886 dev->mode_config.max_width = 7680; 887 dev->mode_config.max_height = 7680; 888 } else { 889 dev->mode_config.max_width = 2048; 890 dev->mode_config.max_height = 2048; 891 } 892 893 dev->mode_config.funcs = &vc4_mode_funcs; 894 dev->mode_config.helper_private = &vc4_mode_config_helpers; 895 dev->mode_config.preferred_depth = 24; 896 dev->mode_config.async_page_flip = true; 897 898 ret = vc4_ctm_obj_init(vc4); 899 if (ret) 900 return ret; 901 902 ret = vc4_load_tracker_obj_init(vc4); 903 if (ret) 904 return ret; 905 906 ret = vc4_hvs_channels_obj_init(vc4); 907 if (ret) 908 return ret; 909 910 drm_mode_config_reset(dev); 911 912 drm_kms_helper_poll_init(dev); 913 914 return 0; 915 } 916