1 /* 2 * Copyright © 2014 Broadcom 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/device.h> 28 #include <linux/io.h> 29 #include <linux/sched/signal.h> 30 31 #include "uapi/drm/vc4_drm.h" 32 #include "vc4_drv.h" 33 #include "vc4_regs.h" 34 #include "vc4_trace.h" 35 36 static void 37 vc4_queue_hangcheck(struct drm_device *dev) 38 { 39 struct vc4_dev *vc4 = to_vc4_dev(dev); 40 41 mod_timer(&vc4->hangcheck.timer, 42 round_jiffies_up(jiffies + msecs_to_jiffies(100))); 43 } 44 45 struct vc4_hang_state { 46 struct drm_vc4_get_hang_state user_state; 47 48 u32 bo_count; 49 struct drm_gem_object **bo; 50 }; 51 52 static void 53 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state) 54 { 55 unsigned int i; 56 57 for (i = 0; i < state->user_state.bo_count; i++) 58 drm_gem_object_put_unlocked(state->bo[i]); 59 60 kfree(state); 61 } 62 63 int 64 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data, 65 struct drm_file *file_priv) 66 { 67 struct drm_vc4_get_hang_state *get_state = data; 68 struct drm_vc4_get_hang_state_bo *bo_state; 69 struct vc4_hang_state *kernel_state; 70 struct drm_vc4_get_hang_state *state; 71 struct vc4_dev *vc4 = to_vc4_dev(dev); 72 unsigned long irqflags; 73 u32 i; 74 int ret = 0; 75 76 spin_lock_irqsave(&vc4->job_lock, irqflags); 77 kernel_state = vc4->hang_state; 78 if (!kernel_state) { 79 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 80 return -ENOENT; 81 } 82 state = &kernel_state->user_state; 83 84 /* If the user's array isn't big enough, just return the 85 * required array size. 86 */ 87 if (get_state->bo_count < state->bo_count) { 88 get_state->bo_count = state->bo_count; 89 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 90 return 0; 91 } 92 93 vc4->hang_state = NULL; 94 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 95 96 /* Save the user's BO pointer, so we don't stomp it with the memcpy. */ 97 state->bo = get_state->bo; 98 memcpy(get_state, state, sizeof(*state)); 99 100 bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL); 101 if (!bo_state) { 102 ret = -ENOMEM; 103 goto err_free; 104 } 105 106 for (i = 0; i < state->bo_count; i++) { 107 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]); 108 u32 handle; 109 110 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i], 111 &handle); 112 113 if (ret) { 114 state->bo_count = i; 115 goto err_delete_handle; 116 } 117 bo_state[i].handle = handle; 118 bo_state[i].paddr = vc4_bo->base.paddr; 119 bo_state[i].size = vc4_bo->base.base.size; 120 } 121 122 if (copy_to_user(u64_to_user_ptr(get_state->bo), 123 bo_state, 124 state->bo_count * sizeof(*bo_state))) 125 ret = -EFAULT; 126 127 err_delete_handle: 128 if (ret) { 129 for (i = 0; i < state->bo_count; i++) 130 drm_gem_handle_delete(file_priv, bo_state[i].handle); 131 } 132 133 err_free: 134 vc4_free_hang_state(dev, kernel_state); 135 kfree(bo_state); 136 137 return ret; 138 } 139 140 static void 141 vc4_save_hang_state(struct drm_device *dev) 142 { 143 struct vc4_dev *vc4 = to_vc4_dev(dev); 144 struct drm_vc4_get_hang_state *state; 145 struct vc4_hang_state *kernel_state; 146 struct vc4_exec_info *exec[2]; 147 struct vc4_bo *bo; 148 unsigned long irqflags; 149 unsigned int i, j, unref_list_count, prev_idx; 150 151 kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL); 152 if (!kernel_state) 153 return; 154 155 state = &kernel_state->user_state; 156 157 spin_lock_irqsave(&vc4->job_lock, irqflags); 158 exec[0] = vc4_first_bin_job(vc4); 159 exec[1] = vc4_first_render_job(vc4); 160 if (!exec[0] && !exec[1]) { 161 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 162 return; 163 } 164 165 /* Get the bos from both binner and renderer into hang state. */ 166 state->bo_count = 0; 167 for (i = 0; i < 2; i++) { 168 if (!exec[i]) 169 continue; 170 171 unref_list_count = 0; 172 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) 173 unref_list_count++; 174 state->bo_count += exec[i]->bo_count + unref_list_count; 175 } 176 177 kernel_state->bo = kcalloc(state->bo_count, 178 sizeof(*kernel_state->bo), GFP_ATOMIC); 179 180 if (!kernel_state->bo) { 181 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 182 return; 183 } 184 185 prev_idx = 0; 186 for (i = 0; i < 2; i++) { 187 if (!exec[i]) 188 continue; 189 190 for (j = 0; j < exec[i]->bo_count; j++) { 191 bo = to_vc4_bo(&exec[i]->bo[j]->base); 192 193 /* Retain BOs just in case they were marked purgeable. 194 * This prevents the BO from being purged before 195 * someone had a chance to dump the hang state. 196 */ 197 WARN_ON(!refcount_read(&bo->usecnt)); 198 refcount_inc(&bo->usecnt); 199 drm_gem_object_get(&exec[i]->bo[j]->base); 200 kernel_state->bo[j + prev_idx] = &exec[i]->bo[j]->base; 201 } 202 203 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) { 204 /* No need to retain BOs coming from the ->unref_list 205 * because they are naturally unpurgeable. 206 */ 207 drm_gem_object_get(&bo->base.base); 208 kernel_state->bo[j + prev_idx] = &bo->base.base; 209 j++; 210 } 211 prev_idx = j + 1; 212 } 213 214 if (exec[0]) 215 state->start_bin = exec[0]->ct0ca; 216 if (exec[1]) 217 state->start_render = exec[1]->ct1ca; 218 219 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 220 221 state->ct0ca = V3D_READ(V3D_CTNCA(0)); 222 state->ct0ea = V3D_READ(V3D_CTNEA(0)); 223 224 state->ct1ca = V3D_READ(V3D_CTNCA(1)); 225 state->ct1ea = V3D_READ(V3D_CTNEA(1)); 226 227 state->ct0cs = V3D_READ(V3D_CTNCS(0)); 228 state->ct1cs = V3D_READ(V3D_CTNCS(1)); 229 230 state->ct0ra0 = V3D_READ(V3D_CT00RA0); 231 state->ct1ra0 = V3D_READ(V3D_CT01RA0); 232 233 state->bpca = V3D_READ(V3D_BPCA); 234 state->bpcs = V3D_READ(V3D_BPCS); 235 state->bpoa = V3D_READ(V3D_BPOA); 236 state->bpos = V3D_READ(V3D_BPOS); 237 238 state->vpmbase = V3D_READ(V3D_VPMBASE); 239 240 state->dbge = V3D_READ(V3D_DBGE); 241 state->fdbgo = V3D_READ(V3D_FDBGO); 242 state->fdbgb = V3D_READ(V3D_FDBGB); 243 state->fdbgr = V3D_READ(V3D_FDBGR); 244 state->fdbgs = V3D_READ(V3D_FDBGS); 245 state->errstat = V3D_READ(V3D_ERRSTAT); 246 247 /* We need to turn purgeable BOs into unpurgeable ones so that 248 * userspace has a chance to dump the hang state before the kernel 249 * decides to purge those BOs. 250 * Note that BO consistency at dump time cannot be guaranteed. For 251 * example, if the owner of these BOs decides to re-use them or mark 252 * them purgeable again there's nothing we can do to prevent it. 253 */ 254 for (i = 0; i < kernel_state->user_state.bo_count; i++) { 255 struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]); 256 257 if (bo->madv == __VC4_MADV_NOTSUPP) 258 continue; 259 260 mutex_lock(&bo->madv_lock); 261 if (!WARN_ON(bo->madv == __VC4_MADV_PURGED)) 262 bo->madv = VC4_MADV_WILLNEED; 263 refcount_dec(&bo->usecnt); 264 mutex_unlock(&bo->madv_lock); 265 } 266 267 spin_lock_irqsave(&vc4->job_lock, irqflags); 268 if (vc4->hang_state) { 269 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 270 vc4_free_hang_state(dev, kernel_state); 271 } else { 272 vc4->hang_state = kernel_state; 273 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 274 } 275 } 276 277 static void 278 vc4_reset(struct drm_device *dev) 279 { 280 struct vc4_dev *vc4 = to_vc4_dev(dev); 281 282 DRM_INFO("Resetting GPU.\n"); 283 284 mutex_lock(&vc4->power_lock); 285 if (vc4->power_refcount) { 286 /* Power the device off and back on the by dropping the 287 * reference on runtime PM. 288 */ 289 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev); 290 pm_runtime_get_sync(&vc4->v3d->pdev->dev); 291 } 292 mutex_unlock(&vc4->power_lock); 293 294 vc4_irq_reset(dev); 295 296 /* Rearm the hangcheck -- another job might have been waiting 297 * for our hung one to get kicked off, and vc4_irq_reset() 298 * would have started it. 299 */ 300 vc4_queue_hangcheck(dev); 301 } 302 303 static void 304 vc4_reset_work(struct work_struct *work) 305 { 306 struct vc4_dev *vc4 = 307 container_of(work, struct vc4_dev, hangcheck.reset_work); 308 309 vc4_save_hang_state(vc4->dev); 310 311 vc4_reset(vc4->dev); 312 } 313 314 static void 315 vc4_hangcheck_elapsed(struct timer_list *t) 316 { 317 struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer); 318 struct drm_device *dev = vc4->dev; 319 uint32_t ct0ca, ct1ca; 320 unsigned long irqflags; 321 struct vc4_exec_info *bin_exec, *render_exec; 322 323 spin_lock_irqsave(&vc4->job_lock, irqflags); 324 325 bin_exec = vc4_first_bin_job(vc4); 326 render_exec = vc4_first_render_job(vc4); 327 328 /* If idle, we can stop watching for hangs. */ 329 if (!bin_exec && !render_exec) { 330 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 331 return; 332 } 333 334 ct0ca = V3D_READ(V3D_CTNCA(0)); 335 ct1ca = V3D_READ(V3D_CTNCA(1)); 336 337 /* If we've made any progress in execution, rearm the timer 338 * and wait. 339 */ 340 if ((bin_exec && ct0ca != bin_exec->last_ct0ca) || 341 (render_exec && ct1ca != render_exec->last_ct1ca)) { 342 if (bin_exec) 343 bin_exec->last_ct0ca = ct0ca; 344 if (render_exec) 345 render_exec->last_ct1ca = ct1ca; 346 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 347 vc4_queue_hangcheck(dev); 348 return; 349 } 350 351 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 352 353 /* We've gone too long with no progress, reset. This has to 354 * be done from a work struct, since resetting can sleep and 355 * this timer hook isn't allowed to. 356 */ 357 schedule_work(&vc4->hangcheck.reset_work); 358 } 359 360 static void 361 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end) 362 { 363 struct vc4_dev *vc4 = to_vc4_dev(dev); 364 365 /* Set the current and end address of the control list. 366 * Writing the end register is what starts the job. 367 */ 368 V3D_WRITE(V3D_CTNCA(thread), start); 369 V3D_WRITE(V3D_CTNEA(thread), end); 370 } 371 372 int 373 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns, 374 bool interruptible) 375 { 376 struct vc4_dev *vc4 = to_vc4_dev(dev); 377 int ret = 0; 378 unsigned long timeout_expire; 379 DEFINE_WAIT(wait); 380 381 if (vc4->finished_seqno >= seqno) 382 return 0; 383 384 if (timeout_ns == 0) 385 return -ETIME; 386 387 timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns); 388 389 trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns); 390 for (;;) { 391 prepare_to_wait(&vc4->job_wait_queue, &wait, 392 interruptible ? TASK_INTERRUPTIBLE : 393 TASK_UNINTERRUPTIBLE); 394 395 if (interruptible && signal_pending(current)) { 396 ret = -ERESTARTSYS; 397 break; 398 } 399 400 if (vc4->finished_seqno >= seqno) 401 break; 402 403 if (timeout_ns != ~0ull) { 404 if (time_after_eq(jiffies, timeout_expire)) { 405 ret = -ETIME; 406 break; 407 } 408 schedule_timeout(timeout_expire - jiffies); 409 } else { 410 schedule(); 411 } 412 } 413 414 finish_wait(&vc4->job_wait_queue, &wait); 415 trace_vc4_wait_for_seqno_end(dev, seqno); 416 417 return ret; 418 } 419 420 static void 421 vc4_flush_caches(struct drm_device *dev) 422 { 423 struct vc4_dev *vc4 = to_vc4_dev(dev); 424 425 /* Flush the GPU L2 caches. These caches sit on top of system 426 * L3 (the 128kb or so shared with the CPU), and are 427 * non-allocating in the L3. 428 */ 429 V3D_WRITE(V3D_L2CACTL, 430 V3D_L2CACTL_L2CCLR); 431 432 V3D_WRITE(V3D_SLCACTL, 433 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | 434 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) | 435 VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) | 436 VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC)); 437 } 438 439 /* Sets the registers for the next job to be actually be executed in 440 * the hardware. 441 * 442 * The job_lock should be held during this. 443 */ 444 void 445 vc4_submit_next_bin_job(struct drm_device *dev) 446 { 447 struct vc4_dev *vc4 = to_vc4_dev(dev); 448 struct vc4_exec_info *exec; 449 450 again: 451 exec = vc4_first_bin_job(vc4); 452 if (!exec) 453 return; 454 455 vc4_flush_caches(dev); 456 457 /* Either put the job in the binner if it uses the binner, or 458 * immediately move it to the to-be-rendered queue. 459 */ 460 if (exec->ct0ca != exec->ct0ea) { 461 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea); 462 } else { 463 vc4_move_job_to_render(dev, exec); 464 goto again; 465 } 466 } 467 468 void 469 vc4_submit_next_render_job(struct drm_device *dev) 470 { 471 struct vc4_dev *vc4 = to_vc4_dev(dev); 472 struct vc4_exec_info *exec = vc4_first_render_job(vc4); 473 474 if (!exec) 475 return; 476 477 submit_cl(dev, 1, exec->ct1ca, exec->ct1ea); 478 } 479 480 void 481 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec) 482 { 483 struct vc4_dev *vc4 = to_vc4_dev(dev); 484 bool was_empty = list_empty(&vc4->render_job_list); 485 486 list_move_tail(&exec->head, &vc4->render_job_list); 487 if (was_empty) 488 vc4_submit_next_render_job(dev); 489 } 490 491 static void 492 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno) 493 { 494 struct vc4_bo *bo; 495 unsigned i; 496 497 for (i = 0; i < exec->bo_count; i++) { 498 bo = to_vc4_bo(&exec->bo[i]->base); 499 bo->seqno = seqno; 500 501 reservation_object_add_shared_fence(bo->resv, exec->fence); 502 } 503 504 list_for_each_entry(bo, &exec->unref_list, unref_head) { 505 bo->seqno = seqno; 506 } 507 508 for (i = 0; i < exec->rcl_write_bo_count; i++) { 509 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base); 510 bo->write_seqno = seqno; 511 512 reservation_object_add_excl_fence(bo->resv, exec->fence); 513 } 514 } 515 516 static void 517 vc4_unlock_bo_reservations(struct drm_device *dev, 518 struct vc4_exec_info *exec, 519 struct ww_acquire_ctx *acquire_ctx) 520 { 521 int i; 522 523 for (i = 0; i < exec->bo_count; i++) { 524 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base); 525 526 ww_mutex_unlock(&bo->resv->lock); 527 } 528 529 ww_acquire_fini(acquire_ctx); 530 } 531 532 /* Takes the reservation lock on all the BOs being referenced, so that 533 * at queue submit time we can update the reservations. 534 * 535 * We don't lock the RCL the tile alloc/state BOs, or overflow memory 536 * (all of which are on exec->unref_list). They're entirely private 537 * to vc4, so we don't attach dma-buf fences to them. 538 */ 539 static int 540 vc4_lock_bo_reservations(struct drm_device *dev, 541 struct vc4_exec_info *exec, 542 struct ww_acquire_ctx *acquire_ctx) 543 { 544 int contended_lock = -1; 545 int i, ret; 546 struct vc4_bo *bo; 547 548 ww_acquire_init(acquire_ctx, &reservation_ww_class); 549 550 retry: 551 if (contended_lock != -1) { 552 bo = to_vc4_bo(&exec->bo[contended_lock]->base); 553 ret = ww_mutex_lock_slow_interruptible(&bo->resv->lock, 554 acquire_ctx); 555 if (ret) { 556 ww_acquire_done(acquire_ctx); 557 return ret; 558 } 559 } 560 561 for (i = 0; i < exec->bo_count; i++) { 562 if (i == contended_lock) 563 continue; 564 565 bo = to_vc4_bo(&exec->bo[i]->base); 566 567 ret = ww_mutex_lock_interruptible(&bo->resv->lock, acquire_ctx); 568 if (ret) { 569 int j; 570 571 for (j = 0; j < i; j++) { 572 bo = to_vc4_bo(&exec->bo[j]->base); 573 ww_mutex_unlock(&bo->resv->lock); 574 } 575 576 if (contended_lock != -1 && contended_lock >= i) { 577 bo = to_vc4_bo(&exec->bo[contended_lock]->base); 578 579 ww_mutex_unlock(&bo->resv->lock); 580 } 581 582 if (ret == -EDEADLK) { 583 contended_lock = i; 584 goto retry; 585 } 586 587 ww_acquire_done(acquire_ctx); 588 return ret; 589 } 590 } 591 592 ww_acquire_done(acquire_ctx); 593 594 /* Reserve space for our shared (read-only) fence references, 595 * before we commit the CL to the hardware. 596 */ 597 for (i = 0; i < exec->bo_count; i++) { 598 bo = to_vc4_bo(&exec->bo[i]->base); 599 600 ret = reservation_object_reserve_shared(bo->resv); 601 if (ret) { 602 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 603 return ret; 604 } 605 } 606 607 return 0; 608 } 609 610 /* Queues a struct vc4_exec_info for execution. If no job is 611 * currently executing, then submits it. 612 * 613 * Unlike most GPUs, our hardware only handles one command list at a 614 * time. To queue multiple jobs at once, we'd need to edit the 615 * previous command list to have a jump to the new one at the end, and 616 * then bump the end address. That's a change for a later date, 617 * though. 618 */ 619 static int 620 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec, 621 struct ww_acquire_ctx *acquire_ctx) 622 { 623 struct vc4_dev *vc4 = to_vc4_dev(dev); 624 uint64_t seqno; 625 unsigned long irqflags; 626 struct vc4_fence *fence; 627 628 fence = kzalloc(sizeof(*fence), GFP_KERNEL); 629 if (!fence) 630 return -ENOMEM; 631 fence->dev = dev; 632 633 spin_lock_irqsave(&vc4->job_lock, irqflags); 634 635 seqno = ++vc4->emit_seqno; 636 exec->seqno = seqno; 637 638 dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock, 639 vc4->dma_fence_context, exec->seqno); 640 fence->seqno = exec->seqno; 641 exec->fence = &fence->base; 642 643 vc4_update_bo_seqnos(exec, seqno); 644 645 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 646 647 list_add_tail(&exec->head, &vc4->bin_job_list); 648 649 /* If no job was executing, kick ours off. Otherwise, it'll 650 * get started when the previous job's flush done interrupt 651 * occurs. 652 */ 653 if (vc4_first_bin_job(vc4) == exec) { 654 vc4_submit_next_bin_job(dev); 655 vc4_queue_hangcheck(dev); 656 } 657 658 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 659 660 return 0; 661 } 662 663 /** 664 * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects 665 * referenced by the job. 666 * @dev: DRM device 667 * @file_priv: DRM file for this fd 668 * @exec: V3D job being set up 669 * 670 * The command validator needs to reference BOs by their index within 671 * the submitted job's BO list. This does the validation of the job's 672 * BO list and reference counting for the lifetime of the job. 673 */ 674 static int 675 vc4_cl_lookup_bos(struct drm_device *dev, 676 struct drm_file *file_priv, 677 struct vc4_exec_info *exec) 678 { 679 struct drm_vc4_submit_cl *args = exec->args; 680 uint32_t *handles; 681 int ret = 0; 682 int i; 683 684 exec->bo_count = args->bo_handle_count; 685 686 if (!exec->bo_count) { 687 /* See comment on bo_index for why we have to check 688 * this. 689 */ 690 DRM_DEBUG("Rendering requires BOs to validate\n"); 691 return -EINVAL; 692 } 693 694 exec->bo = kvmalloc_array(exec->bo_count, 695 sizeof(struct drm_gem_cma_object *), 696 GFP_KERNEL | __GFP_ZERO); 697 if (!exec->bo) { 698 DRM_ERROR("Failed to allocate validated BO pointers\n"); 699 return -ENOMEM; 700 } 701 702 handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL); 703 if (!handles) { 704 ret = -ENOMEM; 705 DRM_ERROR("Failed to allocate incoming GEM handles\n"); 706 goto fail; 707 } 708 709 if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles), 710 exec->bo_count * sizeof(uint32_t))) { 711 ret = -EFAULT; 712 DRM_ERROR("Failed to copy in GEM handles\n"); 713 goto fail; 714 } 715 716 spin_lock(&file_priv->table_lock); 717 for (i = 0; i < exec->bo_count; i++) { 718 struct drm_gem_object *bo = idr_find(&file_priv->object_idr, 719 handles[i]); 720 if (!bo) { 721 DRM_DEBUG("Failed to look up GEM BO %d: %d\n", 722 i, handles[i]); 723 ret = -EINVAL; 724 break; 725 } 726 727 drm_gem_object_get(bo); 728 exec->bo[i] = (struct drm_gem_cma_object *)bo; 729 } 730 spin_unlock(&file_priv->table_lock); 731 732 if (ret) 733 goto fail_put_bo; 734 735 for (i = 0; i < exec->bo_count; i++) { 736 ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base)); 737 if (ret) 738 goto fail_dec_usecnt; 739 } 740 741 kvfree(handles); 742 return 0; 743 744 fail_dec_usecnt: 745 /* Decrease usecnt on acquired objects. 746 * We cannot rely on vc4_complete_exec() to release resources here, 747 * because vc4_complete_exec() has no information about which BO has 748 * had its ->usecnt incremented. 749 * To make things easier we just free everything explicitly and set 750 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release' 751 * step. 752 */ 753 for (i-- ; i >= 0; i--) 754 vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base)); 755 756 fail_put_bo: 757 /* Release any reference to acquired objects. */ 758 for (i = 0; i < exec->bo_count && exec->bo[i]; i++) 759 drm_gem_object_put_unlocked(&exec->bo[i]->base); 760 761 fail: 762 kvfree(handles); 763 kvfree(exec->bo); 764 exec->bo = NULL; 765 return ret; 766 } 767 768 static int 769 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec) 770 { 771 struct drm_vc4_submit_cl *args = exec->args; 772 void *temp = NULL; 773 void *bin; 774 int ret = 0; 775 uint32_t bin_offset = 0; 776 uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size, 777 16); 778 uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size; 779 uint32_t exec_size = uniforms_offset + args->uniforms_size; 780 uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) * 781 args->shader_rec_count); 782 struct vc4_bo *bo; 783 784 if (shader_rec_offset < args->bin_cl_size || 785 uniforms_offset < shader_rec_offset || 786 exec_size < uniforms_offset || 787 args->shader_rec_count >= (UINT_MAX / 788 sizeof(struct vc4_shader_state)) || 789 temp_size < exec_size) { 790 DRM_DEBUG("overflow in exec arguments\n"); 791 ret = -EINVAL; 792 goto fail; 793 } 794 795 /* Allocate space where we'll store the copied in user command lists 796 * and shader records. 797 * 798 * We don't just copy directly into the BOs because we need to 799 * read the contents back for validation, and I think the 800 * bo->vaddr is uncached access. 801 */ 802 temp = kvmalloc_array(temp_size, 1, GFP_KERNEL); 803 if (!temp) { 804 DRM_ERROR("Failed to allocate storage for copying " 805 "in bin/render CLs.\n"); 806 ret = -ENOMEM; 807 goto fail; 808 } 809 bin = temp + bin_offset; 810 exec->shader_rec_u = temp + shader_rec_offset; 811 exec->uniforms_u = temp + uniforms_offset; 812 exec->shader_state = temp + exec_size; 813 exec->shader_state_size = args->shader_rec_count; 814 815 if (copy_from_user(bin, 816 u64_to_user_ptr(args->bin_cl), 817 args->bin_cl_size)) { 818 ret = -EFAULT; 819 goto fail; 820 } 821 822 if (copy_from_user(exec->shader_rec_u, 823 u64_to_user_ptr(args->shader_rec), 824 args->shader_rec_size)) { 825 ret = -EFAULT; 826 goto fail; 827 } 828 829 if (copy_from_user(exec->uniforms_u, 830 u64_to_user_ptr(args->uniforms), 831 args->uniforms_size)) { 832 ret = -EFAULT; 833 goto fail; 834 } 835 836 bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL); 837 if (IS_ERR(bo)) { 838 DRM_ERROR("Couldn't allocate BO for binning\n"); 839 ret = PTR_ERR(bo); 840 goto fail; 841 } 842 exec->exec_bo = &bo->base; 843 844 list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head, 845 &exec->unref_list); 846 847 exec->ct0ca = exec->exec_bo->paddr + bin_offset; 848 849 exec->bin_u = bin; 850 851 exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset; 852 exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset; 853 exec->shader_rec_size = args->shader_rec_size; 854 855 exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset; 856 exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset; 857 exec->uniforms_size = args->uniforms_size; 858 859 ret = vc4_validate_bin_cl(dev, 860 exec->exec_bo->vaddr + bin_offset, 861 bin, 862 exec); 863 if (ret) 864 goto fail; 865 866 ret = vc4_validate_shader_recs(dev, exec); 867 if (ret) 868 goto fail; 869 870 /* Block waiting on any previous rendering into the CS's VBO, 871 * IB, or textures, so that pixels are actually written by the 872 * time we try to read them. 873 */ 874 ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true); 875 876 fail: 877 kvfree(temp); 878 return ret; 879 } 880 881 static void 882 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec) 883 { 884 struct vc4_dev *vc4 = to_vc4_dev(dev); 885 unsigned long irqflags; 886 unsigned i; 887 888 /* If we got force-completed because of GPU reset rather than 889 * through our IRQ handler, signal the fence now. 890 */ 891 if (exec->fence) 892 dma_fence_signal(exec->fence); 893 894 if (exec->bo) { 895 for (i = 0; i < exec->bo_count; i++) { 896 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base); 897 898 vc4_bo_dec_usecnt(bo); 899 drm_gem_object_put_unlocked(&exec->bo[i]->base); 900 } 901 kvfree(exec->bo); 902 } 903 904 while (!list_empty(&exec->unref_list)) { 905 struct vc4_bo *bo = list_first_entry(&exec->unref_list, 906 struct vc4_bo, unref_head); 907 list_del(&bo->unref_head); 908 drm_gem_object_put_unlocked(&bo->base.base); 909 } 910 911 /* Free up the allocation of any bin slots we used. */ 912 spin_lock_irqsave(&vc4->job_lock, irqflags); 913 vc4->bin_alloc_used &= ~exec->bin_slots; 914 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 915 916 mutex_lock(&vc4->power_lock); 917 if (--vc4->power_refcount == 0) { 918 pm_runtime_mark_last_busy(&vc4->v3d->pdev->dev); 919 pm_runtime_put_autosuspend(&vc4->v3d->pdev->dev); 920 } 921 mutex_unlock(&vc4->power_lock); 922 923 kfree(exec); 924 } 925 926 void 927 vc4_job_handle_completed(struct vc4_dev *vc4) 928 { 929 unsigned long irqflags; 930 struct vc4_seqno_cb *cb, *cb_temp; 931 932 spin_lock_irqsave(&vc4->job_lock, irqflags); 933 while (!list_empty(&vc4->job_done_list)) { 934 struct vc4_exec_info *exec = 935 list_first_entry(&vc4->job_done_list, 936 struct vc4_exec_info, head); 937 list_del(&exec->head); 938 939 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 940 vc4_complete_exec(vc4->dev, exec); 941 spin_lock_irqsave(&vc4->job_lock, irqflags); 942 } 943 944 list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) { 945 if (cb->seqno <= vc4->finished_seqno) { 946 list_del_init(&cb->work.entry); 947 schedule_work(&cb->work); 948 } 949 } 950 951 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 952 } 953 954 static void vc4_seqno_cb_work(struct work_struct *work) 955 { 956 struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work); 957 958 cb->func(cb); 959 } 960 961 int vc4_queue_seqno_cb(struct drm_device *dev, 962 struct vc4_seqno_cb *cb, uint64_t seqno, 963 void (*func)(struct vc4_seqno_cb *cb)) 964 { 965 struct vc4_dev *vc4 = to_vc4_dev(dev); 966 int ret = 0; 967 unsigned long irqflags; 968 969 cb->func = func; 970 INIT_WORK(&cb->work, vc4_seqno_cb_work); 971 972 spin_lock_irqsave(&vc4->job_lock, irqflags); 973 if (seqno > vc4->finished_seqno) { 974 cb->seqno = seqno; 975 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list); 976 } else { 977 schedule_work(&cb->work); 978 } 979 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 980 981 return ret; 982 } 983 984 /* Scheduled when any job has been completed, this walks the list of 985 * jobs that had completed and unrefs their BOs and frees their exec 986 * structs. 987 */ 988 static void 989 vc4_job_done_work(struct work_struct *work) 990 { 991 struct vc4_dev *vc4 = 992 container_of(work, struct vc4_dev, job_done_work); 993 994 vc4_job_handle_completed(vc4); 995 } 996 997 static int 998 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev, 999 uint64_t seqno, 1000 uint64_t *timeout_ns) 1001 { 1002 unsigned long start = jiffies; 1003 int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true); 1004 1005 if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) { 1006 uint64_t delta = jiffies_to_nsecs(jiffies - start); 1007 1008 if (*timeout_ns >= delta) 1009 *timeout_ns -= delta; 1010 } 1011 1012 return ret; 1013 } 1014 1015 int 1016 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data, 1017 struct drm_file *file_priv) 1018 { 1019 struct drm_vc4_wait_seqno *args = data; 1020 1021 return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno, 1022 &args->timeout_ns); 1023 } 1024 1025 int 1026 vc4_wait_bo_ioctl(struct drm_device *dev, void *data, 1027 struct drm_file *file_priv) 1028 { 1029 int ret; 1030 struct drm_vc4_wait_bo *args = data; 1031 struct drm_gem_object *gem_obj; 1032 struct vc4_bo *bo; 1033 1034 if (args->pad != 0) 1035 return -EINVAL; 1036 1037 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 1038 if (!gem_obj) { 1039 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle); 1040 return -EINVAL; 1041 } 1042 bo = to_vc4_bo(gem_obj); 1043 1044 ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno, 1045 &args->timeout_ns); 1046 1047 drm_gem_object_put_unlocked(gem_obj); 1048 return ret; 1049 } 1050 1051 /** 1052 * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4. 1053 * @dev: DRM device 1054 * @data: ioctl argument 1055 * @file_priv: DRM file for this fd 1056 * 1057 * This is the main entrypoint for userspace to submit a 3D frame to 1058 * the GPU. Userspace provides the binner command list (if 1059 * applicable), and the kernel sets up the render command list to draw 1060 * to the framebuffer described in the ioctl, using the command lists 1061 * that the 3D engine's binner will produce. 1062 */ 1063 int 1064 vc4_submit_cl_ioctl(struct drm_device *dev, void *data, 1065 struct drm_file *file_priv) 1066 { 1067 struct vc4_dev *vc4 = to_vc4_dev(dev); 1068 struct drm_vc4_submit_cl *args = data; 1069 struct vc4_exec_info *exec; 1070 struct ww_acquire_ctx acquire_ctx; 1071 int ret = 0; 1072 1073 if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR | 1074 VC4_SUBMIT_CL_FIXED_RCL_ORDER | 1075 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X | 1076 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) { 1077 DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags); 1078 return -EINVAL; 1079 } 1080 1081 exec = kcalloc(1, sizeof(*exec), GFP_KERNEL); 1082 if (!exec) { 1083 DRM_ERROR("malloc failure on exec struct\n"); 1084 return -ENOMEM; 1085 } 1086 1087 mutex_lock(&vc4->power_lock); 1088 if (vc4->power_refcount++ == 0) { 1089 ret = pm_runtime_get_sync(&vc4->v3d->pdev->dev); 1090 if (ret < 0) { 1091 mutex_unlock(&vc4->power_lock); 1092 vc4->power_refcount--; 1093 kfree(exec); 1094 return ret; 1095 } 1096 } 1097 mutex_unlock(&vc4->power_lock); 1098 1099 exec->args = args; 1100 INIT_LIST_HEAD(&exec->unref_list); 1101 1102 ret = vc4_cl_lookup_bos(dev, file_priv, exec); 1103 if (ret) 1104 goto fail; 1105 1106 if (exec->args->bin_cl_size != 0) { 1107 ret = vc4_get_bcl(dev, exec); 1108 if (ret) 1109 goto fail; 1110 } else { 1111 exec->ct0ca = 0; 1112 exec->ct0ea = 0; 1113 } 1114 1115 ret = vc4_get_rcl(dev, exec); 1116 if (ret) 1117 goto fail; 1118 1119 ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx); 1120 if (ret) 1121 goto fail; 1122 1123 /* Clear this out of the struct we'll be putting in the queue, 1124 * since it's part of our stack. 1125 */ 1126 exec->args = NULL; 1127 1128 ret = vc4_queue_submit(dev, exec, &acquire_ctx); 1129 if (ret) 1130 goto fail; 1131 1132 /* Return the seqno for our job. */ 1133 args->seqno = vc4->emit_seqno; 1134 1135 return 0; 1136 1137 fail: 1138 vc4_complete_exec(vc4->dev, exec); 1139 1140 return ret; 1141 } 1142 1143 void 1144 vc4_gem_init(struct drm_device *dev) 1145 { 1146 struct vc4_dev *vc4 = to_vc4_dev(dev); 1147 1148 vc4->dma_fence_context = dma_fence_context_alloc(1); 1149 1150 INIT_LIST_HEAD(&vc4->bin_job_list); 1151 INIT_LIST_HEAD(&vc4->render_job_list); 1152 INIT_LIST_HEAD(&vc4->job_done_list); 1153 INIT_LIST_HEAD(&vc4->seqno_cb_list); 1154 spin_lock_init(&vc4->job_lock); 1155 1156 INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work); 1157 timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0); 1158 1159 INIT_WORK(&vc4->job_done_work, vc4_job_done_work); 1160 1161 mutex_init(&vc4->power_lock); 1162 1163 INIT_LIST_HEAD(&vc4->purgeable.list); 1164 mutex_init(&vc4->purgeable.lock); 1165 } 1166 1167 void 1168 vc4_gem_destroy(struct drm_device *dev) 1169 { 1170 struct vc4_dev *vc4 = to_vc4_dev(dev); 1171 1172 /* Waiting for exec to finish would need to be done before 1173 * unregistering V3D. 1174 */ 1175 WARN_ON(vc4->emit_seqno != vc4->finished_seqno); 1176 1177 /* V3D should already have disabled its interrupt and cleared 1178 * the overflow allocation registers. Now free the object. 1179 */ 1180 if (vc4->bin_bo) { 1181 drm_gem_object_put_unlocked(&vc4->bin_bo->base.base); 1182 vc4->bin_bo = NULL; 1183 } 1184 1185 if (vc4->hang_state) 1186 vc4_free_hang_state(dev, vc4->hang_state); 1187 } 1188 1189 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data, 1190 struct drm_file *file_priv) 1191 { 1192 struct drm_vc4_gem_madvise *args = data; 1193 struct drm_gem_object *gem_obj; 1194 struct vc4_bo *bo; 1195 int ret; 1196 1197 switch (args->madv) { 1198 case VC4_MADV_DONTNEED: 1199 case VC4_MADV_WILLNEED: 1200 break; 1201 default: 1202 return -EINVAL; 1203 } 1204 1205 if (args->pad != 0) 1206 return -EINVAL; 1207 1208 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 1209 if (!gem_obj) { 1210 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle); 1211 return -ENOENT; 1212 } 1213 1214 bo = to_vc4_bo(gem_obj); 1215 1216 /* Only BOs exposed to userspace can be purged. */ 1217 if (bo->madv == __VC4_MADV_NOTSUPP) { 1218 DRM_DEBUG("madvise not supported on this BO\n"); 1219 ret = -EINVAL; 1220 goto out_put_gem; 1221 } 1222 1223 /* Not sure it's safe to purge imported BOs. Let's just assume it's 1224 * not until proven otherwise. 1225 */ 1226 if (gem_obj->import_attach) { 1227 DRM_DEBUG("madvise not supported on imported BOs\n"); 1228 ret = -EINVAL; 1229 goto out_put_gem; 1230 } 1231 1232 mutex_lock(&bo->madv_lock); 1233 1234 if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED && 1235 !refcount_read(&bo->usecnt)) { 1236 /* If the BO is about to be marked as purgeable, is not used 1237 * and is not already purgeable or purged, add it to the 1238 * purgeable list. 1239 */ 1240 vc4_bo_add_to_purgeable_pool(bo); 1241 } else if (args->madv == VC4_MADV_WILLNEED && 1242 bo->madv == VC4_MADV_DONTNEED && 1243 !refcount_read(&bo->usecnt)) { 1244 /* The BO has not been purged yet, just remove it from 1245 * the purgeable list. 1246 */ 1247 vc4_bo_remove_from_purgeable_pool(bo); 1248 } 1249 1250 /* Save the purged state. */ 1251 args->retained = bo->madv != __VC4_MADV_PURGED; 1252 1253 /* Update internal madv state only if the bo was not purged. */ 1254 if (bo->madv != __VC4_MADV_PURGED) 1255 bo->madv = args->madv; 1256 1257 mutex_unlock(&bo->madv_lock); 1258 1259 ret = 0; 1260 1261 out_put_gem: 1262 drm_gem_object_put_unlocked(gem_obj); 1263 1264 return ret; 1265 } 1266