1 /* 2 * Copyright © 2014 Broadcom 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/device.h> 28 #include <linux/io.h> 29 #include <linux/sched/signal.h> 30 31 #include "uapi/drm/vc4_drm.h" 32 #include "vc4_drv.h" 33 #include "vc4_regs.h" 34 #include "vc4_trace.h" 35 36 static void 37 vc4_queue_hangcheck(struct drm_device *dev) 38 { 39 struct vc4_dev *vc4 = to_vc4_dev(dev); 40 41 mod_timer(&vc4->hangcheck.timer, 42 round_jiffies_up(jiffies + msecs_to_jiffies(100))); 43 } 44 45 struct vc4_hang_state { 46 struct drm_vc4_get_hang_state user_state; 47 48 u32 bo_count; 49 struct drm_gem_object **bo; 50 }; 51 52 static void 53 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state) 54 { 55 unsigned int i; 56 57 for (i = 0; i < state->user_state.bo_count; i++) 58 drm_gem_object_put_unlocked(state->bo[i]); 59 60 kfree(state); 61 } 62 63 int 64 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data, 65 struct drm_file *file_priv) 66 { 67 struct drm_vc4_get_hang_state *get_state = data; 68 struct drm_vc4_get_hang_state_bo *bo_state; 69 struct vc4_hang_state *kernel_state; 70 struct drm_vc4_get_hang_state *state; 71 struct vc4_dev *vc4 = to_vc4_dev(dev); 72 unsigned long irqflags; 73 u32 i; 74 int ret = 0; 75 76 spin_lock_irqsave(&vc4->job_lock, irqflags); 77 kernel_state = vc4->hang_state; 78 if (!kernel_state) { 79 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 80 return -ENOENT; 81 } 82 state = &kernel_state->user_state; 83 84 /* If the user's array isn't big enough, just return the 85 * required array size. 86 */ 87 if (get_state->bo_count < state->bo_count) { 88 get_state->bo_count = state->bo_count; 89 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 90 return 0; 91 } 92 93 vc4->hang_state = NULL; 94 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 95 96 /* Save the user's BO pointer, so we don't stomp it with the memcpy. */ 97 state->bo = get_state->bo; 98 memcpy(get_state, state, sizeof(*state)); 99 100 bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL); 101 if (!bo_state) { 102 ret = -ENOMEM; 103 goto err_free; 104 } 105 106 for (i = 0; i < state->bo_count; i++) { 107 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]); 108 u32 handle; 109 110 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i], 111 &handle); 112 113 if (ret) { 114 state->bo_count = i; 115 goto err_delete_handle; 116 } 117 bo_state[i].handle = handle; 118 bo_state[i].paddr = vc4_bo->base.paddr; 119 bo_state[i].size = vc4_bo->base.base.size; 120 } 121 122 if (copy_to_user(u64_to_user_ptr(get_state->bo), 123 bo_state, 124 state->bo_count * sizeof(*bo_state))) 125 ret = -EFAULT; 126 127 err_delete_handle: 128 if (ret) { 129 for (i = 0; i < state->bo_count; i++) 130 drm_gem_handle_delete(file_priv, bo_state[i].handle); 131 } 132 133 err_free: 134 vc4_free_hang_state(dev, kernel_state); 135 kfree(bo_state); 136 137 return ret; 138 } 139 140 static void 141 vc4_save_hang_state(struct drm_device *dev) 142 { 143 struct vc4_dev *vc4 = to_vc4_dev(dev); 144 struct drm_vc4_get_hang_state *state; 145 struct vc4_hang_state *kernel_state; 146 struct vc4_exec_info *exec[2]; 147 struct vc4_bo *bo; 148 unsigned long irqflags; 149 unsigned int i, j, k, unref_list_count; 150 151 kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL); 152 if (!kernel_state) 153 return; 154 155 state = &kernel_state->user_state; 156 157 spin_lock_irqsave(&vc4->job_lock, irqflags); 158 exec[0] = vc4_first_bin_job(vc4); 159 exec[1] = vc4_first_render_job(vc4); 160 if (!exec[0] && !exec[1]) { 161 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 162 return; 163 } 164 165 /* Get the bos from both binner and renderer into hang state. */ 166 state->bo_count = 0; 167 for (i = 0; i < 2; i++) { 168 if (!exec[i]) 169 continue; 170 171 unref_list_count = 0; 172 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) 173 unref_list_count++; 174 state->bo_count += exec[i]->bo_count + unref_list_count; 175 } 176 177 kernel_state->bo = kcalloc(state->bo_count, 178 sizeof(*kernel_state->bo), GFP_ATOMIC); 179 180 if (!kernel_state->bo) { 181 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 182 return; 183 } 184 185 k = 0; 186 for (i = 0; i < 2; i++) { 187 if (!exec[i]) 188 continue; 189 190 for (j = 0; j < exec[i]->bo_count; j++) { 191 bo = to_vc4_bo(&exec[i]->bo[j]->base); 192 193 /* Retain BOs just in case they were marked purgeable. 194 * This prevents the BO from being purged before 195 * someone had a chance to dump the hang state. 196 */ 197 WARN_ON(!refcount_read(&bo->usecnt)); 198 refcount_inc(&bo->usecnt); 199 drm_gem_object_get(&exec[i]->bo[j]->base); 200 kernel_state->bo[k++] = &exec[i]->bo[j]->base; 201 } 202 203 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) { 204 /* No need to retain BOs coming from the ->unref_list 205 * because they are naturally unpurgeable. 206 */ 207 drm_gem_object_get(&bo->base.base); 208 kernel_state->bo[k++] = &bo->base.base; 209 } 210 } 211 212 WARN_ON_ONCE(k != state->bo_count); 213 214 if (exec[0]) 215 state->start_bin = exec[0]->ct0ca; 216 if (exec[1]) 217 state->start_render = exec[1]->ct1ca; 218 219 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 220 221 state->ct0ca = V3D_READ(V3D_CTNCA(0)); 222 state->ct0ea = V3D_READ(V3D_CTNEA(0)); 223 224 state->ct1ca = V3D_READ(V3D_CTNCA(1)); 225 state->ct1ea = V3D_READ(V3D_CTNEA(1)); 226 227 state->ct0cs = V3D_READ(V3D_CTNCS(0)); 228 state->ct1cs = V3D_READ(V3D_CTNCS(1)); 229 230 state->ct0ra0 = V3D_READ(V3D_CT00RA0); 231 state->ct1ra0 = V3D_READ(V3D_CT01RA0); 232 233 state->bpca = V3D_READ(V3D_BPCA); 234 state->bpcs = V3D_READ(V3D_BPCS); 235 state->bpoa = V3D_READ(V3D_BPOA); 236 state->bpos = V3D_READ(V3D_BPOS); 237 238 state->vpmbase = V3D_READ(V3D_VPMBASE); 239 240 state->dbge = V3D_READ(V3D_DBGE); 241 state->fdbgo = V3D_READ(V3D_FDBGO); 242 state->fdbgb = V3D_READ(V3D_FDBGB); 243 state->fdbgr = V3D_READ(V3D_FDBGR); 244 state->fdbgs = V3D_READ(V3D_FDBGS); 245 state->errstat = V3D_READ(V3D_ERRSTAT); 246 247 /* We need to turn purgeable BOs into unpurgeable ones so that 248 * userspace has a chance to dump the hang state before the kernel 249 * decides to purge those BOs. 250 * Note that BO consistency at dump time cannot be guaranteed. For 251 * example, if the owner of these BOs decides to re-use them or mark 252 * them purgeable again there's nothing we can do to prevent it. 253 */ 254 for (i = 0; i < kernel_state->user_state.bo_count; i++) { 255 struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]); 256 257 if (bo->madv == __VC4_MADV_NOTSUPP) 258 continue; 259 260 mutex_lock(&bo->madv_lock); 261 if (!WARN_ON(bo->madv == __VC4_MADV_PURGED)) 262 bo->madv = VC4_MADV_WILLNEED; 263 refcount_dec(&bo->usecnt); 264 mutex_unlock(&bo->madv_lock); 265 } 266 267 spin_lock_irqsave(&vc4->job_lock, irqflags); 268 if (vc4->hang_state) { 269 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 270 vc4_free_hang_state(dev, kernel_state); 271 } else { 272 vc4->hang_state = kernel_state; 273 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 274 } 275 } 276 277 static void 278 vc4_reset(struct drm_device *dev) 279 { 280 struct vc4_dev *vc4 = to_vc4_dev(dev); 281 282 DRM_INFO("Resetting GPU.\n"); 283 284 mutex_lock(&vc4->power_lock); 285 if (vc4->power_refcount) { 286 /* Power the device off and back on the by dropping the 287 * reference on runtime PM. 288 */ 289 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev); 290 pm_runtime_get_sync(&vc4->v3d->pdev->dev); 291 } 292 mutex_unlock(&vc4->power_lock); 293 294 vc4_irq_reset(dev); 295 296 /* Rearm the hangcheck -- another job might have been waiting 297 * for our hung one to get kicked off, and vc4_irq_reset() 298 * would have started it. 299 */ 300 vc4_queue_hangcheck(dev); 301 } 302 303 static void 304 vc4_reset_work(struct work_struct *work) 305 { 306 struct vc4_dev *vc4 = 307 container_of(work, struct vc4_dev, hangcheck.reset_work); 308 309 vc4_save_hang_state(vc4->dev); 310 311 vc4_reset(vc4->dev); 312 } 313 314 static void 315 vc4_hangcheck_elapsed(struct timer_list *t) 316 { 317 struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer); 318 struct drm_device *dev = vc4->dev; 319 uint32_t ct0ca, ct1ca; 320 unsigned long irqflags; 321 struct vc4_exec_info *bin_exec, *render_exec; 322 323 spin_lock_irqsave(&vc4->job_lock, irqflags); 324 325 bin_exec = vc4_first_bin_job(vc4); 326 render_exec = vc4_first_render_job(vc4); 327 328 /* If idle, we can stop watching for hangs. */ 329 if (!bin_exec && !render_exec) { 330 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 331 return; 332 } 333 334 ct0ca = V3D_READ(V3D_CTNCA(0)); 335 ct1ca = V3D_READ(V3D_CTNCA(1)); 336 337 /* If we've made any progress in execution, rearm the timer 338 * and wait. 339 */ 340 if ((bin_exec && ct0ca != bin_exec->last_ct0ca) || 341 (render_exec && ct1ca != render_exec->last_ct1ca)) { 342 if (bin_exec) 343 bin_exec->last_ct0ca = ct0ca; 344 if (render_exec) 345 render_exec->last_ct1ca = ct1ca; 346 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 347 vc4_queue_hangcheck(dev); 348 return; 349 } 350 351 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 352 353 /* We've gone too long with no progress, reset. This has to 354 * be done from a work struct, since resetting can sleep and 355 * this timer hook isn't allowed to. 356 */ 357 schedule_work(&vc4->hangcheck.reset_work); 358 } 359 360 static void 361 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end) 362 { 363 struct vc4_dev *vc4 = to_vc4_dev(dev); 364 365 /* Set the current and end address of the control list. 366 * Writing the end register is what starts the job. 367 */ 368 V3D_WRITE(V3D_CTNCA(thread), start); 369 V3D_WRITE(V3D_CTNEA(thread), end); 370 } 371 372 int 373 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns, 374 bool interruptible) 375 { 376 struct vc4_dev *vc4 = to_vc4_dev(dev); 377 int ret = 0; 378 unsigned long timeout_expire; 379 DEFINE_WAIT(wait); 380 381 if (vc4->finished_seqno >= seqno) 382 return 0; 383 384 if (timeout_ns == 0) 385 return -ETIME; 386 387 timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns); 388 389 trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns); 390 for (;;) { 391 prepare_to_wait(&vc4->job_wait_queue, &wait, 392 interruptible ? TASK_INTERRUPTIBLE : 393 TASK_UNINTERRUPTIBLE); 394 395 if (interruptible && signal_pending(current)) { 396 ret = -ERESTARTSYS; 397 break; 398 } 399 400 if (vc4->finished_seqno >= seqno) 401 break; 402 403 if (timeout_ns != ~0ull) { 404 if (time_after_eq(jiffies, timeout_expire)) { 405 ret = -ETIME; 406 break; 407 } 408 schedule_timeout(timeout_expire - jiffies); 409 } else { 410 schedule(); 411 } 412 } 413 414 finish_wait(&vc4->job_wait_queue, &wait); 415 trace_vc4_wait_for_seqno_end(dev, seqno); 416 417 return ret; 418 } 419 420 static void 421 vc4_flush_caches(struct drm_device *dev) 422 { 423 struct vc4_dev *vc4 = to_vc4_dev(dev); 424 425 /* Flush the GPU L2 caches. These caches sit on top of system 426 * L3 (the 128kb or so shared with the CPU), and are 427 * non-allocating in the L3. 428 */ 429 V3D_WRITE(V3D_L2CACTL, 430 V3D_L2CACTL_L2CCLR); 431 432 V3D_WRITE(V3D_SLCACTL, 433 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | 434 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) | 435 VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) | 436 VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC)); 437 } 438 439 static void 440 vc4_flush_texture_caches(struct drm_device *dev) 441 { 442 struct vc4_dev *vc4 = to_vc4_dev(dev); 443 444 V3D_WRITE(V3D_L2CACTL, 445 V3D_L2CACTL_L2CCLR); 446 447 V3D_WRITE(V3D_SLCACTL, 448 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | 449 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC)); 450 } 451 452 /* Sets the registers for the next job to be actually be executed in 453 * the hardware. 454 * 455 * The job_lock should be held during this. 456 */ 457 void 458 vc4_submit_next_bin_job(struct drm_device *dev) 459 { 460 struct vc4_dev *vc4 = to_vc4_dev(dev); 461 struct vc4_exec_info *exec; 462 463 again: 464 exec = vc4_first_bin_job(vc4); 465 if (!exec) 466 return; 467 468 vc4_flush_caches(dev); 469 470 /* Either put the job in the binner if it uses the binner, or 471 * immediately move it to the to-be-rendered queue. 472 */ 473 if (exec->ct0ca != exec->ct0ea) { 474 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea); 475 } else { 476 vc4_move_job_to_render(dev, exec); 477 goto again; 478 } 479 } 480 481 void 482 vc4_submit_next_render_job(struct drm_device *dev) 483 { 484 struct vc4_dev *vc4 = to_vc4_dev(dev); 485 struct vc4_exec_info *exec = vc4_first_render_job(vc4); 486 487 if (!exec) 488 return; 489 490 /* A previous RCL may have written to one of our textures, and 491 * our full cache flush at bin time may have occurred before 492 * that RCL completed. Flush the texture cache now, but not 493 * the instructions or uniforms (since we don't write those 494 * from an RCL). 495 */ 496 vc4_flush_texture_caches(dev); 497 498 submit_cl(dev, 1, exec->ct1ca, exec->ct1ea); 499 } 500 501 void 502 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec) 503 { 504 struct vc4_dev *vc4 = to_vc4_dev(dev); 505 bool was_empty = list_empty(&vc4->render_job_list); 506 507 list_move_tail(&exec->head, &vc4->render_job_list); 508 if (was_empty) 509 vc4_submit_next_render_job(dev); 510 } 511 512 static void 513 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno) 514 { 515 struct vc4_bo *bo; 516 unsigned i; 517 518 for (i = 0; i < exec->bo_count; i++) { 519 bo = to_vc4_bo(&exec->bo[i]->base); 520 bo->seqno = seqno; 521 522 reservation_object_add_shared_fence(bo->resv, exec->fence); 523 } 524 525 list_for_each_entry(bo, &exec->unref_list, unref_head) { 526 bo->seqno = seqno; 527 } 528 529 for (i = 0; i < exec->rcl_write_bo_count; i++) { 530 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base); 531 bo->write_seqno = seqno; 532 533 reservation_object_add_excl_fence(bo->resv, exec->fence); 534 } 535 } 536 537 static void 538 vc4_unlock_bo_reservations(struct drm_device *dev, 539 struct vc4_exec_info *exec, 540 struct ww_acquire_ctx *acquire_ctx) 541 { 542 int i; 543 544 for (i = 0; i < exec->bo_count; i++) { 545 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base); 546 547 ww_mutex_unlock(&bo->resv->lock); 548 } 549 550 ww_acquire_fini(acquire_ctx); 551 } 552 553 /* Takes the reservation lock on all the BOs being referenced, so that 554 * at queue submit time we can update the reservations. 555 * 556 * We don't lock the RCL the tile alloc/state BOs, or overflow memory 557 * (all of which are on exec->unref_list). They're entirely private 558 * to vc4, so we don't attach dma-buf fences to them. 559 */ 560 static int 561 vc4_lock_bo_reservations(struct drm_device *dev, 562 struct vc4_exec_info *exec, 563 struct ww_acquire_ctx *acquire_ctx) 564 { 565 int contended_lock = -1; 566 int i, ret; 567 struct vc4_bo *bo; 568 569 ww_acquire_init(acquire_ctx, &reservation_ww_class); 570 571 retry: 572 if (contended_lock != -1) { 573 bo = to_vc4_bo(&exec->bo[contended_lock]->base); 574 ret = ww_mutex_lock_slow_interruptible(&bo->resv->lock, 575 acquire_ctx); 576 if (ret) { 577 ww_acquire_done(acquire_ctx); 578 return ret; 579 } 580 } 581 582 for (i = 0; i < exec->bo_count; i++) { 583 if (i == contended_lock) 584 continue; 585 586 bo = to_vc4_bo(&exec->bo[i]->base); 587 588 ret = ww_mutex_lock_interruptible(&bo->resv->lock, acquire_ctx); 589 if (ret) { 590 int j; 591 592 for (j = 0; j < i; j++) { 593 bo = to_vc4_bo(&exec->bo[j]->base); 594 ww_mutex_unlock(&bo->resv->lock); 595 } 596 597 if (contended_lock != -1 && contended_lock >= i) { 598 bo = to_vc4_bo(&exec->bo[contended_lock]->base); 599 600 ww_mutex_unlock(&bo->resv->lock); 601 } 602 603 if (ret == -EDEADLK) { 604 contended_lock = i; 605 goto retry; 606 } 607 608 ww_acquire_done(acquire_ctx); 609 return ret; 610 } 611 } 612 613 ww_acquire_done(acquire_ctx); 614 615 /* Reserve space for our shared (read-only) fence references, 616 * before we commit the CL to the hardware. 617 */ 618 for (i = 0; i < exec->bo_count; i++) { 619 bo = to_vc4_bo(&exec->bo[i]->base); 620 621 ret = reservation_object_reserve_shared(bo->resv); 622 if (ret) { 623 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 624 return ret; 625 } 626 } 627 628 return 0; 629 } 630 631 /* Queues a struct vc4_exec_info for execution. If no job is 632 * currently executing, then submits it. 633 * 634 * Unlike most GPUs, our hardware only handles one command list at a 635 * time. To queue multiple jobs at once, we'd need to edit the 636 * previous command list to have a jump to the new one at the end, and 637 * then bump the end address. That's a change for a later date, 638 * though. 639 */ 640 static int 641 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec, 642 struct ww_acquire_ctx *acquire_ctx) 643 { 644 struct vc4_dev *vc4 = to_vc4_dev(dev); 645 uint64_t seqno; 646 unsigned long irqflags; 647 struct vc4_fence *fence; 648 649 fence = kzalloc(sizeof(*fence), GFP_KERNEL); 650 if (!fence) 651 return -ENOMEM; 652 fence->dev = dev; 653 654 spin_lock_irqsave(&vc4->job_lock, irqflags); 655 656 seqno = ++vc4->emit_seqno; 657 exec->seqno = seqno; 658 659 dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock, 660 vc4->dma_fence_context, exec->seqno); 661 fence->seqno = exec->seqno; 662 exec->fence = &fence->base; 663 664 vc4_update_bo_seqnos(exec, seqno); 665 666 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 667 668 list_add_tail(&exec->head, &vc4->bin_job_list); 669 670 /* If no job was executing, kick ours off. Otherwise, it'll 671 * get started when the previous job's flush done interrupt 672 * occurs. 673 */ 674 if (vc4_first_bin_job(vc4) == exec) { 675 vc4_submit_next_bin_job(dev); 676 vc4_queue_hangcheck(dev); 677 } 678 679 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 680 681 return 0; 682 } 683 684 /** 685 * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects 686 * referenced by the job. 687 * @dev: DRM device 688 * @file_priv: DRM file for this fd 689 * @exec: V3D job being set up 690 * 691 * The command validator needs to reference BOs by their index within 692 * the submitted job's BO list. This does the validation of the job's 693 * BO list and reference counting for the lifetime of the job. 694 */ 695 static int 696 vc4_cl_lookup_bos(struct drm_device *dev, 697 struct drm_file *file_priv, 698 struct vc4_exec_info *exec) 699 { 700 struct drm_vc4_submit_cl *args = exec->args; 701 uint32_t *handles; 702 int ret = 0; 703 int i; 704 705 exec->bo_count = args->bo_handle_count; 706 707 if (!exec->bo_count) { 708 /* See comment on bo_index for why we have to check 709 * this. 710 */ 711 DRM_DEBUG("Rendering requires BOs to validate\n"); 712 return -EINVAL; 713 } 714 715 exec->bo = kvmalloc_array(exec->bo_count, 716 sizeof(struct drm_gem_cma_object *), 717 GFP_KERNEL | __GFP_ZERO); 718 if (!exec->bo) { 719 DRM_ERROR("Failed to allocate validated BO pointers\n"); 720 return -ENOMEM; 721 } 722 723 handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL); 724 if (!handles) { 725 ret = -ENOMEM; 726 DRM_ERROR("Failed to allocate incoming GEM handles\n"); 727 goto fail; 728 } 729 730 if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles), 731 exec->bo_count * sizeof(uint32_t))) { 732 ret = -EFAULT; 733 DRM_ERROR("Failed to copy in GEM handles\n"); 734 goto fail; 735 } 736 737 spin_lock(&file_priv->table_lock); 738 for (i = 0; i < exec->bo_count; i++) { 739 struct drm_gem_object *bo = idr_find(&file_priv->object_idr, 740 handles[i]); 741 if (!bo) { 742 DRM_DEBUG("Failed to look up GEM BO %d: %d\n", 743 i, handles[i]); 744 ret = -EINVAL; 745 break; 746 } 747 748 drm_gem_object_get(bo); 749 exec->bo[i] = (struct drm_gem_cma_object *)bo; 750 } 751 spin_unlock(&file_priv->table_lock); 752 753 if (ret) 754 goto fail_put_bo; 755 756 for (i = 0; i < exec->bo_count; i++) { 757 ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base)); 758 if (ret) 759 goto fail_dec_usecnt; 760 } 761 762 kvfree(handles); 763 return 0; 764 765 fail_dec_usecnt: 766 /* Decrease usecnt on acquired objects. 767 * We cannot rely on vc4_complete_exec() to release resources here, 768 * because vc4_complete_exec() has no information about which BO has 769 * had its ->usecnt incremented. 770 * To make things easier we just free everything explicitly and set 771 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release' 772 * step. 773 */ 774 for (i-- ; i >= 0; i--) 775 vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base)); 776 777 fail_put_bo: 778 /* Release any reference to acquired objects. */ 779 for (i = 0; i < exec->bo_count && exec->bo[i]; i++) 780 drm_gem_object_put_unlocked(&exec->bo[i]->base); 781 782 fail: 783 kvfree(handles); 784 kvfree(exec->bo); 785 exec->bo = NULL; 786 return ret; 787 } 788 789 static int 790 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec) 791 { 792 struct drm_vc4_submit_cl *args = exec->args; 793 void *temp = NULL; 794 void *bin; 795 int ret = 0; 796 uint32_t bin_offset = 0; 797 uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size, 798 16); 799 uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size; 800 uint32_t exec_size = uniforms_offset + args->uniforms_size; 801 uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) * 802 args->shader_rec_count); 803 struct vc4_bo *bo; 804 805 if (shader_rec_offset < args->bin_cl_size || 806 uniforms_offset < shader_rec_offset || 807 exec_size < uniforms_offset || 808 args->shader_rec_count >= (UINT_MAX / 809 sizeof(struct vc4_shader_state)) || 810 temp_size < exec_size) { 811 DRM_DEBUG("overflow in exec arguments\n"); 812 ret = -EINVAL; 813 goto fail; 814 } 815 816 /* Allocate space where we'll store the copied in user command lists 817 * and shader records. 818 * 819 * We don't just copy directly into the BOs because we need to 820 * read the contents back for validation, and I think the 821 * bo->vaddr is uncached access. 822 */ 823 temp = kvmalloc_array(temp_size, 1, GFP_KERNEL); 824 if (!temp) { 825 DRM_ERROR("Failed to allocate storage for copying " 826 "in bin/render CLs.\n"); 827 ret = -ENOMEM; 828 goto fail; 829 } 830 bin = temp + bin_offset; 831 exec->shader_rec_u = temp + shader_rec_offset; 832 exec->uniforms_u = temp + uniforms_offset; 833 exec->shader_state = temp + exec_size; 834 exec->shader_state_size = args->shader_rec_count; 835 836 if (copy_from_user(bin, 837 u64_to_user_ptr(args->bin_cl), 838 args->bin_cl_size)) { 839 ret = -EFAULT; 840 goto fail; 841 } 842 843 if (copy_from_user(exec->shader_rec_u, 844 u64_to_user_ptr(args->shader_rec), 845 args->shader_rec_size)) { 846 ret = -EFAULT; 847 goto fail; 848 } 849 850 if (copy_from_user(exec->uniforms_u, 851 u64_to_user_ptr(args->uniforms), 852 args->uniforms_size)) { 853 ret = -EFAULT; 854 goto fail; 855 } 856 857 bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL); 858 if (IS_ERR(bo)) { 859 DRM_ERROR("Couldn't allocate BO for binning\n"); 860 ret = PTR_ERR(bo); 861 goto fail; 862 } 863 exec->exec_bo = &bo->base; 864 865 list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head, 866 &exec->unref_list); 867 868 exec->ct0ca = exec->exec_bo->paddr + bin_offset; 869 870 exec->bin_u = bin; 871 872 exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset; 873 exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset; 874 exec->shader_rec_size = args->shader_rec_size; 875 876 exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset; 877 exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset; 878 exec->uniforms_size = args->uniforms_size; 879 880 ret = vc4_validate_bin_cl(dev, 881 exec->exec_bo->vaddr + bin_offset, 882 bin, 883 exec); 884 if (ret) 885 goto fail; 886 887 ret = vc4_validate_shader_recs(dev, exec); 888 if (ret) 889 goto fail; 890 891 /* Block waiting on any previous rendering into the CS's VBO, 892 * IB, or textures, so that pixels are actually written by the 893 * time we try to read them. 894 */ 895 ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true); 896 897 fail: 898 kvfree(temp); 899 return ret; 900 } 901 902 static void 903 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec) 904 { 905 struct vc4_dev *vc4 = to_vc4_dev(dev); 906 unsigned long irqflags; 907 unsigned i; 908 909 /* If we got force-completed because of GPU reset rather than 910 * through our IRQ handler, signal the fence now. 911 */ 912 if (exec->fence) { 913 dma_fence_signal(exec->fence); 914 dma_fence_put(exec->fence); 915 } 916 917 if (exec->bo) { 918 for (i = 0; i < exec->bo_count; i++) { 919 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base); 920 921 vc4_bo_dec_usecnt(bo); 922 drm_gem_object_put_unlocked(&exec->bo[i]->base); 923 } 924 kvfree(exec->bo); 925 } 926 927 while (!list_empty(&exec->unref_list)) { 928 struct vc4_bo *bo = list_first_entry(&exec->unref_list, 929 struct vc4_bo, unref_head); 930 list_del(&bo->unref_head); 931 drm_gem_object_put_unlocked(&bo->base.base); 932 } 933 934 /* Free up the allocation of any bin slots we used. */ 935 spin_lock_irqsave(&vc4->job_lock, irqflags); 936 vc4->bin_alloc_used &= ~exec->bin_slots; 937 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 938 939 mutex_lock(&vc4->power_lock); 940 if (--vc4->power_refcount == 0) { 941 pm_runtime_mark_last_busy(&vc4->v3d->pdev->dev); 942 pm_runtime_put_autosuspend(&vc4->v3d->pdev->dev); 943 } 944 mutex_unlock(&vc4->power_lock); 945 946 kfree(exec); 947 } 948 949 void 950 vc4_job_handle_completed(struct vc4_dev *vc4) 951 { 952 unsigned long irqflags; 953 struct vc4_seqno_cb *cb, *cb_temp; 954 955 spin_lock_irqsave(&vc4->job_lock, irqflags); 956 while (!list_empty(&vc4->job_done_list)) { 957 struct vc4_exec_info *exec = 958 list_first_entry(&vc4->job_done_list, 959 struct vc4_exec_info, head); 960 list_del(&exec->head); 961 962 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 963 vc4_complete_exec(vc4->dev, exec); 964 spin_lock_irqsave(&vc4->job_lock, irqflags); 965 } 966 967 list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) { 968 if (cb->seqno <= vc4->finished_seqno) { 969 list_del_init(&cb->work.entry); 970 schedule_work(&cb->work); 971 } 972 } 973 974 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 975 } 976 977 static void vc4_seqno_cb_work(struct work_struct *work) 978 { 979 struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work); 980 981 cb->func(cb); 982 } 983 984 int vc4_queue_seqno_cb(struct drm_device *dev, 985 struct vc4_seqno_cb *cb, uint64_t seqno, 986 void (*func)(struct vc4_seqno_cb *cb)) 987 { 988 struct vc4_dev *vc4 = to_vc4_dev(dev); 989 int ret = 0; 990 unsigned long irqflags; 991 992 cb->func = func; 993 INIT_WORK(&cb->work, vc4_seqno_cb_work); 994 995 spin_lock_irqsave(&vc4->job_lock, irqflags); 996 if (seqno > vc4->finished_seqno) { 997 cb->seqno = seqno; 998 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list); 999 } else { 1000 schedule_work(&cb->work); 1001 } 1002 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 1003 1004 return ret; 1005 } 1006 1007 /* Scheduled when any job has been completed, this walks the list of 1008 * jobs that had completed and unrefs their BOs and frees their exec 1009 * structs. 1010 */ 1011 static void 1012 vc4_job_done_work(struct work_struct *work) 1013 { 1014 struct vc4_dev *vc4 = 1015 container_of(work, struct vc4_dev, job_done_work); 1016 1017 vc4_job_handle_completed(vc4); 1018 } 1019 1020 static int 1021 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev, 1022 uint64_t seqno, 1023 uint64_t *timeout_ns) 1024 { 1025 unsigned long start = jiffies; 1026 int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true); 1027 1028 if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) { 1029 uint64_t delta = jiffies_to_nsecs(jiffies - start); 1030 1031 if (*timeout_ns >= delta) 1032 *timeout_ns -= delta; 1033 } 1034 1035 return ret; 1036 } 1037 1038 int 1039 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data, 1040 struct drm_file *file_priv) 1041 { 1042 struct drm_vc4_wait_seqno *args = data; 1043 1044 return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno, 1045 &args->timeout_ns); 1046 } 1047 1048 int 1049 vc4_wait_bo_ioctl(struct drm_device *dev, void *data, 1050 struct drm_file *file_priv) 1051 { 1052 int ret; 1053 struct drm_vc4_wait_bo *args = data; 1054 struct drm_gem_object *gem_obj; 1055 struct vc4_bo *bo; 1056 1057 if (args->pad != 0) 1058 return -EINVAL; 1059 1060 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 1061 if (!gem_obj) { 1062 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle); 1063 return -EINVAL; 1064 } 1065 bo = to_vc4_bo(gem_obj); 1066 1067 ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno, 1068 &args->timeout_ns); 1069 1070 drm_gem_object_put_unlocked(gem_obj); 1071 return ret; 1072 } 1073 1074 /** 1075 * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4. 1076 * @dev: DRM device 1077 * @data: ioctl argument 1078 * @file_priv: DRM file for this fd 1079 * 1080 * This is the main entrypoint for userspace to submit a 3D frame to 1081 * the GPU. Userspace provides the binner command list (if 1082 * applicable), and the kernel sets up the render command list to draw 1083 * to the framebuffer described in the ioctl, using the command lists 1084 * that the 3D engine's binner will produce. 1085 */ 1086 int 1087 vc4_submit_cl_ioctl(struct drm_device *dev, void *data, 1088 struct drm_file *file_priv) 1089 { 1090 struct vc4_dev *vc4 = to_vc4_dev(dev); 1091 struct drm_vc4_submit_cl *args = data; 1092 struct vc4_exec_info *exec; 1093 struct ww_acquire_ctx acquire_ctx; 1094 int ret = 0; 1095 1096 if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR | 1097 VC4_SUBMIT_CL_FIXED_RCL_ORDER | 1098 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X | 1099 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) { 1100 DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags); 1101 return -EINVAL; 1102 } 1103 1104 exec = kcalloc(1, sizeof(*exec), GFP_KERNEL); 1105 if (!exec) { 1106 DRM_ERROR("malloc failure on exec struct\n"); 1107 return -ENOMEM; 1108 } 1109 1110 mutex_lock(&vc4->power_lock); 1111 if (vc4->power_refcount++ == 0) { 1112 ret = pm_runtime_get_sync(&vc4->v3d->pdev->dev); 1113 if (ret < 0) { 1114 mutex_unlock(&vc4->power_lock); 1115 vc4->power_refcount--; 1116 kfree(exec); 1117 return ret; 1118 } 1119 } 1120 mutex_unlock(&vc4->power_lock); 1121 1122 exec->args = args; 1123 INIT_LIST_HEAD(&exec->unref_list); 1124 1125 ret = vc4_cl_lookup_bos(dev, file_priv, exec); 1126 if (ret) 1127 goto fail; 1128 1129 if (exec->args->bin_cl_size != 0) { 1130 ret = vc4_get_bcl(dev, exec); 1131 if (ret) 1132 goto fail; 1133 } else { 1134 exec->ct0ca = 0; 1135 exec->ct0ea = 0; 1136 } 1137 1138 ret = vc4_get_rcl(dev, exec); 1139 if (ret) 1140 goto fail; 1141 1142 ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx); 1143 if (ret) 1144 goto fail; 1145 1146 /* Clear this out of the struct we'll be putting in the queue, 1147 * since it's part of our stack. 1148 */ 1149 exec->args = NULL; 1150 1151 ret = vc4_queue_submit(dev, exec, &acquire_ctx); 1152 if (ret) 1153 goto fail; 1154 1155 /* Return the seqno for our job. */ 1156 args->seqno = vc4->emit_seqno; 1157 1158 return 0; 1159 1160 fail: 1161 vc4_complete_exec(vc4->dev, exec); 1162 1163 return ret; 1164 } 1165 1166 void 1167 vc4_gem_init(struct drm_device *dev) 1168 { 1169 struct vc4_dev *vc4 = to_vc4_dev(dev); 1170 1171 vc4->dma_fence_context = dma_fence_context_alloc(1); 1172 1173 INIT_LIST_HEAD(&vc4->bin_job_list); 1174 INIT_LIST_HEAD(&vc4->render_job_list); 1175 INIT_LIST_HEAD(&vc4->job_done_list); 1176 INIT_LIST_HEAD(&vc4->seqno_cb_list); 1177 spin_lock_init(&vc4->job_lock); 1178 1179 INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work); 1180 timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0); 1181 1182 INIT_WORK(&vc4->job_done_work, vc4_job_done_work); 1183 1184 mutex_init(&vc4->power_lock); 1185 1186 INIT_LIST_HEAD(&vc4->purgeable.list); 1187 mutex_init(&vc4->purgeable.lock); 1188 } 1189 1190 void 1191 vc4_gem_destroy(struct drm_device *dev) 1192 { 1193 struct vc4_dev *vc4 = to_vc4_dev(dev); 1194 1195 /* Waiting for exec to finish would need to be done before 1196 * unregistering V3D. 1197 */ 1198 WARN_ON(vc4->emit_seqno != vc4->finished_seqno); 1199 1200 /* V3D should already have disabled its interrupt and cleared 1201 * the overflow allocation registers. Now free the object. 1202 */ 1203 if (vc4->bin_bo) { 1204 drm_gem_object_put_unlocked(&vc4->bin_bo->base.base); 1205 vc4->bin_bo = NULL; 1206 } 1207 1208 if (vc4->hang_state) 1209 vc4_free_hang_state(dev, vc4->hang_state); 1210 } 1211 1212 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data, 1213 struct drm_file *file_priv) 1214 { 1215 struct drm_vc4_gem_madvise *args = data; 1216 struct drm_gem_object *gem_obj; 1217 struct vc4_bo *bo; 1218 int ret; 1219 1220 switch (args->madv) { 1221 case VC4_MADV_DONTNEED: 1222 case VC4_MADV_WILLNEED: 1223 break; 1224 default: 1225 return -EINVAL; 1226 } 1227 1228 if (args->pad != 0) 1229 return -EINVAL; 1230 1231 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 1232 if (!gem_obj) { 1233 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle); 1234 return -ENOENT; 1235 } 1236 1237 bo = to_vc4_bo(gem_obj); 1238 1239 /* Only BOs exposed to userspace can be purged. */ 1240 if (bo->madv == __VC4_MADV_NOTSUPP) { 1241 DRM_DEBUG("madvise not supported on this BO\n"); 1242 ret = -EINVAL; 1243 goto out_put_gem; 1244 } 1245 1246 /* Not sure it's safe to purge imported BOs. Let's just assume it's 1247 * not until proven otherwise. 1248 */ 1249 if (gem_obj->import_attach) { 1250 DRM_DEBUG("madvise not supported on imported BOs\n"); 1251 ret = -EINVAL; 1252 goto out_put_gem; 1253 } 1254 1255 mutex_lock(&bo->madv_lock); 1256 1257 if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED && 1258 !refcount_read(&bo->usecnt)) { 1259 /* If the BO is about to be marked as purgeable, is not used 1260 * and is not already purgeable or purged, add it to the 1261 * purgeable list. 1262 */ 1263 vc4_bo_add_to_purgeable_pool(bo); 1264 } else if (args->madv == VC4_MADV_WILLNEED && 1265 bo->madv == VC4_MADV_DONTNEED && 1266 !refcount_read(&bo->usecnt)) { 1267 /* The BO has not been purged yet, just remove it from 1268 * the purgeable list. 1269 */ 1270 vc4_bo_remove_from_purgeable_pool(bo); 1271 } 1272 1273 /* Save the purged state. */ 1274 args->retained = bo->madv != __VC4_MADV_PURGED; 1275 1276 /* Update internal madv state only if the bo was not purged. */ 1277 if (bo->madv != __VC4_MADV_PURGED) 1278 bo->madv = args->madv; 1279 1280 mutex_unlock(&bo->madv_lock); 1281 1282 ret = 0; 1283 1284 out_put_gem: 1285 drm_gem_object_put_unlocked(gem_obj); 1286 1287 return ret; 1288 } 1289