xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_hvs.c (revision a1b2f04ea527397fcacacd09e0d690927feef429)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 HVS module.
8  *
9  * The Hardware Video Scaler (HVS) is the piece of hardware that does
10  * translation, scaling, colorspace conversion, and compositing of
11  * pixels stored in framebuffers into a FIFO of pixels going out to
12  * the Pixel Valve (CRTC).  It operates at the system clock rate (the
13  * system audio clock gate, specifically), which is much higher than
14  * the pixel clock rate.
15  *
16  * There is a single global HVS, with multiple output FIFOs that can
17  * be consumed by the PVs.  This file just manages the resources for
18  * the HVS, while the vc4_crtc.c code actually drives HVS setup for
19  * each CRTC.
20  */
21 
22 #include <drm/drm_atomic_helper.h>
23 #include <linux/component.h>
24 #include "vc4_drv.h"
25 #include "vc4_regs.h"
26 
27 static const struct debugfs_reg32 hvs_regs[] = {
28 	VC4_REG32(SCALER_DISPCTRL),
29 	VC4_REG32(SCALER_DISPSTAT),
30 	VC4_REG32(SCALER_DISPID),
31 	VC4_REG32(SCALER_DISPECTRL),
32 	VC4_REG32(SCALER_DISPPROF),
33 	VC4_REG32(SCALER_DISPDITHER),
34 	VC4_REG32(SCALER_DISPEOLN),
35 	VC4_REG32(SCALER_DISPLIST0),
36 	VC4_REG32(SCALER_DISPLIST1),
37 	VC4_REG32(SCALER_DISPLIST2),
38 	VC4_REG32(SCALER_DISPLSTAT),
39 	VC4_REG32(SCALER_DISPLACT0),
40 	VC4_REG32(SCALER_DISPLACT1),
41 	VC4_REG32(SCALER_DISPLACT2),
42 	VC4_REG32(SCALER_DISPCTRL0),
43 	VC4_REG32(SCALER_DISPBKGND0),
44 	VC4_REG32(SCALER_DISPSTAT0),
45 	VC4_REG32(SCALER_DISPBASE0),
46 	VC4_REG32(SCALER_DISPCTRL1),
47 	VC4_REG32(SCALER_DISPBKGND1),
48 	VC4_REG32(SCALER_DISPSTAT1),
49 	VC4_REG32(SCALER_DISPBASE1),
50 	VC4_REG32(SCALER_DISPCTRL2),
51 	VC4_REG32(SCALER_DISPBKGND2),
52 	VC4_REG32(SCALER_DISPSTAT2),
53 	VC4_REG32(SCALER_DISPBASE2),
54 	VC4_REG32(SCALER_DISPALPHA2),
55 	VC4_REG32(SCALER_OLEDOFFS),
56 	VC4_REG32(SCALER_OLEDCOEF0),
57 	VC4_REG32(SCALER_OLEDCOEF1),
58 	VC4_REG32(SCALER_OLEDCOEF2),
59 };
60 
61 void vc4_hvs_dump_state(struct drm_device *dev)
62 {
63 	struct vc4_dev *vc4 = to_vc4_dev(dev);
64 	struct drm_printer p = drm_info_printer(&vc4->hvs->pdev->dev);
65 	int i;
66 
67 	drm_print_regset32(&p, &vc4->hvs->regset);
68 
69 	DRM_INFO("HVS ctx:\n");
70 	for (i = 0; i < 64; i += 4) {
71 		DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
72 			 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
73 			 readl((u32 __iomem *)vc4->hvs->dlist + i + 0),
74 			 readl((u32 __iomem *)vc4->hvs->dlist + i + 1),
75 			 readl((u32 __iomem *)vc4->hvs->dlist + i + 2),
76 			 readl((u32 __iomem *)vc4->hvs->dlist + i + 3));
77 	}
78 }
79 
80 static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
81 {
82 	struct drm_info_node *node = m->private;
83 	struct drm_device *dev = node->minor->dev;
84 	struct vc4_dev *vc4 = to_vc4_dev(dev);
85 	struct drm_printer p = drm_seq_file_printer(m);
86 
87 	drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
88 
89 	return 0;
90 }
91 
92 /* The filter kernel is composed of dwords each containing 3 9-bit
93  * signed integers packed next to each other.
94  */
95 #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
96 #define VC4_PPF_FILTER_WORD(c0, c1, c2)				\
97 	((((c0) & 0x1ff) << 0) |				\
98 	 (((c1) & 0x1ff) << 9) |				\
99 	 (((c2) & 0x1ff) << 18))
100 
101 /* The whole filter kernel is arranged as the coefficients 0-16 going
102  * up, then a pad, then 17-31 going down and reversed within the
103  * dwords.  This means that a linear phase kernel (where it's
104  * symmetrical at the boundary between 15 and 16) has the last 5
105  * dwords matching the first 5, but reversed.
106  */
107 #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8,	\
108 				c9, c10, c11, c12, c13, c14, c15)	\
109 	{VC4_PPF_FILTER_WORD(c0, c1, c2),				\
110 	 VC4_PPF_FILTER_WORD(c3, c4, c5),				\
111 	 VC4_PPF_FILTER_WORD(c6, c7, c8),				\
112 	 VC4_PPF_FILTER_WORD(c9, c10, c11),				\
113 	 VC4_PPF_FILTER_WORD(c12, c13, c14),				\
114 	 VC4_PPF_FILTER_WORD(c15, c15, 0)}
115 
116 #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
117 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
118 
119 /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
120  * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
121  */
122 static const u32 mitchell_netravali_1_3_1_3_kernel[] =
123 	VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
124 				50, 82, 119, 155, 187, 213, 227);
125 
126 static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
127 					struct drm_mm_node *space,
128 					const u32 *kernel)
129 {
130 	int ret, i;
131 	u32 __iomem *dst_kernel;
132 
133 	ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
134 	if (ret) {
135 		DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
136 			  ret);
137 		return ret;
138 	}
139 
140 	dst_kernel = hvs->dlist + space->start;
141 
142 	for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
143 		if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
144 			writel(kernel[i], &dst_kernel[i]);
145 		else {
146 			writel(kernel[VC4_KERNEL_DWORDS - i - 1],
147 			       &dst_kernel[i]);
148 		}
149 	}
150 
151 	return 0;
152 }
153 
154 void vc4_hvs_mask_underrun(struct drm_device *dev, int channel)
155 {
156 	struct vc4_dev *vc4 = to_vc4_dev(dev);
157 	u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
158 
159 	dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel);
160 
161 	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
162 }
163 
164 void vc4_hvs_unmask_underrun(struct drm_device *dev, int channel)
165 {
166 	struct vc4_dev *vc4 = to_vc4_dev(dev);
167 	u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
168 
169 	dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel);
170 
171 	HVS_WRITE(SCALER_DISPSTAT,
172 		  SCALER_DISPSTAT_EUFLOW(channel));
173 	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
174 }
175 
176 static void vc4_hvs_report_underrun(struct drm_device *dev)
177 {
178 	struct vc4_dev *vc4 = to_vc4_dev(dev);
179 
180 	atomic_inc(&vc4->underrun);
181 	DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
182 }
183 
184 static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
185 {
186 	struct drm_device *dev = data;
187 	struct vc4_dev *vc4 = to_vc4_dev(dev);
188 	irqreturn_t irqret = IRQ_NONE;
189 	int channel;
190 	u32 control;
191 	u32 status;
192 
193 	status = HVS_READ(SCALER_DISPSTAT);
194 	control = HVS_READ(SCALER_DISPCTRL);
195 
196 	for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
197 		/* Interrupt masking is not always honored, so check it here. */
198 		if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
199 		    control & SCALER_DISPCTRL_DSPEISLUR(channel)) {
200 			vc4_hvs_mask_underrun(dev, channel);
201 			vc4_hvs_report_underrun(dev);
202 
203 			irqret = IRQ_HANDLED;
204 		}
205 	}
206 
207 	/* Clear every per-channel interrupt flag. */
208 	HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
209 				   SCALER_DISPSTAT_IRQMASK(1) |
210 				   SCALER_DISPSTAT_IRQMASK(2));
211 
212 	return irqret;
213 }
214 
215 static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
216 {
217 	struct platform_device *pdev = to_platform_device(dev);
218 	struct drm_device *drm = dev_get_drvdata(master);
219 	struct vc4_dev *vc4 = drm->dev_private;
220 	struct vc4_hvs *hvs = NULL;
221 	int ret;
222 	u32 dispctrl;
223 
224 	hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL);
225 	if (!hvs)
226 		return -ENOMEM;
227 
228 	hvs->pdev = pdev;
229 
230 	hvs->regs = vc4_ioremap_regs(pdev, 0);
231 	if (IS_ERR(hvs->regs))
232 		return PTR_ERR(hvs->regs);
233 
234 	hvs->regset.base = hvs->regs;
235 	hvs->regset.regs = hvs_regs;
236 	hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
237 
238 	hvs->dlist = hvs->regs + SCALER_DLIST_START;
239 
240 	spin_lock_init(&hvs->mm_lock);
241 
242 	/* Set up the HVS display list memory manager.  We never
243 	 * overwrite the setup from the bootloader (just 128b out of
244 	 * our 16K), since we don't want to scramble the screen when
245 	 * transitioning from the firmware's boot setup to runtime.
246 	 */
247 	drm_mm_init(&hvs->dlist_mm,
248 		    HVS_BOOTLOADER_DLIST_END,
249 		    (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
250 
251 	/* Set up the HVS LBM memory manager.  We could have some more
252 	 * complicated data structure that allowed reuse of LBM areas
253 	 * between planes when they don't overlap on the screen, but
254 	 * for now we just allocate globally.
255 	 */
256 	drm_mm_init(&hvs->lbm_mm, 0, 96 * 1024);
257 
258 	/* Upload filter kernels.  We only have the one for now, so we
259 	 * keep it around for the lifetime of the driver.
260 	 */
261 	ret = vc4_hvs_upload_linear_kernel(hvs,
262 					   &hvs->mitchell_netravali_filter,
263 					   mitchell_netravali_1_3_1_3_kernel);
264 	if (ret)
265 		return ret;
266 
267 	vc4->hvs = hvs;
268 
269 	dispctrl = HVS_READ(SCALER_DISPCTRL);
270 
271 	dispctrl |= SCALER_DISPCTRL_ENABLE;
272 	dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
273 		    SCALER_DISPCTRL_DISPEIRQ(1) |
274 		    SCALER_DISPCTRL_DISPEIRQ(2);
275 
276 	/* Set DSP3 (PV1) to use HVS channel 2, which would otherwise
277 	 * be unused.
278 	 */
279 	dispctrl &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
280 	dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
281 		      SCALER_DISPCTRL_SLVWREIRQ |
282 		      SCALER_DISPCTRL_SLVRDEIRQ |
283 		      SCALER_DISPCTRL_DSPEIEOF(0) |
284 		      SCALER_DISPCTRL_DSPEIEOF(1) |
285 		      SCALER_DISPCTRL_DSPEIEOF(2) |
286 		      SCALER_DISPCTRL_DSPEIEOLN(0) |
287 		      SCALER_DISPCTRL_DSPEIEOLN(1) |
288 		      SCALER_DISPCTRL_DSPEIEOLN(2) |
289 		      SCALER_DISPCTRL_DSPEISLUR(0) |
290 		      SCALER_DISPCTRL_DSPEISLUR(1) |
291 		      SCALER_DISPCTRL_DSPEISLUR(2) |
292 		      SCALER_DISPCTRL_SCLEIRQ);
293 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
294 
295 	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
296 
297 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
298 			       vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
299 	if (ret)
300 		return ret;
301 
302 	vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
303 	vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun,
304 			     NULL);
305 
306 	return 0;
307 }
308 
309 static void vc4_hvs_unbind(struct device *dev, struct device *master,
310 			   void *data)
311 {
312 	struct drm_device *drm = dev_get_drvdata(master);
313 	struct vc4_dev *vc4 = drm->dev_private;
314 
315 	if (vc4->hvs->mitchell_netravali_filter.allocated)
316 		drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
317 
318 	drm_mm_takedown(&vc4->hvs->dlist_mm);
319 	drm_mm_takedown(&vc4->hvs->lbm_mm);
320 
321 	vc4->hvs = NULL;
322 }
323 
324 static const struct component_ops vc4_hvs_ops = {
325 	.bind   = vc4_hvs_bind,
326 	.unbind = vc4_hvs_unbind,
327 };
328 
329 static int vc4_hvs_dev_probe(struct platform_device *pdev)
330 {
331 	return component_add(&pdev->dev, &vc4_hvs_ops);
332 }
333 
334 static int vc4_hvs_dev_remove(struct platform_device *pdev)
335 {
336 	component_del(&pdev->dev, &vc4_hvs_ops);
337 	return 0;
338 }
339 
340 static const struct of_device_id vc4_hvs_dt_match[] = {
341 	{ .compatible = "brcm,bcm2835-hvs" },
342 	{}
343 };
344 
345 struct platform_driver vc4_hvs_driver = {
346 	.probe = vc4_hvs_dev_probe,
347 	.remove = vc4_hvs_dev_remove,
348 	.driver = {
349 		.name = "vc4_hvs",
350 		.of_match_table = vc4_hvs_dt_match,
351 	},
352 };
353