xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_gem.c (revision 82e6fdd6)
1 /*
2  * Copyright © 2014 Broadcom
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/device.h>
28 #include <linux/io.h>
29 #include <linux/sched/signal.h>
30 
31 #include "uapi/drm/vc4_drm.h"
32 #include "vc4_drv.h"
33 #include "vc4_regs.h"
34 #include "vc4_trace.h"
35 
36 static void
37 vc4_queue_hangcheck(struct drm_device *dev)
38 {
39 	struct vc4_dev *vc4 = to_vc4_dev(dev);
40 
41 	mod_timer(&vc4->hangcheck.timer,
42 		  round_jiffies_up(jiffies + msecs_to_jiffies(100)));
43 }
44 
45 struct vc4_hang_state {
46 	struct drm_vc4_get_hang_state user_state;
47 
48 	u32 bo_count;
49 	struct drm_gem_object **bo;
50 };
51 
52 static void
53 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state)
54 {
55 	unsigned int i;
56 
57 	for (i = 0; i < state->user_state.bo_count; i++)
58 		drm_gem_object_put_unlocked(state->bo[i]);
59 
60 	kfree(state);
61 }
62 
63 int
64 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data,
65 			 struct drm_file *file_priv)
66 {
67 	struct drm_vc4_get_hang_state *get_state = data;
68 	struct drm_vc4_get_hang_state_bo *bo_state;
69 	struct vc4_hang_state *kernel_state;
70 	struct drm_vc4_get_hang_state *state;
71 	struct vc4_dev *vc4 = to_vc4_dev(dev);
72 	unsigned long irqflags;
73 	u32 i;
74 	int ret = 0;
75 
76 	spin_lock_irqsave(&vc4->job_lock, irqflags);
77 	kernel_state = vc4->hang_state;
78 	if (!kernel_state) {
79 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
80 		return -ENOENT;
81 	}
82 	state = &kernel_state->user_state;
83 
84 	/* If the user's array isn't big enough, just return the
85 	 * required array size.
86 	 */
87 	if (get_state->bo_count < state->bo_count) {
88 		get_state->bo_count = state->bo_count;
89 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
90 		return 0;
91 	}
92 
93 	vc4->hang_state = NULL;
94 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
95 
96 	/* Save the user's BO pointer, so we don't stomp it with the memcpy. */
97 	state->bo = get_state->bo;
98 	memcpy(get_state, state, sizeof(*state));
99 
100 	bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL);
101 	if (!bo_state) {
102 		ret = -ENOMEM;
103 		goto err_free;
104 	}
105 
106 	for (i = 0; i < state->bo_count; i++) {
107 		struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]);
108 		u32 handle;
109 
110 		ret = drm_gem_handle_create(file_priv, kernel_state->bo[i],
111 					    &handle);
112 
113 		if (ret) {
114 			state->bo_count = i;
115 			goto err_delete_handle;
116 		}
117 		bo_state[i].handle = handle;
118 		bo_state[i].paddr = vc4_bo->base.paddr;
119 		bo_state[i].size = vc4_bo->base.base.size;
120 	}
121 
122 	if (copy_to_user(u64_to_user_ptr(get_state->bo),
123 			 bo_state,
124 			 state->bo_count * sizeof(*bo_state)))
125 		ret = -EFAULT;
126 
127 err_delete_handle:
128 	if (ret) {
129 		for (i = 0; i < state->bo_count; i++)
130 			drm_gem_handle_delete(file_priv, bo_state[i].handle);
131 	}
132 
133 err_free:
134 	vc4_free_hang_state(dev, kernel_state);
135 	kfree(bo_state);
136 
137 	return ret;
138 }
139 
140 static void
141 vc4_save_hang_state(struct drm_device *dev)
142 {
143 	struct vc4_dev *vc4 = to_vc4_dev(dev);
144 	struct drm_vc4_get_hang_state *state;
145 	struct vc4_hang_state *kernel_state;
146 	struct vc4_exec_info *exec[2];
147 	struct vc4_bo *bo;
148 	unsigned long irqflags;
149 	unsigned int i, j, k, unref_list_count;
150 
151 	kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL);
152 	if (!kernel_state)
153 		return;
154 
155 	state = &kernel_state->user_state;
156 
157 	spin_lock_irqsave(&vc4->job_lock, irqflags);
158 	exec[0] = vc4_first_bin_job(vc4);
159 	exec[1] = vc4_first_render_job(vc4);
160 	if (!exec[0] && !exec[1]) {
161 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
162 		return;
163 	}
164 
165 	/* Get the bos from both binner and renderer into hang state. */
166 	state->bo_count = 0;
167 	for (i = 0; i < 2; i++) {
168 		if (!exec[i])
169 			continue;
170 
171 		unref_list_count = 0;
172 		list_for_each_entry(bo, &exec[i]->unref_list, unref_head)
173 			unref_list_count++;
174 		state->bo_count += exec[i]->bo_count + unref_list_count;
175 	}
176 
177 	kernel_state->bo = kcalloc(state->bo_count,
178 				   sizeof(*kernel_state->bo), GFP_ATOMIC);
179 
180 	if (!kernel_state->bo) {
181 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
182 		return;
183 	}
184 
185 	k = 0;
186 	for (i = 0; i < 2; i++) {
187 		if (!exec[i])
188 			continue;
189 
190 		for (j = 0; j < exec[i]->bo_count; j++) {
191 			bo = to_vc4_bo(&exec[i]->bo[j]->base);
192 
193 			/* Retain BOs just in case they were marked purgeable.
194 			 * This prevents the BO from being purged before
195 			 * someone had a chance to dump the hang state.
196 			 */
197 			WARN_ON(!refcount_read(&bo->usecnt));
198 			refcount_inc(&bo->usecnt);
199 			drm_gem_object_get(&exec[i]->bo[j]->base);
200 			kernel_state->bo[k++] = &exec[i]->bo[j]->base;
201 		}
202 
203 		list_for_each_entry(bo, &exec[i]->unref_list, unref_head) {
204 			/* No need to retain BOs coming from the ->unref_list
205 			 * because they are naturally unpurgeable.
206 			 */
207 			drm_gem_object_get(&bo->base.base);
208 			kernel_state->bo[k++] = &bo->base.base;
209 		}
210 	}
211 
212 	WARN_ON_ONCE(k != state->bo_count);
213 
214 	if (exec[0])
215 		state->start_bin = exec[0]->ct0ca;
216 	if (exec[1])
217 		state->start_render = exec[1]->ct1ca;
218 
219 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
220 
221 	state->ct0ca = V3D_READ(V3D_CTNCA(0));
222 	state->ct0ea = V3D_READ(V3D_CTNEA(0));
223 
224 	state->ct1ca = V3D_READ(V3D_CTNCA(1));
225 	state->ct1ea = V3D_READ(V3D_CTNEA(1));
226 
227 	state->ct0cs = V3D_READ(V3D_CTNCS(0));
228 	state->ct1cs = V3D_READ(V3D_CTNCS(1));
229 
230 	state->ct0ra0 = V3D_READ(V3D_CT00RA0);
231 	state->ct1ra0 = V3D_READ(V3D_CT01RA0);
232 
233 	state->bpca = V3D_READ(V3D_BPCA);
234 	state->bpcs = V3D_READ(V3D_BPCS);
235 	state->bpoa = V3D_READ(V3D_BPOA);
236 	state->bpos = V3D_READ(V3D_BPOS);
237 
238 	state->vpmbase = V3D_READ(V3D_VPMBASE);
239 
240 	state->dbge = V3D_READ(V3D_DBGE);
241 	state->fdbgo = V3D_READ(V3D_FDBGO);
242 	state->fdbgb = V3D_READ(V3D_FDBGB);
243 	state->fdbgr = V3D_READ(V3D_FDBGR);
244 	state->fdbgs = V3D_READ(V3D_FDBGS);
245 	state->errstat = V3D_READ(V3D_ERRSTAT);
246 
247 	/* We need to turn purgeable BOs into unpurgeable ones so that
248 	 * userspace has a chance to dump the hang state before the kernel
249 	 * decides to purge those BOs.
250 	 * Note that BO consistency at dump time cannot be guaranteed. For
251 	 * example, if the owner of these BOs decides to re-use them or mark
252 	 * them purgeable again there's nothing we can do to prevent it.
253 	 */
254 	for (i = 0; i < kernel_state->user_state.bo_count; i++) {
255 		struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]);
256 
257 		if (bo->madv == __VC4_MADV_NOTSUPP)
258 			continue;
259 
260 		mutex_lock(&bo->madv_lock);
261 		if (!WARN_ON(bo->madv == __VC4_MADV_PURGED))
262 			bo->madv = VC4_MADV_WILLNEED;
263 		refcount_dec(&bo->usecnt);
264 		mutex_unlock(&bo->madv_lock);
265 	}
266 
267 	spin_lock_irqsave(&vc4->job_lock, irqflags);
268 	if (vc4->hang_state) {
269 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
270 		vc4_free_hang_state(dev, kernel_state);
271 	} else {
272 		vc4->hang_state = kernel_state;
273 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
274 	}
275 }
276 
277 static void
278 vc4_reset(struct drm_device *dev)
279 {
280 	struct vc4_dev *vc4 = to_vc4_dev(dev);
281 
282 	DRM_INFO("Resetting GPU.\n");
283 
284 	mutex_lock(&vc4->power_lock);
285 	if (vc4->power_refcount) {
286 		/* Power the device off and back on the by dropping the
287 		 * reference on runtime PM.
288 		 */
289 		pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev);
290 		pm_runtime_get_sync(&vc4->v3d->pdev->dev);
291 	}
292 	mutex_unlock(&vc4->power_lock);
293 
294 	vc4_irq_reset(dev);
295 
296 	/* Rearm the hangcheck -- another job might have been waiting
297 	 * for our hung one to get kicked off, and vc4_irq_reset()
298 	 * would have started it.
299 	 */
300 	vc4_queue_hangcheck(dev);
301 }
302 
303 static void
304 vc4_reset_work(struct work_struct *work)
305 {
306 	struct vc4_dev *vc4 =
307 		container_of(work, struct vc4_dev, hangcheck.reset_work);
308 
309 	vc4_save_hang_state(vc4->dev);
310 
311 	vc4_reset(vc4->dev);
312 }
313 
314 static void
315 vc4_hangcheck_elapsed(struct timer_list *t)
316 {
317 	struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer);
318 	struct drm_device *dev = vc4->dev;
319 	uint32_t ct0ca, ct1ca;
320 	unsigned long irqflags;
321 	struct vc4_exec_info *bin_exec, *render_exec;
322 
323 	spin_lock_irqsave(&vc4->job_lock, irqflags);
324 
325 	bin_exec = vc4_first_bin_job(vc4);
326 	render_exec = vc4_first_render_job(vc4);
327 
328 	/* If idle, we can stop watching for hangs. */
329 	if (!bin_exec && !render_exec) {
330 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
331 		return;
332 	}
333 
334 	ct0ca = V3D_READ(V3D_CTNCA(0));
335 	ct1ca = V3D_READ(V3D_CTNCA(1));
336 
337 	/* If we've made any progress in execution, rearm the timer
338 	 * and wait.
339 	 */
340 	if ((bin_exec && ct0ca != bin_exec->last_ct0ca) ||
341 	    (render_exec && ct1ca != render_exec->last_ct1ca)) {
342 		if (bin_exec)
343 			bin_exec->last_ct0ca = ct0ca;
344 		if (render_exec)
345 			render_exec->last_ct1ca = ct1ca;
346 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
347 		vc4_queue_hangcheck(dev);
348 		return;
349 	}
350 
351 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
352 
353 	/* We've gone too long with no progress, reset.  This has to
354 	 * be done from a work struct, since resetting can sleep and
355 	 * this timer hook isn't allowed to.
356 	 */
357 	schedule_work(&vc4->hangcheck.reset_work);
358 }
359 
360 static void
361 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end)
362 {
363 	struct vc4_dev *vc4 = to_vc4_dev(dev);
364 
365 	/* Set the current and end address of the control list.
366 	 * Writing the end register is what starts the job.
367 	 */
368 	V3D_WRITE(V3D_CTNCA(thread), start);
369 	V3D_WRITE(V3D_CTNEA(thread), end);
370 }
371 
372 int
373 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns,
374 		   bool interruptible)
375 {
376 	struct vc4_dev *vc4 = to_vc4_dev(dev);
377 	int ret = 0;
378 	unsigned long timeout_expire;
379 	DEFINE_WAIT(wait);
380 
381 	if (vc4->finished_seqno >= seqno)
382 		return 0;
383 
384 	if (timeout_ns == 0)
385 		return -ETIME;
386 
387 	timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns);
388 
389 	trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns);
390 	for (;;) {
391 		prepare_to_wait(&vc4->job_wait_queue, &wait,
392 				interruptible ? TASK_INTERRUPTIBLE :
393 				TASK_UNINTERRUPTIBLE);
394 
395 		if (interruptible && signal_pending(current)) {
396 			ret = -ERESTARTSYS;
397 			break;
398 		}
399 
400 		if (vc4->finished_seqno >= seqno)
401 			break;
402 
403 		if (timeout_ns != ~0ull) {
404 			if (time_after_eq(jiffies, timeout_expire)) {
405 				ret = -ETIME;
406 				break;
407 			}
408 			schedule_timeout(timeout_expire - jiffies);
409 		} else {
410 			schedule();
411 		}
412 	}
413 
414 	finish_wait(&vc4->job_wait_queue, &wait);
415 	trace_vc4_wait_for_seqno_end(dev, seqno);
416 
417 	return ret;
418 }
419 
420 static void
421 vc4_flush_caches(struct drm_device *dev)
422 {
423 	struct vc4_dev *vc4 = to_vc4_dev(dev);
424 
425 	/* Flush the GPU L2 caches.  These caches sit on top of system
426 	 * L3 (the 128kb or so shared with the CPU), and are
427 	 * non-allocating in the L3.
428 	 */
429 	V3D_WRITE(V3D_L2CACTL,
430 		  V3D_L2CACTL_L2CCLR);
431 
432 	V3D_WRITE(V3D_SLCACTL,
433 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
434 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) |
435 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) |
436 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC));
437 }
438 
439 static void
440 vc4_flush_texture_caches(struct drm_device *dev)
441 {
442 	struct vc4_dev *vc4 = to_vc4_dev(dev);
443 
444 	V3D_WRITE(V3D_L2CACTL,
445 		  V3D_L2CACTL_L2CCLR);
446 
447 	V3D_WRITE(V3D_SLCACTL,
448 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
449 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC));
450 }
451 
452 /* Sets the registers for the next job to be actually be executed in
453  * the hardware.
454  *
455  * The job_lock should be held during this.
456  */
457 void
458 vc4_submit_next_bin_job(struct drm_device *dev)
459 {
460 	struct vc4_dev *vc4 = to_vc4_dev(dev);
461 	struct vc4_exec_info *exec;
462 
463 again:
464 	exec = vc4_first_bin_job(vc4);
465 	if (!exec)
466 		return;
467 
468 	vc4_flush_caches(dev);
469 
470 	/* Either put the job in the binner if it uses the binner, or
471 	 * immediately move it to the to-be-rendered queue.
472 	 */
473 	if (exec->ct0ca != exec->ct0ea) {
474 		submit_cl(dev, 0, exec->ct0ca, exec->ct0ea);
475 	} else {
476 		vc4_move_job_to_render(dev, exec);
477 		goto again;
478 	}
479 }
480 
481 void
482 vc4_submit_next_render_job(struct drm_device *dev)
483 {
484 	struct vc4_dev *vc4 = to_vc4_dev(dev);
485 	struct vc4_exec_info *exec = vc4_first_render_job(vc4);
486 
487 	if (!exec)
488 		return;
489 
490 	/* A previous RCL may have written to one of our textures, and
491 	 * our full cache flush at bin time may have occurred before
492 	 * that RCL completed.  Flush the texture cache now, but not
493 	 * the instructions or uniforms (since we don't write those
494 	 * from an RCL).
495 	 */
496 	vc4_flush_texture_caches(dev);
497 
498 	submit_cl(dev, 1, exec->ct1ca, exec->ct1ea);
499 }
500 
501 void
502 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec)
503 {
504 	struct vc4_dev *vc4 = to_vc4_dev(dev);
505 	bool was_empty = list_empty(&vc4->render_job_list);
506 
507 	list_move_tail(&exec->head, &vc4->render_job_list);
508 	if (was_empty)
509 		vc4_submit_next_render_job(dev);
510 }
511 
512 static void
513 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno)
514 {
515 	struct vc4_bo *bo;
516 	unsigned i;
517 
518 	for (i = 0; i < exec->bo_count; i++) {
519 		bo = to_vc4_bo(&exec->bo[i]->base);
520 		bo->seqno = seqno;
521 
522 		reservation_object_add_shared_fence(bo->resv, exec->fence);
523 	}
524 
525 	list_for_each_entry(bo, &exec->unref_list, unref_head) {
526 		bo->seqno = seqno;
527 	}
528 
529 	for (i = 0; i < exec->rcl_write_bo_count; i++) {
530 		bo = to_vc4_bo(&exec->rcl_write_bo[i]->base);
531 		bo->write_seqno = seqno;
532 
533 		reservation_object_add_excl_fence(bo->resv, exec->fence);
534 	}
535 }
536 
537 static void
538 vc4_unlock_bo_reservations(struct drm_device *dev,
539 			   struct vc4_exec_info *exec,
540 			   struct ww_acquire_ctx *acquire_ctx)
541 {
542 	int i;
543 
544 	for (i = 0; i < exec->bo_count; i++) {
545 		struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
546 
547 		ww_mutex_unlock(&bo->resv->lock);
548 	}
549 
550 	ww_acquire_fini(acquire_ctx);
551 }
552 
553 /* Takes the reservation lock on all the BOs being referenced, so that
554  * at queue submit time we can update the reservations.
555  *
556  * We don't lock the RCL the tile alloc/state BOs, or overflow memory
557  * (all of which are on exec->unref_list).  They're entirely private
558  * to vc4, so we don't attach dma-buf fences to them.
559  */
560 static int
561 vc4_lock_bo_reservations(struct drm_device *dev,
562 			 struct vc4_exec_info *exec,
563 			 struct ww_acquire_ctx *acquire_ctx)
564 {
565 	int contended_lock = -1;
566 	int i, ret;
567 	struct vc4_bo *bo;
568 
569 	ww_acquire_init(acquire_ctx, &reservation_ww_class);
570 
571 retry:
572 	if (contended_lock != -1) {
573 		bo = to_vc4_bo(&exec->bo[contended_lock]->base);
574 		ret = ww_mutex_lock_slow_interruptible(&bo->resv->lock,
575 						       acquire_ctx);
576 		if (ret) {
577 			ww_acquire_done(acquire_ctx);
578 			return ret;
579 		}
580 	}
581 
582 	for (i = 0; i < exec->bo_count; i++) {
583 		if (i == contended_lock)
584 			continue;
585 
586 		bo = to_vc4_bo(&exec->bo[i]->base);
587 
588 		ret = ww_mutex_lock_interruptible(&bo->resv->lock, acquire_ctx);
589 		if (ret) {
590 			int j;
591 
592 			for (j = 0; j < i; j++) {
593 				bo = to_vc4_bo(&exec->bo[j]->base);
594 				ww_mutex_unlock(&bo->resv->lock);
595 			}
596 
597 			if (contended_lock != -1 && contended_lock >= i) {
598 				bo = to_vc4_bo(&exec->bo[contended_lock]->base);
599 
600 				ww_mutex_unlock(&bo->resv->lock);
601 			}
602 
603 			if (ret == -EDEADLK) {
604 				contended_lock = i;
605 				goto retry;
606 			}
607 
608 			ww_acquire_done(acquire_ctx);
609 			return ret;
610 		}
611 	}
612 
613 	ww_acquire_done(acquire_ctx);
614 
615 	/* Reserve space for our shared (read-only) fence references,
616 	 * before we commit the CL to the hardware.
617 	 */
618 	for (i = 0; i < exec->bo_count; i++) {
619 		bo = to_vc4_bo(&exec->bo[i]->base);
620 
621 		ret = reservation_object_reserve_shared(bo->resv);
622 		if (ret) {
623 			vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
624 			return ret;
625 		}
626 	}
627 
628 	return 0;
629 }
630 
631 /* Queues a struct vc4_exec_info for execution.  If no job is
632  * currently executing, then submits it.
633  *
634  * Unlike most GPUs, our hardware only handles one command list at a
635  * time.  To queue multiple jobs at once, we'd need to edit the
636  * previous command list to have a jump to the new one at the end, and
637  * then bump the end address.  That's a change for a later date,
638  * though.
639  */
640 static int
641 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec,
642 		 struct ww_acquire_ctx *acquire_ctx)
643 {
644 	struct vc4_dev *vc4 = to_vc4_dev(dev);
645 	uint64_t seqno;
646 	unsigned long irqflags;
647 	struct vc4_fence *fence;
648 
649 	fence = kzalloc(sizeof(*fence), GFP_KERNEL);
650 	if (!fence)
651 		return -ENOMEM;
652 	fence->dev = dev;
653 
654 	spin_lock_irqsave(&vc4->job_lock, irqflags);
655 
656 	seqno = ++vc4->emit_seqno;
657 	exec->seqno = seqno;
658 
659 	dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock,
660 		       vc4->dma_fence_context, exec->seqno);
661 	fence->seqno = exec->seqno;
662 	exec->fence = &fence->base;
663 
664 	vc4_update_bo_seqnos(exec, seqno);
665 
666 	vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
667 
668 	list_add_tail(&exec->head, &vc4->bin_job_list);
669 
670 	/* If no job was executing, kick ours off.  Otherwise, it'll
671 	 * get started when the previous job's flush done interrupt
672 	 * occurs.
673 	 */
674 	if (vc4_first_bin_job(vc4) == exec) {
675 		vc4_submit_next_bin_job(dev);
676 		vc4_queue_hangcheck(dev);
677 	}
678 
679 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
680 
681 	return 0;
682 }
683 
684 /**
685  * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects
686  * referenced by the job.
687  * @dev: DRM device
688  * @file_priv: DRM file for this fd
689  * @exec: V3D job being set up
690  *
691  * The command validator needs to reference BOs by their index within
692  * the submitted job's BO list.  This does the validation of the job's
693  * BO list and reference counting for the lifetime of the job.
694  */
695 static int
696 vc4_cl_lookup_bos(struct drm_device *dev,
697 		  struct drm_file *file_priv,
698 		  struct vc4_exec_info *exec)
699 {
700 	struct drm_vc4_submit_cl *args = exec->args;
701 	uint32_t *handles;
702 	int ret = 0;
703 	int i;
704 
705 	exec->bo_count = args->bo_handle_count;
706 
707 	if (!exec->bo_count) {
708 		/* See comment on bo_index for why we have to check
709 		 * this.
710 		 */
711 		DRM_DEBUG("Rendering requires BOs to validate\n");
712 		return -EINVAL;
713 	}
714 
715 	exec->bo = kvmalloc_array(exec->bo_count,
716 				    sizeof(struct drm_gem_cma_object *),
717 				    GFP_KERNEL | __GFP_ZERO);
718 	if (!exec->bo) {
719 		DRM_ERROR("Failed to allocate validated BO pointers\n");
720 		return -ENOMEM;
721 	}
722 
723 	handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL);
724 	if (!handles) {
725 		ret = -ENOMEM;
726 		DRM_ERROR("Failed to allocate incoming GEM handles\n");
727 		goto fail;
728 	}
729 
730 	if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles),
731 			   exec->bo_count * sizeof(uint32_t))) {
732 		ret = -EFAULT;
733 		DRM_ERROR("Failed to copy in GEM handles\n");
734 		goto fail;
735 	}
736 
737 	spin_lock(&file_priv->table_lock);
738 	for (i = 0; i < exec->bo_count; i++) {
739 		struct drm_gem_object *bo = idr_find(&file_priv->object_idr,
740 						     handles[i]);
741 		if (!bo) {
742 			DRM_DEBUG("Failed to look up GEM BO %d: %d\n",
743 				  i, handles[i]);
744 			ret = -EINVAL;
745 			break;
746 		}
747 
748 		drm_gem_object_get(bo);
749 		exec->bo[i] = (struct drm_gem_cma_object *)bo;
750 	}
751 	spin_unlock(&file_priv->table_lock);
752 
753 	if (ret)
754 		goto fail_put_bo;
755 
756 	for (i = 0; i < exec->bo_count; i++) {
757 		ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base));
758 		if (ret)
759 			goto fail_dec_usecnt;
760 	}
761 
762 	kvfree(handles);
763 	return 0;
764 
765 fail_dec_usecnt:
766 	/* Decrease usecnt on acquired objects.
767 	 * We cannot rely on  vc4_complete_exec() to release resources here,
768 	 * because vc4_complete_exec() has no information about which BO has
769 	 * had its ->usecnt incremented.
770 	 * To make things easier we just free everything explicitly and set
771 	 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release'
772 	 * step.
773 	 */
774 	for (i-- ; i >= 0; i--)
775 		vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base));
776 
777 fail_put_bo:
778 	/* Release any reference to acquired objects. */
779 	for (i = 0; i < exec->bo_count && exec->bo[i]; i++)
780 		drm_gem_object_put_unlocked(&exec->bo[i]->base);
781 
782 fail:
783 	kvfree(handles);
784 	kvfree(exec->bo);
785 	exec->bo = NULL;
786 	return ret;
787 }
788 
789 static int
790 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec)
791 {
792 	struct drm_vc4_submit_cl *args = exec->args;
793 	void *temp = NULL;
794 	void *bin;
795 	int ret = 0;
796 	uint32_t bin_offset = 0;
797 	uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size,
798 					     16);
799 	uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size;
800 	uint32_t exec_size = uniforms_offset + args->uniforms_size;
801 	uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) *
802 					  args->shader_rec_count);
803 	struct vc4_bo *bo;
804 
805 	if (shader_rec_offset < args->bin_cl_size ||
806 	    uniforms_offset < shader_rec_offset ||
807 	    exec_size < uniforms_offset ||
808 	    args->shader_rec_count >= (UINT_MAX /
809 					  sizeof(struct vc4_shader_state)) ||
810 	    temp_size < exec_size) {
811 		DRM_DEBUG("overflow in exec arguments\n");
812 		ret = -EINVAL;
813 		goto fail;
814 	}
815 
816 	/* Allocate space where we'll store the copied in user command lists
817 	 * and shader records.
818 	 *
819 	 * We don't just copy directly into the BOs because we need to
820 	 * read the contents back for validation, and I think the
821 	 * bo->vaddr is uncached access.
822 	 */
823 	temp = kvmalloc_array(temp_size, 1, GFP_KERNEL);
824 	if (!temp) {
825 		DRM_ERROR("Failed to allocate storage for copying "
826 			  "in bin/render CLs.\n");
827 		ret = -ENOMEM;
828 		goto fail;
829 	}
830 	bin = temp + bin_offset;
831 	exec->shader_rec_u = temp + shader_rec_offset;
832 	exec->uniforms_u = temp + uniforms_offset;
833 	exec->shader_state = temp + exec_size;
834 	exec->shader_state_size = args->shader_rec_count;
835 
836 	if (copy_from_user(bin,
837 			   u64_to_user_ptr(args->bin_cl),
838 			   args->bin_cl_size)) {
839 		ret = -EFAULT;
840 		goto fail;
841 	}
842 
843 	if (copy_from_user(exec->shader_rec_u,
844 			   u64_to_user_ptr(args->shader_rec),
845 			   args->shader_rec_size)) {
846 		ret = -EFAULT;
847 		goto fail;
848 	}
849 
850 	if (copy_from_user(exec->uniforms_u,
851 			   u64_to_user_ptr(args->uniforms),
852 			   args->uniforms_size)) {
853 		ret = -EFAULT;
854 		goto fail;
855 	}
856 
857 	bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL);
858 	if (IS_ERR(bo)) {
859 		DRM_ERROR("Couldn't allocate BO for binning\n");
860 		ret = PTR_ERR(bo);
861 		goto fail;
862 	}
863 	exec->exec_bo = &bo->base;
864 
865 	list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head,
866 		      &exec->unref_list);
867 
868 	exec->ct0ca = exec->exec_bo->paddr + bin_offset;
869 
870 	exec->bin_u = bin;
871 
872 	exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset;
873 	exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset;
874 	exec->shader_rec_size = args->shader_rec_size;
875 
876 	exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset;
877 	exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset;
878 	exec->uniforms_size = args->uniforms_size;
879 
880 	ret = vc4_validate_bin_cl(dev,
881 				  exec->exec_bo->vaddr + bin_offset,
882 				  bin,
883 				  exec);
884 	if (ret)
885 		goto fail;
886 
887 	ret = vc4_validate_shader_recs(dev, exec);
888 	if (ret)
889 		goto fail;
890 
891 	/* Block waiting on any previous rendering into the CS's VBO,
892 	 * IB, or textures, so that pixels are actually written by the
893 	 * time we try to read them.
894 	 */
895 	ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true);
896 
897 fail:
898 	kvfree(temp);
899 	return ret;
900 }
901 
902 static void
903 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec)
904 {
905 	struct vc4_dev *vc4 = to_vc4_dev(dev);
906 	unsigned long irqflags;
907 	unsigned i;
908 
909 	/* If we got force-completed because of GPU reset rather than
910 	 * through our IRQ handler, signal the fence now.
911 	 */
912 	if (exec->fence) {
913 		dma_fence_signal(exec->fence);
914 		dma_fence_put(exec->fence);
915 	}
916 
917 	if (exec->bo) {
918 		for (i = 0; i < exec->bo_count; i++) {
919 			struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
920 
921 			vc4_bo_dec_usecnt(bo);
922 			drm_gem_object_put_unlocked(&exec->bo[i]->base);
923 		}
924 		kvfree(exec->bo);
925 	}
926 
927 	while (!list_empty(&exec->unref_list)) {
928 		struct vc4_bo *bo = list_first_entry(&exec->unref_list,
929 						     struct vc4_bo, unref_head);
930 		list_del(&bo->unref_head);
931 		drm_gem_object_put_unlocked(&bo->base.base);
932 	}
933 
934 	/* Free up the allocation of any bin slots we used. */
935 	spin_lock_irqsave(&vc4->job_lock, irqflags);
936 	vc4->bin_alloc_used &= ~exec->bin_slots;
937 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
938 
939 	mutex_lock(&vc4->power_lock);
940 	if (--vc4->power_refcount == 0) {
941 		pm_runtime_mark_last_busy(&vc4->v3d->pdev->dev);
942 		pm_runtime_put_autosuspend(&vc4->v3d->pdev->dev);
943 	}
944 	mutex_unlock(&vc4->power_lock);
945 
946 	kfree(exec);
947 }
948 
949 void
950 vc4_job_handle_completed(struct vc4_dev *vc4)
951 {
952 	unsigned long irqflags;
953 	struct vc4_seqno_cb *cb, *cb_temp;
954 
955 	spin_lock_irqsave(&vc4->job_lock, irqflags);
956 	while (!list_empty(&vc4->job_done_list)) {
957 		struct vc4_exec_info *exec =
958 			list_first_entry(&vc4->job_done_list,
959 					 struct vc4_exec_info, head);
960 		list_del(&exec->head);
961 
962 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
963 		vc4_complete_exec(vc4->dev, exec);
964 		spin_lock_irqsave(&vc4->job_lock, irqflags);
965 	}
966 
967 	list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) {
968 		if (cb->seqno <= vc4->finished_seqno) {
969 			list_del_init(&cb->work.entry);
970 			schedule_work(&cb->work);
971 		}
972 	}
973 
974 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
975 }
976 
977 static void vc4_seqno_cb_work(struct work_struct *work)
978 {
979 	struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work);
980 
981 	cb->func(cb);
982 }
983 
984 int vc4_queue_seqno_cb(struct drm_device *dev,
985 		       struct vc4_seqno_cb *cb, uint64_t seqno,
986 		       void (*func)(struct vc4_seqno_cb *cb))
987 {
988 	struct vc4_dev *vc4 = to_vc4_dev(dev);
989 	int ret = 0;
990 	unsigned long irqflags;
991 
992 	cb->func = func;
993 	INIT_WORK(&cb->work, vc4_seqno_cb_work);
994 
995 	spin_lock_irqsave(&vc4->job_lock, irqflags);
996 	if (seqno > vc4->finished_seqno) {
997 		cb->seqno = seqno;
998 		list_add_tail(&cb->work.entry, &vc4->seqno_cb_list);
999 	} else {
1000 		schedule_work(&cb->work);
1001 	}
1002 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1003 
1004 	return ret;
1005 }
1006 
1007 /* Scheduled when any job has been completed, this walks the list of
1008  * jobs that had completed and unrefs their BOs and frees their exec
1009  * structs.
1010  */
1011 static void
1012 vc4_job_done_work(struct work_struct *work)
1013 {
1014 	struct vc4_dev *vc4 =
1015 		container_of(work, struct vc4_dev, job_done_work);
1016 
1017 	vc4_job_handle_completed(vc4);
1018 }
1019 
1020 static int
1021 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev,
1022 				uint64_t seqno,
1023 				uint64_t *timeout_ns)
1024 {
1025 	unsigned long start = jiffies;
1026 	int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true);
1027 
1028 	if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) {
1029 		uint64_t delta = jiffies_to_nsecs(jiffies - start);
1030 
1031 		if (*timeout_ns >= delta)
1032 			*timeout_ns -= delta;
1033 	}
1034 
1035 	return ret;
1036 }
1037 
1038 int
1039 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data,
1040 		     struct drm_file *file_priv)
1041 {
1042 	struct drm_vc4_wait_seqno *args = data;
1043 
1044 	return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno,
1045 					       &args->timeout_ns);
1046 }
1047 
1048 int
1049 vc4_wait_bo_ioctl(struct drm_device *dev, void *data,
1050 		  struct drm_file *file_priv)
1051 {
1052 	int ret;
1053 	struct drm_vc4_wait_bo *args = data;
1054 	struct drm_gem_object *gem_obj;
1055 	struct vc4_bo *bo;
1056 
1057 	if (args->pad != 0)
1058 		return -EINVAL;
1059 
1060 	gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1061 	if (!gem_obj) {
1062 		DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1063 		return -EINVAL;
1064 	}
1065 	bo = to_vc4_bo(gem_obj);
1066 
1067 	ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno,
1068 					      &args->timeout_ns);
1069 
1070 	drm_gem_object_put_unlocked(gem_obj);
1071 	return ret;
1072 }
1073 
1074 /**
1075  * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4.
1076  * @dev: DRM device
1077  * @data: ioctl argument
1078  * @file_priv: DRM file for this fd
1079  *
1080  * This is the main entrypoint for userspace to submit a 3D frame to
1081  * the GPU.  Userspace provides the binner command list (if
1082  * applicable), and the kernel sets up the render command list to draw
1083  * to the framebuffer described in the ioctl, using the command lists
1084  * that the 3D engine's binner will produce.
1085  */
1086 int
1087 vc4_submit_cl_ioctl(struct drm_device *dev, void *data,
1088 		    struct drm_file *file_priv)
1089 {
1090 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1091 	struct drm_vc4_submit_cl *args = data;
1092 	struct vc4_exec_info *exec;
1093 	struct ww_acquire_ctx acquire_ctx;
1094 	int ret = 0;
1095 
1096 	if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR |
1097 			     VC4_SUBMIT_CL_FIXED_RCL_ORDER |
1098 			     VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X |
1099 			     VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) {
1100 		DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags);
1101 		return -EINVAL;
1102 	}
1103 
1104 	exec = kcalloc(1, sizeof(*exec), GFP_KERNEL);
1105 	if (!exec) {
1106 		DRM_ERROR("malloc failure on exec struct\n");
1107 		return -ENOMEM;
1108 	}
1109 
1110 	mutex_lock(&vc4->power_lock);
1111 	if (vc4->power_refcount++ == 0) {
1112 		ret = pm_runtime_get_sync(&vc4->v3d->pdev->dev);
1113 		if (ret < 0) {
1114 			mutex_unlock(&vc4->power_lock);
1115 			vc4->power_refcount--;
1116 			kfree(exec);
1117 			return ret;
1118 		}
1119 	}
1120 	mutex_unlock(&vc4->power_lock);
1121 
1122 	exec->args = args;
1123 	INIT_LIST_HEAD(&exec->unref_list);
1124 
1125 	ret = vc4_cl_lookup_bos(dev, file_priv, exec);
1126 	if (ret)
1127 		goto fail;
1128 
1129 	if (exec->args->bin_cl_size != 0) {
1130 		ret = vc4_get_bcl(dev, exec);
1131 		if (ret)
1132 			goto fail;
1133 	} else {
1134 		exec->ct0ca = 0;
1135 		exec->ct0ea = 0;
1136 	}
1137 
1138 	ret = vc4_get_rcl(dev, exec);
1139 	if (ret)
1140 		goto fail;
1141 
1142 	ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx);
1143 	if (ret)
1144 		goto fail;
1145 
1146 	/* Clear this out of the struct we'll be putting in the queue,
1147 	 * since it's part of our stack.
1148 	 */
1149 	exec->args = NULL;
1150 
1151 	ret = vc4_queue_submit(dev, exec, &acquire_ctx);
1152 	if (ret)
1153 		goto fail;
1154 
1155 	/* Return the seqno for our job. */
1156 	args->seqno = vc4->emit_seqno;
1157 
1158 	return 0;
1159 
1160 fail:
1161 	vc4_complete_exec(vc4->dev, exec);
1162 
1163 	return ret;
1164 }
1165 
1166 void
1167 vc4_gem_init(struct drm_device *dev)
1168 {
1169 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1170 
1171 	vc4->dma_fence_context = dma_fence_context_alloc(1);
1172 
1173 	INIT_LIST_HEAD(&vc4->bin_job_list);
1174 	INIT_LIST_HEAD(&vc4->render_job_list);
1175 	INIT_LIST_HEAD(&vc4->job_done_list);
1176 	INIT_LIST_HEAD(&vc4->seqno_cb_list);
1177 	spin_lock_init(&vc4->job_lock);
1178 
1179 	INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work);
1180 	timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0);
1181 
1182 	INIT_WORK(&vc4->job_done_work, vc4_job_done_work);
1183 
1184 	mutex_init(&vc4->power_lock);
1185 
1186 	INIT_LIST_HEAD(&vc4->purgeable.list);
1187 	mutex_init(&vc4->purgeable.lock);
1188 }
1189 
1190 void
1191 vc4_gem_destroy(struct drm_device *dev)
1192 {
1193 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1194 
1195 	/* Waiting for exec to finish would need to be done before
1196 	 * unregistering V3D.
1197 	 */
1198 	WARN_ON(vc4->emit_seqno != vc4->finished_seqno);
1199 
1200 	/* V3D should already have disabled its interrupt and cleared
1201 	 * the overflow allocation registers.  Now free the object.
1202 	 */
1203 	if (vc4->bin_bo) {
1204 		drm_gem_object_put_unlocked(&vc4->bin_bo->base.base);
1205 		vc4->bin_bo = NULL;
1206 	}
1207 
1208 	if (vc4->hang_state)
1209 		vc4_free_hang_state(dev, vc4->hang_state);
1210 }
1211 
1212 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data,
1213 			  struct drm_file *file_priv)
1214 {
1215 	struct drm_vc4_gem_madvise *args = data;
1216 	struct drm_gem_object *gem_obj;
1217 	struct vc4_bo *bo;
1218 	int ret;
1219 
1220 	switch (args->madv) {
1221 	case VC4_MADV_DONTNEED:
1222 	case VC4_MADV_WILLNEED:
1223 		break;
1224 	default:
1225 		return -EINVAL;
1226 	}
1227 
1228 	if (args->pad != 0)
1229 		return -EINVAL;
1230 
1231 	gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1232 	if (!gem_obj) {
1233 		DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1234 		return -ENOENT;
1235 	}
1236 
1237 	bo = to_vc4_bo(gem_obj);
1238 
1239 	/* Only BOs exposed to userspace can be purged. */
1240 	if (bo->madv == __VC4_MADV_NOTSUPP) {
1241 		DRM_DEBUG("madvise not supported on this BO\n");
1242 		ret = -EINVAL;
1243 		goto out_put_gem;
1244 	}
1245 
1246 	/* Not sure it's safe to purge imported BOs. Let's just assume it's
1247 	 * not until proven otherwise.
1248 	 */
1249 	if (gem_obj->import_attach) {
1250 		DRM_DEBUG("madvise not supported on imported BOs\n");
1251 		ret = -EINVAL;
1252 		goto out_put_gem;
1253 	}
1254 
1255 	mutex_lock(&bo->madv_lock);
1256 
1257 	if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED &&
1258 	    !refcount_read(&bo->usecnt)) {
1259 		/* If the BO is about to be marked as purgeable, is not used
1260 		 * and is not already purgeable or purged, add it to the
1261 		 * purgeable list.
1262 		 */
1263 		vc4_bo_add_to_purgeable_pool(bo);
1264 	} else if (args->madv == VC4_MADV_WILLNEED &&
1265 		   bo->madv == VC4_MADV_DONTNEED &&
1266 		   !refcount_read(&bo->usecnt)) {
1267 		/* The BO has not been purged yet, just remove it from
1268 		 * the purgeable list.
1269 		 */
1270 		vc4_bo_remove_from_purgeable_pool(bo);
1271 	}
1272 
1273 	/* Save the purged state. */
1274 	args->retained = bo->madv != __VC4_MADV_PURGED;
1275 
1276 	/* Update internal madv state only if the bo was not purged. */
1277 	if (bo->madv != __VC4_MADV_PURGED)
1278 		bo->madv = args->madv;
1279 
1280 	mutex_unlock(&bo->madv_lock);
1281 
1282 	ret = 0;
1283 
1284 out_put_gem:
1285 	drm_gem_object_put_unlocked(gem_obj);
1286 
1287 	return ret;
1288 }
1289