1 /* 2 * Copyright © 2014 Broadcom 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/device.h> 28 #include <linux/io.h> 29 #include <linux/sched/signal.h> 30 #include <linux/dma-fence-array.h> 31 32 #include "uapi/drm/vc4_drm.h" 33 #include "vc4_drv.h" 34 #include "vc4_regs.h" 35 #include "vc4_trace.h" 36 37 static void 38 vc4_queue_hangcheck(struct drm_device *dev) 39 { 40 struct vc4_dev *vc4 = to_vc4_dev(dev); 41 42 mod_timer(&vc4->hangcheck.timer, 43 round_jiffies_up(jiffies + msecs_to_jiffies(100))); 44 } 45 46 struct vc4_hang_state { 47 struct drm_vc4_get_hang_state user_state; 48 49 u32 bo_count; 50 struct drm_gem_object **bo; 51 }; 52 53 static void 54 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state) 55 { 56 unsigned int i; 57 58 for (i = 0; i < state->user_state.bo_count; i++) 59 drm_gem_object_put_unlocked(state->bo[i]); 60 61 kfree(state); 62 } 63 64 int 65 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data, 66 struct drm_file *file_priv) 67 { 68 struct drm_vc4_get_hang_state *get_state = data; 69 struct drm_vc4_get_hang_state_bo *bo_state; 70 struct vc4_hang_state *kernel_state; 71 struct drm_vc4_get_hang_state *state; 72 struct vc4_dev *vc4 = to_vc4_dev(dev); 73 unsigned long irqflags; 74 u32 i; 75 int ret = 0; 76 77 if (!vc4->v3d) { 78 DRM_DEBUG("VC4_GET_HANG_STATE with no VC4 V3D probed\n"); 79 return -ENODEV; 80 } 81 82 spin_lock_irqsave(&vc4->job_lock, irqflags); 83 kernel_state = vc4->hang_state; 84 if (!kernel_state) { 85 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 86 return -ENOENT; 87 } 88 state = &kernel_state->user_state; 89 90 /* If the user's array isn't big enough, just return the 91 * required array size. 92 */ 93 if (get_state->bo_count < state->bo_count) { 94 get_state->bo_count = state->bo_count; 95 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 96 return 0; 97 } 98 99 vc4->hang_state = NULL; 100 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 101 102 /* Save the user's BO pointer, so we don't stomp it with the memcpy. */ 103 state->bo = get_state->bo; 104 memcpy(get_state, state, sizeof(*state)); 105 106 bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL); 107 if (!bo_state) { 108 ret = -ENOMEM; 109 goto err_free; 110 } 111 112 for (i = 0; i < state->bo_count; i++) { 113 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]); 114 u32 handle; 115 116 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i], 117 &handle); 118 119 if (ret) { 120 state->bo_count = i; 121 goto err_delete_handle; 122 } 123 bo_state[i].handle = handle; 124 bo_state[i].paddr = vc4_bo->base.paddr; 125 bo_state[i].size = vc4_bo->base.base.size; 126 } 127 128 if (copy_to_user(u64_to_user_ptr(get_state->bo), 129 bo_state, 130 state->bo_count * sizeof(*bo_state))) 131 ret = -EFAULT; 132 133 err_delete_handle: 134 if (ret) { 135 for (i = 0; i < state->bo_count; i++) 136 drm_gem_handle_delete(file_priv, bo_state[i].handle); 137 } 138 139 err_free: 140 vc4_free_hang_state(dev, kernel_state); 141 kfree(bo_state); 142 143 return ret; 144 } 145 146 static void 147 vc4_save_hang_state(struct drm_device *dev) 148 { 149 struct vc4_dev *vc4 = to_vc4_dev(dev); 150 struct drm_vc4_get_hang_state *state; 151 struct vc4_hang_state *kernel_state; 152 struct vc4_exec_info *exec[2]; 153 struct vc4_bo *bo; 154 unsigned long irqflags; 155 unsigned int i, j, k, unref_list_count; 156 157 kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL); 158 if (!kernel_state) 159 return; 160 161 state = &kernel_state->user_state; 162 163 spin_lock_irqsave(&vc4->job_lock, irqflags); 164 exec[0] = vc4_first_bin_job(vc4); 165 exec[1] = vc4_first_render_job(vc4); 166 if (!exec[0] && !exec[1]) { 167 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 168 return; 169 } 170 171 /* Get the bos from both binner and renderer into hang state. */ 172 state->bo_count = 0; 173 for (i = 0; i < 2; i++) { 174 if (!exec[i]) 175 continue; 176 177 unref_list_count = 0; 178 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) 179 unref_list_count++; 180 state->bo_count += exec[i]->bo_count + unref_list_count; 181 } 182 183 kernel_state->bo = kcalloc(state->bo_count, 184 sizeof(*kernel_state->bo), GFP_ATOMIC); 185 186 if (!kernel_state->bo) { 187 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 188 return; 189 } 190 191 k = 0; 192 for (i = 0; i < 2; i++) { 193 if (!exec[i]) 194 continue; 195 196 for (j = 0; j < exec[i]->bo_count; j++) { 197 bo = to_vc4_bo(&exec[i]->bo[j]->base); 198 199 /* Retain BOs just in case they were marked purgeable. 200 * This prevents the BO from being purged before 201 * someone had a chance to dump the hang state. 202 */ 203 WARN_ON(!refcount_read(&bo->usecnt)); 204 refcount_inc(&bo->usecnt); 205 drm_gem_object_get(&exec[i]->bo[j]->base); 206 kernel_state->bo[k++] = &exec[i]->bo[j]->base; 207 } 208 209 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) { 210 /* No need to retain BOs coming from the ->unref_list 211 * because they are naturally unpurgeable. 212 */ 213 drm_gem_object_get(&bo->base.base); 214 kernel_state->bo[k++] = &bo->base.base; 215 } 216 } 217 218 WARN_ON_ONCE(k != state->bo_count); 219 220 if (exec[0]) 221 state->start_bin = exec[0]->ct0ca; 222 if (exec[1]) 223 state->start_render = exec[1]->ct1ca; 224 225 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 226 227 state->ct0ca = V3D_READ(V3D_CTNCA(0)); 228 state->ct0ea = V3D_READ(V3D_CTNEA(0)); 229 230 state->ct1ca = V3D_READ(V3D_CTNCA(1)); 231 state->ct1ea = V3D_READ(V3D_CTNEA(1)); 232 233 state->ct0cs = V3D_READ(V3D_CTNCS(0)); 234 state->ct1cs = V3D_READ(V3D_CTNCS(1)); 235 236 state->ct0ra0 = V3D_READ(V3D_CT00RA0); 237 state->ct1ra0 = V3D_READ(V3D_CT01RA0); 238 239 state->bpca = V3D_READ(V3D_BPCA); 240 state->bpcs = V3D_READ(V3D_BPCS); 241 state->bpoa = V3D_READ(V3D_BPOA); 242 state->bpos = V3D_READ(V3D_BPOS); 243 244 state->vpmbase = V3D_READ(V3D_VPMBASE); 245 246 state->dbge = V3D_READ(V3D_DBGE); 247 state->fdbgo = V3D_READ(V3D_FDBGO); 248 state->fdbgb = V3D_READ(V3D_FDBGB); 249 state->fdbgr = V3D_READ(V3D_FDBGR); 250 state->fdbgs = V3D_READ(V3D_FDBGS); 251 state->errstat = V3D_READ(V3D_ERRSTAT); 252 253 /* We need to turn purgeable BOs into unpurgeable ones so that 254 * userspace has a chance to dump the hang state before the kernel 255 * decides to purge those BOs. 256 * Note that BO consistency at dump time cannot be guaranteed. For 257 * example, if the owner of these BOs decides to re-use them or mark 258 * them purgeable again there's nothing we can do to prevent it. 259 */ 260 for (i = 0; i < kernel_state->user_state.bo_count; i++) { 261 struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]); 262 263 if (bo->madv == __VC4_MADV_NOTSUPP) 264 continue; 265 266 mutex_lock(&bo->madv_lock); 267 if (!WARN_ON(bo->madv == __VC4_MADV_PURGED)) 268 bo->madv = VC4_MADV_WILLNEED; 269 refcount_dec(&bo->usecnt); 270 mutex_unlock(&bo->madv_lock); 271 } 272 273 spin_lock_irqsave(&vc4->job_lock, irqflags); 274 if (vc4->hang_state) { 275 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 276 vc4_free_hang_state(dev, kernel_state); 277 } else { 278 vc4->hang_state = kernel_state; 279 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 280 } 281 } 282 283 static void 284 vc4_reset(struct drm_device *dev) 285 { 286 struct vc4_dev *vc4 = to_vc4_dev(dev); 287 288 DRM_INFO("Resetting GPU.\n"); 289 290 mutex_lock(&vc4->power_lock); 291 if (vc4->power_refcount) { 292 /* Power the device off and back on the by dropping the 293 * reference on runtime PM. 294 */ 295 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev); 296 pm_runtime_get_sync(&vc4->v3d->pdev->dev); 297 } 298 mutex_unlock(&vc4->power_lock); 299 300 vc4_irq_reset(dev); 301 302 /* Rearm the hangcheck -- another job might have been waiting 303 * for our hung one to get kicked off, and vc4_irq_reset() 304 * would have started it. 305 */ 306 vc4_queue_hangcheck(dev); 307 } 308 309 static void 310 vc4_reset_work(struct work_struct *work) 311 { 312 struct vc4_dev *vc4 = 313 container_of(work, struct vc4_dev, hangcheck.reset_work); 314 315 vc4_save_hang_state(vc4->dev); 316 317 vc4_reset(vc4->dev); 318 } 319 320 static void 321 vc4_hangcheck_elapsed(struct timer_list *t) 322 { 323 struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer); 324 struct drm_device *dev = vc4->dev; 325 uint32_t ct0ca, ct1ca; 326 unsigned long irqflags; 327 struct vc4_exec_info *bin_exec, *render_exec; 328 329 spin_lock_irqsave(&vc4->job_lock, irqflags); 330 331 bin_exec = vc4_first_bin_job(vc4); 332 render_exec = vc4_first_render_job(vc4); 333 334 /* If idle, we can stop watching for hangs. */ 335 if (!bin_exec && !render_exec) { 336 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 337 return; 338 } 339 340 ct0ca = V3D_READ(V3D_CTNCA(0)); 341 ct1ca = V3D_READ(V3D_CTNCA(1)); 342 343 /* If we've made any progress in execution, rearm the timer 344 * and wait. 345 */ 346 if ((bin_exec && ct0ca != bin_exec->last_ct0ca) || 347 (render_exec && ct1ca != render_exec->last_ct1ca)) { 348 if (bin_exec) 349 bin_exec->last_ct0ca = ct0ca; 350 if (render_exec) 351 render_exec->last_ct1ca = ct1ca; 352 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 353 vc4_queue_hangcheck(dev); 354 return; 355 } 356 357 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 358 359 /* We've gone too long with no progress, reset. This has to 360 * be done from a work struct, since resetting can sleep and 361 * this timer hook isn't allowed to. 362 */ 363 schedule_work(&vc4->hangcheck.reset_work); 364 } 365 366 static void 367 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end) 368 { 369 struct vc4_dev *vc4 = to_vc4_dev(dev); 370 371 /* Set the current and end address of the control list. 372 * Writing the end register is what starts the job. 373 */ 374 V3D_WRITE(V3D_CTNCA(thread), start); 375 V3D_WRITE(V3D_CTNEA(thread), end); 376 } 377 378 int 379 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns, 380 bool interruptible) 381 { 382 struct vc4_dev *vc4 = to_vc4_dev(dev); 383 int ret = 0; 384 unsigned long timeout_expire; 385 DEFINE_WAIT(wait); 386 387 if (vc4->finished_seqno >= seqno) 388 return 0; 389 390 if (timeout_ns == 0) 391 return -ETIME; 392 393 timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns); 394 395 trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns); 396 for (;;) { 397 prepare_to_wait(&vc4->job_wait_queue, &wait, 398 interruptible ? TASK_INTERRUPTIBLE : 399 TASK_UNINTERRUPTIBLE); 400 401 if (interruptible && signal_pending(current)) { 402 ret = -ERESTARTSYS; 403 break; 404 } 405 406 if (vc4->finished_seqno >= seqno) 407 break; 408 409 if (timeout_ns != ~0ull) { 410 if (time_after_eq(jiffies, timeout_expire)) { 411 ret = -ETIME; 412 break; 413 } 414 schedule_timeout(timeout_expire - jiffies); 415 } else { 416 schedule(); 417 } 418 } 419 420 finish_wait(&vc4->job_wait_queue, &wait); 421 trace_vc4_wait_for_seqno_end(dev, seqno); 422 423 return ret; 424 } 425 426 static void 427 vc4_flush_caches(struct drm_device *dev) 428 { 429 struct vc4_dev *vc4 = to_vc4_dev(dev); 430 431 /* Flush the GPU L2 caches. These caches sit on top of system 432 * L3 (the 128kb or so shared with the CPU), and are 433 * non-allocating in the L3. 434 */ 435 V3D_WRITE(V3D_L2CACTL, 436 V3D_L2CACTL_L2CCLR); 437 438 V3D_WRITE(V3D_SLCACTL, 439 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | 440 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) | 441 VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) | 442 VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC)); 443 } 444 445 static void 446 vc4_flush_texture_caches(struct drm_device *dev) 447 { 448 struct vc4_dev *vc4 = to_vc4_dev(dev); 449 450 V3D_WRITE(V3D_L2CACTL, 451 V3D_L2CACTL_L2CCLR); 452 453 V3D_WRITE(V3D_SLCACTL, 454 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | 455 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC)); 456 } 457 458 /* Sets the registers for the next job to be actually be executed in 459 * the hardware. 460 * 461 * The job_lock should be held during this. 462 */ 463 void 464 vc4_submit_next_bin_job(struct drm_device *dev) 465 { 466 struct vc4_dev *vc4 = to_vc4_dev(dev); 467 struct vc4_exec_info *exec; 468 469 again: 470 exec = vc4_first_bin_job(vc4); 471 if (!exec) 472 return; 473 474 vc4_flush_caches(dev); 475 476 /* Only start the perfmon if it was not already started by a previous 477 * job. 478 */ 479 if (exec->perfmon && vc4->active_perfmon != exec->perfmon) 480 vc4_perfmon_start(vc4, exec->perfmon); 481 482 /* Either put the job in the binner if it uses the binner, or 483 * immediately move it to the to-be-rendered queue. 484 */ 485 if (exec->ct0ca != exec->ct0ea) { 486 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea); 487 } else { 488 struct vc4_exec_info *next; 489 490 vc4_move_job_to_render(dev, exec); 491 next = vc4_first_bin_job(vc4); 492 493 /* We can't start the next bin job if the previous job had a 494 * different perfmon instance attached to it. The same goes 495 * if one of them had a perfmon attached to it and the other 496 * one doesn't. 497 */ 498 if (next && next->perfmon == exec->perfmon) 499 goto again; 500 } 501 } 502 503 void 504 vc4_submit_next_render_job(struct drm_device *dev) 505 { 506 struct vc4_dev *vc4 = to_vc4_dev(dev); 507 struct vc4_exec_info *exec = vc4_first_render_job(vc4); 508 509 if (!exec) 510 return; 511 512 /* A previous RCL may have written to one of our textures, and 513 * our full cache flush at bin time may have occurred before 514 * that RCL completed. Flush the texture cache now, but not 515 * the instructions or uniforms (since we don't write those 516 * from an RCL). 517 */ 518 vc4_flush_texture_caches(dev); 519 520 submit_cl(dev, 1, exec->ct1ca, exec->ct1ea); 521 } 522 523 void 524 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec) 525 { 526 struct vc4_dev *vc4 = to_vc4_dev(dev); 527 bool was_empty = list_empty(&vc4->render_job_list); 528 529 list_move_tail(&exec->head, &vc4->render_job_list); 530 if (was_empty) 531 vc4_submit_next_render_job(dev); 532 } 533 534 static void 535 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno) 536 { 537 struct vc4_bo *bo; 538 unsigned i; 539 540 for (i = 0; i < exec->bo_count; i++) { 541 bo = to_vc4_bo(&exec->bo[i]->base); 542 bo->seqno = seqno; 543 544 reservation_object_add_shared_fence(bo->base.base.resv, exec->fence); 545 } 546 547 list_for_each_entry(bo, &exec->unref_list, unref_head) { 548 bo->seqno = seqno; 549 } 550 551 for (i = 0; i < exec->rcl_write_bo_count; i++) { 552 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base); 553 bo->write_seqno = seqno; 554 555 reservation_object_add_excl_fence(bo->base.base.resv, exec->fence); 556 } 557 } 558 559 static void 560 vc4_unlock_bo_reservations(struct drm_device *dev, 561 struct vc4_exec_info *exec, 562 struct ww_acquire_ctx *acquire_ctx) 563 { 564 int i; 565 566 for (i = 0; i < exec->bo_count; i++) { 567 struct drm_gem_object *bo = &exec->bo[i]->base; 568 569 ww_mutex_unlock(&bo->resv->lock); 570 } 571 572 ww_acquire_fini(acquire_ctx); 573 } 574 575 /* Takes the reservation lock on all the BOs being referenced, so that 576 * at queue submit time we can update the reservations. 577 * 578 * We don't lock the RCL the tile alloc/state BOs, or overflow memory 579 * (all of which are on exec->unref_list). They're entirely private 580 * to vc4, so we don't attach dma-buf fences to them. 581 */ 582 static int 583 vc4_lock_bo_reservations(struct drm_device *dev, 584 struct vc4_exec_info *exec, 585 struct ww_acquire_ctx *acquire_ctx) 586 { 587 int contended_lock = -1; 588 int i, ret; 589 struct drm_gem_object *bo; 590 591 ww_acquire_init(acquire_ctx, &reservation_ww_class); 592 593 retry: 594 if (contended_lock != -1) { 595 bo = &exec->bo[contended_lock]->base; 596 ret = ww_mutex_lock_slow_interruptible(&bo->resv->lock, 597 acquire_ctx); 598 if (ret) { 599 ww_acquire_done(acquire_ctx); 600 return ret; 601 } 602 } 603 604 for (i = 0; i < exec->bo_count; i++) { 605 if (i == contended_lock) 606 continue; 607 608 bo = &exec->bo[i]->base; 609 610 ret = ww_mutex_lock_interruptible(&bo->resv->lock, acquire_ctx); 611 if (ret) { 612 int j; 613 614 for (j = 0; j < i; j++) { 615 bo = &exec->bo[j]->base; 616 ww_mutex_unlock(&bo->resv->lock); 617 } 618 619 if (contended_lock != -1 && contended_lock >= i) { 620 bo = &exec->bo[contended_lock]->base; 621 622 ww_mutex_unlock(&bo->resv->lock); 623 } 624 625 if (ret == -EDEADLK) { 626 contended_lock = i; 627 goto retry; 628 } 629 630 ww_acquire_done(acquire_ctx); 631 return ret; 632 } 633 } 634 635 ww_acquire_done(acquire_ctx); 636 637 /* Reserve space for our shared (read-only) fence references, 638 * before we commit the CL to the hardware. 639 */ 640 for (i = 0; i < exec->bo_count; i++) { 641 bo = &exec->bo[i]->base; 642 643 ret = reservation_object_reserve_shared(bo->resv, 1); 644 if (ret) { 645 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 646 return ret; 647 } 648 } 649 650 return 0; 651 } 652 653 /* Queues a struct vc4_exec_info for execution. If no job is 654 * currently executing, then submits it. 655 * 656 * Unlike most GPUs, our hardware only handles one command list at a 657 * time. To queue multiple jobs at once, we'd need to edit the 658 * previous command list to have a jump to the new one at the end, and 659 * then bump the end address. That's a change for a later date, 660 * though. 661 */ 662 static int 663 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec, 664 struct ww_acquire_ctx *acquire_ctx, 665 struct drm_syncobj *out_sync) 666 { 667 struct vc4_dev *vc4 = to_vc4_dev(dev); 668 struct vc4_exec_info *renderjob; 669 uint64_t seqno; 670 unsigned long irqflags; 671 struct vc4_fence *fence; 672 673 fence = kzalloc(sizeof(*fence), GFP_KERNEL); 674 if (!fence) 675 return -ENOMEM; 676 fence->dev = dev; 677 678 spin_lock_irqsave(&vc4->job_lock, irqflags); 679 680 seqno = ++vc4->emit_seqno; 681 exec->seqno = seqno; 682 683 dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock, 684 vc4->dma_fence_context, exec->seqno); 685 fence->seqno = exec->seqno; 686 exec->fence = &fence->base; 687 688 if (out_sync) 689 drm_syncobj_replace_fence(out_sync, exec->fence); 690 691 vc4_update_bo_seqnos(exec, seqno); 692 693 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 694 695 list_add_tail(&exec->head, &vc4->bin_job_list); 696 697 /* If no bin job was executing and if the render job (if any) has the 698 * same perfmon as our job attached to it (or if both jobs don't have 699 * perfmon activated), then kick ours off. Otherwise, it'll get 700 * started when the previous job's flush/render done interrupt occurs. 701 */ 702 renderjob = vc4_first_render_job(vc4); 703 if (vc4_first_bin_job(vc4) == exec && 704 (!renderjob || renderjob->perfmon == exec->perfmon)) { 705 vc4_submit_next_bin_job(dev); 706 vc4_queue_hangcheck(dev); 707 } 708 709 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 710 711 return 0; 712 } 713 714 /** 715 * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects 716 * referenced by the job. 717 * @dev: DRM device 718 * @file_priv: DRM file for this fd 719 * @exec: V3D job being set up 720 * 721 * The command validator needs to reference BOs by their index within 722 * the submitted job's BO list. This does the validation of the job's 723 * BO list and reference counting for the lifetime of the job. 724 */ 725 static int 726 vc4_cl_lookup_bos(struct drm_device *dev, 727 struct drm_file *file_priv, 728 struct vc4_exec_info *exec) 729 { 730 struct drm_vc4_submit_cl *args = exec->args; 731 uint32_t *handles; 732 int ret = 0; 733 int i; 734 735 exec->bo_count = args->bo_handle_count; 736 737 if (!exec->bo_count) { 738 /* See comment on bo_index for why we have to check 739 * this. 740 */ 741 DRM_DEBUG("Rendering requires BOs to validate\n"); 742 return -EINVAL; 743 } 744 745 exec->bo = kvmalloc_array(exec->bo_count, 746 sizeof(struct drm_gem_cma_object *), 747 GFP_KERNEL | __GFP_ZERO); 748 if (!exec->bo) { 749 DRM_ERROR("Failed to allocate validated BO pointers\n"); 750 return -ENOMEM; 751 } 752 753 handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL); 754 if (!handles) { 755 ret = -ENOMEM; 756 DRM_ERROR("Failed to allocate incoming GEM handles\n"); 757 goto fail; 758 } 759 760 if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles), 761 exec->bo_count * sizeof(uint32_t))) { 762 ret = -EFAULT; 763 DRM_ERROR("Failed to copy in GEM handles\n"); 764 goto fail; 765 } 766 767 spin_lock(&file_priv->table_lock); 768 for (i = 0; i < exec->bo_count; i++) { 769 struct drm_gem_object *bo = idr_find(&file_priv->object_idr, 770 handles[i]); 771 if (!bo) { 772 DRM_DEBUG("Failed to look up GEM BO %d: %d\n", 773 i, handles[i]); 774 ret = -EINVAL; 775 break; 776 } 777 778 drm_gem_object_get(bo); 779 exec->bo[i] = (struct drm_gem_cma_object *)bo; 780 } 781 spin_unlock(&file_priv->table_lock); 782 783 if (ret) 784 goto fail_put_bo; 785 786 for (i = 0; i < exec->bo_count; i++) { 787 ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base)); 788 if (ret) 789 goto fail_dec_usecnt; 790 } 791 792 kvfree(handles); 793 return 0; 794 795 fail_dec_usecnt: 796 /* Decrease usecnt on acquired objects. 797 * We cannot rely on vc4_complete_exec() to release resources here, 798 * because vc4_complete_exec() has no information about which BO has 799 * had its ->usecnt incremented. 800 * To make things easier we just free everything explicitly and set 801 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release' 802 * step. 803 */ 804 for (i-- ; i >= 0; i--) 805 vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base)); 806 807 fail_put_bo: 808 /* Release any reference to acquired objects. */ 809 for (i = 0; i < exec->bo_count && exec->bo[i]; i++) 810 drm_gem_object_put_unlocked(&exec->bo[i]->base); 811 812 fail: 813 kvfree(handles); 814 kvfree(exec->bo); 815 exec->bo = NULL; 816 return ret; 817 } 818 819 static int 820 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec) 821 { 822 struct drm_vc4_submit_cl *args = exec->args; 823 struct vc4_dev *vc4 = to_vc4_dev(dev); 824 void *temp = NULL; 825 void *bin; 826 int ret = 0; 827 uint32_t bin_offset = 0; 828 uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size, 829 16); 830 uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size; 831 uint32_t exec_size = uniforms_offset + args->uniforms_size; 832 uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) * 833 args->shader_rec_count); 834 struct vc4_bo *bo; 835 836 if (shader_rec_offset < args->bin_cl_size || 837 uniforms_offset < shader_rec_offset || 838 exec_size < uniforms_offset || 839 args->shader_rec_count >= (UINT_MAX / 840 sizeof(struct vc4_shader_state)) || 841 temp_size < exec_size) { 842 DRM_DEBUG("overflow in exec arguments\n"); 843 ret = -EINVAL; 844 goto fail; 845 } 846 847 /* Allocate space where we'll store the copied in user command lists 848 * and shader records. 849 * 850 * We don't just copy directly into the BOs because we need to 851 * read the contents back for validation, and I think the 852 * bo->vaddr is uncached access. 853 */ 854 temp = kvmalloc_array(temp_size, 1, GFP_KERNEL); 855 if (!temp) { 856 DRM_ERROR("Failed to allocate storage for copying " 857 "in bin/render CLs.\n"); 858 ret = -ENOMEM; 859 goto fail; 860 } 861 bin = temp + bin_offset; 862 exec->shader_rec_u = temp + shader_rec_offset; 863 exec->uniforms_u = temp + uniforms_offset; 864 exec->shader_state = temp + exec_size; 865 exec->shader_state_size = args->shader_rec_count; 866 867 if (copy_from_user(bin, 868 u64_to_user_ptr(args->bin_cl), 869 args->bin_cl_size)) { 870 ret = -EFAULT; 871 goto fail; 872 } 873 874 if (copy_from_user(exec->shader_rec_u, 875 u64_to_user_ptr(args->shader_rec), 876 args->shader_rec_size)) { 877 ret = -EFAULT; 878 goto fail; 879 } 880 881 if (copy_from_user(exec->uniforms_u, 882 u64_to_user_ptr(args->uniforms), 883 args->uniforms_size)) { 884 ret = -EFAULT; 885 goto fail; 886 } 887 888 bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL); 889 if (IS_ERR(bo)) { 890 DRM_ERROR("Couldn't allocate BO for binning\n"); 891 ret = PTR_ERR(bo); 892 goto fail; 893 } 894 exec->exec_bo = &bo->base; 895 896 list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head, 897 &exec->unref_list); 898 899 exec->ct0ca = exec->exec_bo->paddr + bin_offset; 900 901 exec->bin_u = bin; 902 903 exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset; 904 exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset; 905 exec->shader_rec_size = args->shader_rec_size; 906 907 exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset; 908 exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset; 909 exec->uniforms_size = args->uniforms_size; 910 911 ret = vc4_validate_bin_cl(dev, 912 exec->exec_bo->vaddr + bin_offset, 913 bin, 914 exec); 915 if (ret) 916 goto fail; 917 918 ret = vc4_validate_shader_recs(dev, exec); 919 if (ret) 920 goto fail; 921 922 if (exec->found_tile_binning_mode_config_packet) { 923 ret = vc4_v3d_bin_bo_get(vc4, &exec->bin_bo_used); 924 if (ret) 925 goto fail; 926 } 927 928 /* Block waiting on any previous rendering into the CS's VBO, 929 * IB, or textures, so that pixels are actually written by the 930 * time we try to read them. 931 */ 932 ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true); 933 934 fail: 935 kvfree(temp); 936 return ret; 937 } 938 939 static void 940 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec) 941 { 942 struct vc4_dev *vc4 = to_vc4_dev(dev); 943 unsigned long irqflags; 944 unsigned i; 945 946 /* If we got force-completed because of GPU reset rather than 947 * through our IRQ handler, signal the fence now. 948 */ 949 if (exec->fence) { 950 dma_fence_signal(exec->fence); 951 dma_fence_put(exec->fence); 952 } 953 954 if (exec->bo) { 955 for (i = 0; i < exec->bo_count; i++) { 956 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base); 957 958 vc4_bo_dec_usecnt(bo); 959 drm_gem_object_put_unlocked(&exec->bo[i]->base); 960 } 961 kvfree(exec->bo); 962 } 963 964 while (!list_empty(&exec->unref_list)) { 965 struct vc4_bo *bo = list_first_entry(&exec->unref_list, 966 struct vc4_bo, unref_head); 967 list_del(&bo->unref_head); 968 drm_gem_object_put_unlocked(&bo->base.base); 969 } 970 971 /* Free up the allocation of any bin slots we used. */ 972 spin_lock_irqsave(&vc4->job_lock, irqflags); 973 vc4->bin_alloc_used &= ~exec->bin_slots; 974 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 975 976 /* Release the reference on the binner BO if needed. */ 977 if (exec->bin_bo_used) 978 vc4_v3d_bin_bo_put(vc4); 979 980 /* Release the reference we had on the perf monitor. */ 981 vc4_perfmon_put(exec->perfmon); 982 983 vc4_v3d_pm_put(vc4); 984 985 kfree(exec); 986 } 987 988 void 989 vc4_job_handle_completed(struct vc4_dev *vc4) 990 { 991 unsigned long irqflags; 992 struct vc4_seqno_cb *cb, *cb_temp; 993 994 spin_lock_irqsave(&vc4->job_lock, irqflags); 995 while (!list_empty(&vc4->job_done_list)) { 996 struct vc4_exec_info *exec = 997 list_first_entry(&vc4->job_done_list, 998 struct vc4_exec_info, head); 999 list_del(&exec->head); 1000 1001 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 1002 vc4_complete_exec(vc4->dev, exec); 1003 spin_lock_irqsave(&vc4->job_lock, irqflags); 1004 } 1005 1006 list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) { 1007 if (cb->seqno <= vc4->finished_seqno) { 1008 list_del_init(&cb->work.entry); 1009 schedule_work(&cb->work); 1010 } 1011 } 1012 1013 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 1014 } 1015 1016 static void vc4_seqno_cb_work(struct work_struct *work) 1017 { 1018 struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work); 1019 1020 cb->func(cb); 1021 } 1022 1023 int vc4_queue_seqno_cb(struct drm_device *dev, 1024 struct vc4_seqno_cb *cb, uint64_t seqno, 1025 void (*func)(struct vc4_seqno_cb *cb)) 1026 { 1027 struct vc4_dev *vc4 = to_vc4_dev(dev); 1028 int ret = 0; 1029 unsigned long irqflags; 1030 1031 cb->func = func; 1032 INIT_WORK(&cb->work, vc4_seqno_cb_work); 1033 1034 spin_lock_irqsave(&vc4->job_lock, irqflags); 1035 if (seqno > vc4->finished_seqno) { 1036 cb->seqno = seqno; 1037 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list); 1038 } else { 1039 schedule_work(&cb->work); 1040 } 1041 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 1042 1043 return ret; 1044 } 1045 1046 /* Scheduled when any job has been completed, this walks the list of 1047 * jobs that had completed and unrefs their BOs and frees their exec 1048 * structs. 1049 */ 1050 static void 1051 vc4_job_done_work(struct work_struct *work) 1052 { 1053 struct vc4_dev *vc4 = 1054 container_of(work, struct vc4_dev, job_done_work); 1055 1056 vc4_job_handle_completed(vc4); 1057 } 1058 1059 static int 1060 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev, 1061 uint64_t seqno, 1062 uint64_t *timeout_ns) 1063 { 1064 unsigned long start = jiffies; 1065 int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true); 1066 1067 if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) { 1068 uint64_t delta = jiffies_to_nsecs(jiffies - start); 1069 1070 if (*timeout_ns >= delta) 1071 *timeout_ns -= delta; 1072 } 1073 1074 return ret; 1075 } 1076 1077 int 1078 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data, 1079 struct drm_file *file_priv) 1080 { 1081 struct drm_vc4_wait_seqno *args = data; 1082 1083 return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno, 1084 &args->timeout_ns); 1085 } 1086 1087 int 1088 vc4_wait_bo_ioctl(struct drm_device *dev, void *data, 1089 struct drm_file *file_priv) 1090 { 1091 int ret; 1092 struct drm_vc4_wait_bo *args = data; 1093 struct drm_gem_object *gem_obj; 1094 struct vc4_bo *bo; 1095 1096 if (args->pad != 0) 1097 return -EINVAL; 1098 1099 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 1100 if (!gem_obj) { 1101 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle); 1102 return -EINVAL; 1103 } 1104 bo = to_vc4_bo(gem_obj); 1105 1106 ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno, 1107 &args->timeout_ns); 1108 1109 drm_gem_object_put_unlocked(gem_obj); 1110 return ret; 1111 } 1112 1113 /** 1114 * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4. 1115 * @dev: DRM device 1116 * @data: ioctl argument 1117 * @file_priv: DRM file for this fd 1118 * 1119 * This is the main entrypoint for userspace to submit a 3D frame to 1120 * the GPU. Userspace provides the binner command list (if 1121 * applicable), and the kernel sets up the render command list to draw 1122 * to the framebuffer described in the ioctl, using the command lists 1123 * that the 3D engine's binner will produce. 1124 */ 1125 int 1126 vc4_submit_cl_ioctl(struct drm_device *dev, void *data, 1127 struct drm_file *file_priv) 1128 { 1129 struct vc4_dev *vc4 = to_vc4_dev(dev); 1130 struct vc4_file *vc4file = file_priv->driver_priv; 1131 struct drm_vc4_submit_cl *args = data; 1132 struct drm_syncobj *out_sync = NULL; 1133 struct vc4_exec_info *exec; 1134 struct ww_acquire_ctx acquire_ctx; 1135 struct dma_fence *in_fence; 1136 int ret = 0; 1137 1138 if (!vc4->v3d) { 1139 DRM_DEBUG("VC4_SUBMIT_CL with no VC4 V3D probed\n"); 1140 return -ENODEV; 1141 } 1142 1143 if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR | 1144 VC4_SUBMIT_CL_FIXED_RCL_ORDER | 1145 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X | 1146 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) { 1147 DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags); 1148 return -EINVAL; 1149 } 1150 1151 if (args->pad2 != 0) { 1152 DRM_DEBUG("Invalid pad: 0x%08x\n", args->pad2); 1153 return -EINVAL; 1154 } 1155 1156 exec = kcalloc(1, sizeof(*exec), GFP_KERNEL); 1157 if (!exec) { 1158 DRM_ERROR("malloc failure on exec struct\n"); 1159 return -ENOMEM; 1160 } 1161 1162 ret = vc4_v3d_pm_get(vc4); 1163 if (ret) { 1164 kfree(exec); 1165 return ret; 1166 } 1167 1168 exec->args = args; 1169 INIT_LIST_HEAD(&exec->unref_list); 1170 1171 ret = vc4_cl_lookup_bos(dev, file_priv, exec); 1172 if (ret) 1173 goto fail; 1174 1175 if (args->perfmonid) { 1176 exec->perfmon = vc4_perfmon_find(vc4file, 1177 args->perfmonid); 1178 if (!exec->perfmon) { 1179 ret = -ENOENT; 1180 goto fail; 1181 } 1182 } 1183 1184 if (args->in_sync) { 1185 ret = drm_syncobj_find_fence(file_priv, args->in_sync, 1186 0, 0, &in_fence); 1187 if (ret) 1188 goto fail; 1189 1190 /* When the fence (or fence array) is exclusively from our 1191 * context we can skip the wait since jobs are executed in 1192 * order of their submission through this ioctl and this can 1193 * only have fences from a prior job. 1194 */ 1195 if (!dma_fence_match_context(in_fence, 1196 vc4->dma_fence_context)) { 1197 ret = dma_fence_wait(in_fence, true); 1198 if (ret) { 1199 dma_fence_put(in_fence); 1200 goto fail; 1201 } 1202 } 1203 1204 dma_fence_put(in_fence); 1205 } 1206 1207 if (exec->args->bin_cl_size != 0) { 1208 ret = vc4_get_bcl(dev, exec); 1209 if (ret) 1210 goto fail; 1211 } else { 1212 exec->ct0ca = 0; 1213 exec->ct0ea = 0; 1214 } 1215 1216 ret = vc4_get_rcl(dev, exec); 1217 if (ret) 1218 goto fail; 1219 1220 ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx); 1221 if (ret) 1222 goto fail; 1223 1224 if (args->out_sync) { 1225 out_sync = drm_syncobj_find(file_priv, args->out_sync); 1226 if (!out_sync) { 1227 ret = -EINVAL; 1228 goto fail; 1229 } 1230 1231 /* We replace the fence in out_sync in vc4_queue_submit since 1232 * the render job could execute immediately after that call. 1233 * If it finishes before our ioctl processing resumes the 1234 * render job fence could already have been freed. 1235 */ 1236 } 1237 1238 /* Clear this out of the struct we'll be putting in the queue, 1239 * since it's part of our stack. 1240 */ 1241 exec->args = NULL; 1242 1243 ret = vc4_queue_submit(dev, exec, &acquire_ctx, out_sync); 1244 1245 /* The syncobj isn't part of the exec data and we need to free our 1246 * reference even if job submission failed. 1247 */ 1248 if (out_sync) 1249 drm_syncobj_put(out_sync); 1250 1251 if (ret) 1252 goto fail; 1253 1254 /* Return the seqno for our job. */ 1255 args->seqno = vc4->emit_seqno; 1256 1257 return 0; 1258 1259 fail: 1260 vc4_complete_exec(vc4->dev, exec); 1261 1262 return ret; 1263 } 1264 1265 void 1266 vc4_gem_init(struct drm_device *dev) 1267 { 1268 struct vc4_dev *vc4 = to_vc4_dev(dev); 1269 1270 vc4->dma_fence_context = dma_fence_context_alloc(1); 1271 1272 INIT_LIST_HEAD(&vc4->bin_job_list); 1273 INIT_LIST_HEAD(&vc4->render_job_list); 1274 INIT_LIST_HEAD(&vc4->job_done_list); 1275 INIT_LIST_HEAD(&vc4->seqno_cb_list); 1276 spin_lock_init(&vc4->job_lock); 1277 1278 INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work); 1279 timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0); 1280 1281 INIT_WORK(&vc4->job_done_work, vc4_job_done_work); 1282 1283 mutex_init(&vc4->power_lock); 1284 1285 INIT_LIST_HEAD(&vc4->purgeable.list); 1286 mutex_init(&vc4->purgeable.lock); 1287 } 1288 1289 void 1290 vc4_gem_destroy(struct drm_device *dev) 1291 { 1292 struct vc4_dev *vc4 = to_vc4_dev(dev); 1293 1294 /* Waiting for exec to finish would need to be done before 1295 * unregistering V3D. 1296 */ 1297 WARN_ON(vc4->emit_seqno != vc4->finished_seqno); 1298 1299 /* V3D should already have disabled its interrupt and cleared 1300 * the overflow allocation registers. Now free the object. 1301 */ 1302 if (vc4->bin_bo) { 1303 drm_gem_object_put_unlocked(&vc4->bin_bo->base.base); 1304 vc4->bin_bo = NULL; 1305 } 1306 1307 if (vc4->hang_state) 1308 vc4_free_hang_state(dev, vc4->hang_state); 1309 } 1310 1311 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data, 1312 struct drm_file *file_priv) 1313 { 1314 struct drm_vc4_gem_madvise *args = data; 1315 struct drm_gem_object *gem_obj; 1316 struct vc4_bo *bo; 1317 int ret; 1318 1319 switch (args->madv) { 1320 case VC4_MADV_DONTNEED: 1321 case VC4_MADV_WILLNEED: 1322 break; 1323 default: 1324 return -EINVAL; 1325 } 1326 1327 if (args->pad != 0) 1328 return -EINVAL; 1329 1330 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 1331 if (!gem_obj) { 1332 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle); 1333 return -ENOENT; 1334 } 1335 1336 bo = to_vc4_bo(gem_obj); 1337 1338 /* Only BOs exposed to userspace can be purged. */ 1339 if (bo->madv == __VC4_MADV_NOTSUPP) { 1340 DRM_DEBUG("madvise not supported on this BO\n"); 1341 ret = -EINVAL; 1342 goto out_put_gem; 1343 } 1344 1345 /* Not sure it's safe to purge imported BOs. Let's just assume it's 1346 * not until proven otherwise. 1347 */ 1348 if (gem_obj->import_attach) { 1349 DRM_DEBUG("madvise not supported on imported BOs\n"); 1350 ret = -EINVAL; 1351 goto out_put_gem; 1352 } 1353 1354 mutex_lock(&bo->madv_lock); 1355 1356 if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED && 1357 !refcount_read(&bo->usecnt)) { 1358 /* If the BO is about to be marked as purgeable, is not used 1359 * and is not already purgeable or purged, add it to the 1360 * purgeable list. 1361 */ 1362 vc4_bo_add_to_purgeable_pool(bo); 1363 } else if (args->madv == VC4_MADV_WILLNEED && 1364 bo->madv == VC4_MADV_DONTNEED && 1365 !refcount_read(&bo->usecnt)) { 1366 /* The BO has not been purged yet, just remove it from 1367 * the purgeable list. 1368 */ 1369 vc4_bo_remove_from_purgeable_pool(bo); 1370 } 1371 1372 /* Save the purged state. */ 1373 args->retained = bo->madv != __VC4_MADV_PURGED; 1374 1375 /* Update internal madv state only if the bo was not purged. */ 1376 if (bo->madv != __VC4_MADV_PURGED) 1377 bo->madv = args->madv; 1378 1379 mutex_unlock(&bo->madv_lock); 1380 1381 ret = 0; 1382 1383 out_put_gem: 1384 drm_gem_object_put_unlocked(gem_obj); 1385 1386 return ret; 1387 } 1388