1 /* 2 * Copyright © 2014 Broadcom 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/device.h> 28 #include <linux/io.h> 29 #include <linux/sched/signal.h> 30 #include <linux/dma-fence-array.h> 31 32 #include <drm/drm_syncobj.h> 33 34 #include "uapi/drm/vc4_drm.h" 35 #include "vc4_drv.h" 36 #include "vc4_regs.h" 37 #include "vc4_trace.h" 38 39 static void 40 vc4_queue_hangcheck(struct drm_device *dev) 41 { 42 struct vc4_dev *vc4 = to_vc4_dev(dev); 43 44 mod_timer(&vc4->hangcheck.timer, 45 round_jiffies_up(jiffies + msecs_to_jiffies(100))); 46 } 47 48 struct vc4_hang_state { 49 struct drm_vc4_get_hang_state user_state; 50 51 u32 bo_count; 52 struct drm_gem_object **bo; 53 }; 54 55 static void 56 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state) 57 { 58 unsigned int i; 59 60 for (i = 0; i < state->user_state.bo_count; i++) 61 drm_gem_object_put_unlocked(state->bo[i]); 62 63 kfree(state); 64 } 65 66 int 67 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data, 68 struct drm_file *file_priv) 69 { 70 struct drm_vc4_get_hang_state *get_state = data; 71 struct drm_vc4_get_hang_state_bo *bo_state; 72 struct vc4_hang_state *kernel_state; 73 struct drm_vc4_get_hang_state *state; 74 struct vc4_dev *vc4 = to_vc4_dev(dev); 75 unsigned long irqflags; 76 u32 i; 77 int ret = 0; 78 79 if (!vc4->v3d) { 80 DRM_DEBUG("VC4_GET_HANG_STATE with no VC4 V3D probed\n"); 81 return -ENODEV; 82 } 83 84 spin_lock_irqsave(&vc4->job_lock, irqflags); 85 kernel_state = vc4->hang_state; 86 if (!kernel_state) { 87 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 88 return -ENOENT; 89 } 90 state = &kernel_state->user_state; 91 92 /* If the user's array isn't big enough, just return the 93 * required array size. 94 */ 95 if (get_state->bo_count < state->bo_count) { 96 get_state->bo_count = state->bo_count; 97 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 98 return 0; 99 } 100 101 vc4->hang_state = NULL; 102 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 103 104 /* Save the user's BO pointer, so we don't stomp it with the memcpy. */ 105 state->bo = get_state->bo; 106 memcpy(get_state, state, sizeof(*state)); 107 108 bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL); 109 if (!bo_state) { 110 ret = -ENOMEM; 111 goto err_free; 112 } 113 114 for (i = 0; i < state->bo_count; i++) { 115 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]); 116 u32 handle; 117 118 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i], 119 &handle); 120 121 if (ret) { 122 state->bo_count = i; 123 goto err_delete_handle; 124 } 125 bo_state[i].handle = handle; 126 bo_state[i].paddr = vc4_bo->base.paddr; 127 bo_state[i].size = vc4_bo->base.base.size; 128 } 129 130 if (copy_to_user(u64_to_user_ptr(get_state->bo), 131 bo_state, 132 state->bo_count * sizeof(*bo_state))) 133 ret = -EFAULT; 134 135 err_delete_handle: 136 if (ret) { 137 for (i = 0; i < state->bo_count; i++) 138 drm_gem_handle_delete(file_priv, bo_state[i].handle); 139 } 140 141 err_free: 142 vc4_free_hang_state(dev, kernel_state); 143 kfree(bo_state); 144 145 return ret; 146 } 147 148 static void 149 vc4_save_hang_state(struct drm_device *dev) 150 { 151 struct vc4_dev *vc4 = to_vc4_dev(dev); 152 struct drm_vc4_get_hang_state *state; 153 struct vc4_hang_state *kernel_state; 154 struct vc4_exec_info *exec[2]; 155 struct vc4_bo *bo; 156 unsigned long irqflags; 157 unsigned int i, j, k, unref_list_count; 158 159 kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL); 160 if (!kernel_state) 161 return; 162 163 state = &kernel_state->user_state; 164 165 spin_lock_irqsave(&vc4->job_lock, irqflags); 166 exec[0] = vc4_first_bin_job(vc4); 167 exec[1] = vc4_first_render_job(vc4); 168 if (!exec[0] && !exec[1]) { 169 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 170 return; 171 } 172 173 /* Get the bos from both binner and renderer into hang state. */ 174 state->bo_count = 0; 175 for (i = 0; i < 2; i++) { 176 if (!exec[i]) 177 continue; 178 179 unref_list_count = 0; 180 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) 181 unref_list_count++; 182 state->bo_count += exec[i]->bo_count + unref_list_count; 183 } 184 185 kernel_state->bo = kcalloc(state->bo_count, 186 sizeof(*kernel_state->bo), GFP_ATOMIC); 187 188 if (!kernel_state->bo) { 189 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 190 return; 191 } 192 193 k = 0; 194 for (i = 0; i < 2; i++) { 195 if (!exec[i]) 196 continue; 197 198 for (j = 0; j < exec[i]->bo_count; j++) { 199 bo = to_vc4_bo(&exec[i]->bo[j]->base); 200 201 /* Retain BOs just in case they were marked purgeable. 202 * This prevents the BO from being purged before 203 * someone had a chance to dump the hang state. 204 */ 205 WARN_ON(!refcount_read(&bo->usecnt)); 206 refcount_inc(&bo->usecnt); 207 drm_gem_object_get(&exec[i]->bo[j]->base); 208 kernel_state->bo[k++] = &exec[i]->bo[j]->base; 209 } 210 211 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) { 212 /* No need to retain BOs coming from the ->unref_list 213 * because they are naturally unpurgeable. 214 */ 215 drm_gem_object_get(&bo->base.base); 216 kernel_state->bo[k++] = &bo->base.base; 217 } 218 } 219 220 WARN_ON_ONCE(k != state->bo_count); 221 222 if (exec[0]) 223 state->start_bin = exec[0]->ct0ca; 224 if (exec[1]) 225 state->start_render = exec[1]->ct1ca; 226 227 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 228 229 state->ct0ca = V3D_READ(V3D_CTNCA(0)); 230 state->ct0ea = V3D_READ(V3D_CTNEA(0)); 231 232 state->ct1ca = V3D_READ(V3D_CTNCA(1)); 233 state->ct1ea = V3D_READ(V3D_CTNEA(1)); 234 235 state->ct0cs = V3D_READ(V3D_CTNCS(0)); 236 state->ct1cs = V3D_READ(V3D_CTNCS(1)); 237 238 state->ct0ra0 = V3D_READ(V3D_CT00RA0); 239 state->ct1ra0 = V3D_READ(V3D_CT01RA0); 240 241 state->bpca = V3D_READ(V3D_BPCA); 242 state->bpcs = V3D_READ(V3D_BPCS); 243 state->bpoa = V3D_READ(V3D_BPOA); 244 state->bpos = V3D_READ(V3D_BPOS); 245 246 state->vpmbase = V3D_READ(V3D_VPMBASE); 247 248 state->dbge = V3D_READ(V3D_DBGE); 249 state->fdbgo = V3D_READ(V3D_FDBGO); 250 state->fdbgb = V3D_READ(V3D_FDBGB); 251 state->fdbgr = V3D_READ(V3D_FDBGR); 252 state->fdbgs = V3D_READ(V3D_FDBGS); 253 state->errstat = V3D_READ(V3D_ERRSTAT); 254 255 /* We need to turn purgeable BOs into unpurgeable ones so that 256 * userspace has a chance to dump the hang state before the kernel 257 * decides to purge those BOs. 258 * Note that BO consistency at dump time cannot be guaranteed. For 259 * example, if the owner of these BOs decides to re-use them or mark 260 * them purgeable again there's nothing we can do to prevent it. 261 */ 262 for (i = 0; i < kernel_state->user_state.bo_count; i++) { 263 struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]); 264 265 if (bo->madv == __VC4_MADV_NOTSUPP) 266 continue; 267 268 mutex_lock(&bo->madv_lock); 269 if (!WARN_ON(bo->madv == __VC4_MADV_PURGED)) 270 bo->madv = VC4_MADV_WILLNEED; 271 refcount_dec(&bo->usecnt); 272 mutex_unlock(&bo->madv_lock); 273 } 274 275 spin_lock_irqsave(&vc4->job_lock, irqflags); 276 if (vc4->hang_state) { 277 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 278 vc4_free_hang_state(dev, kernel_state); 279 } else { 280 vc4->hang_state = kernel_state; 281 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 282 } 283 } 284 285 static void 286 vc4_reset(struct drm_device *dev) 287 { 288 struct vc4_dev *vc4 = to_vc4_dev(dev); 289 290 DRM_INFO("Resetting GPU.\n"); 291 292 mutex_lock(&vc4->power_lock); 293 if (vc4->power_refcount) { 294 /* Power the device off and back on the by dropping the 295 * reference on runtime PM. 296 */ 297 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev); 298 pm_runtime_get_sync(&vc4->v3d->pdev->dev); 299 } 300 mutex_unlock(&vc4->power_lock); 301 302 vc4_irq_reset(dev); 303 304 /* Rearm the hangcheck -- another job might have been waiting 305 * for our hung one to get kicked off, and vc4_irq_reset() 306 * would have started it. 307 */ 308 vc4_queue_hangcheck(dev); 309 } 310 311 static void 312 vc4_reset_work(struct work_struct *work) 313 { 314 struct vc4_dev *vc4 = 315 container_of(work, struct vc4_dev, hangcheck.reset_work); 316 317 vc4_save_hang_state(vc4->dev); 318 319 vc4_reset(vc4->dev); 320 } 321 322 static void 323 vc4_hangcheck_elapsed(struct timer_list *t) 324 { 325 struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer); 326 struct drm_device *dev = vc4->dev; 327 uint32_t ct0ca, ct1ca; 328 unsigned long irqflags; 329 struct vc4_exec_info *bin_exec, *render_exec; 330 331 spin_lock_irqsave(&vc4->job_lock, irqflags); 332 333 bin_exec = vc4_first_bin_job(vc4); 334 render_exec = vc4_first_render_job(vc4); 335 336 /* If idle, we can stop watching for hangs. */ 337 if (!bin_exec && !render_exec) { 338 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 339 return; 340 } 341 342 ct0ca = V3D_READ(V3D_CTNCA(0)); 343 ct1ca = V3D_READ(V3D_CTNCA(1)); 344 345 /* If we've made any progress in execution, rearm the timer 346 * and wait. 347 */ 348 if ((bin_exec && ct0ca != bin_exec->last_ct0ca) || 349 (render_exec && ct1ca != render_exec->last_ct1ca)) { 350 if (bin_exec) 351 bin_exec->last_ct0ca = ct0ca; 352 if (render_exec) 353 render_exec->last_ct1ca = ct1ca; 354 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 355 vc4_queue_hangcheck(dev); 356 return; 357 } 358 359 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 360 361 /* We've gone too long with no progress, reset. This has to 362 * be done from a work struct, since resetting can sleep and 363 * this timer hook isn't allowed to. 364 */ 365 schedule_work(&vc4->hangcheck.reset_work); 366 } 367 368 static void 369 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end) 370 { 371 struct vc4_dev *vc4 = to_vc4_dev(dev); 372 373 /* Set the current and end address of the control list. 374 * Writing the end register is what starts the job. 375 */ 376 V3D_WRITE(V3D_CTNCA(thread), start); 377 V3D_WRITE(V3D_CTNEA(thread), end); 378 } 379 380 int 381 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns, 382 bool interruptible) 383 { 384 struct vc4_dev *vc4 = to_vc4_dev(dev); 385 int ret = 0; 386 unsigned long timeout_expire; 387 DEFINE_WAIT(wait); 388 389 if (vc4->finished_seqno >= seqno) 390 return 0; 391 392 if (timeout_ns == 0) 393 return -ETIME; 394 395 timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns); 396 397 trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns); 398 for (;;) { 399 prepare_to_wait(&vc4->job_wait_queue, &wait, 400 interruptible ? TASK_INTERRUPTIBLE : 401 TASK_UNINTERRUPTIBLE); 402 403 if (interruptible && signal_pending(current)) { 404 ret = -ERESTARTSYS; 405 break; 406 } 407 408 if (vc4->finished_seqno >= seqno) 409 break; 410 411 if (timeout_ns != ~0ull) { 412 if (time_after_eq(jiffies, timeout_expire)) { 413 ret = -ETIME; 414 break; 415 } 416 schedule_timeout(timeout_expire - jiffies); 417 } else { 418 schedule(); 419 } 420 } 421 422 finish_wait(&vc4->job_wait_queue, &wait); 423 trace_vc4_wait_for_seqno_end(dev, seqno); 424 425 return ret; 426 } 427 428 static void 429 vc4_flush_caches(struct drm_device *dev) 430 { 431 struct vc4_dev *vc4 = to_vc4_dev(dev); 432 433 /* Flush the GPU L2 caches. These caches sit on top of system 434 * L3 (the 128kb or so shared with the CPU), and are 435 * non-allocating in the L3. 436 */ 437 V3D_WRITE(V3D_L2CACTL, 438 V3D_L2CACTL_L2CCLR); 439 440 V3D_WRITE(V3D_SLCACTL, 441 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | 442 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) | 443 VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) | 444 VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC)); 445 } 446 447 static void 448 vc4_flush_texture_caches(struct drm_device *dev) 449 { 450 struct vc4_dev *vc4 = to_vc4_dev(dev); 451 452 V3D_WRITE(V3D_L2CACTL, 453 V3D_L2CACTL_L2CCLR); 454 455 V3D_WRITE(V3D_SLCACTL, 456 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | 457 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC)); 458 } 459 460 /* Sets the registers for the next job to be actually be executed in 461 * the hardware. 462 * 463 * The job_lock should be held during this. 464 */ 465 void 466 vc4_submit_next_bin_job(struct drm_device *dev) 467 { 468 struct vc4_dev *vc4 = to_vc4_dev(dev); 469 struct vc4_exec_info *exec; 470 471 again: 472 exec = vc4_first_bin_job(vc4); 473 if (!exec) 474 return; 475 476 vc4_flush_caches(dev); 477 478 /* Only start the perfmon if it was not already started by a previous 479 * job. 480 */ 481 if (exec->perfmon && vc4->active_perfmon != exec->perfmon) 482 vc4_perfmon_start(vc4, exec->perfmon); 483 484 /* Either put the job in the binner if it uses the binner, or 485 * immediately move it to the to-be-rendered queue. 486 */ 487 if (exec->ct0ca != exec->ct0ea) { 488 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea); 489 } else { 490 struct vc4_exec_info *next; 491 492 vc4_move_job_to_render(dev, exec); 493 next = vc4_first_bin_job(vc4); 494 495 /* We can't start the next bin job if the previous job had a 496 * different perfmon instance attached to it. The same goes 497 * if one of them had a perfmon attached to it and the other 498 * one doesn't. 499 */ 500 if (next && next->perfmon == exec->perfmon) 501 goto again; 502 } 503 } 504 505 void 506 vc4_submit_next_render_job(struct drm_device *dev) 507 { 508 struct vc4_dev *vc4 = to_vc4_dev(dev); 509 struct vc4_exec_info *exec = vc4_first_render_job(vc4); 510 511 if (!exec) 512 return; 513 514 /* A previous RCL may have written to one of our textures, and 515 * our full cache flush at bin time may have occurred before 516 * that RCL completed. Flush the texture cache now, but not 517 * the instructions or uniforms (since we don't write those 518 * from an RCL). 519 */ 520 vc4_flush_texture_caches(dev); 521 522 submit_cl(dev, 1, exec->ct1ca, exec->ct1ea); 523 } 524 525 void 526 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec) 527 { 528 struct vc4_dev *vc4 = to_vc4_dev(dev); 529 bool was_empty = list_empty(&vc4->render_job_list); 530 531 list_move_tail(&exec->head, &vc4->render_job_list); 532 if (was_empty) 533 vc4_submit_next_render_job(dev); 534 } 535 536 static void 537 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno) 538 { 539 struct vc4_bo *bo; 540 unsigned i; 541 542 for (i = 0; i < exec->bo_count; i++) { 543 bo = to_vc4_bo(&exec->bo[i]->base); 544 bo->seqno = seqno; 545 546 dma_resv_add_shared_fence(bo->base.base.resv, exec->fence); 547 } 548 549 list_for_each_entry(bo, &exec->unref_list, unref_head) { 550 bo->seqno = seqno; 551 } 552 553 for (i = 0; i < exec->rcl_write_bo_count; i++) { 554 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base); 555 bo->write_seqno = seqno; 556 557 dma_resv_add_excl_fence(bo->base.base.resv, exec->fence); 558 } 559 } 560 561 static void 562 vc4_unlock_bo_reservations(struct drm_device *dev, 563 struct vc4_exec_info *exec, 564 struct ww_acquire_ctx *acquire_ctx) 565 { 566 int i; 567 568 for (i = 0; i < exec->bo_count; i++) { 569 struct drm_gem_object *bo = &exec->bo[i]->base; 570 571 dma_resv_unlock(bo->resv); 572 } 573 574 ww_acquire_fini(acquire_ctx); 575 } 576 577 /* Takes the reservation lock on all the BOs being referenced, so that 578 * at queue submit time we can update the reservations. 579 * 580 * We don't lock the RCL the tile alloc/state BOs, or overflow memory 581 * (all of which are on exec->unref_list). They're entirely private 582 * to vc4, so we don't attach dma-buf fences to them. 583 */ 584 static int 585 vc4_lock_bo_reservations(struct drm_device *dev, 586 struct vc4_exec_info *exec, 587 struct ww_acquire_ctx *acquire_ctx) 588 { 589 int contended_lock = -1; 590 int i, ret; 591 struct drm_gem_object *bo; 592 593 ww_acquire_init(acquire_ctx, &reservation_ww_class); 594 595 retry: 596 if (contended_lock != -1) { 597 bo = &exec->bo[contended_lock]->base; 598 ret = dma_resv_lock_slow_interruptible(bo->resv, acquire_ctx); 599 if (ret) { 600 ww_acquire_done(acquire_ctx); 601 return ret; 602 } 603 } 604 605 for (i = 0; i < exec->bo_count; i++) { 606 if (i == contended_lock) 607 continue; 608 609 bo = &exec->bo[i]->base; 610 611 ret = dma_resv_lock_interruptible(bo->resv, acquire_ctx); 612 if (ret) { 613 int j; 614 615 for (j = 0; j < i; j++) { 616 bo = &exec->bo[j]->base; 617 dma_resv_unlock(bo->resv); 618 } 619 620 if (contended_lock != -1 && contended_lock >= i) { 621 bo = &exec->bo[contended_lock]->base; 622 623 dma_resv_unlock(bo->resv); 624 } 625 626 if (ret == -EDEADLK) { 627 contended_lock = i; 628 goto retry; 629 } 630 631 ww_acquire_done(acquire_ctx); 632 return ret; 633 } 634 } 635 636 ww_acquire_done(acquire_ctx); 637 638 /* Reserve space for our shared (read-only) fence references, 639 * before we commit the CL to the hardware. 640 */ 641 for (i = 0; i < exec->bo_count; i++) { 642 bo = &exec->bo[i]->base; 643 644 ret = dma_resv_reserve_shared(bo->resv, 1); 645 if (ret) { 646 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 647 return ret; 648 } 649 } 650 651 return 0; 652 } 653 654 /* Queues a struct vc4_exec_info for execution. If no job is 655 * currently executing, then submits it. 656 * 657 * Unlike most GPUs, our hardware only handles one command list at a 658 * time. To queue multiple jobs at once, we'd need to edit the 659 * previous command list to have a jump to the new one at the end, and 660 * then bump the end address. That's a change for a later date, 661 * though. 662 */ 663 static int 664 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec, 665 struct ww_acquire_ctx *acquire_ctx, 666 struct drm_syncobj *out_sync) 667 { 668 struct vc4_dev *vc4 = to_vc4_dev(dev); 669 struct vc4_exec_info *renderjob; 670 uint64_t seqno; 671 unsigned long irqflags; 672 struct vc4_fence *fence; 673 674 fence = kzalloc(sizeof(*fence), GFP_KERNEL); 675 if (!fence) 676 return -ENOMEM; 677 fence->dev = dev; 678 679 spin_lock_irqsave(&vc4->job_lock, irqflags); 680 681 seqno = ++vc4->emit_seqno; 682 exec->seqno = seqno; 683 684 dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock, 685 vc4->dma_fence_context, exec->seqno); 686 fence->seqno = exec->seqno; 687 exec->fence = &fence->base; 688 689 if (out_sync) 690 drm_syncobj_replace_fence(out_sync, exec->fence); 691 692 vc4_update_bo_seqnos(exec, seqno); 693 694 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 695 696 list_add_tail(&exec->head, &vc4->bin_job_list); 697 698 /* If no bin job was executing and if the render job (if any) has the 699 * same perfmon as our job attached to it (or if both jobs don't have 700 * perfmon activated), then kick ours off. Otherwise, it'll get 701 * started when the previous job's flush/render done interrupt occurs. 702 */ 703 renderjob = vc4_first_render_job(vc4); 704 if (vc4_first_bin_job(vc4) == exec && 705 (!renderjob || renderjob->perfmon == exec->perfmon)) { 706 vc4_submit_next_bin_job(dev); 707 vc4_queue_hangcheck(dev); 708 } 709 710 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 711 712 return 0; 713 } 714 715 /** 716 * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects 717 * referenced by the job. 718 * @dev: DRM device 719 * @file_priv: DRM file for this fd 720 * @exec: V3D job being set up 721 * 722 * The command validator needs to reference BOs by their index within 723 * the submitted job's BO list. This does the validation of the job's 724 * BO list and reference counting for the lifetime of the job. 725 */ 726 static int 727 vc4_cl_lookup_bos(struct drm_device *dev, 728 struct drm_file *file_priv, 729 struct vc4_exec_info *exec) 730 { 731 struct drm_vc4_submit_cl *args = exec->args; 732 uint32_t *handles; 733 int ret = 0; 734 int i; 735 736 exec->bo_count = args->bo_handle_count; 737 738 if (!exec->bo_count) { 739 /* See comment on bo_index for why we have to check 740 * this. 741 */ 742 DRM_DEBUG("Rendering requires BOs to validate\n"); 743 return -EINVAL; 744 } 745 746 exec->bo = kvmalloc_array(exec->bo_count, 747 sizeof(struct drm_gem_cma_object *), 748 GFP_KERNEL | __GFP_ZERO); 749 if (!exec->bo) { 750 DRM_ERROR("Failed to allocate validated BO pointers\n"); 751 return -ENOMEM; 752 } 753 754 handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL); 755 if (!handles) { 756 ret = -ENOMEM; 757 DRM_ERROR("Failed to allocate incoming GEM handles\n"); 758 goto fail; 759 } 760 761 if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles), 762 exec->bo_count * sizeof(uint32_t))) { 763 ret = -EFAULT; 764 DRM_ERROR("Failed to copy in GEM handles\n"); 765 goto fail; 766 } 767 768 spin_lock(&file_priv->table_lock); 769 for (i = 0; i < exec->bo_count; i++) { 770 struct drm_gem_object *bo = idr_find(&file_priv->object_idr, 771 handles[i]); 772 if (!bo) { 773 DRM_DEBUG("Failed to look up GEM BO %d: %d\n", 774 i, handles[i]); 775 ret = -EINVAL; 776 break; 777 } 778 779 drm_gem_object_get(bo); 780 exec->bo[i] = (struct drm_gem_cma_object *)bo; 781 } 782 spin_unlock(&file_priv->table_lock); 783 784 if (ret) 785 goto fail_put_bo; 786 787 for (i = 0; i < exec->bo_count; i++) { 788 ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base)); 789 if (ret) 790 goto fail_dec_usecnt; 791 } 792 793 kvfree(handles); 794 return 0; 795 796 fail_dec_usecnt: 797 /* Decrease usecnt on acquired objects. 798 * We cannot rely on vc4_complete_exec() to release resources here, 799 * because vc4_complete_exec() has no information about which BO has 800 * had its ->usecnt incremented. 801 * To make things easier we just free everything explicitly and set 802 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release' 803 * step. 804 */ 805 for (i-- ; i >= 0; i--) 806 vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base)); 807 808 fail_put_bo: 809 /* Release any reference to acquired objects. */ 810 for (i = 0; i < exec->bo_count && exec->bo[i]; i++) 811 drm_gem_object_put_unlocked(&exec->bo[i]->base); 812 813 fail: 814 kvfree(handles); 815 kvfree(exec->bo); 816 exec->bo = NULL; 817 return ret; 818 } 819 820 static int 821 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec) 822 { 823 struct drm_vc4_submit_cl *args = exec->args; 824 struct vc4_dev *vc4 = to_vc4_dev(dev); 825 void *temp = NULL; 826 void *bin; 827 int ret = 0; 828 uint32_t bin_offset = 0; 829 uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size, 830 16); 831 uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size; 832 uint32_t exec_size = uniforms_offset + args->uniforms_size; 833 uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) * 834 args->shader_rec_count); 835 struct vc4_bo *bo; 836 837 if (shader_rec_offset < args->bin_cl_size || 838 uniforms_offset < shader_rec_offset || 839 exec_size < uniforms_offset || 840 args->shader_rec_count >= (UINT_MAX / 841 sizeof(struct vc4_shader_state)) || 842 temp_size < exec_size) { 843 DRM_DEBUG("overflow in exec arguments\n"); 844 ret = -EINVAL; 845 goto fail; 846 } 847 848 /* Allocate space where we'll store the copied in user command lists 849 * and shader records. 850 * 851 * We don't just copy directly into the BOs because we need to 852 * read the contents back for validation, and I think the 853 * bo->vaddr is uncached access. 854 */ 855 temp = kvmalloc_array(temp_size, 1, GFP_KERNEL); 856 if (!temp) { 857 DRM_ERROR("Failed to allocate storage for copying " 858 "in bin/render CLs.\n"); 859 ret = -ENOMEM; 860 goto fail; 861 } 862 bin = temp + bin_offset; 863 exec->shader_rec_u = temp + shader_rec_offset; 864 exec->uniforms_u = temp + uniforms_offset; 865 exec->shader_state = temp + exec_size; 866 exec->shader_state_size = args->shader_rec_count; 867 868 if (copy_from_user(bin, 869 u64_to_user_ptr(args->bin_cl), 870 args->bin_cl_size)) { 871 ret = -EFAULT; 872 goto fail; 873 } 874 875 if (copy_from_user(exec->shader_rec_u, 876 u64_to_user_ptr(args->shader_rec), 877 args->shader_rec_size)) { 878 ret = -EFAULT; 879 goto fail; 880 } 881 882 if (copy_from_user(exec->uniforms_u, 883 u64_to_user_ptr(args->uniforms), 884 args->uniforms_size)) { 885 ret = -EFAULT; 886 goto fail; 887 } 888 889 bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL); 890 if (IS_ERR(bo)) { 891 DRM_ERROR("Couldn't allocate BO for binning\n"); 892 ret = PTR_ERR(bo); 893 goto fail; 894 } 895 exec->exec_bo = &bo->base; 896 897 list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head, 898 &exec->unref_list); 899 900 exec->ct0ca = exec->exec_bo->paddr + bin_offset; 901 902 exec->bin_u = bin; 903 904 exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset; 905 exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset; 906 exec->shader_rec_size = args->shader_rec_size; 907 908 exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset; 909 exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset; 910 exec->uniforms_size = args->uniforms_size; 911 912 ret = vc4_validate_bin_cl(dev, 913 exec->exec_bo->vaddr + bin_offset, 914 bin, 915 exec); 916 if (ret) 917 goto fail; 918 919 ret = vc4_validate_shader_recs(dev, exec); 920 if (ret) 921 goto fail; 922 923 if (exec->found_tile_binning_mode_config_packet) { 924 ret = vc4_v3d_bin_bo_get(vc4, &exec->bin_bo_used); 925 if (ret) 926 goto fail; 927 } 928 929 /* Block waiting on any previous rendering into the CS's VBO, 930 * IB, or textures, so that pixels are actually written by the 931 * time we try to read them. 932 */ 933 ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true); 934 935 fail: 936 kvfree(temp); 937 return ret; 938 } 939 940 static void 941 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec) 942 { 943 struct vc4_dev *vc4 = to_vc4_dev(dev); 944 unsigned long irqflags; 945 unsigned i; 946 947 /* If we got force-completed because of GPU reset rather than 948 * through our IRQ handler, signal the fence now. 949 */ 950 if (exec->fence) { 951 dma_fence_signal(exec->fence); 952 dma_fence_put(exec->fence); 953 } 954 955 if (exec->bo) { 956 for (i = 0; i < exec->bo_count; i++) { 957 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base); 958 959 vc4_bo_dec_usecnt(bo); 960 drm_gem_object_put_unlocked(&exec->bo[i]->base); 961 } 962 kvfree(exec->bo); 963 } 964 965 while (!list_empty(&exec->unref_list)) { 966 struct vc4_bo *bo = list_first_entry(&exec->unref_list, 967 struct vc4_bo, unref_head); 968 list_del(&bo->unref_head); 969 drm_gem_object_put_unlocked(&bo->base.base); 970 } 971 972 /* Free up the allocation of any bin slots we used. */ 973 spin_lock_irqsave(&vc4->job_lock, irqflags); 974 vc4->bin_alloc_used &= ~exec->bin_slots; 975 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 976 977 /* Release the reference on the binner BO if needed. */ 978 if (exec->bin_bo_used) 979 vc4_v3d_bin_bo_put(vc4); 980 981 /* Release the reference we had on the perf monitor. */ 982 vc4_perfmon_put(exec->perfmon); 983 984 vc4_v3d_pm_put(vc4); 985 986 kfree(exec); 987 } 988 989 void 990 vc4_job_handle_completed(struct vc4_dev *vc4) 991 { 992 unsigned long irqflags; 993 struct vc4_seqno_cb *cb, *cb_temp; 994 995 spin_lock_irqsave(&vc4->job_lock, irqflags); 996 while (!list_empty(&vc4->job_done_list)) { 997 struct vc4_exec_info *exec = 998 list_first_entry(&vc4->job_done_list, 999 struct vc4_exec_info, head); 1000 list_del(&exec->head); 1001 1002 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 1003 vc4_complete_exec(vc4->dev, exec); 1004 spin_lock_irqsave(&vc4->job_lock, irqflags); 1005 } 1006 1007 list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) { 1008 if (cb->seqno <= vc4->finished_seqno) { 1009 list_del_init(&cb->work.entry); 1010 schedule_work(&cb->work); 1011 } 1012 } 1013 1014 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 1015 } 1016 1017 static void vc4_seqno_cb_work(struct work_struct *work) 1018 { 1019 struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work); 1020 1021 cb->func(cb); 1022 } 1023 1024 int vc4_queue_seqno_cb(struct drm_device *dev, 1025 struct vc4_seqno_cb *cb, uint64_t seqno, 1026 void (*func)(struct vc4_seqno_cb *cb)) 1027 { 1028 struct vc4_dev *vc4 = to_vc4_dev(dev); 1029 int ret = 0; 1030 unsigned long irqflags; 1031 1032 cb->func = func; 1033 INIT_WORK(&cb->work, vc4_seqno_cb_work); 1034 1035 spin_lock_irqsave(&vc4->job_lock, irqflags); 1036 if (seqno > vc4->finished_seqno) { 1037 cb->seqno = seqno; 1038 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list); 1039 } else { 1040 schedule_work(&cb->work); 1041 } 1042 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 1043 1044 return ret; 1045 } 1046 1047 /* Scheduled when any job has been completed, this walks the list of 1048 * jobs that had completed and unrefs their BOs and frees their exec 1049 * structs. 1050 */ 1051 static void 1052 vc4_job_done_work(struct work_struct *work) 1053 { 1054 struct vc4_dev *vc4 = 1055 container_of(work, struct vc4_dev, job_done_work); 1056 1057 vc4_job_handle_completed(vc4); 1058 } 1059 1060 static int 1061 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev, 1062 uint64_t seqno, 1063 uint64_t *timeout_ns) 1064 { 1065 unsigned long start = jiffies; 1066 int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true); 1067 1068 if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) { 1069 uint64_t delta = jiffies_to_nsecs(jiffies - start); 1070 1071 if (*timeout_ns >= delta) 1072 *timeout_ns -= delta; 1073 } 1074 1075 return ret; 1076 } 1077 1078 int 1079 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data, 1080 struct drm_file *file_priv) 1081 { 1082 struct drm_vc4_wait_seqno *args = data; 1083 1084 return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno, 1085 &args->timeout_ns); 1086 } 1087 1088 int 1089 vc4_wait_bo_ioctl(struct drm_device *dev, void *data, 1090 struct drm_file *file_priv) 1091 { 1092 int ret; 1093 struct drm_vc4_wait_bo *args = data; 1094 struct drm_gem_object *gem_obj; 1095 struct vc4_bo *bo; 1096 1097 if (args->pad != 0) 1098 return -EINVAL; 1099 1100 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 1101 if (!gem_obj) { 1102 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle); 1103 return -EINVAL; 1104 } 1105 bo = to_vc4_bo(gem_obj); 1106 1107 ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno, 1108 &args->timeout_ns); 1109 1110 drm_gem_object_put_unlocked(gem_obj); 1111 return ret; 1112 } 1113 1114 /** 1115 * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4. 1116 * @dev: DRM device 1117 * @data: ioctl argument 1118 * @file_priv: DRM file for this fd 1119 * 1120 * This is the main entrypoint for userspace to submit a 3D frame to 1121 * the GPU. Userspace provides the binner command list (if 1122 * applicable), and the kernel sets up the render command list to draw 1123 * to the framebuffer described in the ioctl, using the command lists 1124 * that the 3D engine's binner will produce. 1125 */ 1126 int 1127 vc4_submit_cl_ioctl(struct drm_device *dev, void *data, 1128 struct drm_file *file_priv) 1129 { 1130 struct vc4_dev *vc4 = to_vc4_dev(dev); 1131 struct vc4_file *vc4file = file_priv->driver_priv; 1132 struct drm_vc4_submit_cl *args = data; 1133 struct drm_syncobj *out_sync = NULL; 1134 struct vc4_exec_info *exec; 1135 struct ww_acquire_ctx acquire_ctx; 1136 struct dma_fence *in_fence; 1137 int ret = 0; 1138 1139 if (!vc4->v3d) { 1140 DRM_DEBUG("VC4_SUBMIT_CL with no VC4 V3D probed\n"); 1141 return -ENODEV; 1142 } 1143 1144 if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR | 1145 VC4_SUBMIT_CL_FIXED_RCL_ORDER | 1146 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X | 1147 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) { 1148 DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags); 1149 return -EINVAL; 1150 } 1151 1152 if (args->pad2 != 0) { 1153 DRM_DEBUG("Invalid pad: 0x%08x\n", args->pad2); 1154 return -EINVAL; 1155 } 1156 1157 exec = kcalloc(1, sizeof(*exec), GFP_KERNEL); 1158 if (!exec) { 1159 DRM_ERROR("malloc failure on exec struct\n"); 1160 return -ENOMEM; 1161 } 1162 1163 ret = vc4_v3d_pm_get(vc4); 1164 if (ret) { 1165 kfree(exec); 1166 return ret; 1167 } 1168 1169 exec->args = args; 1170 INIT_LIST_HEAD(&exec->unref_list); 1171 1172 ret = vc4_cl_lookup_bos(dev, file_priv, exec); 1173 if (ret) 1174 goto fail; 1175 1176 if (args->perfmonid) { 1177 exec->perfmon = vc4_perfmon_find(vc4file, 1178 args->perfmonid); 1179 if (!exec->perfmon) { 1180 ret = -ENOENT; 1181 goto fail; 1182 } 1183 } 1184 1185 if (args->in_sync) { 1186 ret = drm_syncobj_find_fence(file_priv, args->in_sync, 1187 0, 0, &in_fence); 1188 if (ret) 1189 goto fail; 1190 1191 /* When the fence (or fence array) is exclusively from our 1192 * context we can skip the wait since jobs are executed in 1193 * order of their submission through this ioctl and this can 1194 * only have fences from a prior job. 1195 */ 1196 if (!dma_fence_match_context(in_fence, 1197 vc4->dma_fence_context)) { 1198 ret = dma_fence_wait(in_fence, true); 1199 if (ret) { 1200 dma_fence_put(in_fence); 1201 goto fail; 1202 } 1203 } 1204 1205 dma_fence_put(in_fence); 1206 } 1207 1208 if (exec->args->bin_cl_size != 0) { 1209 ret = vc4_get_bcl(dev, exec); 1210 if (ret) 1211 goto fail; 1212 } else { 1213 exec->ct0ca = 0; 1214 exec->ct0ea = 0; 1215 } 1216 1217 ret = vc4_get_rcl(dev, exec); 1218 if (ret) 1219 goto fail; 1220 1221 ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx); 1222 if (ret) 1223 goto fail; 1224 1225 if (args->out_sync) { 1226 out_sync = drm_syncobj_find(file_priv, args->out_sync); 1227 if (!out_sync) { 1228 ret = -EINVAL; 1229 goto fail; 1230 } 1231 1232 /* We replace the fence in out_sync in vc4_queue_submit since 1233 * the render job could execute immediately after that call. 1234 * If it finishes before our ioctl processing resumes the 1235 * render job fence could already have been freed. 1236 */ 1237 } 1238 1239 /* Clear this out of the struct we'll be putting in the queue, 1240 * since it's part of our stack. 1241 */ 1242 exec->args = NULL; 1243 1244 ret = vc4_queue_submit(dev, exec, &acquire_ctx, out_sync); 1245 1246 /* The syncobj isn't part of the exec data and we need to free our 1247 * reference even if job submission failed. 1248 */ 1249 if (out_sync) 1250 drm_syncobj_put(out_sync); 1251 1252 if (ret) 1253 goto fail; 1254 1255 /* Return the seqno for our job. */ 1256 args->seqno = vc4->emit_seqno; 1257 1258 return 0; 1259 1260 fail: 1261 vc4_complete_exec(vc4->dev, exec); 1262 1263 return ret; 1264 } 1265 1266 void 1267 vc4_gem_init(struct drm_device *dev) 1268 { 1269 struct vc4_dev *vc4 = to_vc4_dev(dev); 1270 1271 vc4->dma_fence_context = dma_fence_context_alloc(1); 1272 1273 INIT_LIST_HEAD(&vc4->bin_job_list); 1274 INIT_LIST_HEAD(&vc4->render_job_list); 1275 INIT_LIST_HEAD(&vc4->job_done_list); 1276 INIT_LIST_HEAD(&vc4->seqno_cb_list); 1277 spin_lock_init(&vc4->job_lock); 1278 1279 INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work); 1280 timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0); 1281 1282 INIT_WORK(&vc4->job_done_work, vc4_job_done_work); 1283 1284 mutex_init(&vc4->power_lock); 1285 1286 INIT_LIST_HEAD(&vc4->purgeable.list); 1287 mutex_init(&vc4->purgeable.lock); 1288 } 1289 1290 void 1291 vc4_gem_destroy(struct drm_device *dev) 1292 { 1293 struct vc4_dev *vc4 = to_vc4_dev(dev); 1294 1295 /* Waiting for exec to finish would need to be done before 1296 * unregistering V3D. 1297 */ 1298 WARN_ON(vc4->emit_seqno != vc4->finished_seqno); 1299 1300 /* V3D should already have disabled its interrupt and cleared 1301 * the overflow allocation registers. Now free the object. 1302 */ 1303 if (vc4->bin_bo) { 1304 drm_gem_object_put_unlocked(&vc4->bin_bo->base.base); 1305 vc4->bin_bo = NULL; 1306 } 1307 1308 if (vc4->hang_state) 1309 vc4_free_hang_state(dev, vc4->hang_state); 1310 } 1311 1312 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data, 1313 struct drm_file *file_priv) 1314 { 1315 struct drm_vc4_gem_madvise *args = data; 1316 struct drm_gem_object *gem_obj; 1317 struct vc4_bo *bo; 1318 int ret; 1319 1320 switch (args->madv) { 1321 case VC4_MADV_DONTNEED: 1322 case VC4_MADV_WILLNEED: 1323 break; 1324 default: 1325 return -EINVAL; 1326 } 1327 1328 if (args->pad != 0) 1329 return -EINVAL; 1330 1331 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 1332 if (!gem_obj) { 1333 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle); 1334 return -ENOENT; 1335 } 1336 1337 bo = to_vc4_bo(gem_obj); 1338 1339 /* Only BOs exposed to userspace can be purged. */ 1340 if (bo->madv == __VC4_MADV_NOTSUPP) { 1341 DRM_DEBUG("madvise not supported on this BO\n"); 1342 ret = -EINVAL; 1343 goto out_put_gem; 1344 } 1345 1346 /* Not sure it's safe to purge imported BOs. Let's just assume it's 1347 * not until proven otherwise. 1348 */ 1349 if (gem_obj->import_attach) { 1350 DRM_DEBUG("madvise not supported on imported BOs\n"); 1351 ret = -EINVAL; 1352 goto out_put_gem; 1353 } 1354 1355 mutex_lock(&bo->madv_lock); 1356 1357 if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED && 1358 !refcount_read(&bo->usecnt)) { 1359 /* If the BO is about to be marked as purgeable, is not used 1360 * and is not already purgeable or purged, add it to the 1361 * purgeable list. 1362 */ 1363 vc4_bo_add_to_purgeable_pool(bo); 1364 } else if (args->madv == VC4_MADV_WILLNEED && 1365 bo->madv == VC4_MADV_DONTNEED && 1366 !refcount_read(&bo->usecnt)) { 1367 /* The BO has not been purged yet, just remove it from 1368 * the purgeable list. 1369 */ 1370 vc4_bo_remove_from_purgeable_pool(bo); 1371 } 1372 1373 /* Save the purged state. */ 1374 args->retained = bo->madv != __VC4_MADV_PURGED; 1375 1376 /* Update internal madv state only if the bo was not purged. */ 1377 if (bo->madv != __VC4_MADV_PURGED) 1378 bo->madv = args->madv; 1379 1380 mutex_unlock(&bo->madv_lock); 1381 1382 ret = 0; 1383 1384 out_put_gem: 1385 drm_gem_object_put_unlocked(gem_obj); 1386 1387 return ret; 1388 } 1389