1 /* 2 * Copyright © 2014 Broadcom 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/device.h> 28 #include <linux/io.h> 29 #include <linux/sched/signal.h> 30 #include <linux/dma-fence-array.h> 31 32 #include <drm/drm_syncobj.h> 33 34 #include "uapi/drm/vc4_drm.h" 35 #include "vc4_drv.h" 36 #include "vc4_regs.h" 37 #include "vc4_trace.h" 38 39 static void 40 vc4_queue_hangcheck(struct drm_device *dev) 41 { 42 struct vc4_dev *vc4 = to_vc4_dev(dev); 43 44 mod_timer(&vc4->hangcheck.timer, 45 round_jiffies_up(jiffies + msecs_to_jiffies(100))); 46 } 47 48 struct vc4_hang_state { 49 struct drm_vc4_get_hang_state user_state; 50 51 u32 bo_count; 52 struct drm_gem_object **bo; 53 }; 54 55 static void 56 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state) 57 { 58 unsigned int i; 59 60 for (i = 0; i < state->user_state.bo_count; i++) 61 drm_gem_object_put(state->bo[i]); 62 63 kfree(state); 64 } 65 66 int 67 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data, 68 struct drm_file *file_priv) 69 { 70 struct drm_vc4_get_hang_state *get_state = data; 71 struct drm_vc4_get_hang_state_bo *bo_state; 72 struct vc4_hang_state *kernel_state; 73 struct drm_vc4_get_hang_state *state; 74 struct vc4_dev *vc4 = to_vc4_dev(dev); 75 unsigned long irqflags; 76 u32 i; 77 int ret = 0; 78 79 if (WARN_ON_ONCE(vc4->is_vc5)) 80 return -ENODEV; 81 82 if (!vc4->v3d) { 83 DRM_DEBUG("VC4_GET_HANG_STATE with no VC4 V3D probed\n"); 84 return -ENODEV; 85 } 86 87 spin_lock_irqsave(&vc4->job_lock, irqflags); 88 kernel_state = vc4->hang_state; 89 if (!kernel_state) { 90 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 91 return -ENOENT; 92 } 93 state = &kernel_state->user_state; 94 95 /* If the user's array isn't big enough, just return the 96 * required array size. 97 */ 98 if (get_state->bo_count < state->bo_count) { 99 get_state->bo_count = state->bo_count; 100 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 101 return 0; 102 } 103 104 vc4->hang_state = NULL; 105 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 106 107 /* Save the user's BO pointer, so we don't stomp it with the memcpy. */ 108 state->bo = get_state->bo; 109 memcpy(get_state, state, sizeof(*state)); 110 111 bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL); 112 if (!bo_state) { 113 ret = -ENOMEM; 114 goto err_free; 115 } 116 117 for (i = 0; i < state->bo_count; i++) { 118 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]); 119 u32 handle; 120 121 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i], 122 &handle); 123 124 if (ret) { 125 state->bo_count = i; 126 goto err_delete_handle; 127 } 128 bo_state[i].handle = handle; 129 bo_state[i].paddr = vc4_bo->base.paddr; 130 bo_state[i].size = vc4_bo->base.base.size; 131 } 132 133 if (copy_to_user(u64_to_user_ptr(get_state->bo), 134 bo_state, 135 state->bo_count * sizeof(*bo_state))) 136 ret = -EFAULT; 137 138 err_delete_handle: 139 if (ret) { 140 for (i = 0; i < state->bo_count; i++) 141 drm_gem_handle_delete(file_priv, bo_state[i].handle); 142 } 143 144 err_free: 145 vc4_free_hang_state(dev, kernel_state); 146 kfree(bo_state); 147 148 return ret; 149 } 150 151 static void 152 vc4_save_hang_state(struct drm_device *dev) 153 { 154 struct vc4_dev *vc4 = to_vc4_dev(dev); 155 struct drm_vc4_get_hang_state *state; 156 struct vc4_hang_state *kernel_state; 157 struct vc4_exec_info *exec[2]; 158 struct vc4_bo *bo; 159 unsigned long irqflags; 160 unsigned int i, j, k, unref_list_count; 161 162 kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL); 163 if (!kernel_state) 164 return; 165 166 state = &kernel_state->user_state; 167 168 spin_lock_irqsave(&vc4->job_lock, irqflags); 169 exec[0] = vc4_first_bin_job(vc4); 170 exec[1] = vc4_first_render_job(vc4); 171 if (!exec[0] && !exec[1]) { 172 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 173 return; 174 } 175 176 /* Get the bos from both binner and renderer into hang state. */ 177 state->bo_count = 0; 178 for (i = 0; i < 2; i++) { 179 if (!exec[i]) 180 continue; 181 182 unref_list_count = 0; 183 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) 184 unref_list_count++; 185 state->bo_count += exec[i]->bo_count + unref_list_count; 186 } 187 188 kernel_state->bo = kcalloc(state->bo_count, 189 sizeof(*kernel_state->bo), GFP_ATOMIC); 190 191 if (!kernel_state->bo) { 192 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 193 return; 194 } 195 196 k = 0; 197 for (i = 0; i < 2; i++) { 198 if (!exec[i]) 199 continue; 200 201 for (j = 0; j < exec[i]->bo_count; j++) { 202 bo = to_vc4_bo(&exec[i]->bo[j]->base); 203 204 /* Retain BOs just in case they were marked purgeable. 205 * This prevents the BO from being purged before 206 * someone had a chance to dump the hang state. 207 */ 208 WARN_ON(!refcount_read(&bo->usecnt)); 209 refcount_inc(&bo->usecnt); 210 drm_gem_object_get(&exec[i]->bo[j]->base); 211 kernel_state->bo[k++] = &exec[i]->bo[j]->base; 212 } 213 214 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) { 215 /* No need to retain BOs coming from the ->unref_list 216 * because they are naturally unpurgeable. 217 */ 218 drm_gem_object_get(&bo->base.base); 219 kernel_state->bo[k++] = &bo->base.base; 220 } 221 } 222 223 WARN_ON_ONCE(k != state->bo_count); 224 225 if (exec[0]) 226 state->start_bin = exec[0]->ct0ca; 227 if (exec[1]) 228 state->start_render = exec[1]->ct1ca; 229 230 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 231 232 state->ct0ca = V3D_READ(V3D_CTNCA(0)); 233 state->ct0ea = V3D_READ(V3D_CTNEA(0)); 234 235 state->ct1ca = V3D_READ(V3D_CTNCA(1)); 236 state->ct1ea = V3D_READ(V3D_CTNEA(1)); 237 238 state->ct0cs = V3D_READ(V3D_CTNCS(0)); 239 state->ct1cs = V3D_READ(V3D_CTNCS(1)); 240 241 state->ct0ra0 = V3D_READ(V3D_CT00RA0); 242 state->ct1ra0 = V3D_READ(V3D_CT01RA0); 243 244 state->bpca = V3D_READ(V3D_BPCA); 245 state->bpcs = V3D_READ(V3D_BPCS); 246 state->bpoa = V3D_READ(V3D_BPOA); 247 state->bpos = V3D_READ(V3D_BPOS); 248 249 state->vpmbase = V3D_READ(V3D_VPMBASE); 250 251 state->dbge = V3D_READ(V3D_DBGE); 252 state->fdbgo = V3D_READ(V3D_FDBGO); 253 state->fdbgb = V3D_READ(V3D_FDBGB); 254 state->fdbgr = V3D_READ(V3D_FDBGR); 255 state->fdbgs = V3D_READ(V3D_FDBGS); 256 state->errstat = V3D_READ(V3D_ERRSTAT); 257 258 /* We need to turn purgeable BOs into unpurgeable ones so that 259 * userspace has a chance to dump the hang state before the kernel 260 * decides to purge those BOs. 261 * Note that BO consistency at dump time cannot be guaranteed. For 262 * example, if the owner of these BOs decides to re-use them or mark 263 * them purgeable again there's nothing we can do to prevent it. 264 */ 265 for (i = 0; i < kernel_state->user_state.bo_count; i++) { 266 struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]); 267 268 if (bo->madv == __VC4_MADV_NOTSUPP) 269 continue; 270 271 mutex_lock(&bo->madv_lock); 272 if (!WARN_ON(bo->madv == __VC4_MADV_PURGED)) 273 bo->madv = VC4_MADV_WILLNEED; 274 refcount_dec(&bo->usecnt); 275 mutex_unlock(&bo->madv_lock); 276 } 277 278 spin_lock_irqsave(&vc4->job_lock, irqflags); 279 if (vc4->hang_state) { 280 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 281 vc4_free_hang_state(dev, kernel_state); 282 } else { 283 vc4->hang_state = kernel_state; 284 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 285 } 286 } 287 288 static void 289 vc4_reset(struct drm_device *dev) 290 { 291 struct vc4_dev *vc4 = to_vc4_dev(dev); 292 293 DRM_INFO("Resetting GPU.\n"); 294 295 mutex_lock(&vc4->power_lock); 296 if (vc4->power_refcount) { 297 /* Power the device off and back on the by dropping the 298 * reference on runtime PM. 299 */ 300 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev); 301 pm_runtime_get_sync(&vc4->v3d->pdev->dev); 302 } 303 mutex_unlock(&vc4->power_lock); 304 305 vc4_irq_reset(dev); 306 307 /* Rearm the hangcheck -- another job might have been waiting 308 * for our hung one to get kicked off, and vc4_irq_reset() 309 * would have started it. 310 */ 311 vc4_queue_hangcheck(dev); 312 } 313 314 static void 315 vc4_reset_work(struct work_struct *work) 316 { 317 struct vc4_dev *vc4 = 318 container_of(work, struct vc4_dev, hangcheck.reset_work); 319 320 vc4_save_hang_state(&vc4->base); 321 322 vc4_reset(&vc4->base); 323 } 324 325 static void 326 vc4_hangcheck_elapsed(struct timer_list *t) 327 { 328 struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer); 329 struct drm_device *dev = &vc4->base; 330 uint32_t ct0ca, ct1ca; 331 unsigned long irqflags; 332 struct vc4_exec_info *bin_exec, *render_exec; 333 334 spin_lock_irqsave(&vc4->job_lock, irqflags); 335 336 bin_exec = vc4_first_bin_job(vc4); 337 render_exec = vc4_first_render_job(vc4); 338 339 /* If idle, we can stop watching for hangs. */ 340 if (!bin_exec && !render_exec) { 341 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 342 return; 343 } 344 345 ct0ca = V3D_READ(V3D_CTNCA(0)); 346 ct1ca = V3D_READ(V3D_CTNCA(1)); 347 348 /* If we've made any progress in execution, rearm the timer 349 * and wait. 350 */ 351 if ((bin_exec && ct0ca != bin_exec->last_ct0ca) || 352 (render_exec && ct1ca != render_exec->last_ct1ca)) { 353 if (bin_exec) 354 bin_exec->last_ct0ca = ct0ca; 355 if (render_exec) 356 render_exec->last_ct1ca = ct1ca; 357 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 358 vc4_queue_hangcheck(dev); 359 return; 360 } 361 362 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 363 364 /* We've gone too long with no progress, reset. This has to 365 * be done from a work struct, since resetting can sleep and 366 * this timer hook isn't allowed to. 367 */ 368 schedule_work(&vc4->hangcheck.reset_work); 369 } 370 371 static void 372 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end) 373 { 374 struct vc4_dev *vc4 = to_vc4_dev(dev); 375 376 /* Set the current and end address of the control list. 377 * Writing the end register is what starts the job. 378 */ 379 V3D_WRITE(V3D_CTNCA(thread), start); 380 V3D_WRITE(V3D_CTNEA(thread), end); 381 } 382 383 int 384 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns, 385 bool interruptible) 386 { 387 struct vc4_dev *vc4 = to_vc4_dev(dev); 388 int ret = 0; 389 unsigned long timeout_expire; 390 DEFINE_WAIT(wait); 391 392 if (WARN_ON_ONCE(vc4->is_vc5)) 393 return -ENODEV; 394 395 if (vc4->finished_seqno >= seqno) 396 return 0; 397 398 if (timeout_ns == 0) 399 return -ETIME; 400 401 timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns); 402 403 trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns); 404 for (;;) { 405 prepare_to_wait(&vc4->job_wait_queue, &wait, 406 interruptible ? TASK_INTERRUPTIBLE : 407 TASK_UNINTERRUPTIBLE); 408 409 if (interruptible && signal_pending(current)) { 410 ret = -ERESTARTSYS; 411 break; 412 } 413 414 if (vc4->finished_seqno >= seqno) 415 break; 416 417 if (timeout_ns != ~0ull) { 418 if (time_after_eq(jiffies, timeout_expire)) { 419 ret = -ETIME; 420 break; 421 } 422 schedule_timeout(timeout_expire - jiffies); 423 } else { 424 schedule(); 425 } 426 } 427 428 finish_wait(&vc4->job_wait_queue, &wait); 429 trace_vc4_wait_for_seqno_end(dev, seqno); 430 431 return ret; 432 } 433 434 static void 435 vc4_flush_caches(struct drm_device *dev) 436 { 437 struct vc4_dev *vc4 = to_vc4_dev(dev); 438 439 /* Flush the GPU L2 caches. These caches sit on top of system 440 * L3 (the 128kb or so shared with the CPU), and are 441 * non-allocating in the L3. 442 */ 443 V3D_WRITE(V3D_L2CACTL, 444 V3D_L2CACTL_L2CCLR); 445 446 V3D_WRITE(V3D_SLCACTL, 447 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | 448 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) | 449 VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) | 450 VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC)); 451 } 452 453 static void 454 vc4_flush_texture_caches(struct drm_device *dev) 455 { 456 struct vc4_dev *vc4 = to_vc4_dev(dev); 457 458 V3D_WRITE(V3D_L2CACTL, 459 V3D_L2CACTL_L2CCLR); 460 461 V3D_WRITE(V3D_SLCACTL, 462 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | 463 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC)); 464 } 465 466 /* Sets the registers for the next job to be actually be executed in 467 * the hardware. 468 * 469 * The job_lock should be held during this. 470 */ 471 void 472 vc4_submit_next_bin_job(struct drm_device *dev) 473 { 474 struct vc4_dev *vc4 = to_vc4_dev(dev); 475 struct vc4_exec_info *exec; 476 477 if (WARN_ON_ONCE(vc4->is_vc5)) 478 return; 479 480 again: 481 exec = vc4_first_bin_job(vc4); 482 if (!exec) 483 return; 484 485 vc4_flush_caches(dev); 486 487 /* Only start the perfmon if it was not already started by a previous 488 * job. 489 */ 490 if (exec->perfmon && vc4->active_perfmon != exec->perfmon) 491 vc4_perfmon_start(vc4, exec->perfmon); 492 493 /* Either put the job in the binner if it uses the binner, or 494 * immediately move it to the to-be-rendered queue. 495 */ 496 if (exec->ct0ca != exec->ct0ea) { 497 trace_vc4_submit_cl(dev, false, exec->seqno, exec->ct0ca, 498 exec->ct0ea); 499 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea); 500 } else { 501 struct vc4_exec_info *next; 502 503 vc4_move_job_to_render(dev, exec); 504 next = vc4_first_bin_job(vc4); 505 506 /* We can't start the next bin job if the previous job had a 507 * different perfmon instance attached to it. The same goes 508 * if one of them had a perfmon attached to it and the other 509 * one doesn't. 510 */ 511 if (next && next->perfmon == exec->perfmon) 512 goto again; 513 } 514 } 515 516 void 517 vc4_submit_next_render_job(struct drm_device *dev) 518 { 519 struct vc4_dev *vc4 = to_vc4_dev(dev); 520 struct vc4_exec_info *exec = vc4_first_render_job(vc4); 521 522 if (!exec) 523 return; 524 525 if (WARN_ON_ONCE(vc4->is_vc5)) 526 return; 527 528 /* A previous RCL may have written to one of our textures, and 529 * our full cache flush at bin time may have occurred before 530 * that RCL completed. Flush the texture cache now, but not 531 * the instructions or uniforms (since we don't write those 532 * from an RCL). 533 */ 534 vc4_flush_texture_caches(dev); 535 536 trace_vc4_submit_cl(dev, true, exec->seqno, exec->ct1ca, exec->ct1ea); 537 submit_cl(dev, 1, exec->ct1ca, exec->ct1ea); 538 } 539 540 void 541 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec) 542 { 543 struct vc4_dev *vc4 = to_vc4_dev(dev); 544 bool was_empty = list_empty(&vc4->render_job_list); 545 546 if (WARN_ON_ONCE(vc4->is_vc5)) 547 return; 548 549 list_move_tail(&exec->head, &vc4->render_job_list); 550 if (was_empty) 551 vc4_submit_next_render_job(dev); 552 } 553 554 static void 555 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno) 556 { 557 struct vc4_bo *bo; 558 unsigned i; 559 560 for (i = 0; i < exec->bo_count; i++) { 561 bo = to_vc4_bo(&exec->bo[i]->base); 562 bo->seqno = seqno; 563 564 dma_resv_add_fence(bo->base.base.resv, exec->fence, 565 DMA_RESV_USAGE_READ); 566 } 567 568 list_for_each_entry(bo, &exec->unref_list, unref_head) { 569 bo->seqno = seqno; 570 } 571 572 for (i = 0; i < exec->rcl_write_bo_count; i++) { 573 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base); 574 bo->write_seqno = seqno; 575 576 dma_resv_add_fence(bo->base.base.resv, exec->fence, 577 DMA_RESV_USAGE_WRITE); 578 } 579 } 580 581 static void 582 vc4_unlock_bo_reservations(struct drm_device *dev, 583 struct vc4_exec_info *exec, 584 struct ww_acquire_ctx *acquire_ctx) 585 { 586 int i; 587 588 for (i = 0; i < exec->bo_count; i++) { 589 struct drm_gem_object *bo = &exec->bo[i]->base; 590 591 dma_resv_unlock(bo->resv); 592 } 593 594 ww_acquire_fini(acquire_ctx); 595 } 596 597 /* Takes the reservation lock on all the BOs being referenced, so that 598 * at queue submit time we can update the reservations. 599 * 600 * We don't lock the RCL the tile alloc/state BOs, or overflow memory 601 * (all of which are on exec->unref_list). They're entirely private 602 * to vc4, so we don't attach dma-buf fences to them. 603 */ 604 static int 605 vc4_lock_bo_reservations(struct drm_device *dev, 606 struct vc4_exec_info *exec, 607 struct ww_acquire_ctx *acquire_ctx) 608 { 609 int contended_lock = -1; 610 int i, ret; 611 struct drm_gem_object *bo; 612 613 ww_acquire_init(acquire_ctx, &reservation_ww_class); 614 615 retry: 616 if (contended_lock != -1) { 617 bo = &exec->bo[contended_lock]->base; 618 ret = dma_resv_lock_slow_interruptible(bo->resv, acquire_ctx); 619 if (ret) { 620 ww_acquire_done(acquire_ctx); 621 return ret; 622 } 623 } 624 625 for (i = 0; i < exec->bo_count; i++) { 626 if (i == contended_lock) 627 continue; 628 629 bo = &exec->bo[i]->base; 630 631 ret = dma_resv_lock_interruptible(bo->resv, acquire_ctx); 632 if (ret) { 633 int j; 634 635 for (j = 0; j < i; j++) { 636 bo = &exec->bo[j]->base; 637 dma_resv_unlock(bo->resv); 638 } 639 640 if (contended_lock != -1 && contended_lock >= i) { 641 bo = &exec->bo[contended_lock]->base; 642 643 dma_resv_unlock(bo->resv); 644 } 645 646 if (ret == -EDEADLK) { 647 contended_lock = i; 648 goto retry; 649 } 650 651 ww_acquire_done(acquire_ctx); 652 return ret; 653 } 654 } 655 656 ww_acquire_done(acquire_ctx); 657 658 /* Reserve space for our shared (read-only) fence references, 659 * before we commit the CL to the hardware. 660 */ 661 for (i = 0; i < exec->bo_count; i++) { 662 bo = &exec->bo[i]->base; 663 664 ret = dma_resv_reserve_fences(bo->resv, 1); 665 if (ret) { 666 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 667 return ret; 668 } 669 } 670 671 return 0; 672 } 673 674 /* Queues a struct vc4_exec_info for execution. If no job is 675 * currently executing, then submits it. 676 * 677 * Unlike most GPUs, our hardware only handles one command list at a 678 * time. To queue multiple jobs at once, we'd need to edit the 679 * previous command list to have a jump to the new one at the end, and 680 * then bump the end address. That's a change for a later date, 681 * though. 682 */ 683 static int 684 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec, 685 struct ww_acquire_ctx *acquire_ctx, 686 struct drm_syncobj *out_sync) 687 { 688 struct vc4_dev *vc4 = to_vc4_dev(dev); 689 struct vc4_exec_info *renderjob; 690 uint64_t seqno; 691 unsigned long irqflags; 692 struct vc4_fence *fence; 693 694 fence = kzalloc(sizeof(*fence), GFP_KERNEL); 695 if (!fence) 696 return -ENOMEM; 697 fence->dev = dev; 698 699 spin_lock_irqsave(&vc4->job_lock, irqflags); 700 701 seqno = ++vc4->emit_seqno; 702 exec->seqno = seqno; 703 704 dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock, 705 vc4->dma_fence_context, exec->seqno); 706 fence->seqno = exec->seqno; 707 exec->fence = &fence->base; 708 709 if (out_sync) 710 drm_syncobj_replace_fence(out_sync, exec->fence); 711 712 vc4_update_bo_seqnos(exec, seqno); 713 714 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 715 716 list_add_tail(&exec->head, &vc4->bin_job_list); 717 718 /* If no bin job was executing and if the render job (if any) has the 719 * same perfmon as our job attached to it (or if both jobs don't have 720 * perfmon activated), then kick ours off. Otherwise, it'll get 721 * started when the previous job's flush/render done interrupt occurs. 722 */ 723 renderjob = vc4_first_render_job(vc4); 724 if (vc4_first_bin_job(vc4) == exec && 725 (!renderjob || renderjob->perfmon == exec->perfmon)) { 726 vc4_submit_next_bin_job(dev); 727 vc4_queue_hangcheck(dev); 728 } 729 730 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 731 732 return 0; 733 } 734 735 /** 736 * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects 737 * referenced by the job. 738 * @dev: DRM device 739 * @file_priv: DRM file for this fd 740 * @exec: V3D job being set up 741 * 742 * The command validator needs to reference BOs by their index within 743 * the submitted job's BO list. This does the validation of the job's 744 * BO list and reference counting for the lifetime of the job. 745 */ 746 static int 747 vc4_cl_lookup_bos(struct drm_device *dev, 748 struct drm_file *file_priv, 749 struct vc4_exec_info *exec) 750 { 751 struct drm_vc4_submit_cl *args = exec->args; 752 uint32_t *handles; 753 int ret = 0; 754 int i; 755 756 exec->bo_count = args->bo_handle_count; 757 758 if (!exec->bo_count) { 759 /* See comment on bo_index for why we have to check 760 * this. 761 */ 762 DRM_DEBUG("Rendering requires BOs to validate\n"); 763 return -EINVAL; 764 } 765 766 exec->bo = kvmalloc_array(exec->bo_count, 767 sizeof(struct drm_gem_cma_object *), 768 GFP_KERNEL | __GFP_ZERO); 769 if (!exec->bo) { 770 DRM_ERROR("Failed to allocate validated BO pointers\n"); 771 return -ENOMEM; 772 } 773 774 handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL); 775 if (!handles) { 776 ret = -ENOMEM; 777 DRM_ERROR("Failed to allocate incoming GEM handles\n"); 778 goto fail; 779 } 780 781 if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles), 782 exec->bo_count * sizeof(uint32_t))) { 783 ret = -EFAULT; 784 DRM_ERROR("Failed to copy in GEM handles\n"); 785 goto fail; 786 } 787 788 spin_lock(&file_priv->table_lock); 789 for (i = 0; i < exec->bo_count; i++) { 790 struct drm_gem_object *bo = idr_find(&file_priv->object_idr, 791 handles[i]); 792 if (!bo) { 793 DRM_DEBUG("Failed to look up GEM BO %d: %d\n", 794 i, handles[i]); 795 ret = -EINVAL; 796 break; 797 } 798 799 drm_gem_object_get(bo); 800 exec->bo[i] = (struct drm_gem_cma_object *)bo; 801 } 802 spin_unlock(&file_priv->table_lock); 803 804 if (ret) 805 goto fail_put_bo; 806 807 for (i = 0; i < exec->bo_count; i++) { 808 ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base)); 809 if (ret) 810 goto fail_dec_usecnt; 811 } 812 813 kvfree(handles); 814 return 0; 815 816 fail_dec_usecnt: 817 /* Decrease usecnt on acquired objects. 818 * We cannot rely on vc4_complete_exec() to release resources here, 819 * because vc4_complete_exec() has no information about which BO has 820 * had its ->usecnt incremented. 821 * To make things easier we just free everything explicitly and set 822 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release' 823 * step. 824 */ 825 for (i-- ; i >= 0; i--) 826 vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base)); 827 828 fail_put_bo: 829 /* Release any reference to acquired objects. */ 830 for (i = 0; i < exec->bo_count && exec->bo[i]; i++) 831 drm_gem_object_put(&exec->bo[i]->base); 832 833 fail: 834 kvfree(handles); 835 kvfree(exec->bo); 836 exec->bo = NULL; 837 return ret; 838 } 839 840 static int 841 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec) 842 { 843 struct drm_vc4_submit_cl *args = exec->args; 844 struct vc4_dev *vc4 = to_vc4_dev(dev); 845 void *temp = NULL; 846 void *bin; 847 int ret = 0; 848 uint32_t bin_offset = 0; 849 uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size, 850 16); 851 uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size; 852 uint32_t exec_size = uniforms_offset + args->uniforms_size; 853 uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) * 854 args->shader_rec_count); 855 struct vc4_bo *bo; 856 857 if (shader_rec_offset < args->bin_cl_size || 858 uniforms_offset < shader_rec_offset || 859 exec_size < uniforms_offset || 860 args->shader_rec_count >= (UINT_MAX / 861 sizeof(struct vc4_shader_state)) || 862 temp_size < exec_size) { 863 DRM_DEBUG("overflow in exec arguments\n"); 864 ret = -EINVAL; 865 goto fail; 866 } 867 868 /* Allocate space where we'll store the copied in user command lists 869 * and shader records. 870 * 871 * We don't just copy directly into the BOs because we need to 872 * read the contents back for validation, and I think the 873 * bo->vaddr is uncached access. 874 */ 875 temp = kvmalloc_array(temp_size, 1, GFP_KERNEL); 876 if (!temp) { 877 DRM_ERROR("Failed to allocate storage for copying " 878 "in bin/render CLs.\n"); 879 ret = -ENOMEM; 880 goto fail; 881 } 882 bin = temp + bin_offset; 883 exec->shader_rec_u = temp + shader_rec_offset; 884 exec->uniforms_u = temp + uniforms_offset; 885 exec->shader_state = temp + exec_size; 886 exec->shader_state_size = args->shader_rec_count; 887 888 if (copy_from_user(bin, 889 u64_to_user_ptr(args->bin_cl), 890 args->bin_cl_size)) { 891 ret = -EFAULT; 892 goto fail; 893 } 894 895 if (copy_from_user(exec->shader_rec_u, 896 u64_to_user_ptr(args->shader_rec), 897 args->shader_rec_size)) { 898 ret = -EFAULT; 899 goto fail; 900 } 901 902 if (copy_from_user(exec->uniforms_u, 903 u64_to_user_ptr(args->uniforms), 904 args->uniforms_size)) { 905 ret = -EFAULT; 906 goto fail; 907 } 908 909 bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL); 910 if (IS_ERR(bo)) { 911 DRM_ERROR("Couldn't allocate BO for binning\n"); 912 ret = PTR_ERR(bo); 913 goto fail; 914 } 915 exec->exec_bo = &bo->base; 916 917 list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head, 918 &exec->unref_list); 919 920 exec->ct0ca = exec->exec_bo->paddr + bin_offset; 921 922 exec->bin_u = bin; 923 924 exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset; 925 exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset; 926 exec->shader_rec_size = args->shader_rec_size; 927 928 exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset; 929 exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset; 930 exec->uniforms_size = args->uniforms_size; 931 932 ret = vc4_validate_bin_cl(dev, 933 exec->exec_bo->vaddr + bin_offset, 934 bin, 935 exec); 936 if (ret) 937 goto fail; 938 939 ret = vc4_validate_shader_recs(dev, exec); 940 if (ret) 941 goto fail; 942 943 if (exec->found_tile_binning_mode_config_packet) { 944 ret = vc4_v3d_bin_bo_get(vc4, &exec->bin_bo_used); 945 if (ret) 946 goto fail; 947 } 948 949 /* Block waiting on any previous rendering into the CS's VBO, 950 * IB, or textures, so that pixels are actually written by the 951 * time we try to read them. 952 */ 953 ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true); 954 955 fail: 956 kvfree(temp); 957 return ret; 958 } 959 960 static void 961 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec) 962 { 963 struct vc4_dev *vc4 = to_vc4_dev(dev); 964 unsigned long irqflags; 965 unsigned i; 966 967 /* If we got force-completed because of GPU reset rather than 968 * through our IRQ handler, signal the fence now. 969 */ 970 if (exec->fence) { 971 dma_fence_signal(exec->fence); 972 dma_fence_put(exec->fence); 973 } 974 975 if (exec->bo) { 976 for (i = 0; i < exec->bo_count; i++) { 977 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base); 978 979 vc4_bo_dec_usecnt(bo); 980 drm_gem_object_put(&exec->bo[i]->base); 981 } 982 kvfree(exec->bo); 983 } 984 985 while (!list_empty(&exec->unref_list)) { 986 struct vc4_bo *bo = list_first_entry(&exec->unref_list, 987 struct vc4_bo, unref_head); 988 list_del(&bo->unref_head); 989 drm_gem_object_put(&bo->base.base); 990 } 991 992 /* Free up the allocation of any bin slots we used. */ 993 spin_lock_irqsave(&vc4->job_lock, irqflags); 994 vc4->bin_alloc_used &= ~exec->bin_slots; 995 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 996 997 /* Release the reference on the binner BO if needed. */ 998 if (exec->bin_bo_used) 999 vc4_v3d_bin_bo_put(vc4); 1000 1001 /* Release the reference we had on the perf monitor. */ 1002 vc4_perfmon_put(exec->perfmon); 1003 1004 vc4_v3d_pm_put(vc4); 1005 1006 kfree(exec); 1007 } 1008 1009 void 1010 vc4_job_handle_completed(struct vc4_dev *vc4) 1011 { 1012 unsigned long irqflags; 1013 struct vc4_seqno_cb *cb, *cb_temp; 1014 1015 if (WARN_ON_ONCE(vc4->is_vc5)) 1016 return; 1017 1018 spin_lock_irqsave(&vc4->job_lock, irqflags); 1019 while (!list_empty(&vc4->job_done_list)) { 1020 struct vc4_exec_info *exec = 1021 list_first_entry(&vc4->job_done_list, 1022 struct vc4_exec_info, head); 1023 list_del(&exec->head); 1024 1025 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 1026 vc4_complete_exec(&vc4->base, exec); 1027 spin_lock_irqsave(&vc4->job_lock, irqflags); 1028 } 1029 1030 list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) { 1031 if (cb->seqno <= vc4->finished_seqno) { 1032 list_del_init(&cb->work.entry); 1033 schedule_work(&cb->work); 1034 } 1035 } 1036 1037 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 1038 } 1039 1040 static void vc4_seqno_cb_work(struct work_struct *work) 1041 { 1042 struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work); 1043 1044 cb->func(cb); 1045 } 1046 1047 int vc4_queue_seqno_cb(struct drm_device *dev, 1048 struct vc4_seqno_cb *cb, uint64_t seqno, 1049 void (*func)(struct vc4_seqno_cb *cb)) 1050 { 1051 struct vc4_dev *vc4 = to_vc4_dev(dev); 1052 unsigned long irqflags; 1053 1054 if (WARN_ON_ONCE(vc4->is_vc5)) 1055 return -ENODEV; 1056 1057 cb->func = func; 1058 INIT_WORK(&cb->work, vc4_seqno_cb_work); 1059 1060 spin_lock_irqsave(&vc4->job_lock, irqflags); 1061 if (seqno > vc4->finished_seqno) { 1062 cb->seqno = seqno; 1063 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list); 1064 } else { 1065 schedule_work(&cb->work); 1066 } 1067 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 1068 1069 return 0; 1070 } 1071 1072 /* Scheduled when any job has been completed, this walks the list of 1073 * jobs that had completed and unrefs their BOs and frees their exec 1074 * structs. 1075 */ 1076 static void 1077 vc4_job_done_work(struct work_struct *work) 1078 { 1079 struct vc4_dev *vc4 = 1080 container_of(work, struct vc4_dev, job_done_work); 1081 1082 vc4_job_handle_completed(vc4); 1083 } 1084 1085 static int 1086 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev, 1087 uint64_t seqno, 1088 uint64_t *timeout_ns) 1089 { 1090 unsigned long start = jiffies; 1091 int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true); 1092 1093 if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) { 1094 uint64_t delta = jiffies_to_nsecs(jiffies - start); 1095 1096 if (*timeout_ns >= delta) 1097 *timeout_ns -= delta; 1098 } 1099 1100 return ret; 1101 } 1102 1103 int 1104 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data, 1105 struct drm_file *file_priv) 1106 { 1107 struct vc4_dev *vc4 = to_vc4_dev(dev); 1108 struct drm_vc4_wait_seqno *args = data; 1109 1110 if (WARN_ON_ONCE(vc4->is_vc5)) 1111 return -ENODEV; 1112 1113 return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno, 1114 &args->timeout_ns); 1115 } 1116 1117 int 1118 vc4_wait_bo_ioctl(struct drm_device *dev, void *data, 1119 struct drm_file *file_priv) 1120 { 1121 struct vc4_dev *vc4 = to_vc4_dev(dev); 1122 int ret; 1123 struct drm_vc4_wait_bo *args = data; 1124 struct drm_gem_object *gem_obj; 1125 struct vc4_bo *bo; 1126 1127 if (WARN_ON_ONCE(vc4->is_vc5)) 1128 return -ENODEV; 1129 1130 if (args->pad != 0) 1131 return -EINVAL; 1132 1133 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 1134 if (!gem_obj) { 1135 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle); 1136 return -EINVAL; 1137 } 1138 bo = to_vc4_bo(gem_obj); 1139 1140 ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno, 1141 &args->timeout_ns); 1142 1143 drm_gem_object_put(gem_obj); 1144 return ret; 1145 } 1146 1147 /** 1148 * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4. 1149 * @dev: DRM device 1150 * @data: ioctl argument 1151 * @file_priv: DRM file for this fd 1152 * 1153 * This is the main entrypoint for userspace to submit a 3D frame to 1154 * the GPU. Userspace provides the binner command list (if 1155 * applicable), and the kernel sets up the render command list to draw 1156 * to the framebuffer described in the ioctl, using the command lists 1157 * that the 3D engine's binner will produce. 1158 */ 1159 int 1160 vc4_submit_cl_ioctl(struct drm_device *dev, void *data, 1161 struct drm_file *file_priv) 1162 { 1163 struct vc4_dev *vc4 = to_vc4_dev(dev); 1164 struct vc4_file *vc4file = file_priv->driver_priv; 1165 struct drm_vc4_submit_cl *args = data; 1166 struct drm_syncobj *out_sync = NULL; 1167 struct vc4_exec_info *exec; 1168 struct ww_acquire_ctx acquire_ctx; 1169 struct dma_fence *in_fence; 1170 int ret = 0; 1171 1172 trace_vc4_submit_cl_ioctl(dev, args->bin_cl_size, 1173 args->shader_rec_size, 1174 args->bo_handle_count); 1175 1176 if (WARN_ON_ONCE(vc4->is_vc5)) 1177 return -ENODEV; 1178 1179 if (!vc4->v3d) { 1180 DRM_DEBUG("VC4_SUBMIT_CL with no VC4 V3D probed\n"); 1181 return -ENODEV; 1182 } 1183 1184 if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR | 1185 VC4_SUBMIT_CL_FIXED_RCL_ORDER | 1186 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X | 1187 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) { 1188 DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags); 1189 return -EINVAL; 1190 } 1191 1192 if (args->pad2 != 0) { 1193 DRM_DEBUG("Invalid pad: 0x%08x\n", args->pad2); 1194 return -EINVAL; 1195 } 1196 1197 exec = kcalloc(1, sizeof(*exec), GFP_KERNEL); 1198 if (!exec) { 1199 DRM_ERROR("malloc failure on exec struct\n"); 1200 return -ENOMEM; 1201 } 1202 exec->dev = vc4; 1203 1204 ret = vc4_v3d_pm_get(vc4); 1205 if (ret) { 1206 kfree(exec); 1207 return ret; 1208 } 1209 1210 exec->args = args; 1211 INIT_LIST_HEAD(&exec->unref_list); 1212 1213 ret = vc4_cl_lookup_bos(dev, file_priv, exec); 1214 if (ret) 1215 goto fail; 1216 1217 if (args->perfmonid) { 1218 exec->perfmon = vc4_perfmon_find(vc4file, 1219 args->perfmonid); 1220 if (!exec->perfmon) { 1221 ret = -ENOENT; 1222 goto fail; 1223 } 1224 } 1225 1226 if (args->in_sync) { 1227 ret = drm_syncobj_find_fence(file_priv, args->in_sync, 1228 0, 0, &in_fence); 1229 if (ret) 1230 goto fail; 1231 1232 /* When the fence (or fence array) is exclusively from our 1233 * context we can skip the wait since jobs are executed in 1234 * order of their submission through this ioctl and this can 1235 * only have fences from a prior job. 1236 */ 1237 if (!dma_fence_match_context(in_fence, 1238 vc4->dma_fence_context)) { 1239 ret = dma_fence_wait(in_fence, true); 1240 if (ret) { 1241 dma_fence_put(in_fence); 1242 goto fail; 1243 } 1244 } 1245 1246 dma_fence_put(in_fence); 1247 } 1248 1249 if (exec->args->bin_cl_size != 0) { 1250 ret = vc4_get_bcl(dev, exec); 1251 if (ret) 1252 goto fail; 1253 } else { 1254 exec->ct0ca = 0; 1255 exec->ct0ea = 0; 1256 } 1257 1258 ret = vc4_get_rcl(dev, exec); 1259 if (ret) 1260 goto fail; 1261 1262 ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx); 1263 if (ret) 1264 goto fail; 1265 1266 if (args->out_sync) { 1267 out_sync = drm_syncobj_find(file_priv, args->out_sync); 1268 if (!out_sync) { 1269 ret = -EINVAL; 1270 goto fail; 1271 } 1272 1273 /* We replace the fence in out_sync in vc4_queue_submit since 1274 * the render job could execute immediately after that call. 1275 * If it finishes before our ioctl processing resumes the 1276 * render job fence could already have been freed. 1277 */ 1278 } 1279 1280 /* Clear this out of the struct we'll be putting in the queue, 1281 * since it's part of our stack. 1282 */ 1283 exec->args = NULL; 1284 1285 ret = vc4_queue_submit(dev, exec, &acquire_ctx, out_sync); 1286 1287 /* The syncobj isn't part of the exec data and we need to free our 1288 * reference even if job submission failed. 1289 */ 1290 if (out_sync) 1291 drm_syncobj_put(out_sync); 1292 1293 if (ret) 1294 goto fail; 1295 1296 /* Return the seqno for our job. */ 1297 args->seqno = vc4->emit_seqno; 1298 1299 return 0; 1300 1301 fail: 1302 vc4_complete_exec(&vc4->base, exec); 1303 1304 return ret; 1305 } 1306 1307 static void vc4_gem_destroy(struct drm_device *dev, void *unused); 1308 int vc4_gem_init(struct drm_device *dev) 1309 { 1310 struct vc4_dev *vc4 = to_vc4_dev(dev); 1311 1312 if (WARN_ON_ONCE(vc4->is_vc5)) 1313 return -ENODEV; 1314 1315 vc4->dma_fence_context = dma_fence_context_alloc(1); 1316 1317 INIT_LIST_HEAD(&vc4->bin_job_list); 1318 INIT_LIST_HEAD(&vc4->render_job_list); 1319 INIT_LIST_HEAD(&vc4->job_done_list); 1320 INIT_LIST_HEAD(&vc4->seqno_cb_list); 1321 spin_lock_init(&vc4->job_lock); 1322 1323 INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work); 1324 timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0); 1325 1326 INIT_WORK(&vc4->job_done_work, vc4_job_done_work); 1327 1328 mutex_init(&vc4->power_lock); 1329 1330 INIT_LIST_HEAD(&vc4->purgeable.list); 1331 mutex_init(&vc4->purgeable.lock); 1332 1333 return drmm_add_action_or_reset(dev, vc4_gem_destroy, NULL); 1334 } 1335 1336 static void vc4_gem_destroy(struct drm_device *dev, void *unused) 1337 { 1338 struct vc4_dev *vc4 = to_vc4_dev(dev); 1339 1340 /* Waiting for exec to finish would need to be done before 1341 * unregistering V3D. 1342 */ 1343 WARN_ON(vc4->emit_seqno != vc4->finished_seqno); 1344 1345 /* V3D should already have disabled its interrupt and cleared 1346 * the overflow allocation registers. Now free the object. 1347 */ 1348 if (vc4->bin_bo) { 1349 drm_gem_object_put(&vc4->bin_bo->base.base); 1350 vc4->bin_bo = NULL; 1351 } 1352 1353 if (vc4->hang_state) 1354 vc4_free_hang_state(dev, vc4->hang_state); 1355 } 1356 1357 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data, 1358 struct drm_file *file_priv) 1359 { 1360 struct vc4_dev *vc4 = to_vc4_dev(dev); 1361 struct drm_vc4_gem_madvise *args = data; 1362 struct drm_gem_object *gem_obj; 1363 struct vc4_bo *bo; 1364 int ret; 1365 1366 if (WARN_ON_ONCE(vc4->is_vc5)) 1367 return -ENODEV; 1368 1369 switch (args->madv) { 1370 case VC4_MADV_DONTNEED: 1371 case VC4_MADV_WILLNEED: 1372 break; 1373 default: 1374 return -EINVAL; 1375 } 1376 1377 if (args->pad != 0) 1378 return -EINVAL; 1379 1380 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 1381 if (!gem_obj) { 1382 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle); 1383 return -ENOENT; 1384 } 1385 1386 bo = to_vc4_bo(gem_obj); 1387 1388 /* Only BOs exposed to userspace can be purged. */ 1389 if (bo->madv == __VC4_MADV_NOTSUPP) { 1390 DRM_DEBUG("madvise not supported on this BO\n"); 1391 ret = -EINVAL; 1392 goto out_put_gem; 1393 } 1394 1395 /* Not sure it's safe to purge imported BOs. Let's just assume it's 1396 * not until proven otherwise. 1397 */ 1398 if (gem_obj->import_attach) { 1399 DRM_DEBUG("madvise not supported on imported BOs\n"); 1400 ret = -EINVAL; 1401 goto out_put_gem; 1402 } 1403 1404 mutex_lock(&bo->madv_lock); 1405 1406 if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED && 1407 !refcount_read(&bo->usecnt)) { 1408 /* If the BO is about to be marked as purgeable, is not used 1409 * and is not already purgeable or purged, add it to the 1410 * purgeable list. 1411 */ 1412 vc4_bo_add_to_purgeable_pool(bo); 1413 } else if (args->madv == VC4_MADV_WILLNEED && 1414 bo->madv == VC4_MADV_DONTNEED && 1415 !refcount_read(&bo->usecnt)) { 1416 /* The BO has not been purged yet, just remove it from 1417 * the purgeable list. 1418 */ 1419 vc4_bo_remove_from_purgeable_pool(bo); 1420 } 1421 1422 /* Save the purged state. */ 1423 args->retained = bo->madv != __VC4_MADV_PURGED; 1424 1425 /* Update internal madv state only if the bo was not purged. */ 1426 if (bo->madv != __VC4_MADV_PURGED) 1427 bo->madv = args->madv; 1428 1429 mutex_unlock(&bo->madv_lock); 1430 1431 ret = 0; 1432 1433 out_put_gem: 1434 drm_gem_object_put(gem_obj); 1435 1436 return ret; 1437 } 1438