1 /* 2 * Copyright © 2014 Broadcom 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/device.h> 28 #include <linux/io.h> 29 #include <linux/sched/signal.h> 30 #include <linux/dma-fence-array.h> 31 32 #include <drm/drm_syncobj.h> 33 34 #include "uapi/drm/vc4_drm.h" 35 #include "vc4_drv.h" 36 #include "vc4_regs.h" 37 #include "vc4_trace.h" 38 39 static void 40 vc4_queue_hangcheck(struct drm_device *dev) 41 { 42 struct vc4_dev *vc4 = to_vc4_dev(dev); 43 44 mod_timer(&vc4->hangcheck.timer, 45 round_jiffies_up(jiffies + msecs_to_jiffies(100))); 46 } 47 48 struct vc4_hang_state { 49 struct drm_vc4_get_hang_state user_state; 50 51 u32 bo_count; 52 struct drm_gem_object **bo; 53 }; 54 55 static void 56 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state) 57 { 58 unsigned int i; 59 60 for (i = 0; i < state->user_state.bo_count; i++) 61 drm_gem_object_put(state->bo[i]); 62 63 kfree(state); 64 } 65 66 int 67 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data, 68 struct drm_file *file_priv) 69 { 70 struct drm_vc4_get_hang_state *get_state = data; 71 struct drm_vc4_get_hang_state_bo *bo_state; 72 struct vc4_hang_state *kernel_state; 73 struct drm_vc4_get_hang_state *state; 74 struct vc4_dev *vc4 = to_vc4_dev(dev); 75 unsigned long irqflags; 76 u32 i; 77 int ret = 0; 78 79 if (!vc4->v3d) { 80 DRM_DEBUG("VC4_GET_HANG_STATE with no VC4 V3D probed\n"); 81 return -ENODEV; 82 } 83 84 spin_lock_irqsave(&vc4->job_lock, irqflags); 85 kernel_state = vc4->hang_state; 86 if (!kernel_state) { 87 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 88 return -ENOENT; 89 } 90 state = &kernel_state->user_state; 91 92 /* If the user's array isn't big enough, just return the 93 * required array size. 94 */ 95 if (get_state->bo_count < state->bo_count) { 96 get_state->bo_count = state->bo_count; 97 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 98 return 0; 99 } 100 101 vc4->hang_state = NULL; 102 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 103 104 /* Save the user's BO pointer, so we don't stomp it with the memcpy. */ 105 state->bo = get_state->bo; 106 memcpy(get_state, state, sizeof(*state)); 107 108 bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL); 109 if (!bo_state) { 110 ret = -ENOMEM; 111 goto err_free; 112 } 113 114 for (i = 0; i < state->bo_count; i++) { 115 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]); 116 u32 handle; 117 118 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i], 119 &handle); 120 121 if (ret) { 122 state->bo_count = i; 123 goto err_delete_handle; 124 } 125 bo_state[i].handle = handle; 126 bo_state[i].paddr = vc4_bo->base.paddr; 127 bo_state[i].size = vc4_bo->base.base.size; 128 } 129 130 if (copy_to_user(u64_to_user_ptr(get_state->bo), 131 bo_state, 132 state->bo_count * sizeof(*bo_state))) 133 ret = -EFAULT; 134 135 err_delete_handle: 136 if (ret) { 137 for (i = 0; i < state->bo_count; i++) 138 drm_gem_handle_delete(file_priv, bo_state[i].handle); 139 } 140 141 err_free: 142 vc4_free_hang_state(dev, kernel_state); 143 kfree(bo_state); 144 145 return ret; 146 } 147 148 static void 149 vc4_save_hang_state(struct drm_device *dev) 150 { 151 struct vc4_dev *vc4 = to_vc4_dev(dev); 152 struct drm_vc4_get_hang_state *state; 153 struct vc4_hang_state *kernel_state; 154 struct vc4_exec_info *exec[2]; 155 struct vc4_bo *bo; 156 unsigned long irqflags; 157 unsigned int i, j, k, unref_list_count; 158 159 kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL); 160 if (!kernel_state) 161 return; 162 163 state = &kernel_state->user_state; 164 165 spin_lock_irqsave(&vc4->job_lock, irqflags); 166 exec[0] = vc4_first_bin_job(vc4); 167 exec[1] = vc4_first_render_job(vc4); 168 if (!exec[0] && !exec[1]) { 169 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 170 return; 171 } 172 173 /* Get the bos from both binner and renderer into hang state. */ 174 state->bo_count = 0; 175 for (i = 0; i < 2; i++) { 176 if (!exec[i]) 177 continue; 178 179 unref_list_count = 0; 180 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) 181 unref_list_count++; 182 state->bo_count += exec[i]->bo_count + unref_list_count; 183 } 184 185 kernel_state->bo = kcalloc(state->bo_count, 186 sizeof(*kernel_state->bo), GFP_ATOMIC); 187 188 if (!kernel_state->bo) { 189 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 190 return; 191 } 192 193 k = 0; 194 for (i = 0; i < 2; i++) { 195 if (!exec[i]) 196 continue; 197 198 for (j = 0; j < exec[i]->bo_count; j++) { 199 bo = to_vc4_bo(&exec[i]->bo[j]->base); 200 201 /* Retain BOs just in case they were marked purgeable. 202 * This prevents the BO from being purged before 203 * someone had a chance to dump the hang state. 204 */ 205 WARN_ON(!refcount_read(&bo->usecnt)); 206 refcount_inc(&bo->usecnt); 207 drm_gem_object_get(&exec[i]->bo[j]->base); 208 kernel_state->bo[k++] = &exec[i]->bo[j]->base; 209 } 210 211 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) { 212 /* No need to retain BOs coming from the ->unref_list 213 * because they are naturally unpurgeable. 214 */ 215 drm_gem_object_get(&bo->base.base); 216 kernel_state->bo[k++] = &bo->base.base; 217 } 218 } 219 220 WARN_ON_ONCE(k != state->bo_count); 221 222 if (exec[0]) 223 state->start_bin = exec[0]->ct0ca; 224 if (exec[1]) 225 state->start_render = exec[1]->ct1ca; 226 227 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 228 229 state->ct0ca = V3D_READ(V3D_CTNCA(0)); 230 state->ct0ea = V3D_READ(V3D_CTNEA(0)); 231 232 state->ct1ca = V3D_READ(V3D_CTNCA(1)); 233 state->ct1ea = V3D_READ(V3D_CTNEA(1)); 234 235 state->ct0cs = V3D_READ(V3D_CTNCS(0)); 236 state->ct1cs = V3D_READ(V3D_CTNCS(1)); 237 238 state->ct0ra0 = V3D_READ(V3D_CT00RA0); 239 state->ct1ra0 = V3D_READ(V3D_CT01RA0); 240 241 state->bpca = V3D_READ(V3D_BPCA); 242 state->bpcs = V3D_READ(V3D_BPCS); 243 state->bpoa = V3D_READ(V3D_BPOA); 244 state->bpos = V3D_READ(V3D_BPOS); 245 246 state->vpmbase = V3D_READ(V3D_VPMBASE); 247 248 state->dbge = V3D_READ(V3D_DBGE); 249 state->fdbgo = V3D_READ(V3D_FDBGO); 250 state->fdbgb = V3D_READ(V3D_FDBGB); 251 state->fdbgr = V3D_READ(V3D_FDBGR); 252 state->fdbgs = V3D_READ(V3D_FDBGS); 253 state->errstat = V3D_READ(V3D_ERRSTAT); 254 255 /* We need to turn purgeable BOs into unpurgeable ones so that 256 * userspace has a chance to dump the hang state before the kernel 257 * decides to purge those BOs. 258 * Note that BO consistency at dump time cannot be guaranteed. For 259 * example, if the owner of these BOs decides to re-use them or mark 260 * them purgeable again there's nothing we can do to prevent it. 261 */ 262 for (i = 0; i < kernel_state->user_state.bo_count; i++) { 263 struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]); 264 265 if (bo->madv == __VC4_MADV_NOTSUPP) 266 continue; 267 268 mutex_lock(&bo->madv_lock); 269 if (!WARN_ON(bo->madv == __VC4_MADV_PURGED)) 270 bo->madv = VC4_MADV_WILLNEED; 271 refcount_dec(&bo->usecnt); 272 mutex_unlock(&bo->madv_lock); 273 } 274 275 spin_lock_irqsave(&vc4->job_lock, irqflags); 276 if (vc4->hang_state) { 277 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 278 vc4_free_hang_state(dev, kernel_state); 279 } else { 280 vc4->hang_state = kernel_state; 281 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 282 } 283 } 284 285 static void 286 vc4_reset(struct drm_device *dev) 287 { 288 struct vc4_dev *vc4 = to_vc4_dev(dev); 289 290 DRM_INFO("Resetting GPU.\n"); 291 292 mutex_lock(&vc4->power_lock); 293 if (vc4->power_refcount) { 294 /* Power the device off and back on the by dropping the 295 * reference on runtime PM. 296 */ 297 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev); 298 pm_runtime_get_sync(&vc4->v3d->pdev->dev); 299 } 300 mutex_unlock(&vc4->power_lock); 301 302 vc4_irq_reset(dev); 303 304 /* Rearm the hangcheck -- another job might have been waiting 305 * for our hung one to get kicked off, and vc4_irq_reset() 306 * would have started it. 307 */ 308 vc4_queue_hangcheck(dev); 309 } 310 311 static void 312 vc4_reset_work(struct work_struct *work) 313 { 314 struct vc4_dev *vc4 = 315 container_of(work, struct vc4_dev, hangcheck.reset_work); 316 317 vc4_save_hang_state(&vc4->base); 318 319 vc4_reset(&vc4->base); 320 } 321 322 static void 323 vc4_hangcheck_elapsed(struct timer_list *t) 324 { 325 struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer); 326 struct drm_device *dev = &vc4->base; 327 uint32_t ct0ca, ct1ca; 328 unsigned long irqflags; 329 struct vc4_exec_info *bin_exec, *render_exec; 330 331 spin_lock_irqsave(&vc4->job_lock, irqflags); 332 333 bin_exec = vc4_first_bin_job(vc4); 334 render_exec = vc4_first_render_job(vc4); 335 336 /* If idle, we can stop watching for hangs. */ 337 if (!bin_exec && !render_exec) { 338 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 339 return; 340 } 341 342 ct0ca = V3D_READ(V3D_CTNCA(0)); 343 ct1ca = V3D_READ(V3D_CTNCA(1)); 344 345 /* If we've made any progress in execution, rearm the timer 346 * and wait. 347 */ 348 if ((bin_exec && ct0ca != bin_exec->last_ct0ca) || 349 (render_exec && ct1ca != render_exec->last_ct1ca)) { 350 if (bin_exec) 351 bin_exec->last_ct0ca = ct0ca; 352 if (render_exec) 353 render_exec->last_ct1ca = ct1ca; 354 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 355 vc4_queue_hangcheck(dev); 356 return; 357 } 358 359 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 360 361 /* We've gone too long with no progress, reset. This has to 362 * be done from a work struct, since resetting can sleep and 363 * this timer hook isn't allowed to. 364 */ 365 schedule_work(&vc4->hangcheck.reset_work); 366 } 367 368 static void 369 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end) 370 { 371 struct vc4_dev *vc4 = to_vc4_dev(dev); 372 373 /* Set the current and end address of the control list. 374 * Writing the end register is what starts the job. 375 */ 376 V3D_WRITE(V3D_CTNCA(thread), start); 377 V3D_WRITE(V3D_CTNEA(thread), end); 378 } 379 380 int 381 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns, 382 bool interruptible) 383 { 384 struct vc4_dev *vc4 = to_vc4_dev(dev); 385 int ret = 0; 386 unsigned long timeout_expire; 387 DEFINE_WAIT(wait); 388 389 if (vc4->finished_seqno >= seqno) 390 return 0; 391 392 if (timeout_ns == 0) 393 return -ETIME; 394 395 timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns); 396 397 trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns); 398 for (;;) { 399 prepare_to_wait(&vc4->job_wait_queue, &wait, 400 interruptible ? TASK_INTERRUPTIBLE : 401 TASK_UNINTERRUPTIBLE); 402 403 if (interruptible && signal_pending(current)) { 404 ret = -ERESTARTSYS; 405 break; 406 } 407 408 if (vc4->finished_seqno >= seqno) 409 break; 410 411 if (timeout_ns != ~0ull) { 412 if (time_after_eq(jiffies, timeout_expire)) { 413 ret = -ETIME; 414 break; 415 } 416 schedule_timeout(timeout_expire - jiffies); 417 } else { 418 schedule(); 419 } 420 } 421 422 finish_wait(&vc4->job_wait_queue, &wait); 423 trace_vc4_wait_for_seqno_end(dev, seqno); 424 425 return ret; 426 } 427 428 static void 429 vc4_flush_caches(struct drm_device *dev) 430 { 431 struct vc4_dev *vc4 = to_vc4_dev(dev); 432 433 /* Flush the GPU L2 caches. These caches sit on top of system 434 * L3 (the 128kb or so shared with the CPU), and are 435 * non-allocating in the L3. 436 */ 437 V3D_WRITE(V3D_L2CACTL, 438 V3D_L2CACTL_L2CCLR); 439 440 V3D_WRITE(V3D_SLCACTL, 441 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | 442 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) | 443 VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) | 444 VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC)); 445 } 446 447 static void 448 vc4_flush_texture_caches(struct drm_device *dev) 449 { 450 struct vc4_dev *vc4 = to_vc4_dev(dev); 451 452 V3D_WRITE(V3D_L2CACTL, 453 V3D_L2CACTL_L2CCLR); 454 455 V3D_WRITE(V3D_SLCACTL, 456 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | 457 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC)); 458 } 459 460 /* Sets the registers for the next job to be actually be executed in 461 * the hardware. 462 * 463 * The job_lock should be held during this. 464 */ 465 void 466 vc4_submit_next_bin_job(struct drm_device *dev) 467 { 468 struct vc4_dev *vc4 = to_vc4_dev(dev); 469 struct vc4_exec_info *exec; 470 471 again: 472 exec = vc4_first_bin_job(vc4); 473 if (!exec) 474 return; 475 476 vc4_flush_caches(dev); 477 478 /* Only start the perfmon if it was not already started by a previous 479 * job. 480 */ 481 if (exec->perfmon && vc4->active_perfmon != exec->perfmon) 482 vc4_perfmon_start(vc4, exec->perfmon); 483 484 /* Either put the job in the binner if it uses the binner, or 485 * immediately move it to the to-be-rendered queue. 486 */ 487 if (exec->ct0ca != exec->ct0ea) { 488 trace_vc4_submit_cl(dev, false, exec->seqno, exec->ct0ca, 489 exec->ct0ea); 490 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea); 491 } else { 492 struct vc4_exec_info *next; 493 494 vc4_move_job_to_render(dev, exec); 495 next = vc4_first_bin_job(vc4); 496 497 /* We can't start the next bin job if the previous job had a 498 * different perfmon instance attached to it. The same goes 499 * if one of them had a perfmon attached to it and the other 500 * one doesn't. 501 */ 502 if (next && next->perfmon == exec->perfmon) 503 goto again; 504 } 505 } 506 507 void 508 vc4_submit_next_render_job(struct drm_device *dev) 509 { 510 struct vc4_dev *vc4 = to_vc4_dev(dev); 511 struct vc4_exec_info *exec = vc4_first_render_job(vc4); 512 513 if (!exec) 514 return; 515 516 /* A previous RCL may have written to one of our textures, and 517 * our full cache flush at bin time may have occurred before 518 * that RCL completed. Flush the texture cache now, but not 519 * the instructions or uniforms (since we don't write those 520 * from an RCL). 521 */ 522 vc4_flush_texture_caches(dev); 523 524 trace_vc4_submit_cl(dev, true, exec->seqno, exec->ct1ca, exec->ct1ea); 525 submit_cl(dev, 1, exec->ct1ca, exec->ct1ea); 526 } 527 528 void 529 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec) 530 { 531 struct vc4_dev *vc4 = to_vc4_dev(dev); 532 bool was_empty = list_empty(&vc4->render_job_list); 533 534 list_move_tail(&exec->head, &vc4->render_job_list); 535 if (was_empty) 536 vc4_submit_next_render_job(dev); 537 } 538 539 static void 540 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno) 541 { 542 struct vc4_bo *bo; 543 unsigned i; 544 545 for (i = 0; i < exec->bo_count; i++) { 546 bo = to_vc4_bo(&exec->bo[i]->base); 547 bo->seqno = seqno; 548 549 dma_resv_add_fence(bo->base.base.resv, exec->fence, 550 DMA_RESV_USAGE_READ); 551 } 552 553 list_for_each_entry(bo, &exec->unref_list, unref_head) { 554 bo->seqno = seqno; 555 } 556 557 for (i = 0; i < exec->rcl_write_bo_count; i++) { 558 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base); 559 bo->write_seqno = seqno; 560 561 dma_resv_add_fence(bo->base.base.resv, exec->fence, 562 DMA_RESV_USAGE_WRITE); 563 } 564 } 565 566 static void 567 vc4_unlock_bo_reservations(struct drm_device *dev, 568 struct vc4_exec_info *exec, 569 struct ww_acquire_ctx *acquire_ctx) 570 { 571 int i; 572 573 for (i = 0; i < exec->bo_count; i++) { 574 struct drm_gem_object *bo = &exec->bo[i]->base; 575 576 dma_resv_unlock(bo->resv); 577 } 578 579 ww_acquire_fini(acquire_ctx); 580 } 581 582 /* Takes the reservation lock on all the BOs being referenced, so that 583 * at queue submit time we can update the reservations. 584 * 585 * We don't lock the RCL the tile alloc/state BOs, or overflow memory 586 * (all of which are on exec->unref_list). They're entirely private 587 * to vc4, so we don't attach dma-buf fences to them. 588 */ 589 static int 590 vc4_lock_bo_reservations(struct drm_device *dev, 591 struct vc4_exec_info *exec, 592 struct ww_acquire_ctx *acquire_ctx) 593 { 594 int contended_lock = -1; 595 int i, ret; 596 struct drm_gem_object *bo; 597 598 ww_acquire_init(acquire_ctx, &reservation_ww_class); 599 600 retry: 601 if (contended_lock != -1) { 602 bo = &exec->bo[contended_lock]->base; 603 ret = dma_resv_lock_slow_interruptible(bo->resv, acquire_ctx); 604 if (ret) { 605 ww_acquire_done(acquire_ctx); 606 return ret; 607 } 608 } 609 610 for (i = 0; i < exec->bo_count; i++) { 611 if (i == contended_lock) 612 continue; 613 614 bo = &exec->bo[i]->base; 615 616 ret = dma_resv_lock_interruptible(bo->resv, acquire_ctx); 617 if (ret) { 618 int j; 619 620 for (j = 0; j < i; j++) { 621 bo = &exec->bo[j]->base; 622 dma_resv_unlock(bo->resv); 623 } 624 625 if (contended_lock != -1 && contended_lock >= i) { 626 bo = &exec->bo[contended_lock]->base; 627 628 dma_resv_unlock(bo->resv); 629 } 630 631 if (ret == -EDEADLK) { 632 contended_lock = i; 633 goto retry; 634 } 635 636 ww_acquire_done(acquire_ctx); 637 return ret; 638 } 639 } 640 641 ww_acquire_done(acquire_ctx); 642 643 /* Reserve space for our shared (read-only) fence references, 644 * before we commit the CL to the hardware. 645 */ 646 for (i = 0; i < exec->bo_count; i++) { 647 bo = &exec->bo[i]->base; 648 649 ret = dma_resv_reserve_fences(bo->resv, 1); 650 if (ret) { 651 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 652 return ret; 653 } 654 } 655 656 return 0; 657 } 658 659 /* Queues a struct vc4_exec_info for execution. If no job is 660 * currently executing, then submits it. 661 * 662 * Unlike most GPUs, our hardware only handles one command list at a 663 * time. To queue multiple jobs at once, we'd need to edit the 664 * previous command list to have a jump to the new one at the end, and 665 * then bump the end address. That's a change for a later date, 666 * though. 667 */ 668 static int 669 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec, 670 struct ww_acquire_ctx *acquire_ctx, 671 struct drm_syncobj *out_sync) 672 { 673 struct vc4_dev *vc4 = to_vc4_dev(dev); 674 struct vc4_exec_info *renderjob; 675 uint64_t seqno; 676 unsigned long irqflags; 677 struct vc4_fence *fence; 678 679 fence = kzalloc(sizeof(*fence), GFP_KERNEL); 680 if (!fence) 681 return -ENOMEM; 682 fence->dev = dev; 683 684 spin_lock_irqsave(&vc4->job_lock, irqflags); 685 686 seqno = ++vc4->emit_seqno; 687 exec->seqno = seqno; 688 689 dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock, 690 vc4->dma_fence_context, exec->seqno); 691 fence->seqno = exec->seqno; 692 exec->fence = &fence->base; 693 694 if (out_sync) 695 drm_syncobj_replace_fence(out_sync, exec->fence); 696 697 vc4_update_bo_seqnos(exec, seqno); 698 699 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 700 701 list_add_tail(&exec->head, &vc4->bin_job_list); 702 703 /* If no bin job was executing and if the render job (if any) has the 704 * same perfmon as our job attached to it (or if both jobs don't have 705 * perfmon activated), then kick ours off. Otherwise, it'll get 706 * started when the previous job's flush/render done interrupt occurs. 707 */ 708 renderjob = vc4_first_render_job(vc4); 709 if (vc4_first_bin_job(vc4) == exec && 710 (!renderjob || renderjob->perfmon == exec->perfmon)) { 711 vc4_submit_next_bin_job(dev); 712 vc4_queue_hangcheck(dev); 713 } 714 715 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 716 717 return 0; 718 } 719 720 /** 721 * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects 722 * referenced by the job. 723 * @dev: DRM device 724 * @file_priv: DRM file for this fd 725 * @exec: V3D job being set up 726 * 727 * The command validator needs to reference BOs by their index within 728 * the submitted job's BO list. This does the validation of the job's 729 * BO list and reference counting for the lifetime of the job. 730 */ 731 static int 732 vc4_cl_lookup_bos(struct drm_device *dev, 733 struct drm_file *file_priv, 734 struct vc4_exec_info *exec) 735 { 736 struct drm_vc4_submit_cl *args = exec->args; 737 uint32_t *handles; 738 int ret = 0; 739 int i; 740 741 exec->bo_count = args->bo_handle_count; 742 743 if (!exec->bo_count) { 744 /* See comment on bo_index for why we have to check 745 * this. 746 */ 747 DRM_DEBUG("Rendering requires BOs to validate\n"); 748 return -EINVAL; 749 } 750 751 exec->bo = kvmalloc_array(exec->bo_count, 752 sizeof(struct drm_gem_cma_object *), 753 GFP_KERNEL | __GFP_ZERO); 754 if (!exec->bo) { 755 DRM_ERROR("Failed to allocate validated BO pointers\n"); 756 return -ENOMEM; 757 } 758 759 handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL); 760 if (!handles) { 761 ret = -ENOMEM; 762 DRM_ERROR("Failed to allocate incoming GEM handles\n"); 763 goto fail; 764 } 765 766 if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles), 767 exec->bo_count * sizeof(uint32_t))) { 768 ret = -EFAULT; 769 DRM_ERROR("Failed to copy in GEM handles\n"); 770 goto fail; 771 } 772 773 spin_lock(&file_priv->table_lock); 774 for (i = 0; i < exec->bo_count; i++) { 775 struct drm_gem_object *bo = idr_find(&file_priv->object_idr, 776 handles[i]); 777 if (!bo) { 778 DRM_DEBUG("Failed to look up GEM BO %d: %d\n", 779 i, handles[i]); 780 ret = -EINVAL; 781 break; 782 } 783 784 drm_gem_object_get(bo); 785 exec->bo[i] = (struct drm_gem_cma_object *)bo; 786 } 787 spin_unlock(&file_priv->table_lock); 788 789 if (ret) 790 goto fail_put_bo; 791 792 for (i = 0; i < exec->bo_count; i++) { 793 ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base)); 794 if (ret) 795 goto fail_dec_usecnt; 796 } 797 798 kvfree(handles); 799 return 0; 800 801 fail_dec_usecnt: 802 /* Decrease usecnt on acquired objects. 803 * We cannot rely on vc4_complete_exec() to release resources here, 804 * because vc4_complete_exec() has no information about which BO has 805 * had its ->usecnt incremented. 806 * To make things easier we just free everything explicitly and set 807 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release' 808 * step. 809 */ 810 for (i-- ; i >= 0; i--) 811 vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base)); 812 813 fail_put_bo: 814 /* Release any reference to acquired objects. */ 815 for (i = 0; i < exec->bo_count && exec->bo[i]; i++) 816 drm_gem_object_put(&exec->bo[i]->base); 817 818 fail: 819 kvfree(handles); 820 kvfree(exec->bo); 821 exec->bo = NULL; 822 return ret; 823 } 824 825 static int 826 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec) 827 { 828 struct drm_vc4_submit_cl *args = exec->args; 829 struct vc4_dev *vc4 = to_vc4_dev(dev); 830 void *temp = NULL; 831 void *bin; 832 int ret = 0; 833 uint32_t bin_offset = 0; 834 uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size, 835 16); 836 uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size; 837 uint32_t exec_size = uniforms_offset + args->uniforms_size; 838 uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) * 839 args->shader_rec_count); 840 struct vc4_bo *bo; 841 842 if (shader_rec_offset < args->bin_cl_size || 843 uniforms_offset < shader_rec_offset || 844 exec_size < uniforms_offset || 845 args->shader_rec_count >= (UINT_MAX / 846 sizeof(struct vc4_shader_state)) || 847 temp_size < exec_size) { 848 DRM_DEBUG("overflow in exec arguments\n"); 849 ret = -EINVAL; 850 goto fail; 851 } 852 853 /* Allocate space where we'll store the copied in user command lists 854 * and shader records. 855 * 856 * We don't just copy directly into the BOs because we need to 857 * read the contents back for validation, and I think the 858 * bo->vaddr is uncached access. 859 */ 860 temp = kvmalloc_array(temp_size, 1, GFP_KERNEL); 861 if (!temp) { 862 DRM_ERROR("Failed to allocate storage for copying " 863 "in bin/render CLs.\n"); 864 ret = -ENOMEM; 865 goto fail; 866 } 867 bin = temp + bin_offset; 868 exec->shader_rec_u = temp + shader_rec_offset; 869 exec->uniforms_u = temp + uniforms_offset; 870 exec->shader_state = temp + exec_size; 871 exec->shader_state_size = args->shader_rec_count; 872 873 if (copy_from_user(bin, 874 u64_to_user_ptr(args->bin_cl), 875 args->bin_cl_size)) { 876 ret = -EFAULT; 877 goto fail; 878 } 879 880 if (copy_from_user(exec->shader_rec_u, 881 u64_to_user_ptr(args->shader_rec), 882 args->shader_rec_size)) { 883 ret = -EFAULT; 884 goto fail; 885 } 886 887 if (copy_from_user(exec->uniforms_u, 888 u64_to_user_ptr(args->uniforms), 889 args->uniforms_size)) { 890 ret = -EFAULT; 891 goto fail; 892 } 893 894 bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL); 895 if (IS_ERR(bo)) { 896 DRM_ERROR("Couldn't allocate BO for binning\n"); 897 ret = PTR_ERR(bo); 898 goto fail; 899 } 900 exec->exec_bo = &bo->base; 901 902 list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head, 903 &exec->unref_list); 904 905 exec->ct0ca = exec->exec_bo->paddr + bin_offset; 906 907 exec->bin_u = bin; 908 909 exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset; 910 exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset; 911 exec->shader_rec_size = args->shader_rec_size; 912 913 exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset; 914 exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset; 915 exec->uniforms_size = args->uniforms_size; 916 917 ret = vc4_validate_bin_cl(dev, 918 exec->exec_bo->vaddr + bin_offset, 919 bin, 920 exec); 921 if (ret) 922 goto fail; 923 924 ret = vc4_validate_shader_recs(dev, exec); 925 if (ret) 926 goto fail; 927 928 if (exec->found_tile_binning_mode_config_packet) { 929 ret = vc4_v3d_bin_bo_get(vc4, &exec->bin_bo_used); 930 if (ret) 931 goto fail; 932 } 933 934 /* Block waiting on any previous rendering into the CS's VBO, 935 * IB, or textures, so that pixels are actually written by the 936 * time we try to read them. 937 */ 938 ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true); 939 940 fail: 941 kvfree(temp); 942 return ret; 943 } 944 945 static void 946 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec) 947 { 948 struct vc4_dev *vc4 = to_vc4_dev(dev); 949 unsigned long irqflags; 950 unsigned i; 951 952 /* If we got force-completed because of GPU reset rather than 953 * through our IRQ handler, signal the fence now. 954 */ 955 if (exec->fence) { 956 dma_fence_signal(exec->fence); 957 dma_fence_put(exec->fence); 958 } 959 960 if (exec->bo) { 961 for (i = 0; i < exec->bo_count; i++) { 962 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base); 963 964 vc4_bo_dec_usecnt(bo); 965 drm_gem_object_put(&exec->bo[i]->base); 966 } 967 kvfree(exec->bo); 968 } 969 970 while (!list_empty(&exec->unref_list)) { 971 struct vc4_bo *bo = list_first_entry(&exec->unref_list, 972 struct vc4_bo, unref_head); 973 list_del(&bo->unref_head); 974 drm_gem_object_put(&bo->base.base); 975 } 976 977 /* Free up the allocation of any bin slots we used. */ 978 spin_lock_irqsave(&vc4->job_lock, irqflags); 979 vc4->bin_alloc_used &= ~exec->bin_slots; 980 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 981 982 /* Release the reference on the binner BO if needed. */ 983 if (exec->bin_bo_used) 984 vc4_v3d_bin_bo_put(vc4); 985 986 /* Release the reference we had on the perf monitor. */ 987 vc4_perfmon_put(exec->perfmon); 988 989 vc4_v3d_pm_put(vc4); 990 991 kfree(exec); 992 } 993 994 void 995 vc4_job_handle_completed(struct vc4_dev *vc4) 996 { 997 unsigned long irqflags; 998 struct vc4_seqno_cb *cb, *cb_temp; 999 1000 spin_lock_irqsave(&vc4->job_lock, irqflags); 1001 while (!list_empty(&vc4->job_done_list)) { 1002 struct vc4_exec_info *exec = 1003 list_first_entry(&vc4->job_done_list, 1004 struct vc4_exec_info, head); 1005 list_del(&exec->head); 1006 1007 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 1008 vc4_complete_exec(&vc4->base, exec); 1009 spin_lock_irqsave(&vc4->job_lock, irqflags); 1010 } 1011 1012 list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) { 1013 if (cb->seqno <= vc4->finished_seqno) { 1014 list_del_init(&cb->work.entry); 1015 schedule_work(&cb->work); 1016 } 1017 } 1018 1019 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 1020 } 1021 1022 static void vc4_seqno_cb_work(struct work_struct *work) 1023 { 1024 struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work); 1025 1026 cb->func(cb); 1027 } 1028 1029 int vc4_queue_seqno_cb(struct drm_device *dev, 1030 struct vc4_seqno_cb *cb, uint64_t seqno, 1031 void (*func)(struct vc4_seqno_cb *cb)) 1032 { 1033 struct vc4_dev *vc4 = to_vc4_dev(dev); 1034 unsigned long irqflags; 1035 1036 cb->func = func; 1037 INIT_WORK(&cb->work, vc4_seqno_cb_work); 1038 1039 spin_lock_irqsave(&vc4->job_lock, irqflags); 1040 if (seqno > vc4->finished_seqno) { 1041 cb->seqno = seqno; 1042 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list); 1043 } else { 1044 schedule_work(&cb->work); 1045 } 1046 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 1047 1048 return 0; 1049 } 1050 1051 /* Scheduled when any job has been completed, this walks the list of 1052 * jobs that had completed and unrefs their BOs and frees their exec 1053 * structs. 1054 */ 1055 static void 1056 vc4_job_done_work(struct work_struct *work) 1057 { 1058 struct vc4_dev *vc4 = 1059 container_of(work, struct vc4_dev, job_done_work); 1060 1061 vc4_job_handle_completed(vc4); 1062 } 1063 1064 static int 1065 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev, 1066 uint64_t seqno, 1067 uint64_t *timeout_ns) 1068 { 1069 unsigned long start = jiffies; 1070 int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true); 1071 1072 if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) { 1073 uint64_t delta = jiffies_to_nsecs(jiffies - start); 1074 1075 if (*timeout_ns >= delta) 1076 *timeout_ns -= delta; 1077 } 1078 1079 return ret; 1080 } 1081 1082 int 1083 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data, 1084 struct drm_file *file_priv) 1085 { 1086 struct drm_vc4_wait_seqno *args = data; 1087 1088 return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno, 1089 &args->timeout_ns); 1090 } 1091 1092 int 1093 vc4_wait_bo_ioctl(struct drm_device *dev, void *data, 1094 struct drm_file *file_priv) 1095 { 1096 int ret; 1097 struct drm_vc4_wait_bo *args = data; 1098 struct drm_gem_object *gem_obj; 1099 struct vc4_bo *bo; 1100 1101 if (args->pad != 0) 1102 return -EINVAL; 1103 1104 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 1105 if (!gem_obj) { 1106 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle); 1107 return -EINVAL; 1108 } 1109 bo = to_vc4_bo(gem_obj); 1110 1111 ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno, 1112 &args->timeout_ns); 1113 1114 drm_gem_object_put(gem_obj); 1115 return ret; 1116 } 1117 1118 /** 1119 * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4. 1120 * @dev: DRM device 1121 * @data: ioctl argument 1122 * @file_priv: DRM file for this fd 1123 * 1124 * This is the main entrypoint for userspace to submit a 3D frame to 1125 * the GPU. Userspace provides the binner command list (if 1126 * applicable), and the kernel sets up the render command list to draw 1127 * to the framebuffer described in the ioctl, using the command lists 1128 * that the 3D engine's binner will produce. 1129 */ 1130 int 1131 vc4_submit_cl_ioctl(struct drm_device *dev, void *data, 1132 struct drm_file *file_priv) 1133 { 1134 struct vc4_dev *vc4 = to_vc4_dev(dev); 1135 struct vc4_file *vc4file = file_priv->driver_priv; 1136 struct drm_vc4_submit_cl *args = data; 1137 struct drm_syncobj *out_sync = NULL; 1138 struct vc4_exec_info *exec; 1139 struct ww_acquire_ctx acquire_ctx; 1140 struct dma_fence *in_fence; 1141 int ret = 0; 1142 1143 trace_vc4_submit_cl_ioctl(dev, args->bin_cl_size, 1144 args->shader_rec_size, 1145 args->bo_handle_count); 1146 1147 if (!vc4->v3d) { 1148 DRM_DEBUG("VC4_SUBMIT_CL with no VC4 V3D probed\n"); 1149 return -ENODEV; 1150 } 1151 1152 if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR | 1153 VC4_SUBMIT_CL_FIXED_RCL_ORDER | 1154 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X | 1155 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) { 1156 DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags); 1157 return -EINVAL; 1158 } 1159 1160 if (args->pad2 != 0) { 1161 DRM_DEBUG("Invalid pad: 0x%08x\n", args->pad2); 1162 return -EINVAL; 1163 } 1164 1165 exec = kcalloc(1, sizeof(*exec), GFP_KERNEL); 1166 if (!exec) { 1167 DRM_ERROR("malloc failure on exec struct\n"); 1168 return -ENOMEM; 1169 } 1170 1171 ret = vc4_v3d_pm_get(vc4); 1172 if (ret) { 1173 kfree(exec); 1174 return ret; 1175 } 1176 1177 exec->args = args; 1178 INIT_LIST_HEAD(&exec->unref_list); 1179 1180 ret = vc4_cl_lookup_bos(dev, file_priv, exec); 1181 if (ret) 1182 goto fail; 1183 1184 if (args->perfmonid) { 1185 exec->perfmon = vc4_perfmon_find(vc4file, 1186 args->perfmonid); 1187 if (!exec->perfmon) { 1188 ret = -ENOENT; 1189 goto fail; 1190 } 1191 } 1192 1193 if (args->in_sync) { 1194 ret = drm_syncobj_find_fence(file_priv, args->in_sync, 1195 0, 0, &in_fence); 1196 if (ret) 1197 goto fail; 1198 1199 /* When the fence (or fence array) is exclusively from our 1200 * context we can skip the wait since jobs are executed in 1201 * order of their submission through this ioctl and this can 1202 * only have fences from a prior job. 1203 */ 1204 if (!dma_fence_match_context(in_fence, 1205 vc4->dma_fence_context)) { 1206 ret = dma_fence_wait(in_fence, true); 1207 if (ret) { 1208 dma_fence_put(in_fence); 1209 goto fail; 1210 } 1211 } 1212 1213 dma_fence_put(in_fence); 1214 } 1215 1216 if (exec->args->bin_cl_size != 0) { 1217 ret = vc4_get_bcl(dev, exec); 1218 if (ret) 1219 goto fail; 1220 } else { 1221 exec->ct0ca = 0; 1222 exec->ct0ea = 0; 1223 } 1224 1225 ret = vc4_get_rcl(dev, exec); 1226 if (ret) 1227 goto fail; 1228 1229 ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx); 1230 if (ret) 1231 goto fail; 1232 1233 if (args->out_sync) { 1234 out_sync = drm_syncobj_find(file_priv, args->out_sync); 1235 if (!out_sync) { 1236 ret = -EINVAL; 1237 goto fail; 1238 } 1239 1240 /* We replace the fence in out_sync in vc4_queue_submit since 1241 * the render job could execute immediately after that call. 1242 * If it finishes before our ioctl processing resumes the 1243 * render job fence could already have been freed. 1244 */ 1245 } 1246 1247 /* Clear this out of the struct we'll be putting in the queue, 1248 * since it's part of our stack. 1249 */ 1250 exec->args = NULL; 1251 1252 ret = vc4_queue_submit(dev, exec, &acquire_ctx, out_sync); 1253 1254 /* The syncobj isn't part of the exec data and we need to free our 1255 * reference even if job submission failed. 1256 */ 1257 if (out_sync) 1258 drm_syncobj_put(out_sync); 1259 1260 if (ret) 1261 goto fail; 1262 1263 /* Return the seqno for our job. */ 1264 args->seqno = vc4->emit_seqno; 1265 1266 return 0; 1267 1268 fail: 1269 vc4_complete_exec(&vc4->base, exec); 1270 1271 return ret; 1272 } 1273 1274 static void vc4_gem_destroy(struct drm_device *dev, void *unused); 1275 int vc4_gem_init(struct drm_device *dev) 1276 { 1277 struct vc4_dev *vc4 = to_vc4_dev(dev); 1278 1279 vc4->dma_fence_context = dma_fence_context_alloc(1); 1280 1281 INIT_LIST_HEAD(&vc4->bin_job_list); 1282 INIT_LIST_HEAD(&vc4->render_job_list); 1283 INIT_LIST_HEAD(&vc4->job_done_list); 1284 INIT_LIST_HEAD(&vc4->seqno_cb_list); 1285 spin_lock_init(&vc4->job_lock); 1286 1287 INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work); 1288 timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0); 1289 1290 INIT_WORK(&vc4->job_done_work, vc4_job_done_work); 1291 1292 mutex_init(&vc4->power_lock); 1293 1294 INIT_LIST_HEAD(&vc4->purgeable.list); 1295 mutex_init(&vc4->purgeable.lock); 1296 1297 return drmm_add_action_or_reset(dev, vc4_gem_destroy, NULL); 1298 } 1299 1300 static void vc4_gem_destroy(struct drm_device *dev, void *unused) 1301 { 1302 struct vc4_dev *vc4 = to_vc4_dev(dev); 1303 1304 /* Waiting for exec to finish would need to be done before 1305 * unregistering V3D. 1306 */ 1307 WARN_ON(vc4->emit_seqno != vc4->finished_seqno); 1308 1309 /* V3D should already have disabled its interrupt and cleared 1310 * the overflow allocation registers. Now free the object. 1311 */ 1312 if (vc4->bin_bo) { 1313 drm_gem_object_put(&vc4->bin_bo->base.base); 1314 vc4->bin_bo = NULL; 1315 } 1316 1317 if (vc4->hang_state) 1318 vc4_free_hang_state(dev, vc4->hang_state); 1319 } 1320 1321 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data, 1322 struct drm_file *file_priv) 1323 { 1324 struct drm_vc4_gem_madvise *args = data; 1325 struct drm_gem_object *gem_obj; 1326 struct vc4_bo *bo; 1327 int ret; 1328 1329 switch (args->madv) { 1330 case VC4_MADV_DONTNEED: 1331 case VC4_MADV_WILLNEED: 1332 break; 1333 default: 1334 return -EINVAL; 1335 } 1336 1337 if (args->pad != 0) 1338 return -EINVAL; 1339 1340 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 1341 if (!gem_obj) { 1342 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle); 1343 return -ENOENT; 1344 } 1345 1346 bo = to_vc4_bo(gem_obj); 1347 1348 /* Only BOs exposed to userspace can be purged. */ 1349 if (bo->madv == __VC4_MADV_NOTSUPP) { 1350 DRM_DEBUG("madvise not supported on this BO\n"); 1351 ret = -EINVAL; 1352 goto out_put_gem; 1353 } 1354 1355 /* Not sure it's safe to purge imported BOs. Let's just assume it's 1356 * not until proven otherwise. 1357 */ 1358 if (gem_obj->import_attach) { 1359 DRM_DEBUG("madvise not supported on imported BOs\n"); 1360 ret = -EINVAL; 1361 goto out_put_gem; 1362 } 1363 1364 mutex_lock(&bo->madv_lock); 1365 1366 if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED && 1367 !refcount_read(&bo->usecnt)) { 1368 /* If the BO is about to be marked as purgeable, is not used 1369 * and is not already purgeable or purged, add it to the 1370 * purgeable list. 1371 */ 1372 vc4_bo_add_to_purgeable_pool(bo); 1373 } else if (args->madv == VC4_MADV_WILLNEED && 1374 bo->madv == VC4_MADV_DONTNEED && 1375 !refcount_read(&bo->usecnt)) { 1376 /* The BO has not been purged yet, just remove it from 1377 * the purgeable list. 1378 */ 1379 vc4_bo_remove_from_purgeable_pool(bo); 1380 } 1381 1382 /* Save the purged state. */ 1383 args->retained = bo->madv != __VC4_MADV_PURGED; 1384 1385 /* Update internal madv state only if the bo was not purged. */ 1386 if (bo->madv != __VC4_MADV_PURGED) 1387 bo->madv = args->madv; 1388 1389 mutex_unlock(&bo->madv_lock); 1390 1391 ret = 0; 1392 1393 out_put_gem: 1394 drm_gem_object_put(gem_obj); 1395 1396 return ret; 1397 } 1398