1 /* 2 * Copyright © 2014 Broadcom 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/device.h> 28 #include <linux/io.h> 29 #include <linux/sched/signal.h> 30 31 #include "uapi/drm/vc4_drm.h" 32 #include "vc4_drv.h" 33 #include "vc4_regs.h" 34 #include "vc4_trace.h" 35 36 static void 37 vc4_queue_hangcheck(struct drm_device *dev) 38 { 39 struct vc4_dev *vc4 = to_vc4_dev(dev); 40 41 mod_timer(&vc4->hangcheck.timer, 42 round_jiffies_up(jiffies + msecs_to_jiffies(100))); 43 } 44 45 struct vc4_hang_state { 46 struct drm_vc4_get_hang_state user_state; 47 48 u32 bo_count; 49 struct drm_gem_object **bo; 50 }; 51 52 static void 53 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state) 54 { 55 unsigned int i; 56 57 for (i = 0; i < state->user_state.bo_count; i++) 58 drm_gem_object_unreference_unlocked(state->bo[i]); 59 60 kfree(state); 61 } 62 63 int 64 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data, 65 struct drm_file *file_priv) 66 { 67 struct drm_vc4_get_hang_state *get_state = data; 68 struct drm_vc4_get_hang_state_bo *bo_state; 69 struct vc4_hang_state *kernel_state; 70 struct drm_vc4_get_hang_state *state; 71 struct vc4_dev *vc4 = to_vc4_dev(dev); 72 unsigned long irqflags; 73 u32 i; 74 int ret = 0; 75 76 spin_lock_irqsave(&vc4->job_lock, irqflags); 77 kernel_state = vc4->hang_state; 78 if (!kernel_state) { 79 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 80 return -ENOENT; 81 } 82 state = &kernel_state->user_state; 83 84 /* If the user's array isn't big enough, just return the 85 * required array size. 86 */ 87 if (get_state->bo_count < state->bo_count) { 88 get_state->bo_count = state->bo_count; 89 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 90 return 0; 91 } 92 93 vc4->hang_state = NULL; 94 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 95 96 /* Save the user's BO pointer, so we don't stomp it with the memcpy. */ 97 state->bo = get_state->bo; 98 memcpy(get_state, state, sizeof(*state)); 99 100 bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL); 101 if (!bo_state) { 102 ret = -ENOMEM; 103 goto err_free; 104 } 105 106 for (i = 0; i < state->bo_count; i++) { 107 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]); 108 u32 handle; 109 110 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i], 111 &handle); 112 113 if (ret) { 114 state->bo_count = i - 1; 115 goto err; 116 } 117 bo_state[i].handle = handle; 118 bo_state[i].paddr = vc4_bo->base.paddr; 119 bo_state[i].size = vc4_bo->base.base.size; 120 } 121 122 if (copy_to_user((void __user *)(uintptr_t)get_state->bo, 123 bo_state, 124 state->bo_count * sizeof(*bo_state))) 125 ret = -EFAULT; 126 127 kfree(bo_state); 128 129 err_free: 130 131 vc4_free_hang_state(dev, kernel_state); 132 133 err: 134 return ret; 135 } 136 137 static void 138 vc4_save_hang_state(struct drm_device *dev) 139 { 140 struct vc4_dev *vc4 = to_vc4_dev(dev); 141 struct drm_vc4_get_hang_state *state; 142 struct vc4_hang_state *kernel_state; 143 struct vc4_exec_info *exec[2]; 144 struct vc4_bo *bo; 145 unsigned long irqflags; 146 unsigned int i, j, unref_list_count, prev_idx; 147 148 kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL); 149 if (!kernel_state) 150 return; 151 152 state = &kernel_state->user_state; 153 154 spin_lock_irqsave(&vc4->job_lock, irqflags); 155 exec[0] = vc4_first_bin_job(vc4); 156 exec[1] = vc4_first_render_job(vc4); 157 if (!exec[0] && !exec[1]) { 158 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 159 return; 160 } 161 162 /* Get the bos from both binner and renderer into hang state. */ 163 state->bo_count = 0; 164 for (i = 0; i < 2; i++) { 165 if (!exec[i]) 166 continue; 167 168 unref_list_count = 0; 169 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) 170 unref_list_count++; 171 state->bo_count += exec[i]->bo_count + unref_list_count; 172 } 173 174 kernel_state->bo = kcalloc(state->bo_count, 175 sizeof(*kernel_state->bo), GFP_ATOMIC); 176 177 if (!kernel_state->bo) { 178 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 179 return; 180 } 181 182 prev_idx = 0; 183 for (i = 0; i < 2; i++) { 184 if (!exec[i]) 185 continue; 186 187 for (j = 0; j < exec[i]->bo_count; j++) { 188 drm_gem_object_reference(&exec[i]->bo[j]->base); 189 kernel_state->bo[j + prev_idx] = &exec[i]->bo[j]->base; 190 } 191 192 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) { 193 drm_gem_object_reference(&bo->base.base); 194 kernel_state->bo[j + prev_idx] = &bo->base.base; 195 j++; 196 } 197 prev_idx = j + 1; 198 } 199 200 if (exec[0]) 201 state->start_bin = exec[0]->ct0ca; 202 if (exec[1]) 203 state->start_render = exec[1]->ct1ca; 204 205 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 206 207 state->ct0ca = V3D_READ(V3D_CTNCA(0)); 208 state->ct0ea = V3D_READ(V3D_CTNEA(0)); 209 210 state->ct1ca = V3D_READ(V3D_CTNCA(1)); 211 state->ct1ea = V3D_READ(V3D_CTNEA(1)); 212 213 state->ct0cs = V3D_READ(V3D_CTNCS(0)); 214 state->ct1cs = V3D_READ(V3D_CTNCS(1)); 215 216 state->ct0ra0 = V3D_READ(V3D_CT00RA0); 217 state->ct1ra0 = V3D_READ(V3D_CT01RA0); 218 219 state->bpca = V3D_READ(V3D_BPCA); 220 state->bpcs = V3D_READ(V3D_BPCS); 221 state->bpoa = V3D_READ(V3D_BPOA); 222 state->bpos = V3D_READ(V3D_BPOS); 223 224 state->vpmbase = V3D_READ(V3D_VPMBASE); 225 226 state->dbge = V3D_READ(V3D_DBGE); 227 state->fdbgo = V3D_READ(V3D_FDBGO); 228 state->fdbgb = V3D_READ(V3D_FDBGB); 229 state->fdbgr = V3D_READ(V3D_FDBGR); 230 state->fdbgs = V3D_READ(V3D_FDBGS); 231 state->errstat = V3D_READ(V3D_ERRSTAT); 232 233 spin_lock_irqsave(&vc4->job_lock, irqflags); 234 if (vc4->hang_state) { 235 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 236 vc4_free_hang_state(dev, kernel_state); 237 } else { 238 vc4->hang_state = kernel_state; 239 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 240 } 241 } 242 243 static void 244 vc4_reset(struct drm_device *dev) 245 { 246 struct vc4_dev *vc4 = to_vc4_dev(dev); 247 248 DRM_INFO("Resetting GPU.\n"); 249 250 mutex_lock(&vc4->power_lock); 251 if (vc4->power_refcount) { 252 /* Power the device off and back on the by dropping the 253 * reference on runtime PM. 254 */ 255 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev); 256 pm_runtime_get_sync(&vc4->v3d->pdev->dev); 257 } 258 mutex_unlock(&vc4->power_lock); 259 260 vc4_irq_reset(dev); 261 262 /* Rearm the hangcheck -- another job might have been waiting 263 * for our hung one to get kicked off, and vc4_irq_reset() 264 * would have started it. 265 */ 266 vc4_queue_hangcheck(dev); 267 } 268 269 static void 270 vc4_reset_work(struct work_struct *work) 271 { 272 struct vc4_dev *vc4 = 273 container_of(work, struct vc4_dev, hangcheck.reset_work); 274 275 vc4_save_hang_state(vc4->dev); 276 277 vc4_reset(vc4->dev); 278 } 279 280 static void 281 vc4_hangcheck_elapsed(unsigned long data) 282 { 283 struct drm_device *dev = (struct drm_device *)data; 284 struct vc4_dev *vc4 = to_vc4_dev(dev); 285 uint32_t ct0ca, ct1ca; 286 unsigned long irqflags; 287 struct vc4_exec_info *bin_exec, *render_exec; 288 289 spin_lock_irqsave(&vc4->job_lock, irqflags); 290 291 bin_exec = vc4_first_bin_job(vc4); 292 render_exec = vc4_first_render_job(vc4); 293 294 /* If idle, we can stop watching for hangs. */ 295 if (!bin_exec && !render_exec) { 296 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 297 return; 298 } 299 300 ct0ca = V3D_READ(V3D_CTNCA(0)); 301 ct1ca = V3D_READ(V3D_CTNCA(1)); 302 303 /* If we've made any progress in execution, rearm the timer 304 * and wait. 305 */ 306 if ((bin_exec && ct0ca != bin_exec->last_ct0ca) || 307 (render_exec && ct1ca != render_exec->last_ct1ca)) { 308 if (bin_exec) 309 bin_exec->last_ct0ca = ct0ca; 310 if (render_exec) 311 render_exec->last_ct1ca = ct1ca; 312 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 313 vc4_queue_hangcheck(dev); 314 return; 315 } 316 317 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 318 319 /* We've gone too long with no progress, reset. This has to 320 * be done from a work struct, since resetting can sleep and 321 * this timer hook isn't allowed to. 322 */ 323 schedule_work(&vc4->hangcheck.reset_work); 324 } 325 326 static void 327 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end) 328 { 329 struct vc4_dev *vc4 = to_vc4_dev(dev); 330 331 /* Set the current and end address of the control list. 332 * Writing the end register is what starts the job. 333 */ 334 V3D_WRITE(V3D_CTNCA(thread), start); 335 V3D_WRITE(V3D_CTNEA(thread), end); 336 } 337 338 int 339 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns, 340 bool interruptible) 341 { 342 struct vc4_dev *vc4 = to_vc4_dev(dev); 343 int ret = 0; 344 unsigned long timeout_expire; 345 DEFINE_WAIT(wait); 346 347 if (vc4->finished_seqno >= seqno) 348 return 0; 349 350 if (timeout_ns == 0) 351 return -ETIME; 352 353 timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns); 354 355 trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns); 356 for (;;) { 357 prepare_to_wait(&vc4->job_wait_queue, &wait, 358 interruptible ? TASK_INTERRUPTIBLE : 359 TASK_UNINTERRUPTIBLE); 360 361 if (interruptible && signal_pending(current)) { 362 ret = -ERESTARTSYS; 363 break; 364 } 365 366 if (vc4->finished_seqno >= seqno) 367 break; 368 369 if (timeout_ns != ~0ull) { 370 if (time_after_eq(jiffies, timeout_expire)) { 371 ret = -ETIME; 372 break; 373 } 374 schedule_timeout(timeout_expire - jiffies); 375 } else { 376 schedule(); 377 } 378 } 379 380 finish_wait(&vc4->job_wait_queue, &wait); 381 trace_vc4_wait_for_seqno_end(dev, seqno); 382 383 return ret; 384 } 385 386 static void 387 vc4_flush_caches(struct drm_device *dev) 388 { 389 struct vc4_dev *vc4 = to_vc4_dev(dev); 390 391 /* Flush the GPU L2 caches. These caches sit on top of system 392 * L3 (the 128kb or so shared with the CPU), and are 393 * non-allocating in the L3. 394 */ 395 V3D_WRITE(V3D_L2CACTL, 396 V3D_L2CACTL_L2CCLR); 397 398 V3D_WRITE(V3D_SLCACTL, 399 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | 400 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) | 401 VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) | 402 VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC)); 403 } 404 405 /* Sets the registers for the next job to be actually be executed in 406 * the hardware. 407 * 408 * The job_lock should be held during this. 409 */ 410 void 411 vc4_submit_next_bin_job(struct drm_device *dev) 412 { 413 struct vc4_dev *vc4 = to_vc4_dev(dev); 414 struct vc4_exec_info *exec; 415 416 again: 417 exec = vc4_first_bin_job(vc4); 418 if (!exec) 419 return; 420 421 vc4_flush_caches(dev); 422 423 /* Either put the job in the binner if it uses the binner, or 424 * immediately move it to the to-be-rendered queue. 425 */ 426 if (exec->ct0ca != exec->ct0ea) { 427 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea); 428 } else { 429 vc4_move_job_to_render(dev, exec); 430 goto again; 431 } 432 } 433 434 void 435 vc4_submit_next_render_job(struct drm_device *dev) 436 { 437 struct vc4_dev *vc4 = to_vc4_dev(dev); 438 struct vc4_exec_info *exec = vc4_first_render_job(vc4); 439 440 if (!exec) 441 return; 442 443 submit_cl(dev, 1, exec->ct1ca, exec->ct1ea); 444 } 445 446 void 447 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec) 448 { 449 struct vc4_dev *vc4 = to_vc4_dev(dev); 450 bool was_empty = list_empty(&vc4->render_job_list); 451 452 list_move_tail(&exec->head, &vc4->render_job_list); 453 if (was_empty) 454 vc4_submit_next_render_job(dev); 455 } 456 457 static void 458 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno) 459 { 460 struct vc4_bo *bo; 461 unsigned i; 462 463 for (i = 0; i < exec->bo_count; i++) { 464 bo = to_vc4_bo(&exec->bo[i]->base); 465 bo->seqno = seqno; 466 467 reservation_object_add_shared_fence(bo->resv, exec->fence); 468 } 469 470 list_for_each_entry(bo, &exec->unref_list, unref_head) { 471 bo->seqno = seqno; 472 } 473 474 for (i = 0; i < exec->rcl_write_bo_count; i++) { 475 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base); 476 bo->write_seqno = seqno; 477 478 reservation_object_add_excl_fence(bo->resv, exec->fence); 479 } 480 } 481 482 static void 483 vc4_unlock_bo_reservations(struct drm_device *dev, 484 struct vc4_exec_info *exec, 485 struct ww_acquire_ctx *acquire_ctx) 486 { 487 int i; 488 489 for (i = 0; i < exec->bo_count; i++) { 490 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base); 491 492 ww_mutex_unlock(&bo->resv->lock); 493 } 494 495 ww_acquire_fini(acquire_ctx); 496 } 497 498 /* Takes the reservation lock on all the BOs being referenced, so that 499 * at queue submit time we can update the reservations. 500 * 501 * We don't lock the RCL the tile alloc/state BOs, or overflow memory 502 * (all of which are on exec->unref_list). They're entirely private 503 * to vc4, so we don't attach dma-buf fences to them. 504 */ 505 static int 506 vc4_lock_bo_reservations(struct drm_device *dev, 507 struct vc4_exec_info *exec, 508 struct ww_acquire_ctx *acquire_ctx) 509 { 510 int contended_lock = -1; 511 int i, ret; 512 struct vc4_bo *bo; 513 514 ww_acquire_init(acquire_ctx, &reservation_ww_class); 515 516 retry: 517 if (contended_lock != -1) { 518 bo = to_vc4_bo(&exec->bo[contended_lock]->base); 519 ret = ww_mutex_lock_slow_interruptible(&bo->resv->lock, 520 acquire_ctx); 521 if (ret) { 522 ww_acquire_done(acquire_ctx); 523 return ret; 524 } 525 } 526 527 for (i = 0; i < exec->bo_count; i++) { 528 if (i == contended_lock) 529 continue; 530 531 bo = to_vc4_bo(&exec->bo[i]->base); 532 533 ret = ww_mutex_lock_interruptible(&bo->resv->lock, acquire_ctx); 534 if (ret) { 535 int j; 536 537 for (j = 0; j < i; j++) { 538 bo = to_vc4_bo(&exec->bo[j]->base); 539 ww_mutex_unlock(&bo->resv->lock); 540 } 541 542 if (contended_lock != -1 && contended_lock >= i) { 543 bo = to_vc4_bo(&exec->bo[contended_lock]->base); 544 545 ww_mutex_unlock(&bo->resv->lock); 546 } 547 548 if (ret == -EDEADLK) { 549 contended_lock = i; 550 goto retry; 551 } 552 553 ww_acquire_done(acquire_ctx); 554 return ret; 555 } 556 } 557 558 ww_acquire_done(acquire_ctx); 559 560 /* Reserve space for our shared (read-only) fence references, 561 * before we commit the CL to the hardware. 562 */ 563 for (i = 0; i < exec->bo_count; i++) { 564 bo = to_vc4_bo(&exec->bo[i]->base); 565 566 ret = reservation_object_reserve_shared(bo->resv); 567 if (ret) { 568 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 569 return ret; 570 } 571 } 572 573 return 0; 574 } 575 576 /* Queues a struct vc4_exec_info for execution. If no job is 577 * currently executing, then submits it. 578 * 579 * Unlike most GPUs, our hardware only handles one command list at a 580 * time. To queue multiple jobs at once, we'd need to edit the 581 * previous command list to have a jump to the new one at the end, and 582 * then bump the end address. That's a change for a later date, 583 * though. 584 */ 585 static int 586 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec, 587 struct ww_acquire_ctx *acquire_ctx) 588 { 589 struct vc4_dev *vc4 = to_vc4_dev(dev); 590 uint64_t seqno; 591 unsigned long irqflags; 592 struct vc4_fence *fence; 593 594 fence = kzalloc(sizeof(*fence), GFP_KERNEL); 595 if (!fence) 596 return -ENOMEM; 597 fence->dev = dev; 598 599 spin_lock_irqsave(&vc4->job_lock, irqflags); 600 601 seqno = ++vc4->emit_seqno; 602 exec->seqno = seqno; 603 604 dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock, 605 vc4->dma_fence_context, exec->seqno); 606 fence->seqno = exec->seqno; 607 exec->fence = &fence->base; 608 609 vc4_update_bo_seqnos(exec, seqno); 610 611 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 612 613 list_add_tail(&exec->head, &vc4->bin_job_list); 614 615 /* If no job was executing, kick ours off. Otherwise, it'll 616 * get started when the previous job's flush done interrupt 617 * occurs. 618 */ 619 if (vc4_first_bin_job(vc4) == exec) { 620 vc4_submit_next_bin_job(dev); 621 vc4_queue_hangcheck(dev); 622 } 623 624 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 625 626 return 0; 627 } 628 629 /** 630 * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects 631 * referenced by the job. 632 * @dev: DRM device 633 * @file_priv: DRM file for this fd 634 * @exec: V3D job being set up 635 * 636 * The command validator needs to reference BOs by their index within 637 * the submitted job's BO list. This does the validation of the job's 638 * BO list and reference counting for the lifetime of the job. 639 * 640 * Note that this function doesn't need to unreference the BOs on 641 * failure, because that will happen at vc4_complete_exec() time. 642 */ 643 static int 644 vc4_cl_lookup_bos(struct drm_device *dev, 645 struct drm_file *file_priv, 646 struct vc4_exec_info *exec) 647 { 648 struct drm_vc4_submit_cl *args = exec->args; 649 uint32_t *handles; 650 int ret = 0; 651 int i; 652 653 exec->bo_count = args->bo_handle_count; 654 655 if (!exec->bo_count) { 656 /* See comment on bo_index for why we have to check 657 * this. 658 */ 659 DRM_ERROR("Rendering requires BOs to validate\n"); 660 return -EINVAL; 661 } 662 663 exec->bo = drm_calloc_large(exec->bo_count, 664 sizeof(struct drm_gem_cma_object *)); 665 if (!exec->bo) { 666 DRM_ERROR("Failed to allocate validated BO pointers\n"); 667 return -ENOMEM; 668 } 669 670 handles = drm_malloc_ab(exec->bo_count, sizeof(uint32_t)); 671 if (!handles) { 672 ret = -ENOMEM; 673 DRM_ERROR("Failed to allocate incoming GEM handles\n"); 674 goto fail; 675 } 676 677 if (copy_from_user(handles, 678 (void __user *)(uintptr_t)args->bo_handles, 679 exec->bo_count * sizeof(uint32_t))) { 680 ret = -EFAULT; 681 DRM_ERROR("Failed to copy in GEM handles\n"); 682 goto fail; 683 } 684 685 spin_lock(&file_priv->table_lock); 686 for (i = 0; i < exec->bo_count; i++) { 687 struct drm_gem_object *bo = idr_find(&file_priv->object_idr, 688 handles[i]); 689 if (!bo) { 690 DRM_ERROR("Failed to look up GEM BO %d: %d\n", 691 i, handles[i]); 692 ret = -EINVAL; 693 spin_unlock(&file_priv->table_lock); 694 goto fail; 695 } 696 drm_gem_object_reference(bo); 697 exec->bo[i] = (struct drm_gem_cma_object *)bo; 698 } 699 spin_unlock(&file_priv->table_lock); 700 701 fail: 702 drm_free_large(handles); 703 return ret; 704 } 705 706 static int 707 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec) 708 { 709 struct drm_vc4_submit_cl *args = exec->args; 710 void *temp = NULL; 711 void *bin; 712 int ret = 0; 713 uint32_t bin_offset = 0; 714 uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size, 715 16); 716 uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size; 717 uint32_t exec_size = uniforms_offset + args->uniforms_size; 718 uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) * 719 args->shader_rec_count); 720 struct vc4_bo *bo; 721 722 if (shader_rec_offset < args->bin_cl_size || 723 uniforms_offset < shader_rec_offset || 724 exec_size < uniforms_offset || 725 args->shader_rec_count >= (UINT_MAX / 726 sizeof(struct vc4_shader_state)) || 727 temp_size < exec_size) { 728 DRM_ERROR("overflow in exec arguments\n"); 729 ret = -EINVAL; 730 goto fail; 731 } 732 733 /* Allocate space where we'll store the copied in user command lists 734 * and shader records. 735 * 736 * We don't just copy directly into the BOs because we need to 737 * read the contents back for validation, and I think the 738 * bo->vaddr is uncached access. 739 */ 740 temp = drm_malloc_ab(temp_size, 1); 741 if (!temp) { 742 DRM_ERROR("Failed to allocate storage for copying " 743 "in bin/render CLs.\n"); 744 ret = -ENOMEM; 745 goto fail; 746 } 747 bin = temp + bin_offset; 748 exec->shader_rec_u = temp + shader_rec_offset; 749 exec->uniforms_u = temp + uniforms_offset; 750 exec->shader_state = temp + exec_size; 751 exec->shader_state_size = args->shader_rec_count; 752 753 if (copy_from_user(bin, 754 (void __user *)(uintptr_t)args->bin_cl, 755 args->bin_cl_size)) { 756 ret = -EFAULT; 757 goto fail; 758 } 759 760 if (copy_from_user(exec->shader_rec_u, 761 (void __user *)(uintptr_t)args->shader_rec, 762 args->shader_rec_size)) { 763 ret = -EFAULT; 764 goto fail; 765 } 766 767 if (copy_from_user(exec->uniforms_u, 768 (void __user *)(uintptr_t)args->uniforms, 769 args->uniforms_size)) { 770 ret = -EFAULT; 771 goto fail; 772 } 773 774 bo = vc4_bo_create(dev, exec_size, true); 775 if (IS_ERR(bo)) { 776 DRM_ERROR("Couldn't allocate BO for binning\n"); 777 ret = PTR_ERR(bo); 778 goto fail; 779 } 780 exec->exec_bo = &bo->base; 781 782 list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head, 783 &exec->unref_list); 784 785 exec->ct0ca = exec->exec_bo->paddr + bin_offset; 786 787 exec->bin_u = bin; 788 789 exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset; 790 exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset; 791 exec->shader_rec_size = args->shader_rec_size; 792 793 exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset; 794 exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset; 795 exec->uniforms_size = args->uniforms_size; 796 797 ret = vc4_validate_bin_cl(dev, 798 exec->exec_bo->vaddr + bin_offset, 799 bin, 800 exec); 801 if (ret) 802 goto fail; 803 804 ret = vc4_validate_shader_recs(dev, exec); 805 if (ret) 806 goto fail; 807 808 /* Block waiting on any previous rendering into the CS's VBO, 809 * IB, or textures, so that pixels are actually written by the 810 * time we try to read them. 811 */ 812 ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true); 813 814 fail: 815 drm_free_large(temp); 816 return ret; 817 } 818 819 static void 820 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec) 821 { 822 struct vc4_dev *vc4 = to_vc4_dev(dev); 823 unsigned long irqflags; 824 unsigned i; 825 826 /* If we got force-completed because of GPU reset rather than 827 * through our IRQ handler, signal the fence now. 828 */ 829 if (exec->fence) 830 dma_fence_signal(exec->fence); 831 832 if (exec->bo) { 833 for (i = 0; i < exec->bo_count; i++) 834 drm_gem_object_unreference_unlocked(&exec->bo[i]->base); 835 drm_free_large(exec->bo); 836 } 837 838 while (!list_empty(&exec->unref_list)) { 839 struct vc4_bo *bo = list_first_entry(&exec->unref_list, 840 struct vc4_bo, unref_head); 841 list_del(&bo->unref_head); 842 drm_gem_object_unreference_unlocked(&bo->base.base); 843 } 844 845 /* Free up the allocation of any bin slots we used. */ 846 spin_lock_irqsave(&vc4->job_lock, irqflags); 847 vc4->bin_alloc_used &= ~exec->bin_slots; 848 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 849 850 mutex_lock(&vc4->power_lock); 851 if (--vc4->power_refcount == 0) { 852 pm_runtime_mark_last_busy(&vc4->v3d->pdev->dev); 853 pm_runtime_put_autosuspend(&vc4->v3d->pdev->dev); 854 } 855 mutex_unlock(&vc4->power_lock); 856 857 kfree(exec); 858 } 859 860 void 861 vc4_job_handle_completed(struct vc4_dev *vc4) 862 { 863 unsigned long irqflags; 864 struct vc4_seqno_cb *cb, *cb_temp; 865 866 spin_lock_irqsave(&vc4->job_lock, irqflags); 867 while (!list_empty(&vc4->job_done_list)) { 868 struct vc4_exec_info *exec = 869 list_first_entry(&vc4->job_done_list, 870 struct vc4_exec_info, head); 871 list_del(&exec->head); 872 873 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 874 vc4_complete_exec(vc4->dev, exec); 875 spin_lock_irqsave(&vc4->job_lock, irqflags); 876 } 877 878 list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) { 879 if (cb->seqno <= vc4->finished_seqno) { 880 list_del_init(&cb->work.entry); 881 schedule_work(&cb->work); 882 } 883 } 884 885 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 886 } 887 888 static void vc4_seqno_cb_work(struct work_struct *work) 889 { 890 struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work); 891 892 cb->func(cb); 893 } 894 895 int vc4_queue_seqno_cb(struct drm_device *dev, 896 struct vc4_seqno_cb *cb, uint64_t seqno, 897 void (*func)(struct vc4_seqno_cb *cb)) 898 { 899 struct vc4_dev *vc4 = to_vc4_dev(dev); 900 int ret = 0; 901 unsigned long irqflags; 902 903 cb->func = func; 904 INIT_WORK(&cb->work, vc4_seqno_cb_work); 905 906 spin_lock_irqsave(&vc4->job_lock, irqflags); 907 if (seqno > vc4->finished_seqno) { 908 cb->seqno = seqno; 909 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list); 910 } else { 911 schedule_work(&cb->work); 912 } 913 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 914 915 return ret; 916 } 917 918 /* Scheduled when any job has been completed, this walks the list of 919 * jobs that had completed and unrefs their BOs and frees their exec 920 * structs. 921 */ 922 static void 923 vc4_job_done_work(struct work_struct *work) 924 { 925 struct vc4_dev *vc4 = 926 container_of(work, struct vc4_dev, job_done_work); 927 928 vc4_job_handle_completed(vc4); 929 } 930 931 static int 932 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev, 933 uint64_t seqno, 934 uint64_t *timeout_ns) 935 { 936 unsigned long start = jiffies; 937 int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true); 938 939 if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) { 940 uint64_t delta = jiffies_to_nsecs(jiffies - start); 941 942 if (*timeout_ns >= delta) 943 *timeout_ns -= delta; 944 } 945 946 return ret; 947 } 948 949 int 950 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data, 951 struct drm_file *file_priv) 952 { 953 struct drm_vc4_wait_seqno *args = data; 954 955 return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno, 956 &args->timeout_ns); 957 } 958 959 int 960 vc4_wait_bo_ioctl(struct drm_device *dev, void *data, 961 struct drm_file *file_priv) 962 { 963 int ret; 964 struct drm_vc4_wait_bo *args = data; 965 struct drm_gem_object *gem_obj; 966 struct vc4_bo *bo; 967 968 if (args->pad != 0) 969 return -EINVAL; 970 971 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 972 if (!gem_obj) { 973 DRM_ERROR("Failed to look up GEM BO %d\n", args->handle); 974 return -EINVAL; 975 } 976 bo = to_vc4_bo(gem_obj); 977 978 ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno, 979 &args->timeout_ns); 980 981 drm_gem_object_unreference_unlocked(gem_obj); 982 return ret; 983 } 984 985 /** 986 * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4. 987 * @dev: DRM device 988 * @data: ioctl argument 989 * @file_priv: DRM file for this fd 990 * 991 * This is the main entrypoint for userspace to submit a 3D frame to 992 * the GPU. Userspace provides the binner command list (if 993 * applicable), and the kernel sets up the render command list to draw 994 * to the framebuffer described in the ioctl, using the command lists 995 * that the 3D engine's binner will produce. 996 */ 997 int 998 vc4_submit_cl_ioctl(struct drm_device *dev, void *data, 999 struct drm_file *file_priv) 1000 { 1001 struct vc4_dev *vc4 = to_vc4_dev(dev); 1002 struct drm_vc4_submit_cl *args = data; 1003 struct vc4_exec_info *exec; 1004 struct ww_acquire_ctx acquire_ctx; 1005 int ret = 0; 1006 1007 if ((args->flags & ~VC4_SUBMIT_CL_USE_CLEAR_COLOR) != 0) { 1008 DRM_ERROR("Unknown flags: 0x%02x\n", args->flags); 1009 return -EINVAL; 1010 } 1011 1012 exec = kcalloc(1, sizeof(*exec), GFP_KERNEL); 1013 if (!exec) { 1014 DRM_ERROR("malloc failure on exec struct\n"); 1015 return -ENOMEM; 1016 } 1017 1018 mutex_lock(&vc4->power_lock); 1019 if (vc4->power_refcount++ == 0) { 1020 ret = pm_runtime_get_sync(&vc4->v3d->pdev->dev); 1021 if (ret < 0) { 1022 mutex_unlock(&vc4->power_lock); 1023 vc4->power_refcount--; 1024 kfree(exec); 1025 return ret; 1026 } 1027 } 1028 mutex_unlock(&vc4->power_lock); 1029 1030 exec->args = args; 1031 INIT_LIST_HEAD(&exec->unref_list); 1032 1033 ret = vc4_cl_lookup_bos(dev, file_priv, exec); 1034 if (ret) 1035 goto fail; 1036 1037 if (exec->args->bin_cl_size != 0) { 1038 ret = vc4_get_bcl(dev, exec); 1039 if (ret) 1040 goto fail; 1041 } else { 1042 exec->ct0ca = 0; 1043 exec->ct0ea = 0; 1044 } 1045 1046 ret = vc4_get_rcl(dev, exec); 1047 if (ret) 1048 goto fail; 1049 1050 ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx); 1051 if (ret) 1052 goto fail; 1053 1054 /* Clear this out of the struct we'll be putting in the queue, 1055 * since it's part of our stack. 1056 */ 1057 exec->args = NULL; 1058 1059 ret = vc4_queue_submit(dev, exec, &acquire_ctx); 1060 if (ret) 1061 goto fail; 1062 1063 /* Return the seqno for our job. */ 1064 args->seqno = vc4->emit_seqno; 1065 1066 return 0; 1067 1068 fail: 1069 vc4_complete_exec(vc4->dev, exec); 1070 1071 return ret; 1072 } 1073 1074 void 1075 vc4_gem_init(struct drm_device *dev) 1076 { 1077 struct vc4_dev *vc4 = to_vc4_dev(dev); 1078 1079 vc4->dma_fence_context = dma_fence_context_alloc(1); 1080 1081 INIT_LIST_HEAD(&vc4->bin_job_list); 1082 INIT_LIST_HEAD(&vc4->render_job_list); 1083 INIT_LIST_HEAD(&vc4->job_done_list); 1084 INIT_LIST_HEAD(&vc4->seqno_cb_list); 1085 spin_lock_init(&vc4->job_lock); 1086 1087 INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work); 1088 setup_timer(&vc4->hangcheck.timer, 1089 vc4_hangcheck_elapsed, 1090 (unsigned long)dev); 1091 1092 INIT_WORK(&vc4->job_done_work, vc4_job_done_work); 1093 1094 mutex_init(&vc4->power_lock); 1095 } 1096 1097 void 1098 vc4_gem_destroy(struct drm_device *dev) 1099 { 1100 struct vc4_dev *vc4 = to_vc4_dev(dev); 1101 1102 /* Waiting for exec to finish would need to be done before 1103 * unregistering V3D. 1104 */ 1105 WARN_ON(vc4->emit_seqno != vc4->finished_seqno); 1106 1107 /* V3D should already have disabled its interrupt and cleared 1108 * the overflow allocation registers. Now free the object. 1109 */ 1110 if (vc4->bin_bo) { 1111 drm_gem_object_put_unlocked(&vc4->bin_bo->base.base); 1112 vc4->bin_bo = NULL; 1113 } 1114 1115 if (vc4->hang_state) 1116 vc4_free_hang_state(dev, vc4->hang_state); 1117 1118 vc4_bo_cache_destroy(dev); 1119 } 1120