1 /* 2 * Copyright © 2014 Broadcom 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/device.h> 28 #include <linux/io.h> 29 #include <linux/sched/signal.h> 30 31 #include "uapi/drm/vc4_drm.h" 32 #include "vc4_drv.h" 33 #include "vc4_regs.h" 34 #include "vc4_trace.h" 35 36 static void 37 vc4_queue_hangcheck(struct drm_device *dev) 38 { 39 struct vc4_dev *vc4 = to_vc4_dev(dev); 40 41 mod_timer(&vc4->hangcheck.timer, 42 round_jiffies_up(jiffies + msecs_to_jiffies(100))); 43 } 44 45 struct vc4_hang_state { 46 struct drm_vc4_get_hang_state user_state; 47 48 u32 bo_count; 49 struct drm_gem_object **bo; 50 }; 51 52 static void 53 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state) 54 { 55 unsigned int i; 56 57 for (i = 0; i < state->user_state.bo_count; i++) 58 drm_gem_object_unreference_unlocked(state->bo[i]); 59 60 kfree(state); 61 } 62 63 int 64 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data, 65 struct drm_file *file_priv) 66 { 67 struct drm_vc4_get_hang_state *get_state = data; 68 struct drm_vc4_get_hang_state_bo *bo_state; 69 struct vc4_hang_state *kernel_state; 70 struct drm_vc4_get_hang_state *state; 71 struct vc4_dev *vc4 = to_vc4_dev(dev); 72 unsigned long irqflags; 73 u32 i; 74 int ret = 0; 75 76 spin_lock_irqsave(&vc4->job_lock, irqflags); 77 kernel_state = vc4->hang_state; 78 if (!kernel_state) { 79 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 80 return -ENOENT; 81 } 82 state = &kernel_state->user_state; 83 84 /* If the user's array isn't big enough, just return the 85 * required array size. 86 */ 87 if (get_state->bo_count < state->bo_count) { 88 get_state->bo_count = state->bo_count; 89 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 90 return 0; 91 } 92 93 vc4->hang_state = NULL; 94 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 95 96 /* Save the user's BO pointer, so we don't stomp it with the memcpy. */ 97 state->bo = get_state->bo; 98 memcpy(get_state, state, sizeof(*state)); 99 100 bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL); 101 if (!bo_state) { 102 ret = -ENOMEM; 103 goto err_free; 104 } 105 106 for (i = 0; i < state->bo_count; i++) { 107 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]); 108 u32 handle; 109 110 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i], 111 &handle); 112 113 if (ret) { 114 state->bo_count = i; 115 goto err_delete_handle; 116 } 117 bo_state[i].handle = handle; 118 bo_state[i].paddr = vc4_bo->base.paddr; 119 bo_state[i].size = vc4_bo->base.base.size; 120 } 121 122 if (copy_to_user((void __user *)(uintptr_t)get_state->bo, 123 bo_state, 124 state->bo_count * sizeof(*bo_state))) 125 ret = -EFAULT; 126 127 err_delete_handle: 128 if (ret) { 129 for (i = 0; i < state->bo_count; i++) 130 drm_gem_handle_delete(file_priv, bo_state[i].handle); 131 } 132 133 err_free: 134 vc4_free_hang_state(dev, kernel_state); 135 kfree(bo_state); 136 137 return ret; 138 } 139 140 static void 141 vc4_save_hang_state(struct drm_device *dev) 142 { 143 struct vc4_dev *vc4 = to_vc4_dev(dev); 144 struct drm_vc4_get_hang_state *state; 145 struct vc4_hang_state *kernel_state; 146 struct vc4_exec_info *exec[2]; 147 struct vc4_bo *bo; 148 unsigned long irqflags; 149 unsigned int i, j, unref_list_count, prev_idx; 150 151 kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL); 152 if (!kernel_state) 153 return; 154 155 state = &kernel_state->user_state; 156 157 spin_lock_irqsave(&vc4->job_lock, irqflags); 158 exec[0] = vc4_first_bin_job(vc4); 159 exec[1] = vc4_first_render_job(vc4); 160 if (!exec[0] && !exec[1]) { 161 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 162 return; 163 } 164 165 /* Get the bos from both binner and renderer into hang state. */ 166 state->bo_count = 0; 167 for (i = 0; i < 2; i++) { 168 if (!exec[i]) 169 continue; 170 171 unref_list_count = 0; 172 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) 173 unref_list_count++; 174 state->bo_count += exec[i]->bo_count + unref_list_count; 175 } 176 177 kernel_state->bo = kcalloc(state->bo_count, 178 sizeof(*kernel_state->bo), GFP_ATOMIC); 179 180 if (!kernel_state->bo) { 181 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 182 return; 183 } 184 185 prev_idx = 0; 186 for (i = 0; i < 2; i++) { 187 if (!exec[i]) 188 continue; 189 190 for (j = 0; j < exec[i]->bo_count; j++) { 191 drm_gem_object_reference(&exec[i]->bo[j]->base); 192 kernel_state->bo[j + prev_idx] = &exec[i]->bo[j]->base; 193 } 194 195 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) { 196 drm_gem_object_reference(&bo->base.base); 197 kernel_state->bo[j + prev_idx] = &bo->base.base; 198 j++; 199 } 200 prev_idx = j + 1; 201 } 202 203 if (exec[0]) 204 state->start_bin = exec[0]->ct0ca; 205 if (exec[1]) 206 state->start_render = exec[1]->ct1ca; 207 208 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 209 210 state->ct0ca = V3D_READ(V3D_CTNCA(0)); 211 state->ct0ea = V3D_READ(V3D_CTNEA(0)); 212 213 state->ct1ca = V3D_READ(V3D_CTNCA(1)); 214 state->ct1ea = V3D_READ(V3D_CTNEA(1)); 215 216 state->ct0cs = V3D_READ(V3D_CTNCS(0)); 217 state->ct1cs = V3D_READ(V3D_CTNCS(1)); 218 219 state->ct0ra0 = V3D_READ(V3D_CT00RA0); 220 state->ct1ra0 = V3D_READ(V3D_CT01RA0); 221 222 state->bpca = V3D_READ(V3D_BPCA); 223 state->bpcs = V3D_READ(V3D_BPCS); 224 state->bpoa = V3D_READ(V3D_BPOA); 225 state->bpos = V3D_READ(V3D_BPOS); 226 227 state->vpmbase = V3D_READ(V3D_VPMBASE); 228 229 state->dbge = V3D_READ(V3D_DBGE); 230 state->fdbgo = V3D_READ(V3D_FDBGO); 231 state->fdbgb = V3D_READ(V3D_FDBGB); 232 state->fdbgr = V3D_READ(V3D_FDBGR); 233 state->fdbgs = V3D_READ(V3D_FDBGS); 234 state->errstat = V3D_READ(V3D_ERRSTAT); 235 236 spin_lock_irqsave(&vc4->job_lock, irqflags); 237 if (vc4->hang_state) { 238 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 239 vc4_free_hang_state(dev, kernel_state); 240 } else { 241 vc4->hang_state = kernel_state; 242 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 243 } 244 } 245 246 static void 247 vc4_reset(struct drm_device *dev) 248 { 249 struct vc4_dev *vc4 = to_vc4_dev(dev); 250 251 DRM_INFO("Resetting GPU.\n"); 252 253 mutex_lock(&vc4->power_lock); 254 if (vc4->power_refcount) { 255 /* Power the device off and back on the by dropping the 256 * reference on runtime PM. 257 */ 258 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev); 259 pm_runtime_get_sync(&vc4->v3d->pdev->dev); 260 } 261 mutex_unlock(&vc4->power_lock); 262 263 vc4_irq_reset(dev); 264 265 /* Rearm the hangcheck -- another job might have been waiting 266 * for our hung one to get kicked off, and vc4_irq_reset() 267 * would have started it. 268 */ 269 vc4_queue_hangcheck(dev); 270 } 271 272 static void 273 vc4_reset_work(struct work_struct *work) 274 { 275 struct vc4_dev *vc4 = 276 container_of(work, struct vc4_dev, hangcheck.reset_work); 277 278 vc4_save_hang_state(vc4->dev); 279 280 vc4_reset(vc4->dev); 281 } 282 283 static void 284 vc4_hangcheck_elapsed(unsigned long data) 285 { 286 struct drm_device *dev = (struct drm_device *)data; 287 struct vc4_dev *vc4 = to_vc4_dev(dev); 288 uint32_t ct0ca, ct1ca; 289 unsigned long irqflags; 290 struct vc4_exec_info *bin_exec, *render_exec; 291 292 spin_lock_irqsave(&vc4->job_lock, irqflags); 293 294 bin_exec = vc4_first_bin_job(vc4); 295 render_exec = vc4_first_render_job(vc4); 296 297 /* If idle, we can stop watching for hangs. */ 298 if (!bin_exec && !render_exec) { 299 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 300 return; 301 } 302 303 ct0ca = V3D_READ(V3D_CTNCA(0)); 304 ct1ca = V3D_READ(V3D_CTNCA(1)); 305 306 /* If we've made any progress in execution, rearm the timer 307 * and wait. 308 */ 309 if ((bin_exec && ct0ca != bin_exec->last_ct0ca) || 310 (render_exec && ct1ca != render_exec->last_ct1ca)) { 311 if (bin_exec) 312 bin_exec->last_ct0ca = ct0ca; 313 if (render_exec) 314 render_exec->last_ct1ca = ct1ca; 315 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 316 vc4_queue_hangcheck(dev); 317 return; 318 } 319 320 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 321 322 /* We've gone too long with no progress, reset. This has to 323 * be done from a work struct, since resetting can sleep and 324 * this timer hook isn't allowed to. 325 */ 326 schedule_work(&vc4->hangcheck.reset_work); 327 } 328 329 static void 330 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end) 331 { 332 struct vc4_dev *vc4 = to_vc4_dev(dev); 333 334 /* Set the current and end address of the control list. 335 * Writing the end register is what starts the job. 336 */ 337 V3D_WRITE(V3D_CTNCA(thread), start); 338 V3D_WRITE(V3D_CTNEA(thread), end); 339 } 340 341 int 342 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns, 343 bool interruptible) 344 { 345 struct vc4_dev *vc4 = to_vc4_dev(dev); 346 int ret = 0; 347 unsigned long timeout_expire; 348 DEFINE_WAIT(wait); 349 350 if (vc4->finished_seqno >= seqno) 351 return 0; 352 353 if (timeout_ns == 0) 354 return -ETIME; 355 356 timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns); 357 358 trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns); 359 for (;;) { 360 prepare_to_wait(&vc4->job_wait_queue, &wait, 361 interruptible ? TASK_INTERRUPTIBLE : 362 TASK_UNINTERRUPTIBLE); 363 364 if (interruptible && signal_pending(current)) { 365 ret = -ERESTARTSYS; 366 break; 367 } 368 369 if (vc4->finished_seqno >= seqno) 370 break; 371 372 if (timeout_ns != ~0ull) { 373 if (time_after_eq(jiffies, timeout_expire)) { 374 ret = -ETIME; 375 break; 376 } 377 schedule_timeout(timeout_expire - jiffies); 378 } else { 379 schedule(); 380 } 381 } 382 383 finish_wait(&vc4->job_wait_queue, &wait); 384 trace_vc4_wait_for_seqno_end(dev, seqno); 385 386 return ret; 387 } 388 389 static void 390 vc4_flush_caches(struct drm_device *dev) 391 { 392 struct vc4_dev *vc4 = to_vc4_dev(dev); 393 394 /* Flush the GPU L2 caches. These caches sit on top of system 395 * L3 (the 128kb or so shared with the CPU), and are 396 * non-allocating in the L3. 397 */ 398 V3D_WRITE(V3D_L2CACTL, 399 V3D_L2CACTL_L2CCLR); 400 401 V3D_WRITE(V3D_SLCACTL, 402 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | 403 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) | 404 VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) | 405 VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC)); 406 } 407 408 /* Sets the registers for the next job to be actually be executed in 409 * the hardware. 410 * 411 * The job_lock should be held during this. 412 */ 413 void 414 vc4_submit_next_bin_job(struct drm_device *dev) 415 { 416 struct vc4_dev *vc4 = to_vc4_dev(dev); 417 struct vc4_exec_info *exec; 418 419 again: 420 exec = vc4_first_bin_job(vc4); 421 if (!exec) 422 return; 423 424 vc4_flush_caches(dev); 425 426 /* Either put the job in the binner if it uses the binner, or 427 * immediately move it to the to-be-rendered queue. 428 */ 429 if (exec->ct0ca != exec->ct0ea) { 430 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea); 431 } else { 432 vc4_move_job_to_render(dev, exec); 433 goto again; 434 } 435 } 436 437 void 438 vc4_submit_next_render_job(struct drm_device *dev) 439 { 440 struct vc4_dev *vc4 = to_vc4_dev(dev); 441 struct vc4_exec_info *exec = vc4_first_render_job(vc4); 442 443 if (!exec) 444 return; 445 446 submit_cl(dev, 1, exec->ct1ca, exec->ct1ea); 447 } 448 449 void 450 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec) 451 { 452 struct vc4_dev *vc4 = to_vc4_dev(dev); 453 bool was_empty = list_empty(&vc4->render_job_list); 454 455 list_move_tail(&exec->head, &vc4->render_job_list); 456 if (was_empty) 457 vc4_submit_next_render_job(dev); 458 } 459 460 static void 461 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno) 462 { 463 struct vc4_bo *bo; 464 unsigned i; 465 466 for (i = 0; i < exec->bo_count; i++) { 467 bo = to_vc4_bo(&exec->bo[i]->base); 468 bo->seqno = seqno; 469 470 reservation_object_add_shared_fence(bo->resv, exec->fence); 471 } 472 473 list_for_each_entry(bo, &exec->unref_list, unref_head) { 474 bo->seqno = seqno; 475 } 476 477 for (i = 0; i < exec->rcl_write_bo_count; i++) { 478 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base); 479 bo->write_seqno = seqno; 480 481 reservation_object_add_excl_fence(bo->resv, exec->fence); 482 } 483 } 484 485 static void 486 vc4_unlock_bo_reservations(struct drm_device *dev, 487 struct vc4_exec_info *exec, 488 struct ww_acquire_ctx *acquire_ctx) 489 { 490 int i; 491 492 for (i = 0; i < exec->bo_count; i++) { 493 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base); 494 495 ww_mutex_unlock(&bo->resv->lock); 496 } 497 498 ww_acquire_fini(acquire_ctx); 499 } 500 501 /* Takes the reservation lock on all the BOs being referenced, so that 502 * at queue submit time we can update the reservations. 503 * 504 * We don't lock the RCL the tile alloc/state BOs, or overflow memory 505 * (all of which are on exec->unref_list). They're entirely private 506 * to vc4, so we don't attach dma-buf fences to them. 507 */ 508 static int 509 vc4_lock_bo_reservations(struct drm_device *dev, 510 struct vc4_exec_info *exec, 511 struct ww_acquire_ctx *acquire_ctx) 512 { 513 int contended_lock = -1; 514 int i, ret; 515 struct vc4_bo *bo; 516 517 ww_acquire_init(acquire_ctx, &reservation_ww_class); 518 519 retry: 520 if (contended_lock != -1) { 521 bo = to_vc4_bo(&exec->bo[contended_lock]->base); 522 ret = ww_mutex_lock_slow_interruptible(&bo->resv->lock, 523 acquire_ctx); 524 if (ret) { 525 ww_acquire_done(acquire_ctx); 526 return ret; 527 } 528 } 529 530 for (i = 0; i < exec->bo_count; i++) { 531 if (i == contended_lock) 532 continue; 533 534 bo = to_vc4_bo(&exec->bo[i]->base); 535 536 ret = ww_mutex_lock_interruptible(&bo->resv->lock, acquire_ctx); 537 if (ret) { 538 int j; 539 540 for (j = 0; j < i; j++) { 541 bo = to_vc4_bo(&exec->bo[j]->base); 542 ww_mutex_unlock(&bo->resv->lock); 543 } 544 545 if (contended_lock != -1 && contended_lock >= i) { 546 bo = to_vc4_bo(&exec->bo[contended_lock]->base); 547 548 ww_mutex_unlock(&bo->resv->lock); 549 } 550 551 if (ret == -EDEADLK) { 552 contended_lock = i; 553 goto retry; 554 } 555 556 ww_acquire_done(acquire_ctx); 557 return ret; 558 } 559 } 560 561 ww_acquire_done(acquire_ctx); 562 563 /* Reserve space for our shared (read-only) fence references, 564 * before we commit the CL to the hardware. 565 */ 566 for (i = 0; i < exec->bo_count; i++) { 567 bo = to_vc4_bo(&exec->bo[i]->base); 568 569 ret = reservation_object_reserve_shared(bo->resv); 570 if (ret) { 571 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 572 return ret; 573 } 574 } 575 576 return 0; 577 } 578 579 /* Queues a struct vc4_exec_info for execution. If no job is 580 * currently executing, then submits it. 581 * 582 * Unlike most GPUs, our hardware only handles one command list at a 583 * time. To queue multiple jobs at once, we'd need to edit the 584 * previous command list to have a jump to the new one at the end, and 585 * then bump the end address. That's a change for a later date, 586 * though. 587 */ 588 static int 589 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec, 590 struct ww_acquire_ctx *acquire_ctx) 591 { 592 struct vc4_dev *vc4 = to_vc4_dev(dev); 593 uint64_t seqno; 594 unsigned long irqflags; 595 struct vc4_fence *fence; 596 597 fence = kzalloc(sizeof(*fence), GFP_KERNEL); 598 if (!fence) 599 return -ENOMEM; 600 fence->dev = dev; 601 602 spin_lock_irqsave(&vc4->job_lock, irqflags); 603 604 seqno = ++vc4->emit_seqno; 605 exec->seqno = seqno; 606 607 dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock, 608 vc4->dma_fence_context, exec->seqno); 609 fence->seqno = exec->seqno; 610 exec->fence = &fence->base; 611 612 vc4_update_bo_seqnos(exec, seqno); 613 614 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 615 616 list_add_tail(&exec->head, &vc4->bin_job_list); 617 618 /* If no job was executing, kick ours off. Otherwise, it'll 619 * get started when the previous job's flush done interrupt 620 * occurs. 621 */ 622 if (vc4_first_bin_job(vc4) == exec) { 623 vc4_submit_next_bin_job(dev); 624 vc4_queue_hangcheck(dev); 625 } 626 627 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 628 629 return 0; 630 } 631 632 /** 633 * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects 634 * referenced by the job. 635 * @dev: DRM device 636 * @file_priv: DRM file for this fd 637 * @exec: V3D job being set up 638 * 639 * The command validator needs to reference BOs by their index within 640 * the submitted job's BO list. This does the validation of the job's 641 * BO list and reference counting for the lifetime of the job. 642 * 643 * Note that this function doesn't need to unreference the BOs on 644 * failure, because that will happen at vc4_complete_exec() time. 645 */ 646 static int 647 vc4_cl_lookup_bos(struct drm_device *dev, 648 struct drm_file *file_priv, 649 struct vc4_exec_info *exec) 650 { 651 struct drm_vc4_submit_cl *args = exec->args; 652 uint32_t *handles; 653 int ret = 0; 654 int i; 655 656 exec->bo_count = args->bo_handle_count; 657 658 if (!exec->bo_count) { 659 /* See comment on bo_index for why we have to check 660 * this. 661 */ 662 DRM_ERROR("Rendering requires BOs to validate\n"); 663 return -EINVAL; 664 } 665 666 exec->bo = kvmalloc_array(exec->bo_count, 667 sizeof(struct drm_gem_cma_object *), 668 GFP_KERNEL | __GFP_ZERO); 669 if (!exec->bo) { 670 DRM_ERROR("Failed to allocate validated BO pointers\n"); 671 return -ENOMEM; 672 } 673 674 handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL); 675 if (!handles) { 676 ret = -ENOMEM; 677 DRM_ERROR("Failed to allocate incoming GEM handles\n"); 678 goto fail; 679 } 680 681 if (copy_from_user(handles, 682 (void __user *)(uintptr_t)args->bo_handles, 683 exec->bo_count * sizeof(uint32_t))) { 684 ret = -EFAULT; 685 DRM_ERROR("Failed to copy in GEM handles\n"); 686 goto fail; 687 } 688 689 spin_lock(&file_priv->table_lock); 690 for (i = 0; i < exec->bo_count; i++) { 691 struct drm_gem_object *bo = idr_find(&file_priv->object_idr, 692 handles[i]); 693 if (!bo) { 694 DRM_ERROR("Failed to look up GEM BO %d: %d\n", 695 i, handles[i]); 696 ret = -EINVAL; 697 spin_unlock(&file_priv->table_lock); 698 goto fail; 699 } 700 drm_gem_object_reference(bo); 701 exec->bo[i] = (struct drm_gem_cma_object *)bo; 702 } 703 spin_unlock(&file_priv->table_lock); 704 705 fail: 706 kvfree(handles); 707 return ret; 708 } 709 710 static int 711 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec) 712 { 713 struct drm_vc4_submit_cl *args = exec->args; 714 void *temp = NULL; 715 void *bin; 716 int ret = 0; 717 uint32_t bin_offset = 0; 718 uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size, 719 16); 720 uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size; 721 uint32_t exec_size = uniforms_offset + args->uniforms_size; 722 uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) * 723 args->shader_rec_count); 724 struct vc4_bo *bo; 725 726 if (shader_rec_offset < args->bin_cl_size || 727 uniforms_offset < shader_rec_offset || 728 exec_size < uniforms_offset || 729 args->shader_rec_count >= (UINT_MAX / 730 sizeof(struct vc4_shader_state)) || 731 temp_size < exec_size) { 732 DRM_ERROR("overflow in exec arguments\n"); 733 ret = -EINVAL; 734 goto fail; 735 } 736 737 /* Allocate space where we'll store the copied in user command lists 738 * and shader records. 739 * 740 * We don't just copy directly into the BOs because we need to 741 * read the contents back for validation, and I think the 742 * bo->vaddr is uncached access. 743 */ 744 temp = kvmalloc_array(temp_size, 1, GFP_KERNEL); 745 if (!temp) { 746 DRM_ERROR("Failed to allocate storage for copying " 747 "in bin/render CLs.\n"); 748 ret = -ENOMEM; 749 goto fail; 750 } 751 bin = temp + bin_offset; 752 exec->shader_rec_u = temp + shader_rec_offset; 753 exec->uniforms_u = temp + uniforms_offset; 754 exec->shader_state = temp + exec_size; 755 exec->shader_state_size = args->shader_rec_count; 756 757 if (copy_from_user(bin, 758 (void __user *)(uintptr_t)args->bin_cl, 759 args->bin_cl_size)) { 760 ret = -EFAULT; 761 goto fail; 762 } 763 764 if (copy_from_user(exec->shader_rec_u, 765 (void __user *)(uintptr_t)args->shader_rec, 766 args->shader_rec_size)) { 767 ret = -EFAULT; 768 goto fail; 769 } 770 771 if (copy_from_user(exec->uniforms_u, 772 (void __user *)(uintptr_t)args->uniforms, 773 args->uniforms_size)) { 774 ret = -EFAULT; 775 goto fail; 776 } 777 778 bo = vc4_bo_create(dev, exec_size, true); 779 if (IS_ERR(bo)) { 780 DRM_ERROR("Couldn't allocate BO for binning\n"); 781 ret = PTR_ERR(bo); 782 goto fail; 783 } 784 exec->exec_bo = &bo->base; 785 786 list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head, 787 &exec->unref_list); 788 789 exec->ct0ca = exec->exec_bo->paddr + bin_offset; 790 791 exec->bin_u = bin; 792 793 exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset; 794 exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset; 795 exec->shader_rec_size = args->shader_rec_size; 796 797 exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset; 798 exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset; 799 exec->uniforms_size = args->uniforms_size; 800 801 ret = vc4_validate_bin_cl(dev, 802 exec->exec_bo->vaddr + bin_offset, 803 bin, 804 exec); 805 if (ret) 806 goto fail; 807 808 ret = vc4_validate_shader_recs(dev, exec); 809 if (ret) 810 goto fail; 811 812 /* Block waiting on any previous rendering into the CS's VBO, 813 * IB, or textures, so that pixels are actually written by the 814 * time we try to read them. 815 */ 816 ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true); 817 818 fail: 819 kvfree(temp); 820 return ret; 821 } 822 823 static void 824 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec) 825 { 826 struct vc4_dev *vc4 = to_vc4_dev(dev); 827 unsigned long irqflags; 828 unsigned i; 829 830 /* If we got force-completed because of GPU reset rather than 831 * through our IRQ handler, signal the fence now. 832 */ 833 if (exec->fence) 834 dma_fence_signal(exec->fence); 835 836 if (exec->bo) { 837 for (i = 0; i < exec->bo_count; i++) 838 drm_gem_object_unreference_unlocked(&exec->bo[i]->base); 839 kvfree(exec->bo); 840 } 841 842 while (!list_empty(&exec->unref_list)) { 843 struct vc4_bo *bo = list_first_entry(&exec->unref_list, 844 struct vc4_bo, unref_head); 845 list_del(&bo->unref_head); 846 drm_gem_object_unreference_unlocked(&bo->base.base); 847 } 848 849 /* Free up the allocation of any bin slots we used. */ 850 spin_lock_irqsave(&vc4->job_lock, irqflags); 851 vc4->bin_alloc_used &= ~exec->bin_slots; 852 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 853 854 mutex_lock(&vc4->power_lock); 855 if (--vc4->power_refcount == 0) { 856 pm_runtime_mark_last_busy(&vc4->v3d->pdev->dev); 857 pm_runtime_put_autosuspend(&vc4->v3d->pdev->dev); 858 } 859 mutex_unlock(&vc4->power_lock); 860 861 kfree(exec); 862 } 863 864 void 865 vc4_job_handle_completed(struct vc4_dev *vc4) 866 { 867 unsigned long irqflags; 868 struct vc4_seqno_cb *cb, *cb_temp; 869 870 spin_lock_irqsave(&vc4->job_lock, irqflags); 871 while (!list_empty(&vc4->job_done_list)) { 872 struct vc4_exec_info *exec = 873 list_first_entry(&vc4->job_done_list, 874 struct vc4_exec_info, head); 875 list_del(&exec->head); 876 877 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 878 vc4_complete_exec(vc4->dev, exec); 879 spin_lock_irqsave(&vc4->job_lock, irqflags); 880 } 881 882 list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) { 883 if (cb->seqno <= vc4->finished_seqno) { 884 list_del_init(&cb->work.entry); 885 schedule_work(&cb->work); 886 } 887 } 888 889 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 890 } 891 892 static void vc4_seqno_cb_work(struct work_struct *work) 893 { 894 struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work); 895 896 cb->func(cb); 897 } 898 899 int vc4_queue_seqno_cb(struct drm_device *dev, 900 struct vc4_seqno_cb *cb, uint64_t seqno, 901 void (*func)(struct vc4_seqno_cb *cb)) 902 { 903 struct vc4_dev *vc4 = to_vc4_dev(dev); 904 int ret = 0; 905 unsigned long irqflags; 906 907 cb->func = func; 908 INIT_WORK(&cb->work, vc4_seqno_cb_work); 909 910 spin_lock_irqsave(&vc4->job_lock, irqflags); 911 if (seqno > vc4->finished_seqno) { 912 cb->seqno = seqno; 913 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list); 914 } else { 915 schedule_work(&cb->work); 916 } 917 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 918 919 return ret; 920 } 921 922 /* Scheduled when any job has been completed, this walks the list of 923 * jobs that had completed and unrefs their BOs and frees their exec 924 * structs. 925 */ 926 static void 927 vc4_job_done_work(struct work_struct *work) 928 { 929 struct vc4_dev *vc4 = 930 container_of(work, struct vc4_dev, job_done_work); 931 932 vc4_job_handle_completed(vc4); 933 } 934 935 static int 936 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev, 937 uint64_t seqno, 938 uint64_t *timeout_ns) 939 { 940 unsigned long start = jiffies; 941 int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true); 942 943 if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) { 944 uint64_t delta = jiffies_to_nsecs(jiffies - start); 945 946 if (*timeout_ns >= delta) 947 *timeout_ns -= delta; 948 } 949 950 return ret; 951 } 952 953 int 954 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data, 955 struct drm_file *file_priv) 956 { 957 struct drm_vc4_wait_seqno *args = data; 958 959 return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno, 960 &args->timeout_ns); 961 } 962 963 int 964 vc4_wait_bo_ioctl(struct drm_device *dev, void *data, 965 struct drm_file *file_priv) 966 { 967 int ret; 968 struct drm_vc4_wait_bo *args = data; 969 struct drm_gem_object *gem_obj; 970 struct vc4_bo *bo; 971 972 if (args->pad != 0) 973 return -EINVAL; 974 975 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 976 if (!gem_obj) { 977 DRM_ERROR("Failed to look up GEM BO %d\n", args->handle); 978 return -EINVAL; 979 } 980 bo = to_vc4_bo(gem_obj); 981 982 ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno, 983 &args->timeout_ns); 984 985 drm_gem_object_unreference_unlocked(gem_obj); 986 return ret; 987 } 988 989 /** 990 * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4. 991 * @dev: DRM device 992 * @data: ioctl argument 993 * @file_priv: DRM file for this fd 994 * 995 * This is the main entrypoint for userspace to submit a 3D frame to 996 * the GPU. Userspace provides the binner command list (if 997 * applicable), and the kernel sets up the render command list to draw 998 * to the framebuffer described in the ioctl, using the command lists 999 * that the 3D engine's binner will produce. 1000 */ 1001 int 1002 vc4_submit_cl_ioctl(struct drm_device *dev, void *data, 1003 struct drm_file *file_priv) 1004 { 1005 struct vc4_dev *vc4 = to_vc4_dev(dev); 1006 struct drm_vc4_submit_cl *args = data; 1007 struct vc4_exec_info *exec; 1008 struct ww_acquire_ctx acquire_ctx; 1009 int ret = 0; 1010 1011 if ((args->flags & ~VC4_SUBMIT_CL_USE_CLEAR_COLOR) != 0) { 1012 DRM_ERROR("Unknown flags: 0x%02x\n", args->flags); 1013 return -EINVAL; 1014 } 1015 1016 exec = kcalloc(1, sizeof(*exec), GFP_KERNEL); 1017 if (!exec) { 1018 DRM_ERROR("malloc failure on exec struct\n"); 1019 return -ENOMEM; 1020 } 1021 1022 mutex_lock(&vc4->power_lock); 1023 if (vc4->power_refcount++ == 0) { 1024 ret = pm_runtime_get_sync(&vc4->v3d->pdev->dev); 1025 if (ret < 0) { 1026 mutex_unlock(&vc4->power_lock); 1027 vc4->power_refcount--; 1028 kfree(exec); 1029 return ret; 1030 } 1031 } 1032 mutex_unlock(&vc4->power_lock); 1033 1034 exec->args = args; 1035 INIT_LIST_HEAD(&exec->unref_list); 1036 1037 ret = vc4_cl_lookup_bos(dev, file_priv, exec); 1038 if (ret) 1039 goto fail; 1040 1041 if (exec->args->bin_cl_size != 0) { 1042 ret = vc4_get_bcl(dev, exec); 1043 if (ret) 1044 goto fail; 1045 } else { 1046 exec->ct0ca = 0; 1047 exec->ct0ea = 0; 1048 } 1049 1050 ret = vc4_get_rcl(dev, exec); 1051 if (ret) 1052 goto fail; 1053 1054 ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx); 1055 if (ret) 1056 goto fail; 1057 1058 /* Clear this out of the struct we'll be putting in the queue, 1059 * since it's part of our stack. 1060 */ 1061 exec->args = NULL; 1062 1063 ret = vc4_queue_submit(dev, exec, &acquire_ctx); 1064 if (ret) 1065 goto fail; 1066 1067 /* Return the seqno for our job. */ 1068 args->seqno = vc4->emit_seqno; 1069 1070 return 0; 1071 1072 fail: 1073 vc4_complete_exec(vc4->dev, exec); 1074 1075 return ret; 1076 } 1077 1078 void 1079 vc4_gem_init(struct drm_device *dev) 1080 { 1081 struct vc4_dev *vc4 = to_vc4_dev(dev); 1082 1083 vc4->dma_fence_context = dma_fence_context_alloc(1); 1084 1085 INIT_LIST_HEAD(&vc4->bin_job_list); 1086 INIT_LIST_HEAD(&vc4->render_job_list); 1087 INIT_LIST_HEAD(&vc4->job_done_list); 1088 INIT_LIST_HEAD(&vc4->seqno_cb_list); 1089 spin_lock_init(&vc4->job_lock); 1090 1091 INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work); 1092 setup_timer(&vc4->hangcheck.timer, 1093 vc4_hangcheck_elapsed, 1094 (unsigned long)dev); 1095 1096 INIT_WORK(&vc4->job_done_work, vc4_job_done_work); 1097 1098 mutex_init(&vc4->power_lock); 1099 } 1100 1101 void 1102 vc4_gem_destroy(struct drm_device *dev) 1103 { 1104 struct vc4_dev *vc4 = to_vc4_dev(dev); 1105 1106 /* Waiting for exec to finish would need to be done before 1107 * unregistering V3D. 1108 */ 1109 WARN_ON(vc4->emit_seqno != vc4->finished_seqno); 1110 1111 /* V3D should already have disabled its interrupt and cleared 1112 * the overflow allocation registers. Now free the object. 1113 */ 1114 if (vc4->bin_bo) { 1115 drm_gem_object_put_unlocked(&vc4->bin_bo->base.base); 1116 vc4->bin_bo = NULL; 1117 } 1118 1119 if (vc4->hang_state) 1120 vc4_free_hang_state(dev, vc4->hang_state); 1121 1122 vc4_bo_cache_destroy(dev); 1123 } 1124