xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_gem.c (revision a6ca5ac746d104019e76c29e69c2a1fc6dd2b29f)
1 /*
2  * Copyright © 2014 Broadcom
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/device.h>
28 #include <linux/io.h>
29 #include <linux/sched/signal.h>
30 
31 #include "uapi/drm/vc4_drm.h"
32 #include "vc4_drv.h"
33 #include "vc4_regs.h"
34 #include "vc4_trace.h"
35 
36 static void
37 vc4_queue_hangcheck(struct drm_device *dev)
38 {
39 	struct vc4_dev *vc4 = to_vc4_dev(dev);
40 
41 	mod_timer(&vc4->hangcheck.timer,
42 		  round_jiffies_up(jiffies + msecs_to_jiffies(100)));
43 }
44 
45 struct vc4_hang_state {
46 	struct drm_vc4_get_hang_state user_state;
47 
48 	u32 bo_count;
49 	struct drm_gem_object **bo;
50 };
51 
52 static void
53 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state)
54 {
55 	unsigned int i;
56 
57 	for (i = 0; i < state->user_state.bo_count; i++)
58 		drm_gem_object_unreference_unlocked(state->bo[i]);
59 
60 	kfree(state);
61 }
62 
63 int
64 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data,
65 			 struct drm_file *file_priv)
66 {
67 	struct drm_vc4_get_hang_state *get_state = data;
68 	struct drm_vc4_get_hang_state_bo *bo_state;
69 	struct vc4_hang_state *kernel_state;
70 	struct drm_vc4_get_hang_state *state;
71 	struct vc4_dev *vc4 = to_vc4_dev(dev);
72 	unsigned long irqflags;
73 	u32 i;
74 	int ret = 0;
75 
76 	spin_lock_irqsave(&vc4->job_lock, irqflags);
77 	kernel_state = vc4->hang_state;
78 	if (!kernel_state) {
79 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
80 		return -ENOENT;
81 	}
82 	state = &kernel_state->user_state;
83 
84 	/* If the user's array isn't big enough, just return the
85 	 * required array size.
86 	 */
87 	if (get_state->bo_count < state->bo_count) {
88 		get_state->bo_count = state->bo_count;
89 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
90 		return 0;
91 	}
92 
93 	vc4->hang_state = NULL;
94 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
95 
96 	/* Save the user's BO pointer, so we don't stomp it with the memcpy. */
97 	state->bo = get_state->bo;
98 	memcpy(get_state, state, sizeof(*state));
99 
100 	bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL);
101 	if (!bo_state) {
102 		ret = -ENOMEM;
103 		goto err_free;
104 	}
105 
106 	for (i = 0; i < state->bo_count; i++) {
107 		struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]);
108 		u32 handle;
109 
110 		ret = drm_gem_handle_create(file_priv, kernel_state->bo[i],
111 					    &handle);
112 
113 		if (ret) {
114 			state->bo_count = i - 1;
115 			goto err;
116 		}
117 		bo_state[i].handle = handle;
118 		bo_state[i].paddr = vc4_bo->base.paddr;
119 		bo_state[i].size = vc4_bo->base.base.size;
120 	}
121 
122 	if (copy_to_user((void __user *)(uintptr_t)get_state->bo,
123 			 bo_state,
124 			 state->bo_count * sizeof(*bo_state)))
125 		ret = -EFAULT;
126 
127 	kfree(bo_state);
128 
129 err_free:
130 
131 	vc4_free_hang_state(dev, kernel_state);
132 
133 err:
134 	return ret;
135 }
136 
137 static void
138 vc4_save_hang_state(struct drm_device *dev)
139 {
140 	struct vc4_dev *vc4 = to_vc4_dev(dev);
141 	struct drm_vc4_get_hang_state *state;
142 	struct vc4_hang_state *kernel_state;
143 	struct vc4_exec_info *exec[2];
144 	struct vc4_bo *bo;
145 	unsigned long irqflags;
146 	unsigned int i, j, unref_list_count, prev_idx;
147 
148 	kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL);
149 	if (!kernel_state)
150 		return;
151 
152 	state = &kernel_state->user_state;
153 
154 	spin_lock_irqsave(&vc4->job_lock, irqflags);
155 	exec[0] = vc4_first_bin_job(vc4);
156 	exec[1] = vc4_first_render_job(vc4);
157 	if (!exec[0] && !exec[1]) {
158 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
159 		return;
160 	}
161 
162 	/* Get the bos from both binner and renderer into hang state. */
163 	state->bo_count = 0;
164 	for (i = 0; i < 2; i++) {
165 		if (!exec[i])
166 			continue;
167 
168 		unref_list_count = 0;
169 		list_for_each_entry(bo, &exec[i]->unref_list, unref_head)
170 			unref_list_count++;
171 		state->bo_count += exec[i]->bo_count + unref_list_count;
172 	}
173 
174 	kernel_state->bo = kcalloc(state->bo_count,
175 				   sizeof(*kernel_state->bo), GFP_ATOMIC);
176 
177 	if (!kernel_state->bo) {
178 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
179 		return;
180 	}
181 
182 	prev_idx = 0;
183 	for (i = 0; i < 2; i++) {
184 		if (!exec[i])
185 			continue;
186 
187 		for (j = 0; j < exec[i]->bo_count; j++) {
188 			drm_gem_object_reference(&exec[i]->bo[j]->base);
189 			kernel_state->bo[j + prev_idx] = &exec[i]->bo[j]->base;
190 		}
191 
192 		list_for_each_entry(bo, &exec[i]->unref_list, unref_head) {
193 			drm_gem_object_reference(&bo->base.base);
194 			kernel_state->bo[j + prev_idx] = &bo->base.base;
195 			j++;
196 		}
197 		prev_idx = j + 1;
198 	}
199 
200 	if (exec[0])
201 		state->start_bin = exec[0]->ct0ca;
202 	if (exec[1])
203 		state->start_render = exec[1]->ct1ca;
204 
205 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
206 
207 	state->ct0ca = V3D_READ(V3D_CTNCA(0));
208 	state->ct0ea = V3D_READ(V3D_CTNEA(0));
209 
210 	state->ct1ca = V3D_READ(V3D_CTNCA(1));
211 	state->ct1ea = V3D_READ(V3D_CTNEA(1));
212 
213 	state->ct0cs = V3D_READ(V3D_CTNCS(0));
214 	state->ct1cs = V3D_READ(V3D_CTNCS(1));
215 
216 	state->ct0ra0 = V3D_READ(V3D_CT00RA0);
217 	state->ct1ra0 = V3D_READ(V3D_CT01RA0);
218 
219 	state->bpca = V3D_READ(V3D_BPCA);
220 	state->bpcs = V3D_READ(V3D_BPCS);
221 	state->bpoa = V3D_READ(V3D_BPOA);
222 	state->bpos = V3D_READ(V3D_BPOS);
223 
224 	state->vpmbase = V3D_READ(V3D_VPMBASE);
225 
226 	state->dbge = V3D_READ(V3D_DBGE);
227 	state->fdbgo = V3D_READ(V3D_FDBGO);
228 	state->fdbgb = V3D_READ(V3D_FDBGB);
229 	state->fdbgr = V3D_READ(V3D_FDBGR);
230 	state->fdbgs = V3D_READ(V3D_FDBGS);
231 	state->errstat = V3D_READ(V3D_ERRSTAT);
232 
233 	spin_lock_irqsave(&vc4->job_lock, irqflags);
234 	if (vc4->hang_state) {
235 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
236 		vc4_free_hang_state(dev, kernel_state);
237 	} else {
238 		vc4->hang_state = kernel_state;
239 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
240 	}
241 }
242 
243 static void
244 vc4_reset(struct drm_device *dev)
245 {
246 	struct vc4_dev *vc4 = to_vc4_dev(dev);
247 
248 	DRM_INFO("Resetting GPU.\n");
249 
250 	mutex_lock(&vc4->power_lock);
251 	if (vc4->power_refcount) {
252 		/* Power the device off and back on the by dropping the
253 		 * reference on runtime PM.
254 		 */
255 		pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev);
256 		pm_runtime_get_sync(&vc4->v3d->pdev->dev);
257 	}
258 	mutex_unlock(&vc4->power_lock);
259 
260 	vc4_irq_reset(dev);
261 
262 	/* Rearm the hangcheck -- another job might have been waiting
263 	 * for our hung one to get kicked off, and vc4_irq_reset()
264 	 * would have started it.
265 	 */
266 	vc4_queue_hangcheck(dev);
267 }
268 
269 static void
270 vc4_reset_work(struct work_struct *work)
271 {
272 	struct vc4_dev *vc4 =
273 		container_of(work, struct vc4_dev, hangcheck.reset_work);
274 
275 	vc4_save_hang_state(vc4->dev);
276 
277 	vc4_reset(vc4->dev);
278 }
279 
280 static void
281 vc4_hangcheck_elapsed(unsigned long data)
282 {
283 	struct drm_device *dev = (struct drm_device *)data;
284 	struct vc4_dev *vc4 = to_vc4_dev(dev);
285 	uint32_t ct0ca, ct1ca;
286 	unsigned long irqflags;
287 	struct vc4_exec_info *bin_exec, *render_exec;
288 
289 	spin_lock_irqsave(&vc4->job_lock, irqflags);
290 
291 	bin_exec = vc4_first_bin_job(vc4);
292 	render_exec = vc4_first_render_job(vc4);
293 
294 	/* If idle, we can stop watching for hangs. */
295 	if (!bin_exec && !render_exec) {
296 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
297 		return;
298 	}
299 
300 	ct0ca = V3D_READ(V3D_CTNCA(0));
301 	ct1ca = V3D_READ(V3D_CTNCA(1));
302 
303 	/* If we've made any progress in execution, rearm the timer
304 	 * and wait.
305 	 */
306 	if ((bin_exec && ct0ca != bin_exec->last_ct0ca) ||
307 	    (render_exec && ct1ca != render_exec->last_ct1ca)) {
308 		if (bin_exec)
309 			bin_exec->last_ct0ca = ct0ca;
310 		if (render_exec)
311 			render_exec->last_ct1ca = ct1ca;
312 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
313 		vc4_queue_hangcheck(dev);
314 		return;
315 	}
316 
317 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
318 
319 	/* We've gone too long with no progress, reset.  This has to
320 	 * be done from a work struct, since resetting can sleep and
321 	 * this timer hook isn't allowed to.
322 	 */
323 	schedule_work(&vc4->hangcheck.reset_work);
324 }
325 
326 static void
327 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end)
328 {
329 	struct vc4_dev *vc4 = to_vc4_dev(dev);
330 
331 	/* Set the current and end address of the control list.
332 	 * Writing the end register is what starts the job.
333 	 */
334 	V3D_WRITE(V3D_CTNCA(thread), start);
335 	V3D_WRITE(V3D_CTNEA(thread), end);
336 }
337 
338 int
339 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns,
340 		   bool interruptible)
341 {
342 	struct vc4_dev *vc4 = to_vc4_dev(dev);
343 	int ret = 0;
344 	unsigned long timeout_expire;
345 	DEFINE_WAIT(wait);
346 
347 	if (vc4->finished_seqno >= seqno)
348 		return 0;
349 
350 	if (timeout_ns == 0)
351 		return -ETIME;
352 
353 	timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns);
354 
355 	trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns);
356 	for (;;) {
357 		prepare_to_wait(&vc4->job_wait_queue, &wait,
358 				interruptible ? TASK_INTERRUPTIBLE :
359 				TASK_UNINTERRUPTIBLE);
360 
361 		if (interruptible && signal_pending(current)) {
362 			ret = -ERESTARTSYS;
363 			break;
364 		}
365 
366 		if (vc4->finished_seqno >= seqno)
367 			break;
368 
369 		if (timeout_ns != ~0ull) {
370 			if (time_after_eq(jiffies, timeout_expire)) {
371 				ret = -ETIME;
372 				break;
373 			}
374 			schedule_timeout(timeout_expire - jiffies);
375 		} else {
376 			schedule();
377 		}
378 	}
379 
380 	finish_wait(&vc4->job_wait_queue, &wait);
381 	trace_vc4_wait_for_seqno_end(dev, seqno);
382 
383 	return ret;
384 }
385 
386 static void
387 vc4_flush_caches(struct drm_device *dev)
388 {
389 	struct vc4_dev *vc4 = to_vc4_dev(dev);
390 
391 	/* Flush the GPU L2 caches.  These caches sit on top of system
392 	 * L3 (the 128kb or so shared with the CPU), and are
393 	 * non-allocating in the L3.
394 	 */
395 	V3D_WRITE(V3D_L2CACTL,
396 		  V3D_L2CACTL_L2CCLR);
397 
398 	V3D_WRITE(V3D_SLCACTL,
399 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
400 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) |
401 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) |
402 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC));
403 }
404 
405 /* Sets the registers for the next job to be actually be executed in
406  * the hardware.
407  *
408  * The job_lock should be held during this.
409  */
410 void
411 vc4_submit_next_bin_job(struct drm_device *dev)
412 {
413 	struct vc4_dev *vc4 = to_vc4_dev(dev);
414 	struct vc4_exec_info *exec;
415 
416 again:
417 	exec = vc4_first_bin_job(vc4);
418 	if (!exec)
419 		return;
420 
421 	vc4_flush_caches(dev);
422 
423 	/* Either put the job in the binner if it uses the binner, or
424 	 * immediately move it to the to-be-rendered queue.
425 	 */
426 	if (exec->ct0ca != exec->ct0ea) {
427 		submit_cl(dev, 0, exec->ct0ca, exec->ct0ea);
428 	} else {
429 		vc4_move_job_to_render(dev, exec);
430 		goto again;
431 	}
432 }
433 
434 void
435 vc4_submit_next_render_job(struct drm_device *dev)
436 {
437 	struct vc4_dev *vc4 = to_vc4_dev(dev);
438 	struct vc4_exec_info *exec = vc4_first_render_job(vc4);
439 
440 	if (!exec)
441 		return;
442 
443 	submit_cl(dev, 1, exec->ct1ca, exec->ct1ea);
444 }
445 
446 void
447 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec)
448 {
449 	struct vc4_dev *vc4 = to_vc4_dev(dev);
450 	bool was_empty = list_empty(&vc4->render_job_list);
451 
452 	list_move_tail(&exec->head, &vc4->render_job_list);
453 	if (was_empty)
454 		vc4_submit_next_render_job(dev);
455 }
456 
457 static void
458 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno)
459 {
460 	struct vc4_bo *bo;
461 	unsigned i;
462 
463 	for (i = 0; i < exec->bo_count; i++) {
464 		bo = to_vc4_bo(&exec->bo[i]->base);
465 		bo->seqno = seqno;
466 
467 		reservation_object_add_shared_fence(bo->resv, exec->fence);
468 	}
469 
470 	list_for_each_entry(bo, &exec->unref_list, unref_head) {
471 		bo->seqno = seqno;
472 	}
473 
474 	for (i = 0; i < exec->rcl_write_bo_count; i++) {
475 		bo = to_vc4_bo(&exec->rcl_write_bo[i]->base);
476 		bo->write_seqno = seqno;
477 
478 		reservation_object_add_excl_fence(bo->resv, exec->fence);
479 	}
480 }
481 
482 static void
483 vc4_unlock_bo_reservations(struct drm_device *dev,
484 			   struct vc4_exec_info *exec,
485 			   struct ww_acquire_ctx *acquire_ctx)
486 {
487 	int i;
488 
489 	for (i = 0; i < exec->bo_count; i++) {
490 		struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
491 
492 		ww_mutex_unlock(&bo->resv->lock);
493 	}
494 
495 	ww_acquire_fini(acquire_ctx);
496 }
497 
498 /* Takes the reservation lock on all the BOs being referenced, so that
499  * at queue submit time we can update the reservations.
500  *
501  * We don't lock the RCL the tile alloc/state BOs, or overflow memory
502  * (all of which are on exec->unref_list).  They're entirely private
503  * to vc4, so we don't attach dma-buf fences to them.
504  */
505 static int
506 vc4_lock_bo_reservations(struct drm_device *dev,
507 			 struct vc4_exec_info *exec,
508 			 struct ww_acquire_ctx *acquire_ctx)
509 {
510 	int contended_lock = -1;
511 	int i, ret;
512 	struct vc4_bo *bo;
513 
514 	ww_acquire_init(acquire_ctx, &reservation_ww_class);
515 
516 retry:
517 	if (contended_lock != -1) {
518 		bo = to_vc4_bo(&exec->bo[contended_lock]->base);
519 		ret = ww_mutex_lock_slow_interruptible(&bo->resv->lock,
520 						       acquire_ctx);
521 		if (ret) {
522 			ww_acquire_done(acquire_ctx);
523 			return ret;
524 		}
525 	}
526 
527 	for (i = 0; i < exec->bo_count; i++) {
528 		if (i == contended_lock)
529 			continue;
530 
531 		bo = to_vc4_bo(&exec->bo[i]->base);
532 
533 		ret = ww_mutex_lock_interruptible(&bo->resv->lock, acquire_ctx);
534 		if (ret) {
535 			int j;
536 
537 			for (j = 0; j < i; j++) {
538 				bo = to_vc4_bo(&exec->bo[j]->base);
539 				ww_mutex_unlock(&bo->resv->lock);
540 			}
541 
542 			if (contended_lock != -1 && contended_lock >= i) {
543 				bo = to_vc4_bo(&exec->bo[contended_lock]->base);
544 
545 				ww_mutex_unlock(&bo->resv->lock);
546 			}
547 
548 			if (ret == -EDEADLK) {
549 				contended_lock = i;
550 				goto retry;
551 			}
552 
553 			ww_acquire_done(acquire_ctx);
554 			return ret;
555 		}
556 	}
557 
558 	ww_acquire_done(acquire_ctx);
559 
560 	/* Reserve space for our shared (read-only) fence references,
561 	 * before we commit the CL to the hardware.
562 	 */
563 	for (i = 0; i < exec->bo_count; i++) {
564 		bo = to_vc4_bo(&exec->bo[i]->base);
565 
566 		ret = reservation_object_reserve_shared(bo->resv);
567 		if (ret) {
568 			vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
569 			return ret;
570 		}
571 	}
572 
573 	return 0;
574 }
575 
576 /* Queues a struct vc4_exec_info for execution.  If no job is
577  * currently executing, then submits it.
578  *
579  * Unlike most GPUs, our hardware only handles one command list at a
580  * time.  To queue multiple jobs at once, we'd need to edit the
581  * previous command list to have a jump to the new one at the end, and
582  * then bump the end address.  That's a change for a later date,
583  * though.
584  */
585 static int
586 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec,
587 		 struct ww_acquire_ctx *acquire_ctx)
588 {
589 	struct vc4_dev *vc4 = to_vc4_dev(dev);
590 	uint64_t seqno;
591 	unsigned long irqflags;
592 	struct vc4_fence *fence;
593 
594 	fence = kzalloc(sizeof(*fence), GFP_KERNEL);
595 	if (!fence)
596 		return -ENOMEM;
597 	fence->dev = dev;
598 
599 	spin_lock_irqsave(&vc4->job_lock, irqflags);
600 
601 	seqno = ++vc4->emit_seqno;
602 	exec->seqno = seqno;
603 
604 	dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock,
605 		       vc4->dma_fence_context, exec->seqno);
606 	fence->seqno = exec->seqno;
607 	exec->fence = &fence->base;
608 
609 	vc4_update_bo_seqnos(exec, seqno);
610 
611 	vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
612 
613 	list_add_tail(&exec->head, &vc4->bin_job_list);
614 
615 	/* If no job was executing, kick ours off.  Otherwise, it'll
616 	 * get started when the previous job's flush done interrupt
617 	 * occurs.
618 	 */
619 	if (vc4_first_bin_job(vc4) == exec) {
620 		vc4_submit_next_bin_job(dev);
621 		vc4_queue_hangcheck(dev);
622 	}
623 
624 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
625 
626 	return 0;
627 }
628 
629 /**
630  * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects
631  * referenced by the job.
632  * @dev: DRM device
633  * @file_priv: DRM file for this fd
634  * @exec: V3D job being set up
635  *
636  * The command validator needs to reference BOs by their index within
637  * the submitted job's BO list.  This does the validation of the job's
638  * BO list and reference counting for the lifetime of the job.
639  *
640  * Note that this function doesn't need to unreference the BOs on
641  * failure, because that will happen at vc4_complete_exec() time.
642  */
643 static int
644 vc4_cl_lookup_bos(struct drm_device *dev,
645 		  struct drm_file *file_priv,
646 		  struct vc4_exec_info *exec)
647 {
648 	struct drm_vc4_submit_cl *args = exec->args;
649 	uint32_t *handles;
650 	int ret = 0;
651 	int i;
652 
653 	exec->bo_count = args->bo_handle_count;
654 
655 	if (!exec->bo_count) {
656 		/* See comment on bo_index for why we have to check
657 		 * this.
658 		 */
659 		DRM_ERROR("Rendering requires BOs to validate\n");
660 		return -EINVAL;
661 	}
662 
663 	exec->bo = drm_calloc_large(exec->bo_count,
664 				    sizeof(struct drm_gem_cma_object *));
665 	if (!exec->bo) {
666 		DRM_ERROR("Failed to allocate validated BO pointers\n");
667 		return -ENOMEM;
668 	}
669 
670 	handles = drm_malloc_ab(exec->bo_count, sizeof(uint32_t));
671 	if (!handles) {
672 		ret = -ENOMEM;
673 		DRM_ERROR("Failed to allocate incoming GEM handles\n");
674 		goto fail;
675 	}
676 
677 	if (copy_from_user(handles,
678 			   (void __user *)(uintptr_t)args->bo_handles,
679 			   exec->bo_count * sizeof(uint32_t))) {
680 		ret = -EFAULT;
681 		DRM_ERROR("Failed to copy in GEM handles\n");
682 		goto fail;
683 	}
684 
685 	spin_lock(&file_priv->table_lock);
686 	for (i = 0; i < exec->bo_count; i++) {
687 		struct drm_gem_object *bo = idr_find(&file_priv->object_idr,
688 						     handles[i]);
689 		if (!bo) {
690 			DRM_ERROR("Failed to look up GEM BO %d: %d\n",
691 				  i, handles[i]);
692 			ret = -EINVAL;
693 			spin_unlock(&file_priv->table_lock);
694 			goto fail;
695 		}
696 		drm_gem_object_reference(bo);
697 		exec->bo[i] = (struct drm_gem_cma_object *)bo;
698 	}
699 	spin_unlock(&file_priv->table_lock);
700 
701 fail:
702 	drm_free_large(handles);
703 	return ret;
704 }
705 
706 static int
707 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec)
708 {
709 	struct drm_vc4_submit_cl *args = exec->args;
710 	void *temp = NULL;
711 	void *bin;
712 	int ret = 0;
713 	uint32_t bin_offset = 0;
714 	uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size,
715 					     16);
716 	uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size;
717 	uint32_t exec_size = uniforms_offset + args->uniforms_size;
718 	uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) *
719 					  args->shader_rec_count);
720 	struct vc4_bo *bo;
721 
722 	if (shader_rec_offset < args->bin_cl_size ||
723 	    uniforms_offset < shader_rec_offset ||
724 	    exec_size < uniforms_offset ||
725 	    args->shader_rec_count >= (UINT_MAX /
726 					  sizeof(struct vc4_shader_state)) ||
727 	    temp_size < exec_size) {
728 		DRM_ERROR("overflow in exec arguments\n");
729 		ret = -EINVAL;
730 		goto fail;
731 	}
732 
733 	/* Allocate space where we'll store the copied in user command lists
734 	 * and shader records.
735 	 *
736 	 * We don't just copy directly into the BOs because we need to
737 	 * read the contents back for validation, and I think the
738 	 * bo->vaddr is uncached access.
739 	 */
740 	temp = drm_malloc_ab(temp_size, 1);
741 	if (!temp) {
742 		DRM_ERROR("Failed to allocate storage for copying "
743 			  "in bin/render CLs.\n");
744 		ret = -ENOMEM;
745 		goto fail;
746 	}
747 	bin = temp + bin_offset;
748 	exec->shader_rec_u = temp + shader_rec_offset;
749 	exec->uniforms_u = temp + uniforms_offset;
750 	exec->shader_state = temp + exec_size;
751 	exec->shader_state_size = args->shader_rec_count;
752 
753 	if (copy_from_user(bin,
754 			   (void __user *)(uintptr_t)args->bin_cl,
755 			   args->bin_cl_size)) {
756 		ret = -EFAULT;
757 		goto fail;
758 	}
759 
760 	if (copy_from_user(exec->shader_rec_u,
761 			   (void __user *)(uintptr_t)args->shader_rec,
762 			   args->shader_rec_size)) {
763 		ret = -EFAULT;
764 		goto fail;
765 	}
766 
767 	if (copy_from_user(exec->uniforms_u,
768 			   (void __user *)(uintptr_t)args->uniforms,
769 			   args->uniforms_size)) {
770 		ret = -EFAULT;
771 		goto fail;
772 	}
773 
774 	bo = vc4_bo_create(dev, exec_size, true);
775 	if (IS_ERR(bo)) {
776 		DRM_ERROR("Couldn't allocate BO for binning\n");
777 		ret = PTR_ERR(bo);
778 		goto fail;
779 	}
780 	exec->exec_bo = &bo->base;
781 
782 	list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head,
783 		      &exec->unref_list);
784 
785 	exec->ct0ca = exec->exec_bo->paddr + bin_offset;
786 
787 	exec->bin_u = bin;
788 
789 	exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset;
790 	exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset;
791 	exec->shader_rec_size = args->shader_rec_size;
792 
793 	exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset;
794 	exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset;
795 	exec->uniforms_size = args->uniforms_size;
796 
797 	ret = vc4_validate_bin_cl(dev,
798 				  exec->exec_bo->vaddr + bin_offset,
799 				  bin,
800 				  exec);
801 	if (ret)
802 		goto fail;
803 
804 	ret = vc4_validate_shader_recs(dev, exec);
805 	if (ret)
806 		goto fail;
807 
808 	/* Block waiting on any previous rendering into the CS's VBO,
809 	 * IB, or textures, so that pixels are actually written by the
810 	 * time we try to read them.
811 	 */
812 	ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true);
813 
814 fail:
815 	drm_free_large(temp);
816 	return ret;
817 }
818 
819 static void
820 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec)
821 {
822 	struct vc4_dev *vc4 = to_vc4_dev(dev);
823 	unsigned long irqflags;
824 	unsigned i;
825 
826 	/* If we got force-completed because of GPU reset rather than
827 	 * through our IRQ handler, signal the fence now.
828 	 */
829 	if (exec->fence)
830 		dma_fence_signal(exec->fence);
831 
832 	if (exec->bo) {
833 		for (i = 0; i < exec->bo_count; i++)
834 			drm_gem_object_unreference_unlocked(&exec->bo[i]->base);
835 		drm_free_large(exec->bo);
836 	}
837 
838 	while (!list_empty(&exec->unref_list)) {
839 		struct vc4_bo *bo = list_first_entry(&exec->unref_list,
840 						     struct vc4_bo, unref_head);
841 		list_del(&bo->unref_head);
842 		drm_gem_object_unreference_unlocked(&bo->base.base);
843 	}
844 
845 	/* Free up the allocation of any bin slots we used. */
846 	spin_lock_irqsave(&vc4->job_lock, irqflags);
847 	vc4->bin_alloc_used &= ~exec->bin_slots;
848 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
849 
850 	mutex_lock(&vc4->power_lock);
851 	if (--vc4->power_refcount == 0) {
852 		pm_runtime_mark_last_busy(&vc4->v3d->pdev->dev);
853 		pm_runtime_put_autosuspend(&vc4->v3d->pdev->dev);
854 	}
855 	mutex_unlock(&vc4->power_lock);
856 
857 	kfree(exec);
858 }
859 
860 void
861 vc4_job_handle_completed(struct vc4_dev *vc4)
862 {
863 	unsigned long irqflags;
864 	struct vc4_seqno_cb *cb, *cb_temp;
865 
866 	spin_lock_irqsave(&vc4->job_lock, irqflags);
867 	while (!list_empty(&vc4->job_done_list)) {
868 		struct vc4_exec_info *exec =
869 			list_first_entry(&vc4->job_done_list,
870 					 struct vc4_exec_info, head);
871 		list_del(&exec->head);
872 
873 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
874 		vc4_complete_exec(vc4->dev, exec);
875 		spin_lock_irqsave(&vc4->job_lock, irqflags);
876 	}
877 
878 	list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) {
879 		if (cb->seqno <= vc4->finished_seqno) {
880 			list_del_init(&cb->work.entry);
881 			schedule_work(&cb->work);
882 		}
883 	}
884 
885 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
886 }
887 
888 static void vc4_seqno_cb_work(struct work_struct *work)
889 {
890 	struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work);
891 
892 	cb->func(cb);
893 }
894 
895 int vc4_queue_seqno_cb(struct drm_device *dev,
896 		       struct vc4_seqno_cb *cb, uint64_t seqno,
897 		       void (*func)(struct vc4_seqno_cb *cb))
898 {
899 	struct vc4_dev *vc4 = to_vc4_dev(dev);
900 	int ret = 0;
901 	unsigned long irqflags;
902 
903 	cb->func = func;
904 	INIT_WORK(&cb->work, vc4_seqno_cb_work);
905 
906 	spin_lock_irqsave(&vc4->job_lock, irqflags);
907 	if (seqno > vc4->finished_seqno) {
908 		cb->seqno = seqno;
909 		list_add_tail(&cb->work.entry, &vc4->seqno_cb_list);
910 	} else {
911 		schedule_work(&cb->work);
912 	}
913 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
914 
915 	return ret;
916 }
917 
918 /* Scheduled when any job has been completed, this walks the list of
919  * jobs that had completed and unrefs their BOs and frees their exec
920  * structs.
921  */
922 static void
923 vc4_job_done_work(struct work_struct *work)
924 {
925 	struct vc4_dev *vc4 =
926 		container_of(work, struct vc4_dev, job_done_work);
927 
928 	vc4_job_handle_completed(vc4);
929 }
930 
931 static int
932 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev,
933 				uint64_t seqno,
934 				uint64_t *timeout_ns)
935 {
936 	unsigned long start = jiffies;
937 	int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true);
938 
939 	if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) {
940 		uint64_t delta = jiffies_to_nsecs(jiffies - start);
941 
942 		if (*timeout_ns >= delta)
943 			*timeout_ns -= delta;
944 	}
945 
946 	return ret;
947 }
948 
949 int
950 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data,
951 		     struct drm_file *file_priv)
952 {
953 	struct drm_vc4_wait_seqno *args = data;
954 
955 	return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno,
956 					       &args->timeout_ns);
957 }
958 
959 int
960 vc4_wait_bo_ioctl(struct drm_device *dev, void *data,
961 		  struct drm_file *file_priv)
962 {
963 	int ret;
964 	struct drm_vc4_wait_bo *args = data;
965 	struct drm_gem_object *gem_obj;
966 	struct vc4_bo *bo;
967 
968 	if (args->pad != 0)
969 		return -EINVAL;
970 
971 	gem_obj = drm_gem_object_lookup(file_priv, args->handle);
972 	if (!gem_obj) {
973 		DRM_ERROR("Failed to look up GEM BO %d\n", args->handle);
974 		return -EINVAL;
975 	}
976 	bo = to_vc4_bo(gem_obj);
977 
978 	ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno,
979 					      &args->timeout_ns);
980 
981 	drm_gem_object_unreference_unlocked(gem_obj);
982 	return ret;
983 }
984 
985 /**
986  * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4.
987  * @dev: DRM device
988  * @data: ioctl argument
989  * @file_priv: DRM file for this fd
990  *
991  * This is the main entrypoint for userspace to submit a 3D frame to
992  * the GPU.  Userspace provides the binner command list (if
993  * applicable), and the kernel sets up the render command list to draw
994  * to the framebuffer described in the ioctl, using the command lists
995  * that the 3D engine's binner will produce.
996  */
997 int
998 vc4_submit_cl_ioctl(struct drm_device *dev, void *data,
999 		    struct drm_file *file_priv)
1000 {
1001 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1002 	struct drm_vc4_submit_cl *args = data;
1003 	struct vc4_exec_info *exec;
1004 	struct ww_acquire_ctx acquire_ctx;
1005 	int ret = 0;
1006 
1007 	if ((args->flags & ~VC4_SUBMIT_CL_USE_CLEAR_COLOR) != 0) {
1008 		DRM_ERROR("Unknown flags: 0x%02x\n", args->flags);
1009 		return -EINVAL;
1010 	}
1011 
1012 	exec = kcalloc(1, sizeof(*exec), GFP_KERNEL);
1013 	if (!exec) {
1014 		DRM_ERROR("malloc failure on exec struct\n");
1015 		return -ENOMEM;
1016 	}
1017 
1018 	mutex_lock(&vc4->power_lock);
1019 	if (vc4->power_refcount++ == 0) {
1020 		ret = pm_runtime_get_sync(&vc4->v3d->pdev->dev);
1021 		if (ret < 0) {
1022 			mutex_unlock(&vc4->power_lock);
1023 			vc4->power_refcount--;
1024 			kfree(exec);
1025 			return ret;
1026 		}
1027 	}
1028 	mutex_unlock(&vc4->power_lock);
1029 
1030 	exec->args = args;
1031 	INIT_LIST_HEAD(&exec->unref_list);
1032 
1033 	ret = vc4_cl_lookup_bos(dev, file_priv, exec);
1034 	if (ret)
1035 		goto fail;
1036 
1037 	if (exec->args->bin_cl_size != 0) {
1038 		ret = vc4_get_bcl(dev, exec);
1039 		if (ret)
1040 			goto fail;
1041 	} else {
1042 		exec->ct0ca = 0;
1043 		exec->ct0ea = 0;
1044 	}
1045 
1046 	ret = vc4_get_rcl(dev, exec);
1047 	if (ret)
1048 		goto fail;
1049 
1050 	ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx);
1051 	if (ret)
1052 		goto fail;
1053 
1054 	/* Clear this out of the struct we'll be putting in the queue,
1055 	 * since it's part of our stack.
1056 	 */
1057 	exec->args = NULL;
1058 
1059 	ret = vc4_queue_submit(dev, exec, &acquire_ctx);
1060 	if (ret)
1061 		goto fail;
1062 
1063 	/* Return the seqno for our job. */
1064 	args->seqno = vc4->emit_seqno;
1065 
1066 	return 0;
1067 
1068 fail:
1069 	vc4_complete_exec(vc4->dev, exec);
1070 
1071 	return ret;
1072 }
1073 
1074 void
1075 vc4_gem_init(struct drm_device *dev)
1076 {
1077 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1078 
1079 	vc4->dma_fence_context = dma_fence_context_alloc(1);
1080 
1081 	INIT_LIST_HEAD(&vc4->bin_job_list);
1082 	INIT_LIST_HEAD(&vc4->render_job_list);
1083 	INIT_LIST_HEAD(&vc4->job_done_list);
1084 	INIT_LIST_HEAD(&vc4->seqno_cb_list);
1085 	spin_lock_init(&vc4->job_lock);
1086 
1087 	INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work);
1088 	setup_timer(&vc4->hangcheck.timer,
1089 		    vc4_hangcheck_elapsed,
1090 		    (unsigned long)dev);
1091 
1092 	INIT_WORK(&vc4->job_done_work, vc4_job_done_work);
1093 
1094 	mutex_init(&vc4->power_lock);
1095 }
1096 
1097 void
1098 vc4_gem_destroy(struct drm_device *dev)
1099 {
1100 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1101 
1102 	/* Waiting for exec to finish would need to be done before
1103 	 * unregistering V3D.
1104 	 */
1105 	WARN_ON(vc4->emit_seqno != vc4->finished_seqno);
1106 
1107 	/* V3D should already have disabled its interrupt and cleared
1108 	 * the overflow allocation registers.  Now free the object.
1109 	 */
1110 	if (vc4->bin_bo) {
1111 		drm_gem_object_put_unlocked(&vc4->bin_bo->base.base);
1112 		vc4->bin_bo = NULL;
1113 	}
1114 
1115 	if (vc4->hang_state)
1116 		vc4_free_hang_state(dev, vc4->hang_state);
1117 
1118 	vc4_bo_cache_destroy(dev);
1119 }
1120