xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_kms.c (revision 36de991e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 KMS
8  *
9  * This is the general code for implementing KMS mode setting that
10  * doesn't clearly associate with any of the other objects (plane,
11  * crtc, HDMI encoder).
12  */
13 
14 #include <linux/clk.h>
15 
16 #include <drm/drm_atomic.h>
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_gem_framebuffer_helper.h>
20 #include <drm/drm_plane_helper.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_vblank.h>
23 
24 #include "vc4_drv.h"
25 #include "vc4_regs.h"
26 
27 #define HVS_NUM_CHANNELS 3
28 
29 struct vc4_ctm_state {
30 	struct drm_private_state base;
31 	struct drm_color_ctm *ctm;
32 	int fifo;
33 };
34 
35 static struct vc4_ctm_state *to_vc4_ctm_state(struct drm_private_state *priv)
36 {
37 	return container_of(priv, struct vc4_ctm_state, base);
38 }
39 
40 struct vc4_hvs_state {
41 	struct drm_private_state base;
42 
43 	struct {
44 		unsigned in_use: 1;
45 		struct drm_crtc_commit *pending_commit;
46 	} fifo_state[HVS_NUM_CHANNELS];
47 };
48 
49 static struct vc4_hvs_state *
50 to_vc4_hvs_state(struct drm_private_state *priv)
51 {
52 	return container_of(priv, struct vc4_hvs_state, base);
53 }
54 
55 struct vc4_load_tracker_state {
56 	struct drm_private_state base;
57 	u64 hvs_load;
58 	u64 membus_load;
59 };
60 
61 static struct vc4_load_tracker_state *
62 to_vc4_load_tracker_state(struct drm_private_state *priv)
63 {
64 	return container_of(priv, struct vc4_load_tracker_state, base);
65 }
66 
67 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
68 					       struct drm_private_obj *manager)
69 {
70 	struct drm_device *dev = state->dev;
71 	struct vc4_dev *vc4 = to_vc4_dev(dev);
72 	struct drm_private_state *priv_state;
73 	int ret;
74 
75 	ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
76 	if (ret)
77 		return ERR_PTR(ret);
78 
79 	priv_state = drm_atomic_get_private_obj_state(state, manager);
80 	if (IS_ERR(priv_state))
81 		return ERR_CAST(priv_state);
82 
83 	return to_vc4_ctm_state(priv_state);
84 }
85 
86 static struct drm_private_state *
87 vc4_ctm_duplicate_state(struct drm_private_obj *obj)
88 {
89 	struct vc4_ctm_state *state;
90 
91 	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
92 	if (!state)
93 		return NULL;
94 
95 	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
96 
97 	return &state->base;
98 }
99 
100 static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
101 				  struct drm_private_state *state)
102 {
103 	struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
104 
105 	kfree(ctm_state);
106 }
107 
108 static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
109 	.atomic_duplicate_state = vc4_ctm_duplicate_state,
110 	.atomic_destroy_state = vc4_ctm_destroy_state,
111 };
112 
113 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
114 {
115 	struct vc4_dev *vc4 = to_vc4_dev(dev);
116 
117 	drm_atomic_private_obj_fini(&vc4->ctm_manager);
118 }
119 
120 static int vc4_ctm_obj_init(struct vc4_dev *vc4)
121 {
122 	struct vc4_ctm_state *ctm_state;
123 
124 	drm_modeset_lock_init(&vc4->ctm_state_lock);
125 
126 	ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
127 	if (!ctm_state)
128 		return -ENOMEM;
129 
130 	drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
131 				    &vc4_ctm_state_funcs);
132 
133 	return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
134 }
135 
136 /* Converts a DRM S31.32 value to the HW S0.9 format. */
137 static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
138 {
139 	u16 r;
140 
141 	/* Sign bit. */
142 	r = in & BIT_ULL(63) ? BIT(9) : 0;
143 
144 	if ((in & GENMASK_ULL(62, 32)) > 0) {
145 		/* We have zero integer bits so we can only saturate here. */
146 		r |= GENMASK(8, 0);
147 	} else {
148 		/* Otherwise take the 9 most important fractional bits. */
149 		r |= (in >> 23) & GENMASK(8, 0);
150 	}
151 
152 	return r;
153 }
154 
155 static void
156 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
157 {
158 	struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
159 	struct drm_color_ctm *ctm = ctm_state->ctm;
160 
161 	if (ctm_state->fifo) {
162 		HVS_WRITE(SCALER_OLEDCOEF2,
163 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
164 					SCALER_OLEDCOEF2_R_TO_R) |
165 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
166 					SCALER_OLEDCOEF2_R_TO_G) |
167 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
168 					SCALER_OLEDCOEF2_R_TO_B));
169 		HVS_WRITE(SCALER_OLEDCOEF1,
170 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
171 					SCALER_OLEDCOEF1_G_TO_R) |
172 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
173 					SCALER_OLEDCOEF1_G_TO_G) |
174 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
175 					SCALER_OLEDCOEF1_G_TO_B));
176 		HVS_WRITE(SCALER_OLEDCOEF0,
177 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
178 					SCALER_OLEDCOEF0_B_TO_R) |
179 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
180 					SCALER_OLEDCOEF0_B_TO_G) |
181 			  VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
182 					SCALER_OLEDCOEF0_B_TO_B));
183 	}
184 
185 	HVS_WRITE(SCALER_OLEDOFFS,
186 		  VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
187 }
188 
189 static struct vc4_hvs_state *
190 vc4_hvs_get_new_global_state(struct drm_atomic_state *state)
191 {
192 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
193 	struct drm_private_state *priv_state;
194 
195 	priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels);
196 	if (IS_ERR(priv_state))
197 		return ERR_CAST(priv_state);
198 
199 	return to_vc4_hvs_state(priv_state);
200 }
201 
202 static struct vc4_hvs_state *
203 vc4_hvs_get_old_global_state(struct drm_atomic_state *state)
204 {
205 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
206 	struct drm_private_state *priv_state;
207 
208 	priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels);
209 	if (IS_ERR(priv_state))
210 		return ERR_CAST(priv_state);
211 
212 	return to_vc4_hvs_state(priv_state);
213 }
214 
215 static struct vc4_hvs_state *
216 vc4_hvs_get_global_state(struct drm_atomic_state *state)
217 {
218 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
219 	struct drm_private_state *priv_state;
220 
221 	priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
222 	if (IS_ERR(priv_state))
223 		return ERR_CAST(priv_state);
224 
225 	return to_vc4_hvs_state(priv_state);
226 }
227 
228 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
229 				     struct drm_atomic_state *state)
230 {
231 	struct drm_crtc_state *crtc_state;
232 	struct drm_crtc *crtc;
233 	unsigned int i;
234 
235 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
236 		struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
237 		u32 dispctrl;
238 		u32 dsp3_mux;
239 
240 		if (!crtc_state->active)
241 			continue;
242 
243 		if (vc4_state->assigned_channel != 2)
244 			continue;
245 
246 		/*
247 		 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
248 		 * FIFO X'.
249 		 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
250 		 *
251 		 * DSP3 is connected to FIFO2 unless the transposer is
252 		 * enabled. In this case, FIFO 2 is directly accessed by the
253 		 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
254 		 * route.
255 		 */
256 		if (vc4_state->feed_txp)
257 			dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
258 		else
259 			dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
260 
261 		dispctrl = HVS_READ(SCALER_DISPCTRL) &
262 			   ~SCALER_DISPCTRL_DSP3_MUX_MASK;
263 		HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
264 	}
265 }
266 
267 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
268 				     struct drm_atomic_state *state)
269 {
270 	struct drm_crtc_state *crtc_state;
271 	struct drm_crtc *crtc;
272 	unsigned char mux;
273 	unsigned int i;
274 	u32 reg;
275 
276 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
277 		struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
278 		struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
279 
280 		if (!vc4_state->update_muxing)
281 			continue;
282 
283 		switch (vc4_crtc->data->hvs_output) {
284 		case 2:
285 			mux = (vc4_state->assigned_channel == 2) ? 0 : 1;
286 			reg = HVS_READ(SCALER_DISPECTRL);
287 			HVS_WRITE(SCALER_DISPECTRL,
288 				  (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
289 				  VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
290 			break;
291 
292 		case 3:
293 			if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
294 				mux = 3;
295 			else
296 				mux = vc4_state->assigned_channel;
297 
298 			reg = HVS_READ(SCALER_DISPCTRL);
299 			HVS_WRITE(SCALER_DISPCTRL,
300 				  (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
301 				  VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
302 			break;
303 
304 		case 4:
305 			if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
306 				mux = 3;
307 			else
308 				mux = vc4_state->assigned_channel;
309 
310 			reg = HVS_READ(SCALER_DISPEOLN);
311 			HVS_WRITE(SCALER_DISPEOLN,
312 				  (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
313 				  VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
314 
315 			break;
316 
317 		case 5:
318 			if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
319 				mux = 3;
320 			else
321 				mux = vc4_state->assigned_channel;
322 
323 			reg = HVS_READ(SCALER_DISPDITHER);
324 			HVS_WRITE(SCALER_DISPDITHER,
325 				  (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
326 				  VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
327 			break;
328 
329 		default:
330 			break;
331 		}
332 	}
333 }
334 
335 static void vc4_atomic_commit_tail(struct drm_atomic_state *state)
336 {
337 	struct drm_device *dev = state->dev;
338 	struct vc4_dev *vc4 = to_vc4_dev(dev);
339 	struct vc4_hvs *hvs = vc4->hvs;
340 	struct drm_crtc_state *new_crtc_state;
341 	struct drm_crtc *crtc;
342 	struct vc4_hvs_state *old_hvs_state;
343 	unsigned int channel;
344 	int i;
345 
346 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
347 		struct vc4_crtc_state *vc4_crtc_state;
348 
349 		if (!new_crtc_state->commit)
350 			continue;
351 
352 		vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
353 		vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel);
354 	}
355 
356 	old_hvs_state = vc4_hvs_get_old_global_state(state);
357 	if (IS_ERR(old_hvs_state))
358 		return;
359 
360 	for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) {
361 		struct drm_crtc_commit *commit;
362 		int ret;
363 
364 		if (!old_hvs_state->fifo_state[channel].in_use)
365 			continue;
366 
367 		commit = old_hvs_state->fifo_state[channel].pending_commit;
368 		if (!commit)
369 			continue;
370 
371 		ret = drm_crtc_commit_wait(commit);
372 		if (ret)
373 			drm_err(dev, "Timed out waiting for commit\n");
374 
375 		drm_crtc_commit_put(commit);
376 		old_hvs_state->fifo_state[channel].pending_commit = NULL;
377 	}
378 
379 	if (vc4->hvs->hvs5)
380 		clk_set_min_rate(hvs->core_clk, 500000000);
381 
382 	drm_atomic_helper_commit_modeset_disables(dev, state);
383 
384 	vc4_ctm_commit(vc4, state);
385 
386 	if (vc4->hvs->hvs5)
387 		vc5_hvs_pv_muxing_commit(vc4, state);
388 	else
389 		vc4_hvs_pv_muxing_commit(vc4, state);
390 
391 	drm_atomic_helper_commit_planes(dev, state, 0);
392 
393 	drm_atomic_helper_commit_modeset_enables(dev, state);
394 
395 	drm_atomic_helper_fake_vblank(state);
396 
397 	drm_atomic_helper_commit_hw_done(state);
398 
399 	drm_atomic_helper_wait_for_flip_done(dev, state);
400 
401 	drm_atomic_helper_cleanup_planes(dev, state);
402 
403 	if (vc4->hvs->hvs5)
404 		clk_set_min_rate(hvs->core_clk, 0);
405 }
406 
407 static int vc4_atomic_commit_setup(struct drm_atomic_state *state)
408 {
409 	struct drm_crtc_state *crtc_state;
410 	struct vc4_hvs_state *hvs_state;
411 	struct drm_crtc *crtc;
412 	unsigned int i;
413 
414 	hvs_state = vc4_hvs_get_new_global_state(state);
415 	if (WARN_ON(IS_ERR(hvs_state)))
416 		return PTR_ERR(hvs_state);
417 
418 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
419 		struct vc4_crtc_state *vc4_crtc_state =
420 			to_vc4_crtc_state(crtc_state);
421 		unsigned int channel =
422 			vc4_crtc_state->assigned_channel;
423 
424 		if (channel == VC4_HVS_CHANNEL_DISABLED)
425 			continue;
426 
427 		if (!hvs_state->fifo_state[channel].in_use)
428 			continue;
429 
430 		hvs_state->fifo_state[channel].pending_commit =
431 			drm_crtc_commit_get(crtc_state->commit);
432 	}
433 
434 	return 0;
435 }
436 
437 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
438 					     struct drm_file *file_priv,
439 					     const struct drm_mode_fb_cmd2 *mode_cmd)
440 {
441 	struct drm_mode_fb_cmd2 mode_cmd_local;
442 
443 	/* If the user didn't specify a modifier, use the
444 	 * vc4_set_tiling_ioctl() state for the BO.
445 	 */
446 	if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
447 		struct drm_gem_object *gem_obj;
448 		struct vc4_bo *bo;
449 
450 		gem_obj = drm_gem_object_lookup(file_priv,
451 						mode_cmd->handles[0]);
452 		if (!gem_obj) {
453 			DRM_DEBUG("Failed to look up GEM BO %d\n",
454 				  mode_cmd->handles[0]);
455 			return ERR_PTR(-ENOENT);
456 		}
457 		bo = to_vc4_bo(gem_obj);
458 
459 		mode_cmd_local = *mode_cmd;
460 
461 		if (bo->t_format) {
462 			mode_cmd_local.modifier[0] =
463 				DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
464 		} else {
465 			mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
466 		}
467 
468 		drm_gem_object_put(gem_obj);
469 
470 		mode_cmd = &mode_cmd_local;
471 	}
472 
473 	return drm_gem_fb_create(dev, file_priv, mode_cmd);
474 }
475 
476 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC
477  * at a time and the HW only supports S0.9 scalars. To account for the latter,
478  * we don't allow userland to set a CTM that we have no hope of approximating.
479  */
480 static int
481 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
482 {
483 	struct vc4_dev *vc4 = to_vc4_dev(dev);
484 	struct vc4_ctm_state *ctm_state = NULL;
485 	struct drm_crtc *crtc;
486 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
487 	struct drm_color_ctm *ctm;
488 	int i;
489 
490 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
491 		/* CTM is being disabled. */
492 		if (!new_crtc_state->ctm && old_crtc_state->ctm) {
493 			ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
494 			if (IS_ERR(ctm_state))
495 				return PTR_ERR(ctm_state);
496 			ctm_state->fifo = 0;
497 		}
498 	}
499 
500 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
501 		if (new_crtc_state->ctm == old_crtc_state->ctm)
502 			continue;
503 
504 		if (!ctm_state) {
505 			ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
506 			if (IS_ERR(ctm_state))
507 				return PTR_ERR(ctm_state);
508 		}
509 
510 		/* CTM is being enabled or the matrix changed. */
511 		if (new_crtc_state->ctm) {
512 			struct vc4_crtc_state *vc4_crtc_state =
513 				to_vc4_crtc_state(new_crtc_state);
514 
515 			/* fifo is 1-based since 0 disables CTM. */
516 			int fifo = vc4_crtc_state->assigned_channel + 1;
517 
518 			/* Check userland isn't trying to turn on CTM for more
519 			 * than one CRTC at a time.
520 			 */
521 			if (ctm_state->fifo && ctm_state->fifo != fifo) {
522 				DRM_DEBUG_DRIVER("Too many CTM configured\n");
523 				return -EINVAL;
524 			}
525 
526 			/* Check we can approximate the specified CTM.
527 			 * We disallow scalars |c| > 1.0 since the HW has
528 			 * no integer bits.
529 			 */
530 			ctm = new_crtc_state->ctm->data;
531 			for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
532 				u64 val = ctm->matrix[i];
533 
534 				val &= ~BIT_ULL(63);
535 				if (val > BIT_ULL(32))
536 					return -EINVAL;
537 			}
538 
539 			ctm_state->fifo = fifo;
540 			ctm_state->ctm = ctm;
541 		}
542 	}
543 
544 	return 0;
545 }
546 
547 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
548 {
549 	struct drm_plane_state *old_plane_state, *new_plane_state;
550 	struct vc4_dev *vc4 = to_vc4_dev(state->dev);
551 	struct vc4_load_tracker_state *load_state;
552 	struct drm_private_state *priv_state;
553 	struct drm_plane *plane;
554 	int i;
555 
556 	if (!vc4->load_tracker_available)
557 		return 0;
558 
559 	priv_state = drm_atomic_get_private_obj_state(state,
560 						      &vc4->load_tracker);
561 	if (IS_ERR(priv_state))
562 		return PTR_ERR(priv_state);
563 
564 	load_state = to_vc4_load_tracker_state(priv_state);
565 	for_each_oldnew_plane_in_state(state, plane, old_plane_state,
566 				       new_plane_state, i) {
567 		struct vc4_plane_state *vc4_plane_state;
568 
569 		if (old_plane_state->fb && old_plane_state->crtc) {
570 			vc4_plane_state = to_vc4_plane_state(old_plane_state);
571 			load_state->membus_load -= vc4_plane_state->membus_load;
572 			load_state->hvs_load -= vc4_plane_state->hvs_load;
573 		}
574 
575 		if (new_plane_state->fb && new_plane_state->crtc) {
576 			vc4_plane_state = to_vc4_plane_state(new_plane_state);
577 			load_state->membus_load += vc4_plane_state->membus_load;
578 			load_state->hvs_load += vc4_plane_state->hvs_load;
579 		}
580 	}
581 
582 	/* Don't check the load when the tracker is disabled. */
583 	if (!vc4->load_tracker_enabled)
584 		return 0;
585 
586 	/* The absolute limit is 2Gbyte/sec, but let's take a margin to let
587 	 * the system work when other blocks are accessing the memory.
588 	 */
589 	if (load_state->membus_load > SZ_1G + SZ_512M)
590 		return -ENOSPC;
591 
592 	/* HVS clock is supposed to run @ 250Mhz, let's take a margin and
593 	 * consider the maximum number of cycles is 240M.
594 	 */
595 	if (load_state->hvs_load > 240000000ULL)
596 		return -ENOSPC;
597 
598 	return 0;
599 }
600 
601 static struct drm_private_state *
602 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
603 {
604 	struct vc4_load_tracker_state *state;
605 
606 	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
607 	if (!state)
608 		return NULL;
609 
610 	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
611 
612 	return &state->base;
613 }
614 
615 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
616 					   struct drm_private_state *state)
617 {
618 	struct vc4_load_tracker_state *load_state;
619 
620 	load_state = to_vc4_load_tracker_state(state);
621 	kfree(load_state);
622 }
623 
624 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
625 	.atomic_duplicate_state = vc4_load_tracker_duplicate_state,
626 	.atomic_destroy_state = vc4_load_tracker_destroy_state,
627 };
628 
629 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
630 {
631 	struct vc4_dev *vc4 = to_vc4_dev(dev);
632 
633 	if (!vc4->load_tracker_available)
634 		return;
635 
636 	drm_atomic_private_obj_fini(&vc4->load_tracker);
637 }
638 
639 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
640 {
641 	struct vc4_load_tracker_state *load_state;
642 
643 	if (!vc4->load_tracker_available)
644 		return 0;
645 
646 	load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
647 	if (!load_state)
648 		return -ENOMEM;
649 
650 	drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
651 				    &load_state->base,
652 				    &vc4_load_tracker_state_funcs);
653 
654 	return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
655 }
656 
657 static struct drm_private_state *
658 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
659 {
660 	struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
661 	struct vc4_hvs_state *state;
662 	unsigned int i;
663 
664 	state = kzalloc(sizeof(*state), GFP_KERNEL);
665 	if (!state)
666 		return NULL;
667 
668 	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
669 
670 
671 	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
672 		state->fifo_state[i].in_use = old_state->fifo_state[i].in_use;
673 	}
674 
675 	return &state->base;
676 }
677 
678 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
679 					   struct drm_private_state *state)
680 {
681 	struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
682 	unsigned int i;
683 
684 	for (i = 0; i < HVS_NUM_CHANNELS; i++) {
685 		if (!hvs_state->fifo_state[i].pending_commit)
686 			continue;
687 
688 		drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit);
689 	}
690 
691 	kfree(hvs_state);
692 }
693 
694 static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
695 	.atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
696 	.atomic_destroy_state = vc4_hvs_channels_destroy_state,
697 };
698 
699 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
700 {
701 	struct vc4_dev *vc4 = to_vc4_dev(dev);
702 
703 	drm_atomic_private_obj_fini(&vc4->hvs_channels);
704 }
705 
706 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
707 {
708 	struct vc4_hvs_state *state;
709 
710 	state = kzalloc(sizeof(*state), GFP_KERNEL);
711 	if (!state)
712 		return -ENOMEM;
713 
714 	drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
715 				    &state->base,
716 				    &vc4_hvs_state_funcs);
717 
718 	return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
719 }
720 
721 /*
722  * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
723  * the TXP (and therefore all the CRTCs found on that platform).
724  *
725  * The naive (and our initial) implementation would just iterate over
726  * all the active CRTCs, try to find a suitable FIFO, and then remove it
727  * from the pool of available FIFOs. However, there are a few corner
728  * cases that need to be considered:
729  *
730  * - When running in a dual-display setup (so with two CRTCs involved),
731  *   we can update the state of a single CRTC (for example by changing
732  *   its mode using xrandr under X11) without affecting the other. In
733  *   this case, the other CRTC wouldn't be in the state at all, so we
734  *   need to consider all the running CRTCs in the DRM device to assign
735  *   a FIFO, not just the one in the state.
736  *
737  * - To fix the above, we can't use drm_atomic_get_crtc_state on all
738  *   enabled CRTCs to pull their CRTC state into the global state, since
739  *   a page flip would start considering their vblank to complete. Since
740  *   we don't have a guarantee that they are actually active, that
741  *   vblank might never happen, and shouldn't even be considered if we
742  *   want to do a page flip on a single CRTC. That can be tested by
743  *   doing a modetest -v first on HDMI1 and then on HDMI0.
744  *
745  * - Since we need the pixelvalve to be disabled and enabled back when
746  *   the FIFO is changed, we should keep the FIFO assigned for as long
747  *   as the CRTC is enabled, only considering it free again once that
748  *   CRTC has been disabled. This can be tested by booting X11 on a
749  *   single display, and changing the resolution down and then back up.
750  */
751 static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
752 				      struct drm_atomic_state *state)
753 {
754 	struct vc4_hvs_state *hvs_new_state;
755 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
756 	struct drm_crtc *crtc;
757 	unsigned int unassigned_channels = 0;
758 	unsigned int i;
759 
760 	hvs_new_state = vc4_hvs_get_global_state(state);
761 	if (IS_ERR(hvs_new_state))
762 		return PTR_ERR(hvs_new_state);
763 
764 	for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++)
765 		if (!hvs_new_state->fifo_state[i].in_use)
766 			unassigned_channels |= BIT(i);
767 
768 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
769 		struct vc4_crtc_state *old_vc4_crtc_state =
770 			to_vc4_crtc_state(old_crtc_state);
771 		struct vc4_crtc_state *new_vc4_crtc_state =
772 			to_vc4_crtc_state(new_crtc_state);
773 		struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
774 		unsigned int matching_channels;
775 		unsigned int channel;
776 
777 		/* Nothing to do here, let's skip it */
778 		if (old_crtc_state->enable == new_crtc_state->enable)
779 			continue;
780 
781 		/* Muxing will need to be modified, mark it as such */
782 		new_vc4_crtc_state->update_muxing = true;
783 
784 		/* If we're disabling our CRTC, we put back our channel */
785 		if (!new_crtc_state->enable) {
786 			channel = old_vc4_crtc_state->assigned_channel;
787 			hvs_new_state->fifo_state[channel].in_use = false;
788 			new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
789 			continue;
790 		}
791 
792 		/*
793 		 * The problem we have to solve here is that we have
794 		 * up to 7 encoders, connected to up to 6 CRTCs.
795 		 *
796 		 * Those CRTCs, depending on the instance, can be
797 		 * routed to 1, 2 or 3 HVS FIFOs, and we need to set
798 		 * the change the muxing between FIFOs and outputs in
799 		 * the HVS accordingly.
800 		 *
801 		 * It would be pretty hard to come up with an
802 		 * algorithm that would generically solve
803 		 * this. However, the current routing trees we support
804 		 * allow us to simplify a bit the problem.
805 		 *
806 		 * Indeed, with the current supported layouts, if we
807 		 * try to assign in the ascending crtc index order the
808 		 * FIFOs, we can't fall into the situation where an
809 		 * earlier CRTC that had multiple routes is assigned
810 		 * one that was the only option for a later CRTC.
811 		 *
812 		 * If the layout changes and doesn't give us that in
813 		 * the future, we will need to have something smarter,
814 		 * but it works so far.
815 		 */
816 		matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
817 		if (!matching_channels)
818 			return -EINVAL;
819 
820 		channel = ffs(matching_channels) - 1;
821 		new_vc4_crtc_state->assigned_channel = channel;
822 		unassigned_channels &= ~BIT(channel);
823 		hvs_new_state->fifo_state[channel].in_use = true;
824 	}
825 
826 	return 0;
827 }
828 
829 static int
830 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
831 {
832 	int ret;
833 
834 	ret = vc4_pv_muxing_atomic_check(dev, state);
835 	if (ret)
836 		return ret;
837 
838 	ret = vc4_ctm_atomic_check(dev, state);
839 	if (ret < 0)
840 		return ret;
841 
842 	ret = drm_atomic_helper_check(dev, state);
843 	if (ret)
844 		return ret;
845 
846 	return vc4_load_tracker_atomic_check(state);
847 }
848 
849 static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = {
850 	.atomic_commit_setup	= vc4_atomic_commit_setup,
851 	.atomic_commit_tail	= vc4_atomic_commit_tail,
852 };
853 
854 static const struct drm_mode_config_funcs vc4_mode_funcs = {
855 	.atomic_check = vc4_atomic_check,
856 	.atomic_commit = drm_atomic_helper_commit,
857 	.fb_create = vc4_fb_create,
858 };
859 
860 int vc4_kms_load(struct drm_device *dev)
861 {
862 	struct vc4_dev *vc4 = to_vc4_dev(dev);
863 	bool is_vc5 = of_device_is_compatible(dev->dev->of_node,
864 					      "brcm,bcm2711-vc5");
865 	int ret;
866 
867 	if (!is_vc5) {
868 		vc4->load_tracker_available = true;
869 
870 		/* Start with the load tracker enabled. Can be
871 		 * disabled through the debugfs load_tracker file.
872 		 */
873 		vc4->load_tracker_enabled = true;
874 	}
875 
876 	/* Set support for vblank irq fast disable, before drm_vblank_init() */
877 	dev->vblank_disable_immediate = true;
878 
879 	ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
880 	if (ret < 0) {
881 		dev_err(dev->dev, "failed to initialize vblank\n");
882 		return ret;
883 	}
884 
885 	if (is_vc5) {
886 		dev->mode_config.max_width = 7680;
887 		dev->mode_config.max_height = 7680;
888 	} else {
889 		dev->mode_config.max_width = 2048;
890 		dev->mode_config.max_height = 2048;
891 	}
892 
893 	dev->mode_config.funcs = &vc4_mode_funcs;
894 	dev->mode_config.helper_private = &vc4_mode_config_helpers;
895 	dev->mode_config.preferred_depth = 24;
896 	dev->mode_config.async_page_flip = true;
897 
898 	ret = vc4_ctm_obj_init(vc4);
899 	if (ret)
900 		return ret;
901 
902 	ret = vc4_load_tracker_obj_init(vc4);
903 	if (ret)
904 		return ret;
905 
906 	ret = vc4_hvs_channels_obj_init(vc4);
907 	if (ret)
908 		return ret;
909 
910 	drm_mode_config_reset(dev);
911 
912 	drm_kms_helper_poll_init(dev);
913 
914 	return 0;
915 }
916