1 /* 2 * Copyright © 2014 Broadcom 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/device.h> 28 #include <linux/io.h> 29 #include <linux/sched/signal.h> 30 #include <linux/dma-fence-array.h> 31 32 #include "uapi/drm/vc4_drm.h" 33 #include "vc4_drv.h" 34 #include "vc4_regs.h" 35 #include "vc4_trace.h" 36 37 static void 38 vc4_queue_hangcheck(struct drm_device *dev) 39 { 40 struct vc4_dev *vc4 = to_vc4_dev(dev); 41 42 mod_timer(&vc4->hangcheck.timer, 43 round_jiffies_up(jiffies + msecs_to_jiffies(100))); 44 } 45 46 struct vc4_hang_state { 47 struct drm_vc4_get_hang_state user_state; 48 49 u32 bo_count; 50 struct drm_gem_object **bo; 51 }; 52 53 static void 54 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state) 55 { 56 unsigned int i; 57 58 for (i = 0; i < state->user_state.bo_count; i++) 59 drm_gem_object_put_unlocked(state->bo[i]); 60 61 kfree(state); 62 } 63 64 int 65 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data, 66 struct drm_file *file_priv) 67 { 68 struct drm_vc4_get_hang_state *get_state = data; 69 struct drm_vc4_get_hang_state_bo *bo_state; 70 struct vc4_hang_state *kernel_state; 71 struct drm_vc4_get_hang_state *state; 72 struct vc4_dev *vc4 = to_vc4_dev(dev); 73 unsigned long irqflags; 74 u32 i; 75 int ret = 0; 76 77 spin_lock_irqsave(&vc4->job_lock, irqflags); 78 kernel_state = vc4->hang_state; 79 if (!kernel_state) { 80 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 81 return -ENOENT; 82 } 83 state = &kernel_state->user_state; 84 85 /* If the user's array isn't big enough, just return the 86 * required array size. 87 */ 88 if (get_state->bo_count < state->bo_count) { 89 get_state->bo_count = state->bo_count; 90 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 91 return 0; 92 } 93 94 vc4->hang_state = NULL; 95 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 96 97 /* Save the user's BO pointer, so we don't stomp it with the memcpy. */ 98 state->bo = get_state->bo; 99 memcpy(get_state, state, sizeof(*state)); 100 101 bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL); 102 if (!bo_state) { 103 ret = -ENOMEM; 104 goto err_free; 105 } 106 107 for (i = 0; i < state->bo_count; i++) { 108 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]); 109 u32 handle; 110 111 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i], 112 &handle); 113 114 if (ret) { 115 state->bo_count = i; 116 goto err_delete_handle; 117 } 118 bo_state[i].handle = handle; 119 bo_state[i].paddr = vc4_bo->base.paddr; 120 bo_state[i].size = vc4_bo->base.base.size; 121 } 122 123 if (copy_to_user(u64_to_user_ptr(get_state->bo), 124 bo_state, 125 state->bo_count * sizeof(*bo_state))) 126 ret = -EFAULT; 127 128 err_delete_handle: 129 if (ret) { 130 for (i = 0; i < state->bo_count; i++) 131 drm_gem_handle_delete(file_priv, bo_state[i].handle); 132 } 133 134 err_free: 135 vc4_free_hang_state(dev, kernel_state); 136 kfree(bo_state); 137 138 return ret; 139 } 140 141 static void 142 vc4_save_hang_state(struct drm_device *dev) 143 { 144 struct vc4_dev *vc4 = to_vc4_dev(dev); 145 struct drm_vc4_get_hang_state *state; 146 struct vc4_hang_state *kernel_state; 147 struct vc4_exec_info *exec[2]; 148 struct vc4_bo *bo; 149 unsigned long irqflags; 150 unsigned int i, j, k, unref_list_count; 151 152 kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL); 153 if (!kernel_state) 154 return; 155 156 state = &kernel_state->user_state; 157 158 spin_lock_irqsave(&vc4->job_lock, irqflags); 159 exec[0] = vc4_first_bin_job(vc4); 160 exec[1] = vc4_first_render_job(vc4); 161 if (!exec[0] && !exec[1]) { 162 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 163 return; 164 } 165 166 /* Get the bos from both binner and renderer into hang state. */ 167 state->bo_count = 0; 168 for (i = 0; i < 2; i++) { 169 if (!exec[i]) 170 continue; 171 172 unref_list_count = 0; 173 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) 174 unref_list_count++; 175 state->bo_count += exec[i]->bo_count + unref_list_count; 176 } 177 178 kernel_state->bo = kcalloc(state->bo_count, 179 sizeof(*kernel_state->bo), GFP_ATOMIC); 180 181 if (!kernel_state->bo) { 182 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 183 return; 184 } 185 186 k = 0; 187 for (i = 0; i < 2; i++) { 188 if (!exec[i]) 189 continue; 190 191 for (j = 0; j < exec[i]->bo_count; j++) { 192 bo = to_vc4_bo(&exec[i]->bo[j]->base); 193 194 /* Retain BOs just in case they were marked purgeable. 195 * This prevents the BO from being purged before 196 * someone had a chance to dump the hang state. 197 */ 198 WARN_ON(!refcount_read(&bo->usecnt)); 199 refcount_inc(&bo->usecnt); 200 drm_gem_object_get(&exec[i]->bo[j]->base); 201 kernel_state->bo[k++] = &exec[i]->bo[j]->base; 202 } 203 204 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) { 205 /* No need to retain BOs coming from the ->unref_list 206 * because they are naturally unpurgeable. 207 */ 208 drm_gem_object_get(&bo->base.base); 209 kernel_state->bo[k++] = &bo->base.base; 210 } 211 } 212 213 WARN_ON_ONCE(k != state->bo_count); 214 215 if (exec[0]) 216 state->start_bin = exec[0]->ct0ca; 217 if (exec[1]) 218 state->start_render = exec[1]->ct1ca; 219 220 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 221 222 state->ct0ca = V3D_READ(V3D_CTNCA(0)); 223 state->ct0ea = V3D_READ(V3D_CTNEA(0)); 224 225 state->ct1ca = V3D_READ(V3D_CTNCA(1)); 226 state->ct1ea = V3D_READ(V3D_CTNEA(1)); 227 228 state->ct0cs = V3D_READ(V3D_CTNCS(0)); 229 state->ct1cs = V3D_READ(V3D_CTNCS(1)); 230 231 state->ct0ra0 = V3D_READ(V3D_CT00RA0); 232 state->ct1ra0 = V3D_READ(V3D_CT01RA0); 233 234 state->bpca = V3D_READ(V3D_BPCA); 235 state->bpcs = V3D_READ(V3D_BPCS); 236 state->bpoa = V3D_READ(V3D_BPOA); 237 state->bpos = V3D_READ(V3D_BPOS); 238 239 state->vpmbase = V3D_READ(V3D_VPMBASE); 240 241 state->dbge = V3D_READ(V3D_DBGE); 242 state->fdbgo = V3D_READ(V3D_FDBGO); 243 state->fdbgb = V3D_READ(V3D_FDBGB); 244 state->fdbgr = V3D_READ(V3D_FDBGR); 245 state->fdbgs = V3D_READ(V3D_FDBGS); 246 state->errstat = V3D_READ(V3D_ERRSTAT); 247 248 /* We need to turn purgeable BOs into unpurgeable ones so that 249 * userspace has a chance to dump the hang state before the kernel 250 * decides to purge those BOs. 251 * Note that BO consistency at dump time cannot be guaranteed. For 252 * example, if the owner of these BOs decides to re-use them or mark 253 * them purgeable again there's nothing we can do to prevent it. 254 */ 255 for (i = 0; i < kernel_state->user_state.bo_count; i++) { 256 struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]); 257 258 if (bo->madv == __VC4_MADV_NOTSUPP) 259 continue; 260 261 mutex_lock(&bo->madv_lock); 262 if (!WARN_ON(bo->madv == __VC4_MADV_PURGED)) 263 bo->madv = VC4_MADV_WILLNEED; 264 refcount_dec(&bo->usecnt); 265 mutex_unlock(&bo->madv_lock); 266 } 267 268 spin_lock_irqsave(&vc4->job_lock, irqflags); 269 if (vc4->hang_state) { 270 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 271 vc4_free_hang_state(dev, kernel_state); 272 } else { 273 vc4->hang_state = kernel_state; 274 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 275 } 276 } 277 278 static void 279 vc4_reset(struct drm_device *dev) 280 { 281 struct vc4_dev *vc4 = to_vc4_dev(dev); 282 283 DRM_INFO("Resetting GPU.\n"); 284 285 mutex_lock(&vc4->power_lock); 286 if (vc4->power_refcount) { 287 /* Power the device off and back on the by dropping the 288 * reference on runtime PM. 289 */ 290 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev); 291 pm_runtime_get_sync(&vc4->v3d->pdev->dev); 292 } 293 mutex_unlock(&vc4->power_lock); 294 295 vc4_irq_reset(dev); 296 297 /* Rearm the hangcheck -- another job might have been waiting 298 * for our hung one to get kicked off, and vc4_irq_reset() 299 * would have started it. 300 */ 301 vc4_queue_hangcheck(dev); 302 } 303 304 static void 305 vc4_reset_work(struct work_struct *work) 306 { 307 struct vc4_dev *vc4 = 308 container_of(work, struct vc4_dev, hangcheck.reset_work); 309 310 vc4_save_hang_state(vc4->dev); 311 312 vc4_reset(vc4->dev); 313 } 314 315 static void 316 vc4_hangcheck_elapsed(struct timer_list *t) 317 { 318 struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer); 319 struct drm_device *dev = vc4->dev; 320 uint32_t ct0ca, ct1ca; 321 unsigned long irqflags; 322 struct vc4_exec_info *bin_exec, *render_exec; 323 324 spin_lock_irqsave(&vc4->job_lock, irqflags); 325 326 bin_exec = vc4_first_bin_job(vc4); 327 render_exec = vc4_first_render_job(vc4); 328 329 /* If idle, we can stop watching for hangs. */ 330 if (!bin_exec && !render_exec) { 331 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 332 return; 333 } 334 335 ct0ca = V3D_READ(V3D_CTNCA(0)); 336 ct1ca = V3D_READ(V3D_CTNCA(1)); 337 338 /* If we've made any progress in execution, rearm the timer 339 * and wait. 340 */ 341 if ((bin_exec && ct0ca != bin_exec->last_ct0ca) || 342 (render_exec && ct1ca != render_exec->last_ct1ca)) { 343 if (bin_exec) 344 bin_exec->last_ct0ca = ct0ca; 345 if (render_exec) 346 render_exec->last_ct1ca = ct1ca; 347 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 348 vc4_queue_hangcheck(dev); 349 return; 350 } 351 352 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 353 354 /* We've gone too long with no progress, reset. This has to 355 * be done from a work struct, since resetting can sleep and 356 * this timer hook isn't allowed to. 357 */ 358 schedule_work(&vc4->hangcheck.reset_work); 359 } 360 361 static void 362 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end) 363 { 364 struct vc4_dev *vc4 = to_vc4_dev(dev); 365 366 /* Set the current and end address of the control list. 367 * Writing the end register is what starts the job. 368 */ 369 V3D_WRITE(V3D_CTNCA(thread), start); 370 V3D_WRITE(V3D_CTNEA(thread), end); 371 } 372 373 int 374 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns, 375 bool interruptible) 376 { 377 struct vc4_dev *vc4 = to_vc4_dev(dev); 378 int ret = 0; 379 unsigned long timeout_expire; 380 DEFINE_WAIT(wait); 381 382 if (vc4->finished_seqno >= seqno) 383 return 0; 384 385 if (timeout_ns == 0) 386 return -ETIME; 387 388 timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns); 389 390 trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns); 391 for (;;) { 392 prepare_to_wait(&vc4->job_wait_queue, &wait, 393 interruptible ? TASK_INTERRUPTIBLE : 394 TASK_UNINTERRUPTIBLE); 395 396 if (interruptible && signal_pending(current)) { 397 ret = -ERESTARTSYS; 398 break; 399 } 400 401 if (vc4->finished_seqno >= seqno) 402 break; 403 404 if (timeout_ns != ~0ull) { 405 if (time_after_eq(jiffies, timeout_expire)) { 406 ret = -ETIME; 407 break; 408 } 409 schedule_timeout(timeout_expire - jiffies); 410 } else { 411 schedule(); 412 } 413 } 414 415 finish_wait(&vc4->job_wait_queue, &wait); 416 trace_vc4_wait_for_seqno_end(dev, seqno); 417 418 return ret; 419 } 420 421 static void 422 vc4_flush_caches(struct drm_device *dev) 423 { 424 struct vc4_dev *vc4 = to_vc4_dev(dev); 425 426 /* Flush the GPU L2 caches. These caches sit on top of system 427 * L3 (the 128kb or so shared with the CPU), and are 428 * non-allocating in the L3. 429 */ 430 V3D_WRITE(V3D_L2CACTL, 431 V3D_L2CACTL_L2CCLR); 432 433 V3D_WRITE(V3D_SLCACTL, 434 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | 435 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) | 436 VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) | 437 VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC)); 438 } 439 440 static void 441 vc4_flush_texture_caches(struct drm_device *dev) 442 { 443 struct vc4_dev *vc4 = to_vc4_dev(dev); 444 445 V3D_WRITE(V3D_L2CACTL, 446 V3D_L2CACTL_L2CCLR); 447 448 V3D_WRITE(V3D_SLCACTL, 449 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | 450 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC)); 451 } 452 453 /* Sets the registers for the next job to be actually be executed in 454 * the hardware. 455 * 456 * The job_lock should be held during this. 457 */ 458 void 459 vc4_submit_next_bin_job(struct drm_device *dev) 460 { 461 struct vc4_dev *vc4 = to_vc4_dev(dev); 462 struct vc4_exec_info *exec; 463 464 again: 465 exec = vc4_first_bin_job(vc4); 466 if (!exec) 467 return; 468 469 vc4_flush_caches(dev); 470 471 /* Only start the perfmon if it was not already started by a previous 472 * job. 473 */ 474 if (exec->perfmon && vc4->active_perfmon != exec->perfmon) 475 vc4_perfmon_start(vc4, exec->perfmon); 476 477 /* Either put the job in the binner if it uses the binner, or 478 * immediately move it to the to-be-rendered queue. 479 */ 480 if (exec->ct0ca != exec->ct0ea) { 481 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea); 482 } else { 483 struct vc4_exec_info *next; 484 485 vc4_move_job_to_render(dev, exec); 486 next = vc4_first_bin_job(vc4); 487 488 /* We can't start the next bin job if the previous job had a 489 * different perfmon instance attached to it. The same goes 490 * if one of them had a perfmon attached to it and the other 491 * one doesn't. 492 */ 493 if (next && next->perfmon == exec->perfmon) 494 goto again; 495 } 496 } 497 498 void 499 vc4_submit_next_render_job(struct drm_device *dev) 500 { 501 struct vc4_dev *vc4 = to_vc4_dev(dev); 502 struct vc4_exec_info *exec = vc4_first_render_job(vc4); 503 504 if (!exec) 505 return; 506 507 /* A previous RCL may have written to one of our textures, and 508 * our full cache flush at bin time may have occurred before 509 * that RCL completed. Flush the texture cache now, but not 510 * the instructions or uniforms (since we don't write those 511 * from an RCL). 512 */ 513 vc4_flush_texture_caches(dev); 514 515 submit_cl(dev, 1, exec->ct1ca, exec->ct1ea); 516 } 517 518 void 519 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec) 520 { 521 struct vc4_dev *vc4 = to_vc4_dev(dev); 522 bool was_empty = list_empty(&vc4->render_job_list); 523 524 list_move_tail(&exec->head, &vc4->render_job_list); 525 if (was_empty) 526 vc4_submit_next_render_job(dev); 527 } 528 529 static void 530 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno) 531 { 532 struct vc4_bo *bo; 533 unsigned i; 534 535 for (i = 0; i < exec->bo_count; i++) { 536 bo = to_vc4_bo(&exec->bo[i]->base); 537 bo->seqno = seqno; 538 539 reservation_object_add_shared_fence(bo->resv, exec->fence); 540 } 541 542 list_for_each_entry(bo, &exec->unref_list, unref_head) { 543 bo->seqno = seqno; 544 } 545 546 for (i = 0; i < exec->rcl_write_bo_count; i++) { 547 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base); 548 bo->write_seqno = seqno; 549 550 reservation_object_add_excl_fence(bo->resv, exec->fence); 551 } 552 } 553 554 static void 555 vc4_unlock_bo_reservations(struct drm_device *dev, 556 struct vc4_exec_info *exec, 557 struct ww_acquire_ctx *acquire_ctx) 558 { 559 int i; 560 561 for (i = 0; i < exec->bo_count; i++) { 562 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base); 563 564 ww_mutex_unlock(&bo->resv->lock); 565 } 566 567 ww_acquire_fini(acquire_ctx); 568 } 569 570 /* Takes the reservation lock on all the BOs being referenced, so that 571 * at queue submit time we can update the reservations. 572 * 573 * We don't lock the RCL the tile alloc/state BOs, or overflow memory 574 * (all of which are on exec->unref_list). They're entirely private 575 * to vc4, so we don't attach dma-buf fences to them. 576 */ 577 static int 578 vc4_lock_bo_reservations(struct drm_device *dev, 579 struct vc4_exec_info *exec, 580 struct ww_acquire_ctx *acquire_ctx) 581 { 582 int contended_lock = -1; 583 int i, ret; 584 struct vc4_bo *bo; 585 586 ww_acquire_init(acquire_ctx, &reservation_ww_class); 587 588 retry: 589 if (contended_lock != -1) { 590 bo = to_vc4_bo(&exec->bo[contended_lock]->base); 591 ret = ww_mutex_lock_slow_interruptible(&bo->resv->lock, 592 acquire_ctx); 593 if (ret) { 594 ww_acquire_done(acquire_ctx); 595 return ret; 596 } 597 } 598 599 for (i = 0; i < exec->bo_count; i++) { 600 if (i == contended_lock) 601 continue; 602 603 bo = to_vc4_bo(&exec->bo[i]->base); 604 605 ret = ww_mutex_lock_interruptible(&bo->resv->lock, acquire_ctx); 606 if (ret) { 607 int j; 608 609 for (j = 0; j < i; j++) { 610 bo = to_vc4_bo(&exec->bo[j]->base); 611 ww_mutex_unlock(&bo->resv->lock); 612 } 613 614 if (contended_lock != -1 && contended_lock >= i) { 615 bo = to_vc4_bo(&exec->bo[contended_lock]->base); 616 617 ww_mutex_unlock(&bo->resv->lock); 618 } 619 620 if (ret == -EDEADLK) { 621 contended_lock = i; 622 goto retry; 623 } 624 625 ww_acquire_done(acquire_ctx); 626 return ret; 627 } 628 } 629 630 ww_acquire_done(acquire_ctx); 631 632 /* Reserve space for our shared (read-only) fence references, 633 * before we commit the CL to the hardware. 634 */ 635 for (i = 0; i < exec->bo_count; i++) { 636 bo = to_vc4_bo(&exec->bo[i]->base); 637 638 ret = reservation_object_reserve_shared(bo->resv, 1); 639 if (ret) { 640 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 641 return ret; 642 } 643 } 644 645 return 0; 646 } 647 648 /* Queues a struct vc4_exec_info for execution. If no job is 649 * currently executing, then submits it. 650 * 651 * Unlike most GPUs, our hardware only handles one command list at a 652 * time. To queue multiple jobs at once, we'd need to edit the 653 * previous command list to have a jump to the new one at the end, and 654 * then bump the end address. That's a change for a later date, 655 * though. 656 */ 657 static int 658 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec, 659 struct ww_acquire_ctx *acquire_ctx, 660 struct drm_syncobj *out_sync) 661 { 662 struct vc4_dev *vc4 = to_vc4_dev(dev); 663 struct vc4_exec_info *renderjob; 664 uint64_t seqno; 665 unsigned long irqflags; 666 struct vc4_fence *fence; 667 668 fence = kzalloc(sizeof(*fence), GFP_KERNEL); 669 if (!fence) 670 return -ENOMEM; 671 fence->dev = dev; 672 673 spin_lock_irqsave(&vc4->job_lock, irqflags); 674 675 seqno = ++vc4->emit_seqno; 676 exec->seqno = seqno; 677 678 dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock, 679 vc4->dma_fence_context, exec->seqno); 680 fence->seqno = exec->seqno; 681 exec->fence = &fence->base; 682 683 if (out_sync) 684 drm_syncobj_replace_fence(out_sync, exec->fence); 685 686 vc4_update_bo_seqnos(exec, seqno); 687 688 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 689 690 list_add_tail(&exec->head, &vc4->bin_job_list); 691 692 /* If no bin job was executing and if the render job (if any) has the 693 * same perfmon as our job attached to it (or if both jobs don't have 694 * perfmon activated), then kick ours off. Otherwise, it'll get 695 * started when the previous job's flush/render done interrupt occurs. 696 */ 697 renderjob = vc4_first_render_job(vc4); 698 if (vc4_first_bin_job(vc4) == exec && 699 (!renderjob || renderjob->perfmon == exec->perfmon)) { 700 vc4_submit_next_bin_job(dev); 701 vc4_queue_hangcheck(dev); 702 } 703 704 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 705 706 return 0; 707 } 708 709 /** 710 * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects 711 * referenced by the job. 712 * @dev: DRM device 713 * @file_priv: DRM file for this fd 714 * @exec: V3D job being set up 715 * 716 * The command validator needs to reference BOs by their index within 717 * the submitted job's BO list. This does the validation of the job's 718 * BO list and reference counting for the lifetime of the job. 719 */ 720 static int 721 vc4_cl_lookup_bos(struct drm_device *dev, 722 struct drm_file *file_priv, 723 struct vc4_exec_info *exec) 724 { 725 struct drm_vc4_submit_cl *args = exec->args; 726 uint32_t *handles; 727 int ret = 0; 728 int i; 729 730 exec->bo_count = args->bo_handle_count; 731 732 if (!exec->bo_count) { 733 /* See comment on bo_index for why we have to check 734 * this. 735 */ 736 DRM_DEBUG("Rendering requires BOs to validate\n"); 737 return -EINVAL; 738 } 739 740 exec->bo = kvmalloc_array(exec->bo_count, 741 sizeof(struct drm_gem_cma_object *), 742 GFP_KERNEL | __GFP_ZERO); 743 if (!exec->bo) { 744 DRM_ERROR("Failed to allocate validated BO pointers\n"); 745 return -ENOMEM; 746 } 747 748 handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL); 749 if (!handles) { 750 ret = -ENOMEM; 751 DRM_ERROR("Failed to allocate incoming GEM handles\n"); 752 goto fail; 753 } 754 755 if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles), 756 exec->bo_count * sizeof(uint32_t))) { 757 ret = -EFAULT; 758 DRM_ERROR("Failed to copy in GEM handles\n"); 759 goto fail; 760 } 761 762 spin_lock(&file_priv->table_lock); 763 for (i = 0; i < exec->bo_count; i++) { 764 struct drm_gem_object *bo = idr_find(&file_priv->object_idr, 765 handles[i]); 766 if (!bo) { 767 DRM_DEBUG("Failed to look up GEM BO %d: %d\n", 768 i, handles[i]); 769 ret = -EINVAL; 770 break; 771 } 772 773 drm_gem_object_get(bo); 774 exec->bo[i] = (struct drm_gem_cma_object *)bo; 775 } 776 spin_unlock(&file_priv->table_lock); 777 778 if (ret) 779 goto fail_put_bo; 780 781 for (i = 0; i < exec->bo_count; i++) { 782 ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base)); 783 if (ret) 784 goto fail_dec_usecnt; 785 } 786 787 kvfree(handles); 788 return 0; 789 790 fail_dec_usecnt: 791 /* Decrease usecnt on acquired objects. 792 * We cannot rely on vc4_complete_exec() to release resources here, 793 * because vc4_complete_exec() has no information about which BO has 794 * had its ->usecnt incremented. 795 * To make things easier we just free everything explicitly and set 796 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release' 797 * step. 798 */ 799 for (i-- ; i >= 0; i--) 800 vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base)); 801 802 fail_put_bo: 803 /* Release any reference to acquired objects. */ 804 for (i = 0; i < exec->bo_count && exec->bo[i]; i++) 805 drm_gem_object_put_unlocked(&exec->bo[i]->base); 806 807 fail: 808 kvfree(handles); 809 kvfree(exec->bo); 810 exec->bo = NULL; 811 return ret; 812 } 813 814 static int 815 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec) 816 { 817 struct drm_vc4_submit_cl *args = exec->args; 818 void *temp = NULL; 819 void *bin; 820 int ret = 0; 821 uint32_t bin_offset = 0; 822 uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size, 823 16); 824 uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size; 825 uint32_t exec_size = uniforms_offset + args->uniforms_size; 826 uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) * 827 args->shader_rec_count); 828 struct vc4_bo *bo; 829 830 if (shader_rec_offset < args->bin_cl_size || 831 uniforms_offset < shader_rec_offset || 832 exec_size < uniforms_offset || 833 args->shader_rec_count >= (UINT_MAX / 834 sizeof(struct vc4_shader_state)) || 835 temp_size < exec_size) { 836 DRM_DEBUG("overflow in exec arguments\n"); 837 ret = -EINVAL; 838 goto fail; 839 } 840 841 /* Allocate space where we'll store the copied in user command lists 842 * and shader records. 843 * 844 * We don't just copy directly into the BOs because we need to 845 * read the contents back for validation, and I think the 846 * bo->vaddr is uncached access. 847 */ 848 temp = kvmalloc_array(temp_size, 1, GFP_KERNEL); 849 if (!temp) { 850 DRM_ERROR("Failed to allocate storage for copying " 851 "in bin/render CLs.\n"); 852 ret = -ENOMEM; 853 goto fail; 854 } 855 bin = temp + bin_offset; 856 exec->shader_rec_u = temp + shader_rec_offset; 857 exec->uniforms_u = temp + uniforms_offset; 858 exec->shader_state = temp + exec_size; 859 exec->shader_state_size = args->shader_rec_count; 860 861 if (copy_from_user(bin, 862 u64_to_user_ptr(args->bin_cl), 863 args->bin_cl_size)) { 864 ret = -EFAULT; 865 goto fail; 866 } 867 868 if (copy_from_user(exec->shader_rec_u, 869 u64_to_user_ptr(args->shader_rec), 870 args->shader_rec_size)) { 871 ret = -EFAULT; 872 goto fail; 873 } 874 875 if (copy_from_user(exec->uniforms_u, 876 u64_to_user_ptr(args->uniforms), 877 args->uniforms_size)) { 878 ret = -EFAULT; 879 goto fail; 880 } 881 882 bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL); 883 if (IS_ERR(bo)) { 884 DRM_ERROR("Couldn't allocate BO for binning\n"); 885 ret = PTR_ERR(bo); 886 goto fail; 887 } 888 exec->exec_bo = &bo->base; 889 890 list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head, 891 &exec->unref_list); 892 893 exec->ct0ca = exec->exec_bo->paddr + bin_offset; 894 895 exec->bin_u = bin; 896 897 exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset; 898 exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset; 899 exec->shader_rec_size = args->shader_rec_size; 900 901 exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset; 902 exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset; 903 exec->uniforms_size = args->uniforms_size; 904 905 ret = vc4_validate_bin_cl(dev, 906 exec->exec_bo->vaddr + bin_offset, 907 bin, 908 exec); 909 if (ret) 910 goto fail; 911 912 ret = vc4_validate_shader_recs(dev, exec); 913 if (ret) 914 goto fail; 915 916 /* Block waiting on any previous rendering into the CS's VBO, 917 * IB, or textures, so that pixels are actually written by the 918 * time we try to read them. 919 */ 920 ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true); 921 922 fail: 923 kvfree(temp); 924 return ret; 925 } 926 927 static void 928 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec) 929 { 930 struct vc4_dev *vc4 = to_vc4_dev(dev); 931 unsigned long irqflags; 932 unsigned i; 933 934 /* If we got force-completed because of GPU reset rather than 935 * through our IRQ handler, signal the fence now. 936 */ 937 if (exec->fence) { 938 dma_fence_signal(exec->fence); 939 dma_fence_put(exec->fence); 940 } 941 942 if (exec->bo) { 943 for (i = 0; i < exec->bo_count; i++) { 944 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base); 945 946 vc4_bo_dec_usecnt(bo); 947 drm_gem_object_put_unlocked(&exec->bo[i]->base); 948 } 949 kvfree(exec->bo); 950 } 951 952 while (!list_empty(&exec->unref_list)) { 953 struct vc4_bo *bo = list_first_entry(&exec->unref_list, 954 struct vc4_bo, unref_head); 955 list_del(&bo->unref_head); 956 drm_gem_object_put_unlocked(&bo->base.base); 957 } 958 959 /* Free up the allocation of any bin slots we used. */ 960 spin_lock_irqsave(&vc4->job_lock, irqflags); 961 vc4->bin_alloc_used &= ~exec->bin_slots; 962 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 963 964 /* Release the reference we had on the perf monitor. */ 965 vc4_perfmon_put(exec->perfmon); 966 967 mutex_lock(&vc4->power_lock); 968 if (--vc4->power_refcount == 0) { 969 pm_runtime_mark_last_busy(&vc4->v3d->pdev->dev); 970 pm_runtime_put_autosuspend(&vc4->v3d->pdev->dev); 971 } 972 mutex_unlock(&vc4->power_lock); 973 974 kfree(exec); 975 } 976 977 void 978 vc4_job_handle_completed(struct vc4_dev *vc4) 979 { 980 unsigned long irqflags; 981 struct vc4_seqno_cb *cb, *cb_temp; 982 983 spin_lock_irqsave(&vc4->job_lock, irqflags); 984 while (!list_empty(&vc4->job_done_list)) { 985 struct vc4_exec_info *exec = 986 list_first_entry(&vc4->job_done_list, 987 struct vc4_exec_info, head); 988 list_del(&exec->head); 989 990 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 991 vc4_complete_exec(vc4->dev, exec); 992 spin_lock_irqsave(&vc4->job_lock, irqflags); 993 } 994 995 list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) { 996 if (cb->seqno <= vc4->finished_seqno) { 997 list_del_init(&cb->work.entry); 998 schedule_work(&cb->work); 999 } 1000 } 1001 1002 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 1003 } 1004 1005 static void vc4_seqno_cb_work(struct work_struct *work) 1006 { 1007 struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work); 1008 1009 cb->func(cb); 1010 } 1011 1012 int vc4_queue_seqno_cb(struct drm_device *dev, 1013 struct vc4_seqno_cb *cb, uint64_t seqno, 1014 void (*func)(struct vc4_seqno_cb *cb)) 1015 { 1016 struct vc4_dev *vc4 = to_vc4_dev(dev); 1017 int ret = 0; 1018 unsigned long irqflags; 1019 1020 cb->func = func; 1021 INIT_WORK(&cb->work, vc4_seqno_cb_work); 1022 1023 spin_lock_irqsave(&vc4->job_lock, irqflags); 1024 if (seqno > vc4->finished_seqno) { 1025 cb->seqno = seqno; 1026 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list); 1027 } else { 1028 schedule_work(&cb->work); 1029 } 1030 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 1031 1032 return ret; 1033 } 1034 1035 /* Scheduled when any job has been completed, this walks the list of 1036 * jobs that had completed and unrefs their BOs and frees their exec 1037 * structs. 1038 */ 1039 static void 1040 vc4_job_done_work(struct work_struct *work) 1041 { 1042 struct vc4_dev *vc4 = 1043 container_of(work, struct vc4_dev, job_done_work); 1044 1045 vc4_job_handle_completed(vc4); 1046 } 1047 1048 static int 1049 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev, 1050 uint64_t seqno, 1051 uint64_t *timeout_ns) 1052 { 1053 unsigned long start = jiffies; 1054 int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true); 1055 1056 if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) { 1057 uint64_t delta = jiffies_to_nsecs(jiffies - start); 1058 1059 if (*timeout_ns >= delta) 1060 *timeout_ns -= delta; 1061 } 1062 1063 return ret; 1064 } 1065 1066 int 1067 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data, 1068 struct drm_file *file_priv) 1069 { 1070 struct drm_vc4_wait_seqno *args = data; 1071 1072 return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno, 1073 &args->timeout_ns); 1074 } 1075 1076 int 1077 vc4_wait_bo_ioctl(struct drm_device *dev, void *data, 1078 struct drm_file *file_priv) 1079 { 1080 int ret; 1081 struct drm_vc4_wait_bo *args = data; 1082 struct drm_gem_object *gem_obj; 1083 struct vc4_bo *bo; 1084 1085 if (args->pad != 0) 1086 return -EINVAL; 1087 1088 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 1089 if (!gem_obj) { 1090 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle); 1091 return -EINVAL; 1092 } 1093 bo = to_vc4_bo(gem_obj); 1094 1095 ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno, 1096 &args->timeout_ns); 1097 1098 drm_gem_object_put_unlocked(gem_obj); 1099 return ret; 1100 } 1101 1102 /** 1103 * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4. 1104 * @dev: DRM device 1105 * @data: ioctl argument 1106 * @file_priv: DRM file for this fd 1107 * 1108 * This is the main entrypoint for userspace to submit a 3D frame to 1109 * the GPU. Userspace provides the binner command list (if 1110 * applicable), and the kernel sets up the render command list to draw 1111 * to the framebuffer described in the ioctl, using the command lists 1112 * that the 3D engine's binner will produce. 1113 */ 1114 int 1115 vc4_submit_cl_ioctl(struct drm_device *dev, void *data, 1116 struct drm_file *file_priv) 1117 { 1118 struct vc4_dev *vc4 = to_vc4_dev(dev); 1119 struct vc4_file *vc4file = file_priv->driver_priv; 1120 struct drm_vc4_submit_cl *args = data; 1121 struct drm_syncobj *out_sync = NULL; 1122 struct vc4_exec_info *exec; 1123 struct ww_acquire_ctx acquire_ctx; 1124 struct dma_fence *in_fence; 1125 int ret = 0; 1126 1127 if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR | 1128 VC4_SUBMIT_CL_FIXED_RCL_ORDER | 1129 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X | 1130 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) { 1131 DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags); 1132 return -EINVAL; 1133 } 1134 1135 if (args->pad2 != 0) { 1136 DRM_DEBUG("Invalid pad: 0x%08x\n", args->pad2); 1137 return -EINVAL; 1138 } 1139 1140 exec = kcalloc(1, sizeof(*exec), GFP_KERNEL); 1141 if (!exec) { 1142 DRM_ERROR("malloc failure on exec struct\n"); 1143 return -ENOMEM; 1144 } 1145 1146 mutex_lock(&vc4->power_lock); 1147 if (vc4->power_refcount++ == 0) { 1148 ret = pm_runtime_get_sync(&vc4->v3d->pdev->dev); 1149 if (ret < 0) { 1150 mutex_unlock(&vc4->power_lock); 1151 vc4->power_refcount--; 1152 kfree(exec); 1153 return ret; 1154 } 1155 } 1156 mutex_unlock(&vc4->power_lock); 1157 1158 exec->args = args; 1159 INIT_LIST_HEAD(&exec->unref_list); 1160 1161 ret = vc4_cl_lookup_bos(dev, file_priv, exec); 1162 if (ret) 1163 goto fail; 1164 1165 if (args->perfmonid) { 1166 exec->perfmon = vc4_perfmon_find(vc4file, 1167 args->perfmonid); 1168 if (!exec->perfmon) { 1169 ret = -ENOENT; 1170 goto fail; 1171 } 1172 } 1173 1174 if (args->in_sync) { 1175 ret = drm_syncobj_find_fence(file_priv, args->in_sync, 1176 0, 0, &in_fence); 1177 if (ret) 1178 goto fail; 1179 1180 /* When the fence (or fence array) is exclusively from our 1181 * context we can skip the wait since jobs are executed in 1182 * order of their submission through this ioctl and this can 1183 * only have fences from a prior job. 1184 */ 1185 if (!dma_fence_match_context(in_fence, 1186 vc4->dma_fence_context)) { 1187 ret = dma_fence_wait(in_fence, true); 1188 if (ret) { 1189 dma_fence_put(in_fence); 1190 goto fail; 1191 } 1192 } 1193 1194 dma_fence_put(in_fence); 1195 } 1196 1197 if (exec->args->bin_cl_size != 0) { 1198 ret = vc4_get_bcl(dev, exec); 1199 if (ret) 1200 goto fail; 1201 } else { 1202 exec->ct0ca = 0; 1203 exec->ct0ea = 0; 1204 } 1205 1206 ret = vc4_get_rcl(dev, exec); 1207 if (ret) 1208 goto fail; 1209 1210 ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx); 1211 if (ret) 1212 goto fail; 1213 1214 if (args->out_sync) { 1215 out_sync = drm_syncobj_find(file_priv, args->out_sync); 1216 if (!out_sync) { 1217 ret = -EINVAL; 1218 goto fail; 1219 } 1220 1221 /* We replace the fence in out_sync in vc4_queue_submit since 1222 * the render job could execute immediately after that call. 1223 * If it finishes before our ioctl processing resumes the 1224 * render job fence could already have been freed. 1225 */ 1226 } 1227 1228 /* Clear this out of the struct we'll be putting in the queue, 1229 * since it's part of our stack. 1230 */ 1231 exec->args = NULL; 1232 1233 ret = vc4_queue_submit(dev, exec, &acquire_ctx, out_sync); 1234 1235 /* The syncobj isn't part of the exec data and we need to free our 1236 * reference even if job submission failed. 1237 */ 1238 if (out_sync) 1239 drm_syncobj_put(out_sync); 1240 1241 if (ret) 1242 goto fail; 1243 1244 /* Return the seqno for our job. */ 1245 args->seqno = vc4->emit_seqno; 1246 1247 return 0; 1248 1249 fail: 1250 vc4_complete_exec(vc4->dev, exec); 1251 1252 return ret; 1253 } 1254 1255 void 1256 vc4_gem_init(struct drm_device *dev) 1257 { 1258 struct vc4_dev *vc4 = to_vc4_dev(dev); 1259 1260 vc4->dma_fence_context = dma_fence_context_alloc(1); 1261 1262 INIT_LIST_HEAD(&vc4->bin_job_list); 1263 INIT_LIST_HEAD(&vc4->render_job_list); 1264 INIT_LIST_HEAD(&vc4->job_done_list); 1265 INIT_LIST_HEAD(&vc4->seqno_cb_list); 1266 spin_lock_init(&vc4->job_lock); 1267 1268 INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work); 1269 timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0); 1270 1271 INIT_WORK(&vc4->job_done_work, vc4_job_done_work); 1272 1273 mutex_init(&vc4->power_lock); 1274 1275 INIT_LIST_HEAD(&vc4->purgeable.list); 1276 mutex_init(&vc4->purgeable.lock); 1277 } 1278 1279 void 1280 vc4_gem_destroy(struct drm_device *dev) 1281 { 1282 struct vc4_dev *vc4 = to_vc4_dev(dev); 1283 1284 /* Waiting for exec to finish would need to be done before 1285 * unregistering V3D. 1286 */ 1287 WARN_ON(vc4->emit_seqno != vc4->finished_seqno); 1288 1289 /* V3D should already have disabled its interrupt and cleared 1290 * the overflow allocation registers. Now free the object. 1291 */ 1292 if (vc4->bin_bo) { 1293 drm_gem_object_put_unlocked(&vc4->bin_bo->base.base); 1294 vc4->bin_bo = NULL; 1295 } 1296 1297 if (vc4->hang_state) 1298 vc4_free_hang_state(dev, vc4->hang_state); 1299 } 1300 1301 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data, 1302 struct drm_file *file_priv) 1303 { 1304 struct drm_vc4_gem_madvise *args = data; 1305 struct drm_gem_object *gem_obj; 1306 struct vc4_bo *bo; 1307 int ret; 1308 1309 switch (args->madv) { 1310 case VC4_MADV_DONTNEED: 1311 case VC4_MADV_WILLNEED: 1312 break; 1313 default: 1314 return -EINVAL; 1315 } 1316 1317 if (args->pad != 0) 1318 return -EINVAL; 1319 1320 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 1321 if (!gem_obj) { 1322 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle); 1323 return -ENOENT; 1324 } 1325 1326 bo = to_vc4_bo(gem_obj); 1327 1328 /* Only BOs exposed to userspace can be purged. */ 1329 if (bo->madv == __VC4_MADV_NOTSUPP) { 1330 DRM_DEBUG("madvise not supported on this BO\n"); 1331 ret = -EINVAL; 1332 goto out_put_gem; 1333 } 1334 1335 /* Not sure it's safe to purge imported BOs. Let's just assume it's 1336 * not until proven otherwise. 1337 */ 1338 if (gem_obj->import_attach) { 1339 DRM_DEBUG("madvise not supported on imported BOs\n"); 1340 ret = -EINVAL; 1341 goto out_put_gem; 1342 } 1343 1344 mutex_lock(&bo->madv_lock); 1345 1346 if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED && 1347 !refcount_read(&bo->usecnt)) { 1348 /* If the BO is about to be marked as purgeable, is not used 1349 * and is not already purgeable or purged, add it to the 1350 * purgeable list. 1351 */ 1352 vc4_bo_add_to_purgeable_pool(bo); 1353 } else if (args->madv == VC4_MADV_WILLNEED && 1354 bo->madv == VC4_MADV_DONTNEED && 1355 !refcount_read(&bo->usecnt)) { 1356 /* The BO has not been purged yet, just remove it from 1357 * the purgeable list. 1358 */ 1359 vc4_bo_remove_from_purgeable_pool(bo); 1360 } 1361 1362 /* Save the purged state. */ 1363 args->retained = bo->madv != __VC4_MADV_PURGED; 1364 1365 /* Update internal madv state only if the bo was not purged. */ 1366 if (bo->madv != __VC4_MADV_PURGED) 1367 bo->madv = args->madv; 1368 1369 mutex_unlock(&bo->madv_lock); 1370 1371 ret = 0; 1372 1373 out_put_gem: 1374 drm_gem_object_put_unlocked(gem_obj); 1375 1376 return ret; 1377 } 1378