1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 HVS module. 8 * 9 * The Hardware Video Scaler (HVS) is the piece of hardware that does 10 * translation, scaling, colorspace conversion, and compositing of 11 * pixels stored in framebuffers into a FIFO of pixels going out to 12 * the Pixel Valve (CRTC). It operates at the system clock rate (the 13 * system audio clock gate, specifically), which is much higher than 14 * the pixel clock rate. 15 * 16 * There is a single global HVS, with multiple output FIFOs that can 17 * be consumed by the PVs. This file just manages the resources for 18 * the HVS, while the vc4_crtc.c code actually drives HVS setup for 19 * each CRTC. 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/clk.h> 24 #include <linux/component.h> 25 #include <linux/platform_device.h> 26 27 #include <drm/drm_atomic_helper.h> 28 #include <drm/drm_vblank.h> 29 30 #include "vc4_drv.h" 31 #include "vc4_regs.h" 32 33 static const struct debugfs_reg32 hvs_regs[] = { 34 VC4_REG32(SCALER_DISPCTRL), 35 VC4_REG32(SCALER_DISPSTAT), 36 VC4_REG32(SCALER_DISPID), 37 VC4_REG32(SCALER_DISPECTRL), 38 VC4_REG32(SCALER_DISPPROF), 39 VC4_REG32(SCALER_DISPDITHER), 40 VC4_REG32(SCALER_DISPEOLN), 41 VC4_REG32(SCALER_DISPLIST0), 42 VC4_REG32(SCALER_DISPLIST1), 43 VC4_REG32(SCALER_DISPLIST2), 44 VC4_REG32(SCALER_DISPLSTAT), 45 VC4_REG32(SCALER_DISPLACT0), 46 VC4_REG32(SCALER_DISPLACT1), 47 VC4_REG32(SCALER_DISPLACT2), 48 VC4_REG32(SCALER_DISPCTRL0), 49 VC4_REG32(SCALER_DISPBKGND0), 50 VC4_REG32(SCALER_DISPSTAT0), 51 VC4_REG32(SCALER_DISPBASE0), 52 VC4_REG32(SCALER_DISPCTRL1), 53 VC4_REG32(SCALER_DISPBKGND1), 54 VC4_REG32(SCALER_DISPSTAT1), 55 VC4_REG32(SCALER_DISPBASE1), 56 VC4_REG32(SCALER_DISPCTRL2), 57 VC4_REG32(SCALER_DISPBKGND2), 58 VC4_REG32(SCALER_DISPSTAT2), 59 VC4_REG32(SCALER_DISPBASE2), 60 VC4_REG32(SCALER_DISPALPHA2), 61 VC4_REG32(SCALER_OLEDOFFS), 62 VC4_REG32(SCALER_OLEDCOEF0), 63 VC4_REG32(SCALER_OLEDCOEF1), 64 VC4_REG32(SCALER_OLEDCOEF2), 65 }; 66 67 void vc4_hvs_dump_state(struct drm_device *dev) 68 { 69 struct vc4_dev *vc4 = to_vc4_dev(dev); 70 struct drm_printer p = drm_info_printer(&vc4->hvs->pdev->dev); 71 int i; 72 73 drm_print_regset32(&p, &vc4->hvs->regset); 74 75 DRM_INFO("HVS ctx:\n"); 76 for (i = 0; i < 64; i += 4) { 77 DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n", 78 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D", 79 readl((u32 __iomem *)vc4->hvs->dlist + i + 0), 80 readl((u32 __iomem *)vc4->hvs->dlist + i + 1), 81 readl((u32 __iomem *)vc4->hvs->dlist + i + 2), 82 readl((u32 __iomem *)vc4->hvs->dlist + i + 3)); 83 } 84 } 85 86 static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data) 87 { 88 struct drm_info_node *node = m->private; 89 struct drm_device *dev = node->minor->dev; 90 struct vc4_dev *vc4 = to_vc4_dev(dev); 91 struct drm_printer p = drm_seq_file_printer(m); 92 93 drm_printf(&p, "%d\n", atomic_read(&vc4->underrun)); 94 95 return 0; 96 } 97 98 /* The filter kernel is composed of dwords each containing 3 9-bit 99 * signed integers packed next to each other. 100 */ 101 #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff) 102 #define VC4_PPF_FILTER_WORD(c0, c1, c2) \ 103 ((((c0) & 0x1ff) << 0) | \ 104 (((c1) & 0x1ff) << 9) | \ 105 (((c2) & 0x1ff) << 18)) 106 107 /* The whole filter kernel is arranged as the coefficients 0-16 going 108 * up, then a pad, then 17-31 going down and reversed within the 109 * dwords. This means that a linear phase kernel (where it's 110 * symmetrical at the boundary between 15 and 16) has the last 5 111 * dwords matching the first 5, but reversed. 112 */ 113 #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8, \ 114 c9, c10, c11, c12, c13, c14, c15) \ 115 {VC4_PPF_FILTER_WORD(c0, c1, c2), \ 116 VC4_PPF_FILTER_WORD(c3, c4, c5), \ 117 VC4_PPF_FILTER_WORD(c6, c7, c8), \ 118 VC4_PPF_FILTER_WORD(c9, c10, c11), \ 119 VC4_PPF_FILTER_WORD(c12, c13, c14), \ 120 VC4_PPF_FILTER_WORD(c15, c15, 0)} 121 122 #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6 123 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1) 124 125 /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali. 126 * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf 127 */ 128 static const u32 mitchell_netravali_1_3_1_3_kernel[] = 129 VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18, 130 50, 82, 119, 155, 187, 213, 227); 131 132 static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs, 133 struct drm_mm_node *space, 134 const u32 *kernel) 135 { 136 int ret, i; 137 u32 __iomem *dst_kernel; 138 139 ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS); 140 if (ret) { 141 DRM_ERROR("Failed to allocate space for filter kernel: %d\n", 142 ret); 143 return ret; 144 } 145 146 dst_kernel = hvs->dlist + space->start; 147 148 for (i = 0; i < VC4_KERNEL_DWORDS; i++) { 149 if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS) 150 writel(kernel[i], &dst_kernel[i]); 151 else { 152 writel(kernel[VC4_KERNEL_DWORDS - i - 1], 153 &dst_kernel[i]); 154 } 155 } 156 157 return 0; 158 } 159 160 static void vc4_hvs_lut_load(struct drm_crtc *crtc) 161 { 162 struct drm_device *dev = crtc->dev; 163 struct vc4_dev *vc4 = to_vc4_dev(dev); 164 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 165 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 166 u32 i; 167 168 /* The LUT memory is laid out with each HVS channel in order, 169 * each of which takes 256 writes for R, 256 for G, then 256 170 * for B. 171 */ 172 HVS_WRITE(SCALER_GAMADDR, 173 SCALER_GAMADDR_AUTOINC | 174 (vc4_state->assigned_channel * 3 * crtc->gamma_size)); 175 176 for (i = 0; i < crtc->gamma_size; i++) 177 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]); 178 for (i = 0; i < crtc->gamma_size; i++) 179 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]); 180 for (i = 0; i < crtc->gamma_size; i++) 181 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]); 182 } 183 184 static void vc4_hvs_update_gamma_lut(struct drm_crtc *crtc) 185 { 186 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 187 struct drm_color_lut *lut = crtc->state->gamma_lut->data; 188 u32 length = drm_color_lut_size(crtc->state->gamma_lut); 189 u32 i; 190 191 for (i = 0; i < length; i++) { 192 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8); 193 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8); 194 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8); 195 } 196 197 vc4_hvs_lut_load(crtc); 198 } 199 200 int vc4_hvs_get_fifo_from_output(struct drm_device *dev, unsigned int output) 201 { 202 struct vc4_dev *vc4 = to_vc4_dev(dev); 203 u32 reg; 204 int ret; 205 206 if (!vc4->hvs->hvs5) 207 return output; 208 209 switch (output) { 210 case 0: 211 return 0; 212 213 case 1: 214 return 1; 215 216 case 2: 217 reg = HVS_READ(SCALER_DISPECTRL); 218 ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg); 219 if (ret == 0) 220 return 2; 221 222 return 0; 223 224 case 3: 225 reg = HVS_READ(SCALER_DISPCTRL); 226 ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg); 227 if (ret == 3) 228 return -EPIPE; 229 230 return ret; 231 232 case 4: 233 reg = HVS_READ(SCALER_DISPEOLN); 234 ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg); 235 if (ret == 3) 236 return -EPIPE; 237 238 return ret; 239 240 case 5: 241 reg = HVS_READ(SCALER_DISPDITHER); 242 ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg); 243 if (ret == 3) 244 return -EPIPE; 245 246 return ret; 247 248 default: 249 return -EPIPE; 250 } 251 } 252 253 static int vc4_hvs_init_channel(struct vc4_dev *vc4, struct drm_crtc *crtc, 254 struct drm_display_mode *mode, bool oneshot) 255 { 256 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state); 257 unsigned int chan = vc4_crtc_state->assigned_channel; 258 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 259 u32 dispbkgndx; 260 u32 dispctrl; 261 262 HVS_WRITE(SCALER_DISPCTRLX(chan), 0); 263 HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET); 264 HVS_WRITE(SCALER_DISPCTRLX(chan), 0); 265 266 /* Turn on the scaler, which will wait for vstart to start 267 * compositing. 268 * When feeding the transposer, we should operate in oneshot 269 * mode. 270 */ 271 dispctrl = SCALER_DISPCTRLX_ENABLE; 272 273 if (!vc4->hvs->hvs5) 274 dispctrl |= VC4_SET_FIELD(mode->hdisplay, 275 SCALER_DISPCTRLX_WIDTH) | 276 VC4_SET_FIELD(mode->vdisplay, 277 SCALER_DISPCTRLX_HEIGHT) | 278 (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0); 279 else 280 dispctrl |= VC4_SET_FIELD(mode->hdisplay, 281 SCALER5_DISPCTRLX_WIDTH) | 282 VC4_SET_FIELD(mode->vdisplay, 283 SCALER5_DISPCTRLX_HEIGHT) | 284 (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0); 285 286 HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl); 287 288 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan)); 289 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA; 290 dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE; 291 292 HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx | 293 SCALER_DISPBKGND_AUTOHS | 294 ((!vc4->hvs->hvs5) ? SCALER_DISPBKGND_GAMMA : 0) | 295 (interlace ? SCALER_DISPBKGND_INTERLACE : 0)); 296 297 /* Reload the LUT, since the SRAMs would have been disabled if 298 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once. 299 */ 300 vc4_hvs_lut_load(crtc); 301 302 return 0; 303 } 304 305 void vc4_hvs_stop_channel(struct drm_device *dev, unsigned int chan) 306 { 307 struct vc4_dev *vc4 = to_vc4_dev(dev); 308 309 if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE) 310 return; 311 312 HVS_WRITE(SCALER_DISPCTRLX(chan), 313 HVS_READ(SCALER_DISPCTRLX(chan)) | SCALER_DISPCTRLX_RESET); 314 HVS_WRITE(SCALER_DISPCTRLX(chan), 315 HVS_READ(SCALER_DISPCTRLX(chan)) & ~SCALER_DISPCTRLX_ENABLE); 316 317 /* Once we leave, the scaler should be disabled and its fifo empty. */ 318 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); 319 320 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), 321 SCALER_DISPSTATX_MODE) != 322 SCALER_DISPSTATX_MODE_DISABLED); 323 324 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & 325 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != 326 SCALER_DISPSTATX_EMPTY); 327 } 328 329 int vc4_hvs_atomic_check(struct drm_crtc *crtc, 330 struct drm_crtc_state *state) 331 { 332 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 333 struct drm_device *dev = crtc->dev; 334 struct vc4_dev *vc4 = to_vc4_dev(dev); 335 struct drm_plane *plane; 336 unsigned long flags; 337 const struct drm_plane_state *plane_state; 338 u32 dlist_count = 0; 339 int ret; 340 341 /* The pixelvalve can only feed one encoder (and encoders are 342 * 1:1 with connectors.) 343 */ 344 if (hweight32(state->connector_mask) > 1) 345 return -EINVAL; 346 347 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state) 348 dlist_count += vc4_plane_dlist_size(plane_state); 349 350 dlist_count++; /* Account for SCALER_CTL0_END. */ 351 352 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 353 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm, 354 dlist_count); 355 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 356 if (ret) 357 return ret; 358 359 return 0; 360 } 361 362 static void vc4_hvs_update_dlist(struct drm_crtc *crtc) 363 { 364 struct drm_device *dev = crtc->dev; 365 struct vc4_dev *vc4 = to_vc4_dev(dev); 366 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 367 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 368 369 if (crtc->state->event) { 370 unsigned long flags; 371 372 crtc->state->event->pipe = drm_crtc_index(crtc); 373 374 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 375 376 spin_lock_irqsave(&dev->event_lock, flags); 377 378 if (!vc4_state->feed_txp || vc4_state->txp_armed) { 379 vc4_crtc->event = crtc->state->event; 380 crtc->state->event = NULL; 381 } 382 383 HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel), 384 vc4_state->mm.start); 385 386 spin_unlock_irqrestore(&dev->event_lock, flags); 387 } else { 388 HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel), 389 vc4_state->mm.start); 390 } 391 } 392 393 void vc4_hvs_atomic_enable(struct drm_crtc *crtc, 394 struct drm_crtc_state *old_state) 395 { 396 struct drm_device *dev = crtc->dev; 397 struct vc4_dev *vc4 = to_vc4_dev(dev); 398 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 399 struct drm_display_mode *mode = &crtc->state->adjusted_mode; 400 bool oneshot = vc4_state->feed_txp; 401 402 vc4_hvs_update_dlist(crtc); 403 vc4_hvs_init_channel(vc4, crtc, mode, oneshot); 404 } 405 406 void vc4_hvs_atomic_disable(struct drm_crtc *crtc, 407 struct drm_crtc_state *old_state) 408 { 409 struct drm_device *dev = crtc->dev; 410 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state); 411 unsigned int chan = vc4_state->assigned_channel; 412 413 vc4_hvs_stop_channel(dev, chan); 414 } 415 416 void vc4_hvs_atomic_flush(struct drm_crtc *crtc, 417 struct drm_atomic_state *state) 418 { 419 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, 420 crtc); 421 struct drm_device *dev = crtc->dev; 422 struct vc4_dev *vc4 = to_vc4_dev(dev); 423 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 424 struct drm_plane *plane; 425 struct vc4_plane_state *vc4_plane_state; 426 bool debug_dump_regs = false; 427 bool enable_bg_fill = false; 428 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start; 429 u32 __iomem *dlist_next = dlist_start; 430 431 if (debug_dump_regs) { 432 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); 433 vc4_hvs_dump_state(dev); 434 } 435 436 /* Copy all the active planes' dlist contents to the hardware dlist. */ 437 drm_atomic_crtc_for_each_plane(plane, crtc) { 438 /* Is this the first active plane? */ 439 if (dlist_next == dlist_start) { 440 /* We need to enable background fill when a plane 441 * could be alpha blending from the background, i.e. 442 * where no other plane is underneath. It suffices to 443 * consider the first active plane here since we set 444 * needs_bg_fill such that either the first plane 445 * already needs it or all planes on top blend from 446 * the first or a lower plane. 447 */ 448 vc4_plane_state = to_vc4_plane_state(plane->state); 449 enable_bg_fill = vc4_plane_state->needs_bg_fill; 450 } 451 452 dlist_next += vc4_plane_write_dlist(plane, dlist_next); 453 } 454 455 writel(SCALER_CTL0_END, dlist_next); 456 dlist_next++; 457 458 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size); 459 460 if (enable_bg_fill) 461 /* This sets a black background color fill, as is the case 462 * with other DRM drivers. 463 */ 464 HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel), 465 HVS_READ(SCALER_DISPBKGNDX(vc4_state->assigned_channel)) | 466 SCALER_DISPBKGND_FILL); 467 468 /* Only update DISPLIST if the CRTC was already running and is not 469 * being disabled. 470 * vc4_crtc_enable() takes care of updating the dlist just after 471 * re-enabling VBLANK interrupts and before enabling the engine. 472 * If the CRTC is being disabled, there's no point in updating this 473 * information. 474 */ 475 if (crtc->state->active && old_state->active) 476 vc4_hvs_update_dlist(crtc); 477 478 if (crtc->state->color_mgmt_changed) { 479 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_state->assigned_channel)); 480 481 if (crtc->state->gamma_lut) { 482 vc4_hvs_update_gamma_lut(crtc); 483 dispbkgndx |= SCALER_DISPBKGND_GAMMA; 484 } else { 485 /* Unsetting DISPBKGND_GAMMA skips the gamma lut step 486 * in hardware, which is the same as a linear lut that 487 * DRM expects us to use in absence of a user lut. 488 */ 489 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA; 490 } 491 HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel), dispbkgndx); 492 } 493 494 if (debug_dump_regs) { 495 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); 496 vc4_hvs_dump_state(dev); 497 } 498 } 499 500 void vc4_hvs_mask_underrun(struct drm_device *dev, int channel) 501 { 502 struct vc4_dev *vc4 = to_vc4_dev(dev); 503 u32 dispctrl = HVS_READ(SCALER_DISPCTRL); 504 505 dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel); 506 507 HVS_WRITE(SCALER_DISPCTRL, dispctrl); 508 } 509 510 void vc4_hvs_unmask_underrun(struct drm_device *dev, int channel) 511 { 512 struct vc4_dev *vc4 = to_vc4_dev(dev); 513 u32 dispctrl = HVS_READ(SCALER_DISPCTRL); 514 515 dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel); 516 517 HVS_WRITE(SCALER_DISPSTAT, 518 SCALER_DISPSTAT_EUFLOW(channel)); 519 HVS_WRITE(SCALER_DISPCTRL, dispctrl); 520 } 521 522 static void vc4_hvs_report_underrun(struct drm_device *dev) 523 { 524 struct vc4_dev *vc4 = to_vc4_dev(dev); 525 526 atomic_inc(&vc4->underrun); 527 DRM_DEV_ERROR(dev->dev, "HVS underrun\n"); 528 } 529 530 static irqreturn_t vc4_hvs_irq_handler(int irq, void *data) 531 { 532 struct drm_device *dev = data; 533 struct vc4_dev *vc4 = to_vc4_dev(dev); 534 irqreturn_t irqret = IRQ_NONE; 535 int channel; 536 u32 control; 537 u32 status; 538 539 status = HVS_READ(SCALER_DISPSTAT); 540 control = HVS_READ(SCALER_DISPCTRL); 541 542 for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) { 543 /* Interrupt masking is not always honored, so check it here. */ 544 if (status & SCALER_DISPSTAT_EUFLOW(channel) && 545 control & SCALER_DISPCTRL_DSPEISLUR(channel)) { 546 vc4_hvs_mask_underrun(dev, channel); 547 vc4_hvs_report_underrun(dev); 548 549 irqret = IRQ_HANDLED; 550 } 551 } 552 553 /* Clear every per-channel interrupt flag. */ 554 HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) | 555 SCALER_DISPSTAT_IRQMASK(1) | 556 SCALER_DISPSTAT_IRQMASK(2)); 557 558 return irqret; 559 } 560 561 static int vc4_hvs_bind(struct device *dev, struct device *master, void *data) 562 { 563 struct platform_device *pdev = to_platform_device(dev); 564 struct drm_device *drm = dev_get_drvdata(master); 565 struct vc4_dev *vc4 = to_vc4_dev(drm); 566 struct vc4_hvs *hvs = NULL; 567 int ret; 568 u32 dispctrl; 569 570 hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL); 571 if (!hvs) 572 return -ENOMEM; 573 574 hvs->pdev = pdev; 575 576 if (of_device_is_compatible(pdev->dev.of_node, "brcm,bcm2711-hvs")) 577 hvs->hvs5 = true; 578 579 hvs->regs = vc4_ioremap_regs(pdev, 0); 580 if (IS_ERR(hvs->regs)) 581 return PTR_ERR(hvs->regs); 582 583 hvs->regset.base = hvs->regs; 584 hvs->regset.regs = hvs_regs; 585 hvs->regset.nregs = ARRAY_SIZE(hvs_regs); 586 587 if (hvs->hvs5) { 588 hvs->core_clk = devm_clk_get(&pdev->dev, NULL); 589 if (IS_ERR(hvs->core_clk)) { 590 dev_err(&pdev->dev, "Couldn't get core clock\n"); 591 return PTR_ERR(hvs->core_clk); 592 } 593 594 ret = clk_prepare_enable(hvs->core_clk); 595 if (ret) { 596 dev_err(&pdev->dev, "Couldn't enable the core clock\n"); 597 return ret; 598 } 599 } 600 601 if (!hvs->hvs5) 602 hvs->dlist = hvs->regs + SCALER_DLIST_START; 603 else 604 hvs->dlist = hvs->regs + SCALER5_DLIST_START; 605 606 spin_lock_init(&hvs->mm_lock); 607 608 /* Set up the HVS display list memory manager. We never 609 * overwrite the setup from the bootloader (just 128b out of 610 * our 16K), since we don't want to scramble the screen when 611 * transitioning from the firmware's boot setup to runtime. 612 */ 613 drm_mm_init(&hvs->dlist_mm, 614 HVS_BOOTLOADER_DLIST_END, 615 (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END); 616 617 /* Set up the HVS LBM memory manager. We could have some more 618 * complicated data structure that allowed reuse of LBM areas 619 * between planes when they don't overlap on the screen, but 620 * for now we just allocate globally. 621 */ 622 if (!hvs->hvs5) 623 /* 48k words of 2x12-bit pixels */ 624 drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024); 625 else 626 /* 60k words of 4x12-bit pixels */ 627 drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024); 628 629 /* Upload filter kernels. We only have the one for now, so we 630 * keep it around for the lifetime of the driver. 631 */ 632 ret = vc4_hvs_upload_linear_kernel(hvs, 633 &hvs->mitchell_netravali_filter, 634 mitchell_netravali_1_3_1_3_kernel); 635 if (ret) 636 return ret; 637 638 vc4->hvs = hvs; 639 640 dispctrl = HVS_READ(SCALER_DISPCTRL); 641 642 dispctrl |= SCALER_DISPCTRL_ENABLE; 643 dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) | 644 SCALER_DISPCTRL_DISPEIRQ(1) | 645 SCALER_DISPCTRL_DISPEIRQ(2); 646 647 /* Set DSP3 (PV1) to use HVS channel 2, which would otherwise 648 * be unused. 649 */ 650 dispctrl &= ~SCALER_DISPCTRL_DSP3_MUX_MASK; 651 dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ | 652 SCALER_DISPCTRL_SLVWREIRQ | 653 SCALER_DISPCTRL_SLVRDEIRQ | 654 SCALER_DISPCTRL_DSPEIEOF(0) | 655 SCALER_DISPCTRL_DSPEIEOF(1) | 656 SCALER_DISPCTRL_DSPEIEOF(2) | 657 SCALER_DISPCTRL_DSPEIEOLN(0) | 658 SCALER_DISPCTRL_DSPEIEOLN(1) | 659 SCALER_DISPCTRL_DSPEIEOLN(2) | 660 SCALER_DISPCTRL_DSPEISLUR(0) | 661 SCALER_DISPCTRL_DSPEISLUR(1) | 662 SCALER_DISPCTRL_DSPEISLUR(2) | 663 SCALER_DISPCTRL_SCLEIRQ); 664 dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX); 665 666 HVS_WRITE(SCALER_DISPCTRL, dispctrl); 667 668 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 669 vc4_hvs_irq_handler, 0, "vc4 hvs", drm); 670 if (ret) 671 return ret; 672 673 vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset); 674 vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun, 675 NULL); 676 677 return 0; 678 } 679 680 static void vc4_hvs_unbind(struct device *dev, struct device *master, 681 void *data) 682 { 683 struct drm_device *drm = dev_get_drvdata(master); 684 struct vc4_dev *vc4 = to_vc4_dev(drm); 685 struct vc4_hvs *hvs = vc4->hvs; 686 687 if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter)) 688 drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter); 689 690 drm_mm_takedown(&vc4->hvs->dlist_mm); 691 drm_mm_takedown(&vc4->hvs->lbm_mm); 692 693 clk_disable_unprepare(hvs->core_clk); 694 695 vc4->hvs = NULL; 696 } 697 698 static const struct component_ops vc4_hvs_ops = { 699 .bind = vc4_hvs_bind, 700 .unbind = vc4_hvs_unbind, 701 }; 702 703 static int vc4_hvs_dev_probe(struct platform_device *pdev) 704 { 705 return component_add(&pdev->dev, &vc4_hvs_ops); 706 } 707 708 static int vc4_hvs_dev_remove(struct platform_device *pdev) 709 { 710 component_del(&pdev->dev, &vc4_hvs_ops); 711 return 0; 712 } 713 714 static const struct of_device_id vc4_hvs_dt_match[] = { 715 { .compatible = "brcm,bcm2711-hvs" }, 716 { .compatible = "brcm,bcm2835-hvs" }, 717 {} 718 }; 719 720 struct platform_driver vc4_hvs_driver = { 721 .probe = vc4_hvs_dev_probe, 722 .remove = vc4_hvs_dev_remove, 723 .driver = { 724 .name = "vc4_hvs", 725 .of_match_table = vc4_hvs_dt_match, 726 }, 727 }; 728