1 /* 2 * Copyright © 2014 Broadcom 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/device.h> 28 #include <linux/io.h> 29 #include <linux/sched/signal.h> 30 #include <linux/dma-fence-array.h> 31 32 #include <drm/drm_syncobj.h> 33 34 #include "uapi/drm/vc4_drm.h" 35 #include "vc4_drv.h" 36 #include "vc4_regs.h" 37 #include "vc4_trace.h" 38 39 static void 40 vc4_queue_hangcheck(struct drm_device *dev) 41 { 42 struct vc4_dev *vc4 = to_vc4_dev(dev); 43 44 mod_timer(&vc4->hangcheck.timer, 45 round_jiffies_up(jiffies + msecs_to_jiffies(100))); 46 } 47 48 struct vc4_hang_state { 49 struct drm_vc4_get_hang_state user_state; 50 51 u32 bo_count; 52 struct drm_gem_object **bo; 53 }; 54 55 static void 56 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state) 57 { 58 unsigned int i; 59 60 for (i = 0; i < state->user_state.bo_count; i++) 61 drm_gem_object_put(state->bo[i]); 62 63 kfree(state); 64 } 65 66 int 67 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data, 68 struct drm_file *file_priv) 69 { 70 struct drm_vc4_get_hang_state *get_state = data; 71 struct drm_vc4_get_hang_state_bo *bo_state; 72 struct vc4_hang_state *kernel_state; 73 struct drm_vc4_get_hang_state *state; 74 struct vc4_dev *vc4 = to_vc4_dev(dev); 75 unsigned long irqflags; 76 u32 i; 77 int ret = 0; 78 79 if (!vc4->v3d) { 80 DRM_DEBUG("VC4_GET_HANG_STATE with no VC4 V3D probed\n"); 81 return -ENODEV; 82 } 83 84 spin_lock_irqsave(&vc4->job_lock, irqflags); 85 kernel_state = vc4->hang_state; 86 if (!kernel_state) { 87 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 88 return -ENOENT; 89 } 90 state = &kernel_state->user_state; 91 92 /* If the user's array isn't big enough, just return the 93 * required array size. 94 */ 95 if (get_state->bo_count < state->bo_count) { 96 get_state->bo_count = state->bo_count; 97 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 98 return 0; 99 } 100 101 vc4->hang_state = NULL; 102 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 103 104 /* Save the user's BO pointer, so we don't stomp it with the memcpy. */ 105 state->bo = get_state->bo; 106 memcpy(get_state, state, sizeof(*state)); 107 108 bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL); 109 if (!bo_state) { 110 ret = -ENOMEM; 111 goto err_free; 112 } 113 114 for (i = 0; i < state->bo_count; i++) { 115 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]); 116 u32 handle; 117 118 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i], 119 &handle); 120 121 if (ret) { 122 state->bo_count = i; 123 goto err_delete_handle; 124 } 125 bo_state[i].handle = handle; 126 bo_state[i].paddr = vc4_bo->base.paddr; 127 bo_state[i].size = vc4_bo->base.base.size; 128 } 129 130 if (copy_to_user(u64_to_user_ptr(get_state->bo), 131 bo_state, 132 state->bo_count * sizeof(*bo_state))) 133 ret = -EFAULT; 134 135 err_delete_handle: 136 if (ret) { 137 for (i = 0; i < state->bo_count; i++) 138 drm_gem_handle_delete(file_priv, bo_state[i].handle); 139 } 140 141 err_free: 142 vc4_free_hang_state(dev, kernel_state); 143 kfree(bo_state); 144 145 return ret; 146 } 147 148 static void 149 vc4_save_hang_state(struct drm_device *dev) 150 { 151 struct vc4_dev *vc4 = to_vc4_dev(dev); 152 struct drm_vc4_get_hang_state *state; 153 struct vc4_hang_state *kernel_state; 154 struct vc4_exec_info *exec[2]; 155 struct vc4_bo *bo; 156 unsigned long irqflags; 157 unsigned int i, j, k, unref_list_count; 158 159 kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL); 160 if (!kernel_state) 161 return; 162 163 state = &kernel_state->user_state; 164 165 spin_lock_irqsave(&vc4->job_lock, irqflags); 166 exec[0] = vc4_first_bin_job(vc4); 167 exec[1] = vc4_first_render_job(vc4); 168 if (!exec[0] && !exec[1]) { 169 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 170 return; 171 } 172 173 /* Get the bos from both binner and renderer into hang state. */ 174 state->bo_count = 0; 175 for (i = 0; i < 2; i++) { 176 if (!exec[i]) 177 continue; 178 179 unref_list_count = 0; 180 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) 181 unref_list_count++; 182 state->bo_count += exec[i]->bo_count + unref_list_count; 183 } 184 185 kernel_state->bo = kcalloc(state->bo_count, 186 sizeof(*kernel_state->bo), GFP_ATOMIC); 187 188 if (!kernel_state->bo) { 189 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 190 return; 191 } 192 193 k = 0; 194 for (i = 0; i < 2; i++) { 195 if (!exec[i]) 196 continue; 197 198 for (j = 0; j < exec[i]->bo_count; j++) { 199 bo = to_vc4_bo(&exec[i]->bo[j]->base); 200 201 /* Retain BOs just in case they were marked purgeable. 202 * This prevents the BO from being purged before 203 * someone had a chance to dump the hang state. 204 */ 205 WARN_ON(!refcount_read(&bo->usecnt)); 206 refcount_inc(&bo->usecnt); 207 drm_gem_object_get(&exec[i]->bo[j]->base); 208 kernel_state->bo[k++] = &exec[i]->bo[j]->base; 209 } 210 211 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) { 212 /* No need to retain BOs coming from the ->unref_list 213 * because they are naturally unpurgeable. 214 */ 215 drm_gem_object_get(&bo->base.base); 216 kernel_state->bo[k++] = &bo->base.base; 217 } 218 } 219 220 WARN_ON_ONCE(k != state->bo_count); 221 222 if (exec[0]) 223 state->start_bin = exec[0]->ct0ca; 224 if (exec[1]) 225 state->start_render = exec[1]->ct1ca; 226 227 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 228 229 state->ct0ca = V3D_READ(V3D_CTNCA(0)); 230 state->ct0ea = V3D_READ(V3D_CTNEA(0)); 231 232 state->ct1ca = V3D_READ(V3D_CTNCA(1)); 233 state->ct1ea = V3D_READ(V3D_CTNEA(1)); 234 235 state->ct0cs = V3D_READ(V3D_CTNCS(0)); 236 state->ct1cs = V3D_READ(V3D_CTNCS(1)); 237 238 state->ct0ra0 = V3D_READ(V3D_CT00RA0); 239 state->ct1ra0 = V3D_READ(V3D_CT01RA0); 240 241 state->bpca = V3D_READ(V3D_BPCA); 242 state->bpcs = V3D_READ(V3D_BPCS); 243 state->bpoa = V3D_READ(V3D_BPOA); 244 state->bpos = V3D_READ(V3D_BPOS); 245 246 state->vpmbase = V3D_READ(V3D_VPMBASE); 247 248 state->dbge = V3D_READ(V3D_DBGE); 249 state->fdbgo = V3D_READ(V3D_FDBGO); 250 state->fdbgb = V3D_READ(V3D_FDBGB); 251 state->fdbgr = V3D_READ(V3D_FDBGR); 252 state->fdbgs = V3D_READ(V3D_FDBGS); 253 state->errstat = V3D_READ(V3D_ERRSTAT); 254 255 /* We need to turn purgeable BOs into unpurgeable ones so that 256 * userspace has a chance to dump the hang state before the kernel 257 * decides to purge those BOs. 258 * Note that BO consistency at dump time cannot be guaranteed. For 259 * example, if the owner of these BOs decides to re-use them or mark 260 * them purgeable again there's nothing we can do to prevent it. 261 */ 262 for (i = 0; i < kernel_state->user_state.bo_count; i++) { 263 struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]); 264 265 if (bo->madv == __VC4_MADV_NOTSUPP) 266 continue; 267 268 mutex_lock(&bo->madv_lock); 269 if (!WARN_ON(bo->madv == __VC4_MADV_PURGED)) 270 bo->madv = VC4_MADV_WILLNEED; 271 refcount_dec(&bo->usecnt); 272 mutex_unlock(&bo->madv_lock); 273 } 274 275 spin_lock_irqsave(&vc4->job_lock, irqflags); 276 if (vc4->hang_state) { 277 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 278 vc4_free_hang_state(dev, kernel_state); 279 } else { 280 vc4->hang_state = kernel_state; 281 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 282 } 283 } 284 285 static void 286 vc4_reset(struct drm_device *dev) 287 { 288 struct vc4_dev *vc4 = to_vc4_dev(dev); 289 290 DRM_INFO("Resetting GPU.\n"); 291 292 mutex_lock(&vc4->power_lock); 293 if (vc4->power_refcount) { 294 /* Power the device off and back on the by dropping the 295 * reference on runtime PM. 296 */ 297 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev); 298 pm_runtime_get_sync(&vc4->v3d->pdev->dev); 299 } 300 mutex_unlock(&vc4->power_lock); 301 302 vc4_irq_reset(dev); 303 304 /* Rearm the hangcheck -- another job might have been waiting 305 * for our hung one to get kicked off, and vc4_irq_reset() 306 * would have started it. 307 */ 308 vc4_queue_hangcheck(dev); 309 } 310 311 static void 312 vc4_reset_work(struct work_struct *work) 313 { 314 struct vc4_dev *vc4 = 315 container_of(work, struct vc4_dev, hangcheck.reset_work); 316 317 vc4_save_hang_state(&vc4->base); 318 319 vc4_reset(&vc4->base); 320 } 321 322 static void 323 vc4_hangcheck_elapsed(struct timer_list *t) 324 { 325 struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer); 326 struct drm_device *dev = &vc4->base; 327 uint32_t ct0ca, ct1ca; 328 unsigned long irqflags; 329 struct vc4_exec_info *bin_exec, *render_exec; 330 331 spin_lock_irqsave(&vc4->job_lock, irqflags); 332 333 bin_exec = vc4_first_bin_job(vc4); 334 render_exec = vc4_first_render_job(vc4); 335 336 /* If idle, we can stop watching for hangs. */ 337 if (!bin_exec && !render_exec) { 338 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 339 return; 340 } 341 342 ct0ca = V3D_READ(V3D_CTNCA(0)); 343 ct1ca = V3D_READ(V3D_CTNCA(1)); 344 345 /* If we've made any progress in execution, rearm the timer 346 * and wait. 347 */ 348 if ((bin_exec && ct0ca != bin_exec->last_ct0ca) || 349 (render_exec && ct1ca != render_exec->last_ct1ca)) { 350 if (bin_exec) 351 bin_exec->last_ct0ca = ct0ca; 352 if (render_exec) 353 render_exec->last_ct1ca = ct1ca; 354 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 355 vc4_queue_hangcheck(dev); 356 return; 357 } 358 359 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 360 361 /* We've gone too long with no progress, reset. This has to 362 * be done from a work struct, since resetting can sleep and 363 * this timer hook isn't allowed to. 364 */ 365 schedule_work(&vc4->hangcheck.reset_work); 366 } 367 368 static void 369 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end) 370 { 371 struct vc4_dev *vc4 = to_vc4_dev(dev); 372 373 /* Set the current and end address of the control list. 374 * Writing the end register is what starts the job. 375 */ 376 V3D_WRITE(V3D_CTNCA(thread), start); 377 V3D_WRITE(V3D_CTNEA(thread), end); 378 } 379 380 int 381 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns, 382 bool interruptible) 383 { 384 struct vc4_dev *vc4 = to_vc4_dev(dev); 385 int ret = 0; 386 unsigned long timeout_expire; 387 DEFINE_WAIT(wait); 388 389 if (vc4->finished_seqno >= seqno) 390 return 0; 391 392 if (timeout_ns == 0) 393 return -ETIME; 394 395 timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns); 396 397 trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns); 398 for (;;) { 399 prepare_to_wait(&vc4->job_wait_queue, &wait, 400 interruptible ? TASK_INTERRUPTIBLE : 401 TASK_UNINTERRUPTIBLE); 402 403 if (interruptible && signal_pending(current)) { 404 ret = -ERESTARTSYS; 405 break; 406 } 407 408 if (vc4->finished_seqno >= seqno) 409 break; 410 411 if (timeout_ns != ~0ull) { 412 if (time_after_eq(jiffies, timeout_expire)) { 413 ret = -ETIME; 414 break; 415 } 416 schedule_timeout(timeout_expire - jiffies); 417 } else { 418 schedule(); 419 } 420 } 421 422 finish_wait(&vc4->job_wait_queue, &wait); 423 trace_vc4_wait_for_seqno_end(dev, seqno); 424 425 return ret; 426 } 427 428 static void 429 vc4_flush_caches(struct drm_device *dev) 430 { 431 struct vc4_dev *vc4 = to_vc4_dev(dev); 432 433 /* Flush the GPU L2 caches. These caches sit on top of system 434 * L3 (the 128kb or so shared with the CPU), and are 435 * non-allocating in the L3. 436 */ 437 V3D_WRITE(V3D_L2CACTL, 438 V3D_L2CACTL_L2CCLR); 439 440 V3D_WRITE(V3D_SLCACTL, 441 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | 442 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) | 443 VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) | 444 VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC)); 445 } 446 447 static void 448 vc4_flush_texture_caches(struct drm_device *dev) 449 { 450 struct vc4_dev *vc4 = to_vc4_dev(dev); 451 452 V3D_WRITE(V3D_L2CACTL, 453 V3D_L2CACTL_L2CCLR); 454 455 V3D_WRITE(V3D_SLCACTL, 456 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | 457 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC)); 458 } 459 460 /* Sets the registers for the next job to be actually be executed in 461 * the hardware. 462 * 463 * The job_lock should be held during this. 464 */ 465 void 466 vc4_submit_next_bin_job(struct drm_device *dev) 467 { 468 struct vc4_dev *vc4 = to_vc4_dev(dev); 469 struct vc4_exec_info *exec; 470 471 again: 472 exec = vc4_first_bin_job(vc4); 473 if (!exec) 474 return; 475 476 vc4_flush_caches(dev); 477 478 /* Only start the perfmon if it was not already started by a previous 479 * job. 480 */ 481 if (exec->perfmon && vc4->active_perfmon != exec->perfmon) 482 vc4_perfmon_start(vc4, exec->perfmon); 483 484 /* Either put the job in the binner if it uses the binner, or 485 * immediately move it to the to-be-rendered queue. 486 */ 487 if (exec->ct0ca != exec->ct0ea) { 488 trace_vc4_submit_cl(dev, false, exec->seqno, exec->ct0ca, 489 exec->ct0ea); 490 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea); 491 } else { 492 struct vc4_exec_info *next; 493 494 vc4_move_job_to_render(dev, exec); 495 next = vc4_first_bin_job(vc4); 496 497 /* We can't start the next bin job if the previous job had a 498 * different perfmon instance attached to it. The same goes 499 * if one of them had a perfmon attached to it and the other 500 * one doesn't. 501 */ 502 if (next && next->perfmon == exec->perfmon) 503 goto again; 504 } 505 } 506 507 void 508 vc4_submit_next_render_job(struct drm_device *dev) 509 { 510 struct vc4_dev *vc4 = to_vc4_dev(dev); 511 struct vc4_exec_info *exec = vc4_first_render_job(vc4); 512 513 if (!exec) 514 return; 515 516 /* A previous RCL may have written to one of our textures, and 517 * our full cache flush at bin time may have occurred before 518 * that RCL completed. Flush the texture cache now, but not 519 * the instructions or uniforms (since we don't write those 520 * from an RCL). 521 */ 522 vc4_flush_texture_caches(dev); 523 524 trace_vc4_submit_cl(dev, true, exec->seqno, exec->ct1ca, exec->ct1ea); 525 submit_cl(dev, 1, exec->ct1ca, exec->ct1ea); 526 } 527 528 void 529 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec) 530 { 531 struct vc4_dev *vc4 = to_vc4_dev(dev); 532 bool was_empty = list_empty(&vc4->render_job_list); 533 534 list_move_tail(&exec->head, &vc4->render_job_list); 535 if (was_empty) 536 vc4_submit_next_render_job(dev); 537 } 538 539 static void 540 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno) 541 { 542 struct vc4_bo *bo; 543 unsigned i; 544 545 for (i = 0; i < exec->bo_count; i++) { 546 bo = to_vc4_bo(&exec->bo[i]->base); 547 bo->seqno = seqno; 548 549 dma_resv_add_shared_fence(bo->base.base.resv, exec->fence); 550 } 551 552 list_for_each_entry(bo, &exec->unref_list, unref_head) { 553 bo->seqno = seqno; 554 } 555 556 for (i = 0; i < exec->rcl_write_bo_count; i++) { 557 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base); 558 bo->write_seqno = seqno; 559 560 dma_resv_add_excl_fence(bo->base.base.resv, exec->fence); 561 } 562 } 563 564 static void 565 vc4_unlock_bo_reservations(struct drm_device *dev, 566 struct vc4_exec_info *exec, 567 struct ww_acquire_ctx *acquire_ctx) 568 { 569 int i; 570 571 for (i = 0; i < exec->bo_count; i++) { 572 struct drm_gem_object *bo = &exec->bo[i]->base; 573 574 dma_resv_unlock(bo->resv); 575 } 576 577 ww_acquire_fini(acquire_ctx); 578 } 579 580 /* Takes the reservation lock on all the BOs being referenced, so that 581 * at queue submit time we can update the reservations. 582 * 583 * We don't lock the RCL the tile alloc/state BOs, or overflow memory 584 * (all of which are on exec->unref_list). They're entirely private 585 * to vc4, so we don't attach dma-buf fences to them. 586 */ 587 static int 588 vc4_lock_bo_reservations(struct drm_device *dev, 589 struct vc4_exec_info *exec, 590 struct ww_acquire_ctx *acquire_ctx) 591 { 592 int contended_lock = -1; 593 int i, ret; 594 struct drm_gem_object *bo; 595 596 ww_acquire_init(acquire_ctx, &reservation_ww_class); 597 598 retry: 599 if (contended_lock != -1) { 600 bo = &exec->bo[contended_lock]->base; 601 ret = dma_resv_lock_slow_interruptible(bo->resv, acquire_ctx); 602 if (ret) { 603 ww_acquire_done(acquire_ctx); 604 return ret; 605 } 606 } 607 608 for (i = 0; i < exec->bo_count; i++) { 609 if (i == contended_lock) 610 continue; 611 612 bo = &exec->bo[i]->base; 613 614 ret = dma_resv_lock_interruptible(bo->resv, acquire_ctx); 615 if (ret) { 616 int j; 617 618 for (j = 0; j < i; j++) { 619 bo = &exec->bo[j]->base; 620 dma_resv_unlock(bo->resv); 621 } 622 623 if (contended_lock != -1 && contended_lock >= i) { 624 bo = &exec->bo[contended_lock]->base; 625 626 dma_resv_unlock(bo->resv); 627 } 628 629 if (ret == -EDEADLK) { 630 contended_lock = i; 631 goto retry; 632 } 633 634 ww_acquire_done(acquire_ctx); 635 return ret; 636 } 637 } 638 639 ww_acquire_done(acquire_ctx); 640 641 /* Reserve space for our shared (read-only) fence references, 642 * before we commit the CL to the hardware. 643 */ 644 for (i = 0; i < exec->bo_count; i++) { 645 bo = &exec->bo[i]->base; 646 647 ret = dma_resv_reserve_shared(bo->resv, 1); 648 if (ret) { 649 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 650 return ret; 651 } 652 } 653 654 return 0; 655 } 656 657 /* Queues a struct vc4_exec_info for execution. If no job is 658 * currently executing, then submits it. 659 * 660 * Unlike most GPUs, our hardware only handles one command list at a 661 * time. To queue multiple jobs at once, we'd need to edit the 662 * previous command list to have a jump to the new one at the end, and 663 * then bump the end address. That's a change for a later date, 664 * though. 665 */ 666 static int 667 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec, 668 struct ww_acquire_ctx *acquire_ctx, 669 struct drm_syncobj *out_sync) 670 { 671 struct vc4_dev *vc4 = to_vc4_dev(dev); 672 struct vc4_exec_info *renderjob; 673 uint64_t seqno; 674 unsigned long irqflags; 675 struct vc4_fence *fence; 676 677 fence = kzalloc(sizeof(*fence), GFP_KERNEL); 678 if (!fence) 679 return -ENOMEM; 680 fence->dev = dev; 681 682 spin_lock_irqsave(&vc4->job_lock, irqflags); 683 684 seqno = ++vc4->emit_seqno; 685 exec->seqno = seqno; 686 687 dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock, 688 vc4->dma_fence_context, exec->seqno); 689 fence->seqno = exec->seqno; 690 exec->fence = &fence->base; 691 692 if (out_sync) 693 drm_syncobj_replace_fence(out_sync, exec->fence); 694 695 vc4_update_bo_seqnos(exec, seqno); 696 697 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 698 699 list_add_tail(&exec->head, &vc4->bin_job_list); 700 701 /* If no bin job was executing and if the render job (if any) has the 702 * same perfmon as our job attached to it (or if both jobs don't have 703 * perfmon activated), then kick ours off. Otherwise, it'll get 704 * started when the previous job's flush/render done interrupt occurs. 705 */ 706 renderjob = vc4_first_render_job(vc4); 707 if (vc4_first_bin_job(vc4) == exec && 708 (!renderjob || renderjob->perfmon == exec->perfmon)) { 709 vc4_submit_next_bin_job(dev); 710 vc4_queue_hangcheck(dev); 711 } 712 713 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 714 715 return 0; 716 } 717 718 /** 719 * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects 720 * referenced by the job. 721 * @dev: DRM device 722 * @file_priv: DRM file for this fd 723 * @exec: V3D job being set up 724 * 725 * The command validator needs to reference BOs by their index within 726 * the submitted job's BO list. This does the validation of the job's 727 * BO list and reference counting for the lifetime of the job. 728 */ 729 static int 730 vc4_cl_lookup_bos(struct drm_device *dev, 731 struct drm_file *file_priv, 732 struct vc4_exec_info *exec) 733 { 734 struct drm_vc4_submit_cl *args = exec->args; 735 uint32_t *handles; 736 int ret = 0; 737 int i; 738 739 exec->bo_count = args->bo_handle_count; 740 741 if (!exec->bo_count) { 742 /* See comment on bo_index for why we have to check 743 * this. 744 */ 745 DRM_DEBUG("Rendering requires BOs to validate\n"); 746 return -EINVAL; 747 } 748 749 exec->bo = kvmalloc_array(exec->bo_count, 750 sizeof(struct drm_gem_cma_object *), 751 GFP_KERNEL | __GFP_ZERO); 752 if (!exec->bo) { 753 DRM_ERROR("Failed to allocate validated BO pointers\n"); 754 return -ENOMEM; 755 } 756 757 handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL); 758 if (!handles) { 759 ret = -ENOMEM; 760 DRM_ERROR("Failed to allocate incoming GEM handles\n"); 761 goto fail; 762 } 763 764 if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles), 765 exec->bo_count * sizeof(uint32_t))) { 766 ret = -EFAULT; 767 DRM_ERROR("Failed to copy in GEM handles\n"); 768 goto fail; 769 } 770 771 spin_lock(&file_priv->table_lock); 772 for (i = 0; i < exec->bo_count; i++) { 773 struct drm_gem_object *bo = idr_find(&file_priv->object_idr, 774 handles[i]); 775 if (!bo) { 776 DRM_DEBUG("Failed to look up GEM BO %d: %d\n", 777 i, handles[i]); 778 ret = -EINVAL; 779 break; 780 } 781 782 drm_gem_object_get(bo); 783 exec->bo[i] = (struct drm_gem_cma_object *)bo; 784 } 785 spin_unlock(&file_priv->table_lock); 786 787 if (ret) 788 goto fail_put_bo; 789 790 for (i = 0; i < exec->bo_count; i++) { 791 ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base)); 792 if (ret) 793 goto fail_dec_usecnt; 794 } 795 796 kvfree(handles); 797 return 0; 798 799 fail_dec_usecnt: 800 /* Decrease usecnt on acquired objects. 801 * We cannot rely on vc4_complete_exec() to release resources here, 802 * because vc4_complete_exec() has no information about which BO has 803 * had its ->usecnt incremented. 804 * To make things easier we just free everything explicitly and set 805 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release' 806 * step. 807 */ 808 for (i-- ; i >= 0; i--) 809 vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base)); 810 811 fail_put_bo: 812 /* Release any reference to acquired objects. */ 813 for (i = 0; i < exec->bo_count && exec->bo[i]; i++) 814 drm_gem_object_put(&exec->bo[i]->base); 815 816 fail: 817 kvfree(handles); 818 kvfree(exec->bo); 819 exec->bo = NULL; 820 return ret; 821 } 822 823 static int 824 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec) 825 { 826 struct drm_vc4_submit_cl *args = exec->args; 827 struct vc4_dev *vc4 = to_vc4_dev(dev); 828 void *temp = NULL; 829 void *bin; 830 int ret = 0; 831 uint32_t bin_offset = 0; 832 uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size, 833 16); 834 uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size; 835 uint32_t exec_size = uniforms_offset + args->uniforms_size; 836 uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) * 837 args->shader_rec_count); 838 struct vc4_bo *bo; 839 840 if (shader_rec_offset < args->bin_cl_size || 841 uniforms_offset < shader_rec_offset || 842 exec_size < uniforms_offset || 843 args->shader_rec_count >= (UINT_MAX / 844 sizeof(struct vc4_shader_state)) || 845 temp_size < exec_size) { 846 DRM_DEBUG("overflow in exec arguments\n"); 847 ret = -EINVAL; 848 goto fail; 849 } 850 851 /* Allocate space where we'll store the copied in user command lists 852 * and shader records. 853 * 854 * We don't just copy directly into the BOs because we need to 855 * read the contents back for validation, and I think the 856 * bo->vaddr is uncached access. 857 */ 858 temp = kvmalloc_array(temp_size, 1, GFP_KERNEL); 859 if (!temp) { 860 DRM_ERROR("Failed to allocate storage for copying " 861 "in bin/render CLs.\n"); 862 ret = -ENOMEM; 863 goto fail; 864 } 865 bin = temp + bin_offset; 866 exec->shader_rec_u = temp + shader_rec_offset; 867 exec->uniforms_u = temp + uniforms_offset; 868 exec->shader_state = temp + exec_size; 869 exec->shader_state_size = args->shader_rec_count; 870 871 if (copy_from_user(bin, 872 u64_to_user_ptr(args->bin_cl), 873 args->bin_cl_size)) { 874 ret = -EFAULT; 875 goto fail; 876 } 877 878 if (copy_from_user(exec->shader_rec_u, 879 u64_to_user_ptr(args->shader_rec), 880 args->shader_rec_size)) { 881 ret = -EFAULT; 882 goto fail; 883 } 884 885 if (copy_from_user(exec->uniforms_u, 886 u64_to_user_ptr(args->uniforms), 887 args->uniforms_size)) { 888 ret = -EFAULT; 889 goto fail; 890 } 891 892 bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL); 893 if (IS_ERR(bo)) { 894 DRM_ERROR("Couldn't allocate BO for binning\n"); 895 ret = PTR_ERR(bo); 896 goto fail; 897 } 898 exec->exec_bo = &bo->base; 899 900 list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head, 901 &exec->unref_list); 902 903 exec->ct0ca = exec->exec_bo->paddr + bin_offset; 904 905 exec->bin_u = bin; 906 907 exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset; 908 exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset; 909 exec->shader_rec_size = args->shader_rec_size; 910 911 exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset; 912 exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset; 913 exec->uniforms_size = args->uniforms_size; 914 915 ret = vc4_validate_bin_cl(dev, 916 exec->exec_bo->vaddr + bin_offset, 917 bin, 918 exec); 919 if (ret) 920 goto fail; 921 922 ret = vc4_validate_shader_recs(dev, exec); 923 if (ret) 924 goto fail; 925 926 if (exec->found_tile_binning_mode_config_packet) { 927 ret = vc4_v3d_bin_bo_get(vc4, &exec->bin_bo_used); 928 if (ret) 929 goto fail; 930 } 931 932 /* Block waiting on any previous rendering into the CS's VBO, 933 * IB, or textures, so that pixels are actually written by the 934 * time we try to read them. 935 */ 936 ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true); 937 938 fail: 939 kvfree(temp); 940 return ret; 941 } 942 943 static void 944 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec) 945 { 946 struct vc4_dev *vc4 = to_vc4_dev(dev); 947 unsigned long irqflags; 948 unsigned i; 949 950 /* If we got force-completed because of GPU reset rather than 951 * through our IRQ handler, signal the fence now. 952 */ 953 if (exec->fence) { 954 dma_fence_signal(exec->fence); 955 dma_fence_put(exec->fence); 956 } 957 958 if (exec->bo) { 959 for (i = 0; i < exec->bo_count; i++) { 960 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base); 961 962 vc4_bo_dec_usecnt(bo); 963 drm_gem_object_put(&exec->bo[i]->base); 964 } 965 kvfree(exec->bo); 966 } 967 968 while (!list_empty(&exec->unref_list)) { 969 struct vc4_bo *bo = list_first_entry(&exec->unref_list, 970 struct vc4_bo, unref_head); 971 list_del(&bo->unref_head); 972 drm_gem_object_put(&bo->base.base); 973 } 974 975 /* Free up the allocation of any bin slots we used. */ 976 spin_lock_irqsave(&vc4->job_lock, irqflags); 977 vc4->bin_alloc_used &= ~exec->bin_slots; 978 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 979 980 /* Release the reference on the binner BO if needed. */ 981 if (exec->bin_bo_used) 982 vc4_v3d_bin_bo_put(vc4); 983 984 /* Release the reference we had on the perf monitor. */ 985 vc4_perfmon_put(exec->perfmon); 986 987 vc4_v3d_pm_put(vc4); 988 989 kfree(exec); 990 } 991 992 void 993 vc4_job_handle_completed(struct vc4_dev *vc4) 994 { 995 unsigned long irqflags; 996 struct vc4_seqno_cb *cb, *cb_temp; 997 998 spin_lock_irqsave(&vc4->job_lock, irqflags); 999 while (!list_empty(&vc4->job_done_list)) { 1000 struct vc4_exec_info *exec = 1001 list_first_entry(&vc4->job_done_list, 1002 struct vc4_exec_info, head); 1003 list_del(&exec->head); 1004 1005 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 1006 vc4_complete_exec(&vc4->base, exec); 1007 spin_lock_irqsave(&vc4->job_lock, irqflags); 1008 } 1009 1010 list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) { 1011 if (cb->seqno <= vc4->finished_seqno) { 1012 list_del_init(&cb->work.entry); 1013 schedule_work(&cb->work); 1014 } 1015 } 1016 1017 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 1018 } 1019 1020 static void vc4_seqno_cb_work(struct work_struct *work) 1021 { 1022 struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work); 1023 1024 cb->func(cb); 1025 } 1026 1027 int vc4_queue_seqno_cb(struct drm_device *dev, 1028 struct vc4_seqno_cb *cb, uint64_t seqno, 1029 void (*func)(struct vc4_seqno_cb *cb)) 1030 { 1031 struct vc4_dev *vc4 = to_vc4_dev(dev); 1032 unsigned long irqflags; 1033 1034 cb->func = func; 1035 INIT_WORK(&cb->work, vc4_seqno_cb_work); 1036 1037 spin_lock_irqsave(&vc4->job_lock, irqflags); 1038 if (seqno > vc4->finished_seqno) { 1039 cb->seqno = seqno; 1040 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list); 1041 } else { 1042 schedule_work(&cb->work); 1043 } 1044 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 1045 1046 return 0; 1047 } 1048 1049 /* Scheduled when any job has been completed, this walks the list of 1050 * jobs that had completed and unrefs their BOs and frees their exec 1051 * structs. 1052 */ 1053 static void 1054 vc4_job_done_work(struct work_struct *work) 1055 { 1056 struct vc4_dev *vc4 = 1057 container_of(work, struct vc4_dev, job_done_work); 1058 1059 vc4_job_handle_completed(vc4); 1060 } 1061 1062 static int 1063 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev, 1064 uint64_t seqno, 1065 uint64_t *timeout_ns) 1066 { 1067 unsigned long start = jiffies; 1068 int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true); 1069 1070 if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) { 1071 uint64_t delta = jiffies_to_nsecs(jiffies - start); 1072 1073 if (*timeout_ns >= delta) 1074 *timeout_ns -= delta; 1075 } 1076 1077 return ret; 1078 } 1079 1080 int 1081 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data, 1082 struct drm_file *file_priv) 1083 { 1084 struct drm_vc4_wait_seqno *args = data; 1085 1086 return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno, 1087 &args->timeout_ns); 1088 } 1089 1090 int 1091 vc4_wait_bo_ioctl(struct drm_device *dev, void *data, 1092 struct drm_file *file_priv) 1093 { 1094 int ret; 1095 struct drm_vc4_wait_bo *args = data; 1096 struct drm_gem_object *gem_obj; 1097 struct vc4_bo *bo; 1098 1099 if (args->pad != 0) 1100 return -EINVAL; 1101 1102 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 1103 if (!gem_obj) { 1104 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle); 1105 return -EINVAL; 1106 } 1107 bo = to_vc4_bo(gem_obj); 1108 1109 ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno, 1110 &args->timeout_ns); 1111 1112 drm_gem_object_put(gem_obj); 1113 return ret; 1114 } 1115 1116 /** 1117 * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4. 1118 * @dev: DRM device 1119 * @data: ioctl argument 1120 * @file_priv: DRM file for this fd 1121 * 1122 * This is the main entrypoint for userspace to submit a 3D frame to 1123 * the GPU. Userspace provides the binner command list (if 1124 * applicable), and the kernel sets up the render command list to draw 1125 * to the framebuffer described in the ioctl, using the command lists 1126 * that the 3D engine's binner will produce. 1127 */ 1128 int 1129 vc4_submit_cl_ioctl(struct drm_device *dev, void *data, 1130 struct drm_file *file_priv) 1131 { 1132 struct vc4_dev *vc4 = to_vc4_dev(dev); 1133 struct vc4_file *vc4file = file_priv->driver_priv; 1134 struct drm_vc4_submit_cl *args = data; 1135 struct drm_syncobj *out_sync = NULL; 1136 struct vc4_exec_info *exec; 1137 struct ww_acquire_ctx acquire_ctx; 1138 struct dma_fence *in_fence; 1139 int ret = 0; 1140 1141 trace_vc4_submit_cl_ioctl(dev, args->bin_cl_size, 1142 args->shader_rec_size, 1143 args->bo_handle_count); 1144 1145 if (!vc4->v3d) { 1146 DRM_DEBUG("VC4_SUBMIT_CL with no VC4 V3D probed\n"); 1147 return -ENODEV; 1148 } 1149 1150 if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR | 1151 VC4_SUBMIT_CL_FIXED_RCL_ORDER | 1152 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X | 1153 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) { 1154 DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags); 1155 return -EINVAL; 1156 } 1157 1158 if (args->pad2 != 0) { 1159 DRM_DEBUG("Invalid pad: 0x%08x\n", args->pad2); 1160 return -EINVAL; 1161 } 1162 1163 exec = kcalloc(1, sizeof(*exec), GFP_KERNEL); 1164 if (!exec) { 1165 DRM_ERROR("malloc failure on exec struct\n"); 1166 return -ENOMEM; 1167 } 1168 1169 ret = vc4_v3d_pm_get(vc4); 1170 if (ret) { 1171 kfree(exec); 1172 return ret; 1173 } 1174 1175 exec->args = args; 1176 INIT_LIST_HEAD(&exec->unref_list); 1177 1178 ret = vc4_cl_lookup_bos(dev, file_priv, exec); 1179 if (ret) 1180 goto fail; 1181 1182 if (args->perfmonid) { 1183 exec->perfmon = vc4_perfmon_find(vc4file, 1184 args->perfmonid); 1185 if (!exec->perfmon) { 1186 ret = -ENOENT; 1187 goto fail; 1188 } 1189 } 1190 1191 if (args->in_sync) { 1192 ret = drm_syncobj_find_fence(file_priv, args->in_sync, 1193 0, 0, &in_fence); 1194 if (ret) 1195 goto fail; 1196 1197 /* When the fence (or fence array) is exclusively from our 1198 * context we can skip the wait since jobs are executed in 1199 * order of their submission through this ioctl and this can 1200 * only have fences from a prior job. 1201 */ 1202 if (!dma_fence_match_context(in_fence, 1203 vc4->dma_fence_context)) { 1204 ret = dma_fence_wait(in_fence, true); 1205 if (ret) { 1206 dma_fence_put(in_fence); 1207 goto fail; 1208 } 1209 } 1210 1211 dma_fence_put(in_fence); 1212 } 1213 1214 if (exec->args->bin_cl_size != 0) { 1215 ret = vc4_get_bcl(dev, exec); 1216 if (ret) 1217 goto fail; 1218 } else { 1219 exec->ct0ca = 0; 1220 exec->ct0ea = 0; 1221 } 1222 1223 ret = vc4_get_rcl(dev, exec); 1224 if (ret) 1225 goto fail; 1226 1227 ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx); 1228 if (ret) 1229 goto fail; 1230 1231 if (args->out_sync) { 1232 out_sync = drm_syncobj_find(file_priv, args->out_sync); 1233 if (!out_sync) { 1234 ret = -EINVAL; 1235 goto fail; 1236 } 1237 1238 /* We replace the fence in out_sync in vc4_queue_submit since 1239 * the render job could execute immediately after that call. 1240 * If it finishes before our ioctl processing resumes the 1241 * render job fence could already have been freed. 1242 */ 1243 } 1244 1245 /* Clear this out of the struct we'll be putting in the queue, 1246 * since it's part of our stack. 1247 */ 1248 exec->args = NULL; 1249 1250 ret = vc4_queue_submit(dev, exec, &acquire_ctx, out_sync); 1251 1252 /* The syncobj isn't part of the exec data and we need to free our 1253 * reference even if job submission failed. 1254 */ 1255 if (out_sync) 1256 drm_syncobj_put(out_sync); 1257 1258 if (ret) 1259 goto fail; 1260 1261 /* Return the seqno for our job. */ 1262 args->seqno = vc4->emit_seqno; 1263 1264 return 0; 1265 1266 fail: 1267 vc4_complete_exec(&vc4->base, exec); 1268 1269 return ret; 1270 } 1271 1272 static void vc4_gem_destroy(struct drm_device *dev, void *unused); 1273 int vc4_gem_init(struct drm_device *dev) 1274 { 1275 struct vc4_dev *vc4 = to_vc4_dev(dev); 1276 1277 vc4->dma_fence_context = dma_fence_context_alloc(1); 1278 1279 INIT_LIST_HEAD(&vc4->bin_job_list); 1280 INIT_LIST_HEAD(&vc4->render_job_list); 1281 INIT_LIST_HEAD(&vc4->job_done_list); 1282 INIT_LIST_HEAD(&vc4->seqno_cb_list); 1283 spin_lock_init(&vc4->job_lock); 1284 1285 INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work); 1286 timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0); 1287 1288 INIT_WORK(&vc4->job_done_work, vc4_job_done_work); 1289 1290 mutex_init(&vc4->power_lock); 1291 1292 INIT_LIST_HEAD(&vc4->purgeable.list); 1293 mutex_init(&vc4->purgeable.lock); 1294 1295 return drmm_add_action_or_reset(dev, vc4_gem_destroy, NULL); 1296 } 1297 1298 static void vc4_gem_destroy(struct drm_device *dev, void *unused) 1299 { 1300 struct vc4_dev *vc4 = to_vc4_dev(dev); 1301 1302 /* Waiting for exec to finish would need to be done before 1303 * unregistering V3D. 1304 */ 1305 WARN_ON(vc4->emit_seqno != vc4->finished_seqno); 1306 1307 /* V3D should already have disabled its interrupt and cleared 1308 * the overflow allocation registers. Now free the object. 1309 */ 1310 if (vc4->bin_bo) { 1311 drm_gem_object_put(&vc4->bin_bo->base.base); 1312 vc4->bin_bo = NULL; 1313 } 1314 1315 if (vc4->hang_state) 1316 vc4_free_hang_state(dev, vc4->hang_state); 1317 } 1318 1319 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data, 1320 struct drm_file *file_priv) 1321 { 1322 struct drm_vc4_gem_madvise *args = data; 1323 struct drm_gem_object *gem_obj; 1324 struct vc4_bo *bo; 1325 int ret; 1326 1327 switch (args->madv) { 1328 case VC4_MADV_DONTNEED: 1329 case VC4_MADV_WILLNEED: 1330 break; 1331 default: 1332 return -EINVAL; 1333 } 1334 1335 if (args->pad != 0) 1336 return -EINVAL; 1337 1338 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 1339 if (!gem_obj) { 1340 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle); 1341 return -ENOENT; 1342 } 1343 1344 bo = to_vc4_bo(gem_obj); 1345 1346 /* Only BOs exposed to userspace can be purged. */ 1347 if (bo->madv == __VC4_MADV_NOTSUPP) { 1348 DRM_DEBUG("madvise not supported on this BO\n"); 1349 ret = -EINVAL; 1350 goto out_put_gem; 1351 } 1352 1353 /* Not sure it's safe to purge imported BOs. Let's just assume it's 1354 * not until proven otherwise. 1355 */ 1356 if (gem_obj->import_attach) { 1357 DRM_DEBUG("madvise not supported on imported BOs\n"); 1358 ret = -EINVAL; 1359 goto out_put_gem; 1360 } 1361 1362 mutex_lock(&bo->madv_lock); 1363 1364 if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED && 1365 !refcount_read(&bo->usecnt)) { 1366 /* If the BO is about to be marked as purgeable, is not used 1367 * and is not already purgeable or purged, add it to the 1368 * purgeable list. 1369 */ 1370 vc4_bo_add_to_purgeable_pool(bo); 1371 } else if (args->madv == VC4_MADV_WILLNEED && 1372 bo->madv == VC4_MADV_DONTNEED && 1373 !refcount_read(&bo->usecnt)) { 1374 /* The BO has not been purged yet, just remove it from 1375 * the purgeable list. 1376 */ 1377 vc4_bo_remove_from_purgeable_pool(bo); 1378 } 1379 1380 /* Save the purged state. */ 1381 args->retained = bo->madv != __VC4_MADV_PURGED; 1382 1383 /* Update internal madv state only if the bo was not purged. */ 1384 if (bo->madv != __VC4_MADV_PURGED) 1385 bo->madv = args->madv; 1386 1387 mutex_unlock(&bo->madv_lock); 1388 1389 ret = 0; 1390 1391 out_put_gem: 1392 drm_gem_object_put(gem_obj); 1393 1394 return ret; 1395 } 1396