1 /* 2 * Copyright © 2014 Broadcom 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24 #include <linux/module.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/device.h> 28 #include <linux/io.h> 29 #include <linux/sched/signal.h> 30 #include <linux/dma-fence-array.h> 31 32 #include <drm/drm_syncobj.h> 33 34 #include "uapi/drm/vc4_drm.h" 35 #include "vc4_drv.h" 36 #include "vc4_regs.h" 37 #include "vc4_trace.h" 38 39 static void 40 vc4_queue_hangcheck(struct drm_device *dev) 41 { 42 struct vc4_dev *vc4 = to_vc4_dev(dev); 43 44 mod_timer(&vc4->hangcheck.timer, 45 round_jiffies_up(jiffies + msecs_to_jiffies(100))); 46 } 47 48 struct vc4_hang_state { 49 struct drm_vc4_get_hang_state user_state; 50 51 u32 bo_count; 52 struct drm_gem_object **bo; 53 }; 54 55 static void 56 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state) 57 { 58 unsigned int i; 59 60 for (i = 0; i < state->user_state.bo_count; i++) 61 drm_gem_object_put(state->bo[i]); 62 63 kfree(state); 64 } 65 66 int 67 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data, 68 struct drm_file *file_priv) 69 { 70 struct drm_vc4_get_hang_state *get_state = data; 71 struct drm_vc4_get_hang_state_bo *bo_state; 72 struct vc4_hang_state *kernel_state; 73 struct drm_vc4_get_hang_state *state; 74 struct vc4_dev *vc4 = to_vc4_dev(dev); 75 unsigned long irqflags; 76 u32 i; 77 int ret = 0; 78 79 if (WARN_ON_ONCE(vc4->is_vc5)) 80 return -ENODEV; 81 82 if (!vc4->v3d) { 83 DRM_DEBUG("VC4_GET_HANG_STATE with no VC4 V3D probed\n"); 84 return -ENODEV; 85 } 86 87 spin_lock_irqsave(&vc4->job_lock, irqflags); 88 kernel_state = vc4->hang_state; 89 if (!kernel_state) { 90 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 91 return -ENOENT; 92 } 93 state = &kernel_state->user_state; 94 95 /* If the user's array isn't big enough, just return the 96 * required array size. 97 */ 98 if (get_state->bo_count < state->bo_count) { 99 get_state->bo_count = state->bo_count; 100 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 101 return 0; 102 } 103 104 vc4->hang_state = NULL; 105 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 106 107 /* Save the user's BO pointer, so we don't stomp it with the memcpy. */ 108 state->bo = get_state->bo; 109 memcpy(get_state, state, sizeof(*state)); 110 111 bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL); 112 if (!bo_state) { 113 ret = -ENOMEM; 114 goto err_free; 115 } 116 117 for (i = 0; i < state->bo_count; i++) { 118 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]); 119 u32 handle; 120 121 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i], 122 &handle); 123 124 if (ret) { 125 state->bo_count = i; 126 goto err_delete_handle; 127 } 128 bo_state[i].handle = handle; 129 bo_state[i].paddr = vc4_bo->base.dma_addr; 130 bo_state[i].size = vc4_bo->base.base.size; 131 } 132 133 if (copy_to_user(u64_to_user_ptr(get_state->bo), 134 bo_state, 135 state->bo_count * sizeof(*bo_state))) 136 ret = -EFAULT; 137 138 err_delete_handle: 139 if (ret) { 140 for (i = 0; i < state->bo_count; i++) 141 drm_gem_handle_delete(file_priv, bo_state[i].handle); 142 } 143 144 err_free: 145 vc4_free_hang_state(dev, kernel_state); 146 kfree(bo_state); 147 148 return ret; 149 } 150 151 static void 152 vc4_save_hang_state(struct drm_device *dev) 153 { 154 struct vc4_dev *vc4 = to_vc4_dev(dev); 155 struct drm_vc4_get_hang_state *state; 156 struct vc4_hang_state *kernel_state; 157 struct vc4_exec_info *exec[2]; 158 struct vc4_bo *bo; 159 unsigned long irqflags; 160 unsigned int i, j, k, unref_list_count; 161 162 kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL); 163 if (!kernel_state) 164 return; 165 166 state = &kernel_state->user_state; 167 168 spin_lock_irqsave(&vc4->job_lock, irqflags); 169 exec[0] = vc4_first_bin_job(vc4); 170 exec[1] = vc4_first_render_job(vc4); 171 if (!exec[0] && !exec[1]) { 172 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 173 return; 174 } 175 176 /* Get the bos from both binner and renderer into hang state. */ 177 state->bo_count = 0; 178 for (i = 0; i < 2; i++) { 179 if (!exec[i]) 180 continue; 181 182 unref_list_count = 0; 183 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) 184 unref_list_count++; 185 state->bo_count += exec[i]->bo_count + unref_list_count; 186 } 187 188 kernel_state->bo = kcalloc(state->bo_count, 189 sizeof(*kernel_state->bo), GFP_ATOMIC); 190 191 if (!kernel_state->bo) { 192 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 193 return; 194 } 195 196 k = 0; 197 for (i = 0; i < 2; i++) { 198 if (!exec[i]) 199 continue; 200 201 for (j = 0; j < exec[i]->bo_count; j++) { 202 bo = to_vc4_bo(exec[i]->bo[j]); 203 204 /* Retain BOs just in case they were marked purgeable. 205 * This prevents the BO from being purged before 206 * someone had a chance to dump the hang state. 207 */ 208 WARN_ON(!refcount_read(&bo->usecnt)); 209 refcount_inc(&bo->usecnt); 210 drm_gem_object_get(exec[i]->bo[j]); 211 kernel_state->bo[k++] = exec[i]->bo[j]; 212 } 213 214 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) { 215 /* No need to retain BOs coming from the ->unref_list 216 * because they are naturally unpurgeable. 217 */ 218 drm_gem_object_get(&bo->base.base); 219 kernel_state->bo[k++] = &bo->base.base; 220 } 221 } 222 223 WARN_ON_ONCE(k != state->bo_count); 224 225 if (exec[0]) 226 state->start_bin = exec[0]->ct0ca; 227 if (exec[1]) 228 state->start_render = exec[1]->ct1ca; 229 230 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 231 232 state->ct0ca = V3D_READ(V3D_CTNCA(0)); 233 state->ct0ea = V3D_READ(V3D_CTNEA(0)); 234 235 state->ct1ca = V3D_READ(V3D_CTNCA(1)); 236 state->ct1ea = V3D_READ(V3D_CTNEA(1)); 237 238 state->ct0cs = V3D_READ(V3D_CTNCS(0)); 239 state->ct1cs = V3D_READ(V3D_CTNCS(1)); 240 241 state->ct0ra0 = V3D_READ(V3D_CT00RA0); 242 state->ct1ra0 = V3D_READ(V3D_CT01RA0); 243 244 state->bpca = V3D_READ(V3D_BPCA); 245 state->bpcs = V3D_READ(V3D_BPCS); 246 state->bpoa = V3D_READ(V3D_BPOA); 247 state->bpos = V3D_READ(V3D_BPOS); 248 249 state->vpmbase = V3D_READ(V3D_VPMBASE); 250 251 state->dbge = V3D_READ(V3D_DBGE); 252 state->fdbgo = V3D_READ(V3D_FDBGO); 253 state->fdbgb = V3D_READ(V3D_FDBGB); 254 state->fdbgr = V3D_READ(V3D_FDBGR); 255 state->fdbgs = V3D_READ(V3D_FDBGS); 256 state->errstat = V3D_READ(V3D_ERRSTAT); 257 258 /* We need to turn purgeable BOs into unpurgeable ones so that 259 * userspace has a chance to dump the hang state before the kernel 260 * decides to purge those BOs. 261 * Note that BO consistency at dump time cannot be guaranteed. For 262 * example, if the owner of these BOs decides to re-use them or mark 263 * them purgeable again there's nothing we can do to prevent it. 264 */ 265 for (i = 0; i < kernel_state->user_state.bo_count; i++) { 266 struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]); 267 268 if (bo->madv == __VC4_MADV_NOTSUPP) 269 continue; 270 271 mutex_lock(&bo->madv_lock); 272 if (!WARN_ON(bo->madv == __VC4_MADV_PURGED)) 273 bo->madv = VC4_MADV_WILLNEED; 274 refcount_dec(&bo->usecnt); 275 mutex_unlock(&bo->madv_lock); 276 } 277 278 spin_lock_irqsave(&vc4->job_lock, irqflags); 279 if (vc4->hang_state) { 280 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 281 vc4_free_hang_state(dev, kernel_state); 282 } else { 283 vc4->hang_state = kernel_state; 284 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 285 } 286 } 287 288 static void 289 vc4_reset(struct drm_device *dev) 290 { 291 struct vc4_dev *vc4 = to_vc4_dev(dev); 292 293 DRM_INFO("Resetting GPU.\n"); 294 295 mutex_lock(&vc4->power_lock); 296 if (vc4->power_refcount) { 297 /* Power the device off and back on the by dropping the 298 * reference on runtime PM. 299 */ 300 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev); 301 pm_runtime_get_sync(&vc4->v3d->pdev->dev); 302 } 303 mutex_unlock(&vc4->power_lock); 304 305 vc4_irq_reset(dev); 306 307 /* Rearm the hangcheck -- another job might have been waiting 308 * for our hung one to get kicked off, and vc4_irq_reset() 309 * would have started it. 310 */ 311 vc4_queue_hangcheck(dev); 312 } 313 314 static void 315 vc4_reset_work(struct work_struct *work) 316 { 317 struct vc4_dev *vc4 = 318 container_of(work, struct vc4_dev, hangcheck.reset_work); 319 320 vc4_save_hang_state(&vc4->base); 321 322 vc4_reset(&vc4->base); 323 } 324 325 static void 326 vc4_hangcheck_elapsed(struct timer_list *t) 327 { 328 struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer); 329 struct drm_device *dev = &vc4->base; 330 uint32_t ct0ca, ct1ca; 331 unsigned long irqflags; 332 struct vc4_exec_info *bin_exec, *render_exec; 333 334 spin_lock_irqsave(&vc4->job_lock, irqflags); 335 336 bin_exec = vc4_first_bin_job(vc4); 337 render_exec = vc4_first_render_job(vc4); 338 339 /* If idle, we can stop watching for hangs. */ 340 if (!bin_exec && !render_exec) { 341 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 342 return; 343 } 344 345 ct0ca = V3D_READ(V3D_CTNCA(0)); 346 ct1ca = V3D_READ(V3D_CTNCA(1)); 347 348 /* If we've made any progress in execution, rearm the timer 349 * and wait. 350 */ 351 if ((bin_exec && ct0ca != bin_exec->last_ct0ca) || 352 (render_exec && ct1ca != render_exec->last_ct1ca)) { 353 if (bin_exec) 354 bin_exec->last_ct0ca = ct0ca; 355 if (render_exec) 356 render_exec->last_ct1ca = ct1ca; 357 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 358 vc4_queue_hangcheck(dev); 359 return; 360 } 361 362 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 363 364 /* We've gone too long with no progress, reset. This has to 365 * be done from a work struct, since resetting can sleep and 366 * this timer hook isn't allowed to. 367 */ 368 schedule_work(&vc4->hangcheck.reset_work); 369 } 370 371 static void 372 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end) 373 { 374 struct vc4_dev *vc4 = to_vc4_dev(dev); 375 376 /* Set the current and end address of the control list. 377 * Writing the end register is what starts the job. 378 */ 379 V3D_WRITE(V3D_CTNCA(thread), start); 380 V3D_WRITE(V3D_CTNEA(thread), end); 381 } 382 383 int 384 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns, 385 bool interruptible) 386 { 387 struct vc4_dev *vc4 = to_vc4_dev(dev); 388 int ret = 0; 389 unsigned long timeout_expire; 390 DEFINE_WAIT(wait); 391 392 if (WARN_ON_ONCE(vc4->is_vc5)) 393 return -ENODEV; 394 395 if (vc4->finished_seqno >= seqno) 396 return 0; 397 398 if (timeout_ns == 0) 399 return -ETIME; 400 401 timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns); 402 403 trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns); 404 for (;;) { 405 prepare_to_wait(&vc4->job_wait_queue, &wait, 406 interruptible ? TASK_INTERRUPTIBLE : 407 TASK_UNINTERRUPTIBLE); 408 409 if (interruptible && signal_pending(current)) { 410 ret = -ERESTARTSYS; 411 break; 412 } 413 414 if (vc4->finished_seqno >= seqno) 415 break; 416 417 if (timeout_ns != ~0ull) { 418 if (time_after_eq(jiffies, timeout_expire)) { 419 ret = -ETIME; 420 break; 421 } 422 schedule_timeout(timeout_expire - jiffies); 423 } else { 424 schedule(); 425 } 426 } 427 428 finish_wait(&vc4->job_wait_queue, &wait); 429 trace_vc4_wait_for_seqno_end(dev, seqno); 430 431 return ret; 432 } 433 434 static void 435 vc4_flush_caches(struct drm_device *dev) 436 { 437 struct vc4_dev *vc4 = to_vc4_dev(dev); 438 439 /* Flush the GPU L2 caches. These caches sit on top of system 440 * L3 (the 128kb or so shared with the CPU), and are 441 * non-allocating in the L3. 442 */ 443 V3D_WRITE(V3D_L2CACTL, 444 V3D_L2CACTL_L2CCLR); 445 446 V3D_WRITE(V3D_SLCACTL, 447 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | 448 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) | 449 VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) | 450 VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC)); 451 } 452 453 static void 454 vc4_flush_texture_caches(struct drm_device *dev) 455 { 456 struct vc4_dev *vc4 = to_vc4_dev(dev); 457 458 V3D_WRITE(V3D_L2CACTL, 459 V3D_L2CACTL_L2CCLR); 460 461 V3D_WRITE(V3D_SLCACTL, 462 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | 463 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC)); 464 } 465 466 /* Sets the registers for the next job to be actually be executed in 467 * the hardware. 468 * 469 * The job_lock should be held during this. 470 */ 471 void 472 vc4_submit_next_bin_job(struct drm_device *dev) 473 { 474 struct vc4_dev *vc4 = to_vc4_dev(dev); 475 struct vc4_exec_info *exec; 476 477 if (WARN_ON_ONCE(vc4->is_vc5)) 478 return; 479 480 again: 481 exec = vc4_first_bin_job(vc4); 482 if (!exec) 483 return; 484 485 vc4_flush_caches(dev); 486 487 /* Only start the perfmon if it was not already started by a previous 488 * job. 489 */ 490 if (exec->perfmon && vc4->active_perfmon != exec->perfmon) 491 vc4_perfmon_start(vc4, exec->perfmon); 492 493 /* Either put the job in the binner if it uses the binner, or 494 * immediately move it to the to-be-rendered queue. 495 */ 496 if (exec->ct0ca != exec->ct0ea) { 497 trace_vc4_submit_cl(dev, false, exec->seqno, exec->ct0ca, 498 exec->ct0ea); 499 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea); 500 } else { 501 struct vc4_exec_info *next; 502 503 vc4_move_job_to_render(dev, exec); 504 next = vc4_first_bin_job(vc4); 505 506 /* We can't start the next bin job if the previous job had a 507 * different perfmon instance attached to it. The same goes 508 * if one of them had a perfmon attached to it and the other 509 * one doesn't. 510 */ 511 if (next && next->perfmon == exec->perfmon) 512 goto again; 513 } 514 } 515 516 void 517 vc4_submit_next_render_job(struct drm_device *dev) 518 { 519 struct vc4_dev *vc4 = to_vc4_dev(dev); 520 struct vc4_exec_info *exec = vc4_first_render_job(vc4); 521 522 if (!exec) 523 return; 524 525 if (WARN_ON_ONCE(vc4->is_vc5)) 526 return; 527 528 /* A previous RCL may have written to one of our textures, and 529 * our full cache flush at bin time may have occurred before 530 * that RCL completed. Flush the texture cache now, but not 531 * the instructions or uniforms (since we don't write those 532 * from an RCL). 533 */ 534 vc4_flush_texture_caches(dev); 535 536 trace_vc4_submit_cl(dev, true, exec->seqno, exec->ct1ca, exec->ct1ea); 537 submit_cl(dev, 1, exec->ct1ca, exec->ct1ea); 538 } 539 540 void 541 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec) 542 { 543 struct vc4_dev *vc4 = to_vc4_dev(dev); 544 bool was_empty = list_empty(&vc4->render_job_list); 545 546 if (WARN_ON_ONCE(vc4->is_vc5)) 547 return; 548 549 list_move_tail(&exec->head, &vc4->render_job_list); 550 if (was_empty) 551 vc4_submit_next_render_job(dev); 552 } 553 554 static void 555 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno) 556 { 557 struct vc4_bo *bo; 558 unsigned i; 559 560 for (i = 0; i < exec->bo_count; i++) { 561 bo = to_vc4_bo(exec->bo[i]); 562 bo->seqno = seqno; 563 564 dma_resv_add_fence(bo->base.base.resv, exec->fence, 565 DMA_RESV_USAGE_READ); 566 } 567 568 list_for_each_entry(bo, &exec->unref_list, unref_head) { 569 bo->seqno = seqno; 570 } 571 572 for (i = 0; i < exec->rcl_write_bo_count; i++) { 573 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base); 574 bo->write_seqno = seqno; 575 576 dma_resv_add_fence(bo->base.base.resv, exec->fence, 577 DMA_RESV_USAGE_WRITE); 578 } 579 } 580 581 static void 582 vc4_unlock_bo_reservations(struct drm_device *dev, 583 struct vc4_exec_info *exec, 584 struct ww_acquire_ctx *acquire_ctx) 585 { 586 int i; 587 588 for (i = 0; i < exec->bo_count; i++) 589 dma_resv_unlock(exec->bo[i]->resv); 590 591 ww_acquire_fini(acquire_ctx); 592 } 593 594 /* Takes the reservation lock on all the BOs being referenced, so that 595 * at queue submit time we can update the reservations. 596 * 597 * We don't lock the RCL the tile alloc/state BOs, or overflow memory 598 * (all of which are on exec->unref_list). They're entirely private 599 * to vc4, so we don't attach dma-buf fences to them. 600 */ 601 static int 602 vc4_lock_bo_reservations(struct drm_device *dev, 603 struct vc4_exec_info *exec, 604 struct ww_acquire_ctx *acquire_ctx) 605 { 606 int contended_lock = -1; 607 int i, ret; 608 struct drm_gem_object *bo; 609 610 ww_acquire_init(acquire_ctx, &reservation_ww_class); 611 612 retry: 613 if (contended_lock != -1) { 614 bo = exec->bo[contended_lock]; 615 ret = dma_resv_lock_slow_interruptible(bo->resv, acquire_ctx); 616 if (ret) { 617 ww_acquire_done(acquire_ctx); 618 return ret; 619 } 620 } 621 622 for (i = 0; i < exec->bo_count; i++) { 623 if (i == contended_lock) 624 continue; 625 626 bo = exec->bo[i]; 627 628 ret = dma_resv_lock_interruptible(bo->resv, acquire_ctx); 629 if (ret) { 630 int j; 631 632 for (j = 0; j < i; j++) { 633 bo = exec->bo[j]; 634 dma_resv_unlock(bo->resv); 635 } 636 637 if (contended_lock != -1 && contended_lock >= i) { 638 bo = exec->bo[contended_lock]; 639 640 dma_resv_unlock(bo->resv); 641 } 642 643 if (ret == -EDEADLK) { 644 contended_lock = i; 645 goto retry; 646 } 647 648 ww_acquire_done(acquire_ctx); 649 return ret; 650 } 651 } 652 653 ww_acquire_done(acquire_ctx); 654 655 /* Reserve space for our shared (read-only) fence references, 656 * before we commit the CL to the hardware. 657 */ 658 for (i = 0; i < exec->bo_count; i++) { 659 bo = exec->bo[i]; 660 661 ret = dma_resv_reserve_fences(bo->resv, 1); 662 if (ret) { 663 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 664 return ret; 665 } 666 } 667 668 return 0; 669 } 670 671 /* Queues a struct vc4_exec_info for execution. If no job is 672 * currently executing, then submits it. 673 * 674 * Unlike most GPUs, our hardware only handles one command list at a 675 * time. To queue multiple jobs at once, we'd need to edit the 676 * previous command list to have a jump to the new one at the end, and 677 * then bump the end address. That's a change for a later date, 678 * though. 679 */ 680 static int 681 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec, 682 struct ww_acquire_ctx *acquire_ctx, 683 struct drm_syncobj *out_sync) 684 { 685 struct vc4_dev *vc4 = to_vc4_dev(dev); 686 struct vc4_exec_info *renderjob; 687 uint64_t seqno; 688 unsigned long irqflags; 689 struct vc4_fence *fence; 690 691 fence = kzalloc(sizeof(*fence), GFP_KERNEL); 692 if (!fence) 693 return -ENOMEM; 694 fence->dev = dev; 695 696 spin_lock_irqsave(&vc4->job_lock, irqflags); 697 698 seqno = ++vc4->emit_seqno; 699 exec->seqno = seqno; 700 701 dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock, 702 vc4->dma_fence_context, exec->seqno); 703 fence->seqno = exec->seqno; 704 exec->fence = &fence->base; 705 706 if (out_sync) 707 drm_syncobj_replace_fence(out_sync, exec->fence); 708 709 vc4_update_bo_seqnos(exec, seqno); 710 711 vc4_unlock_bo_reservations(dev, exec, acquire_ctx); 712 713 list_add_tail(&exec->head, &vc4->bin_job_list); 714 715 /* If no bin job was executing and if the render job (if any) has the 716 * same perfmon as our job attached to it (or if both jobs don't have 717 * perfmon activated), then kick ours off. Otherwise, it'll get 718 * started when the previous job's flush/render done interrupt occurs. 719 */ 720 renderjob = vc4_first_render_job(vc4); 721 if (vc4_first_bin_job(vc4) == exec && 722 (!renderjob || renderjob->perfmon == exec->perfmon)) { 723 vc4_submit_next_bin_job(dev); 724 vc4_queue_hangcheck(dev); 725 } 726 727 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 728 729 return 0; 730 } 731 732 /** 733 * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects 734 * referenced by the job. 735 * @dev: DRM device 736 * @file_priv: DRM file for this fd 737 * @exec: V3D job being set up 738 * 739 * The command validator needs to reference BOs by their index within 740 * the submitted job's BO list. This does the validation of the job's 741 * BO list and reference counting for the lifetime of the job. 742 */ 743 static int 744 vc4_cl_lookup_bos(struct drm_device *dev, 745 struct drm_file *file_priv, 746 struct vc4_exec_info *exec) 747 { 748 struct drm_vc4_submit_cl *args = exec->args; 749 int ret = 0; 750 int i; 751 752 exec->bo_count = args->bo_handle_count; 753 754 if (!exec->bo_count) { 755 /* See comment on bo_index for why we have to check 756 * this. 757 */ 758 DRM_DEBUG("Rendering requires BOs to validate\n"); 759 return -EINVAL; 760 } 761 762 ret = drm_gem_objects_lookup(file_priv, u64_to_user_ptr(args->bo_handles), 763 exec->bo_count, &exec->bo); 764 765 if (ret) 766 goto fail_put_bo; 767 768 for (i = 0; i < exec->bo_count; i++) { 769 ret = vc4_bo_inc_usecnt(to_vc4_bo(exec->bo[i])); 770 if (ret) 771 goto fail_dec_usecnt; 772 } 773 774 return 0; 775 776 fail_dec_usecnt: 777 /* Decrease usecnt on acquired objects. 778 * We cannot rely on vc4_complete_exec() to release resources here, 779 * because vc4_complete_exec() has no information about which BO has 780 * had its ->usecnt incremented. 781 * To make things easier we just free everything explicitly and set 782 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release' 783 * step. 784 */ 785 for (i-- ; i >= 0; i--) 786 vc4_bo_dec_usecnt(to_vc4_bo(exec->bo[i])); 787 788 fail_put_bo: 789 /* Release any reference to acquired objects. */ 790 for (i = 0; i < exec->bo_count && exec->bo[i]; i++) 791 drm_gem_object_put(exec->bo[i]); 792 793 kvfree(exec->bo); 794 exec->bo = NULL; 795 return ret; 796 } 797 798 static int 799 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec) 800 { 801 struct drm_vc4_submit_cl *args = exec->args; 802 struct vc4_dev *vc4 = to_vc4_dev(dev); 803 void *temp = NULL; 804 void *bin; 805 int ret = 0; 806 uint32_t bin_offset = 0; 807 uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size, 808 16); 809 uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size; 810 uint32_t exec_size = uniforms_offset + args->uniforms_size; 811 uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) * 812 args->shader_rec_count); 813 struct vc4_bo *bo; 814 815 if (shader_rec_offset < args->bin_cl_size || 816 uniforms_offset < shader_rec_offset || 817 exec_size < uniforms_offset || 818 args->shader_rec_count >= (UINT_MAX / 819 sizeof(struct vc4_shader_state)) || 820 temp_size < exec_size) { 821 DRM_DEBUG("overflow in exec arguments\n"); 822 ret = -EINVAL; 823 goto fail; 824 } 825 826 /* Allocate space where we'll store the copied in user command lists 827 * and shader records. 828 * 829 * We don't just copy directly into the BOs because we need to 830 * read the contents back for validation, and I think the 831 * bo->vaddr is uncached access. 832 */ 833 temp = kvmalloc_array(temp_size, 1, GFP_KERNEL); 834 if (!temp) { 835 DRM_ERROR("Failed to allocate storage for copying " 836 "in bin/render CLs.\n"); 837 ret = -ENOMEM; 838 goto fail; 839 } 840 bin = temp + bin_offset; 841 exec->shader_rec_u = temp + shader_rec_offset; 842 exec->uniforms_u = temp + uniforms_offset; 843 exec->shader_state = temp + exec_size; 844 exec->shader_state_size = args->shader_rec_count; 845 846 if (copy_from_user(bin, 847 u64_to_user_ptr(args->bin_cl), 848 args->bin_cl_size)) { 849 ret = -EFAULT; 850 goto fail; 851 } 852 853 if (copy_from_user(exec->shader_rec_u, 854 u64_to_user_ptr(args->shader_rec), 855 args->shader_rec_size)) { 856 ret = -EFAULT; 857 goto fail; 858 } 859 860 if (copy_from_user(exec->uniforms_u, 861 u64_to_user_ptr(args->uniforms), 862 args->uniforms_size)) { 863 ret = -EFAULT; 864 goto fail; 865 } 866 867 bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL); 868 if (IS_ERR(bo)) { 869 DRM_ERROR("Couldn't allocate BO for binning\n"); 870 ret = PTR_ERR(bo); 871 goto fail; 872 } 873 exec->exec_bo = &bo->base; 874 875 list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head, 876 &exec->unref_list); 877 878 exec->ct0ca = exec->exec_bo->dma_addr + bin_offset; 879 880 exec->bin_u = bin; 881 882 exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset; 883 exec->shader_rec_p = exec->exec_bo->dma_addr + shader_rec_offset; 884 exec->shader_rec_size = args->shader_rec_size; 885 886 exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset; 887 exec->uniforms_p = exec->exec_bo->dma_addr + uniforms_offset; 888 exec->uniforms_size = args->uniforms_size; 889 890 ret = vc4_validate_bin_cl(dev, 891 exec->exec_bo->vaddr + bin_offset, 892 bin, 893 exec); 894 if (ret) 895 goto fail; 896 897 ret = vc4_validate_shader_recs(dev, exec); 898 if (ret) 899 goto fail; 900 901 if (exec->found_tile_binning_mode_config_packet) { 902 ret = vc4_v3d_bin_bo_get(vc4, &exec->bin_bo_used); 903 if (ret) 904 goto fail; 905 } 906 907 /* Block waiting on any previous rendering into the CS's VBO, 908 * IB, or textures, so that pixels are actually written by the 909 * time we try to read them. 910 */ 911 ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true); 912 913 fail: 914 kvfree(temp); 915 return ret; 916 } 917 918 static void 919 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec) 920 { 921 struct vc4_dev *vc4 = to_vc4_dev(dev); 922 unsigned long irqflags; 923 unsigned i; 924 925 /* If we got force-completed because of GPU reset rather than 926 * through our IRQ handler, signal the fence now. 927 */ 928 if (exec->fence) { 929 dma_fence_signal(exec->fence); 930 dma_fence_put(exec->fence); 931 } 932 933 if (exec->bo) { 934 for (i = 0; i < exec->bo_count; i++) { 935 struct vc4_bo *bo = to_vc4_bo(exec->bo[i]); 936 937 vc4_bo_dec_usecnt(bo); 938 drm_gem_object_put(exec->bo[i]); 939 } 940 kvfree(exec->bo); 941 } 942 943 while (!list_empty(&exec->unref_list)) { 944 struct vc4_bo *bo = list_first_entry(&exec->unref_list, 945 struct vc4_bo, unref_head); 946 list_del(&bo->unref_head); 947 drm_gem_object_put(&bo->base.base); 948 } 949 950 /* Free up the allocation of any bin slots we used. */ 951 spin_lock_irqsave(&vc4->job_lock, irqflags); 952 vc4->bin_alloc_used &= ~exec->bin_slots; 953 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 954 955 /* Release the reference on the binner BO if needed. */ 956 if (exec->bin_bo_used) 957 vc4_v3d_bin_bo_put(vc4); 958 959 /* Release the reference we had on the perf monitor. */ 960 vc4_perfmon_put(exec->perfmon); 961 962 vc4_v3d_pm_put(vc4); 963 964 kfree(exec); 965 } 966 967 void 968 vc4_job_handle_completed(struct vc4_dev *vc4) 969 { 970 unsigned long irqflags; 971 struct vc4_seqno_cb *cb, *cb_temp; 972 973 if (WARN_ON_ONCE(vc4->is_vc5)) 974 return; 975 976 spin_lock_irqsave(&vc4->job_lock, irqflags); 977 while (!list_empty(&vc4->job_done_list)) { 978 struct vc4_exec_info *exec = 979 list_first_entry(&vc4->job_done_list, 980 struct vc4_exec_info, head); 981 list_del(&exec->head); 982 983 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 984 vc4_complete_exec(&vc4->base, exec); 985 spin_lock_irqsave(&vc4->job_lock, irqflags); 986 } 987 988 list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) { 989 if (cb->seqno <= vc4->finished_seqno) { 990 list_del_init(&cb->work.entry); 991 schedule_work(&cb->work); 992 } 993 } 994 995 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 996 } 997 998 static void vc4_seqno_cb_work(struct work_struct *work) 999 { 1000 struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work); 1001 1002 cb->func(cb); 1003 } 1004 1005 int vc4_queue_seqno_cb(struct drm_device *dev, 1006 struct vc4_seqno_cb *cb, uint64_t seqno, 1007 void (*func)(struct vc4_seqno_cb *cb)) 1008 { 1009 struct vc4_dev *vc4 = to_vc4_dev(dev); 1010 unsigned long irqflags; 1011 1012 if (WARN_ON_ONCE(vc4->is_vc5)) 1013 return -ENODEV; 1014 1015 cb->func = func; 1016 INIT_WORK(&cb->work, vc4_seqno_cb_work); 1017 1018 spin_lock_irqsave(&vc4->job_lock, irqflags); 1019 if (seqno > vc4->finished_seqno) { 1020 cb->seqno = seqno; 1021 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list); 1022 } else { 1023 schedule_work(&cb->work); 1024 } 1025 spin_unlock_irqrestore(&vc4->job_lock, irqflags); 1026 1027 return 0; 1028 } 1029 1030 /* Scheduled when any job has been completed, this walks the list of 1031 * jobs that had completed and unrefs their BOs and frees their exec 1032 * structs. 1033 */ 1034 static void 1035 vc4_job_done_work(struct work_struct *work) 1036 { 1037 struct vc4_dev *vc4 = 1038 container_of(work, struct vc4_dev, job_done_work); 1039 1040 vc4_job_handle_completed(vc4); 1041 } 1042 1043 static int 1044 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev, 1045 uint64_t seqno, 1046 uint64_t *timeout_ns) 1047 { 1048 unsigned long start = jiffies; 1049 int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true); 1050 1051 if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) { 1052 uint64_t delta = jiffies_to_nsecs(jiffies - start); 1053 1054 if (*timeout_ns >= delta) 1055 *timeout_ns -= delta; 1056 } 1057 1058 return ret; 1059 } 1060 1061 int 1062 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data, 1063 struct drm_file *file_priv) 1064 { 1065 struct vc4_dev *vc4 = to_vc4_dev(dev); 1066 struct drm_vc4_wait_seqno *args = data; 1067 1068 if (WARN_ON_ONCE(vc4->is_vc5)) 1069 return -ENODEV; 1070 1071 return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno, 1072 &args->timeout_ns); 1073 } 1074 1075 int 1076 vc4_wait_bo_ioctl(struct drm_device *dev, void *data, 1077 struct drm_file *file_priv) 1078 { 1079 struct vc4_dev *vc4 = to_vc4_dev(dev); 1080 int ret; 1081 struct drm_vc4_wait_bo *args = data; 1082 struct drm_gem_object *gem_obj; 1083 struct vc4_bo *bo; 1084 1085 if (WARN_ON_ONCE(vc4->is_vc5)) 1086 return -ENODEV; 1087 1088 if (args->pad != 0) 1089 return -EINVAL; 1090 1091 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 1092 if (!gem_obj) { 1093 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle); 1094 return -EINVAL; 1095 } 1096 bo = to_vc4_bo(gem_obj); 1097 1098 ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno, 1099 &args->timeout_ns); 1100 1101 drm_gem_object_put(gem_obj); 1102 return ret; 1103 } 1104 1105 /** 1106 * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4. 1107 * @dev: DRM device 1108 * @data: ioctl argument 1109 * @file_priv: DRM file for this fd 1110 * 1111 * This is the main entrypoint for userspace to submit a 3D frame to 1112 * the GPU. Userspace provides the binner command list (if 1113 * applicable), and the kernel sets up the render command list to draw 1114 * to the framebuffer described in the ioctl, using the command lists 1115 * that the 3D engine's binner will produce. 1116 */ 1117 int 1118 vc4_submit_cl_ioctl(struct drm_device *dev, void *data, 1119 struct drm_file *file_priv) 1120 { 1121 struct vc4_dev *vc4 = to_vc4_dev(dev); 1122 struct vc4_file *vc4file = file_priv->driver_priv; 1123 struct drm_vc4_submit_cl *args = data; 1124 struct drm_syncobj *out_sync = NULL; 1125 struct vc4_exec_info *exec; 1126 struct ww_acquire_ctx acquire_ctx; 1127 struct dma_fence *in_fence; 1128 int ret = 0; 1129 1130 trace_vc4_submit_cl_ioctl(dev, args->bin_cl_size, 1131 args->shader_rec_size, 1132 args->bo_handle_count); 1133 1134 if (WARN_ON_ONCE(vc4->is_vc5)) 1135 return -ENODEV; 1136 1137 if (!vc4->v3d) { 1138 DRM_DEBUG("VC4_SUBMIT_CL with no VC4 V3D probed\n"); 1139 return -ENODEV; 1140 } 1141 1142 if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR | 1143 VC4_SUBMIT_CL_FIXED_RCL_ORDER | 1144 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X | 1145 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) { 1146 DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags); 1147 return -EINVAL; 1148 } 1149 1150 if (args->pad2 != 0) { 1151 DRM_DEBUG("Invalid pad: 0x%08x\n", args->pad2); 1152 return -EINVAL; 1153 } 1154 1155 exec = kcalloc(1, sizeof(*exec), GFP_KERNEL); 1156 if (!exec) { 1157 DRM_ERROR("malloc failure on exec struct\n"); 1158 return -ENOMEM; 1159 } 1160 exec->dev = vc4; 1161 1162 ret = vc4_v3d_pm_get(vc4); 1163 if (ret) { 1164 kfree(exec); 1165 return ret; 1166 } 1167 1168 exec->args = args; 1169 INIT_LIST_HEAD(&exec->unref_list); 1170 1171 ret = vc4_cl_lookup_bos(dev, file_priv, exec); 1172 if (ret) 1173 goto fail; 1174 1175 if (args->perfmonid) { 1176 exec->perfmon = vc4_perfmon_find(vc4file, 1177 args->perfmonid); 1178 if (!exec->perfmon) { 1179 ret = -ENOENT; 1180 goto fail; 1181 } 1182 } 1183 1184 if (args->in_sync) { 1185 ret = drm_syncobj_find_fence(file_priv, args->in_sync, 1186 0, 0, &in_fence); 1187 if (ret) 1188 goto fail; 1189 1190 /* When the fence (or fence array) is exclusively from our 1191 * context we can skip the wait since jobs are executed in 1192 * order of their submission through this ioctl and this can 1193 * only have fences from a prior job. 1194 */ 1195 if (!dma_fence_match_context(in_fence, 1196 vc4->dma_fence_context)) { 1197 ret = dma_fence_wait(in_fence, true); 1198 if (ret) { 1199 dma_fence_put(in_fence); 1200 goto fail; 1201 } 1202 } 1203 1204 dma_fence_put(in_fence); 1205 } 1206 1207 if (exec->args->bin_cl_size != 0) { 1208 ret = vc4_get_bcl(dev, exec); 1209 if (ret) 1210 goto fail; 1211 } else { 1212 exec->ct0ca = 0; 1213 exec->ct0ea = 0; 1214 } 1215 1216 ret = vc4_get_rcl(dev, exec); 1217 if (ret) 1218 goto fail; 1219 1220 ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx); 1221 if (ret) 1222 goto fail; 1223 1224 if (args->out_sync) { 1225 out_sync = drm_syncobj_find(file_priv, args->out_sync); 1226 if (!out_sync) { 1227 ret = -EINVAL; 1228 goto fail; 1229 } 1230 1231 /* We replace the fence in out_sync in vc4_queue_submit since 1232 * the render job could execute immediately after that call. 1233 * If it finishes before our ioctl processing resumes the 1234 * render job fence could already have been freed. 1235 */ 1236 } 1237 1238 /* Clear this out of the struct we'll be putting in the queue, 1239 * since it's part of our stack. 1240 */ 1241 exec->args = NULL; 1242 1243 ret = vc4_queue_submit(dev, exec, &acquire_ctx, out_sync); 1244 1245 /* The syncobj isn't part of the exec data and we need to free our 1246 * reference even if job submission failed. 1247 */ 1248 if (out_sync) 1249 drm_syncobj_put(out_sync); 1250 1251 if (ret) 1252 goto fail; 1253 1254 /* Return the seqno for our job. */ 1255 args->seqno = vc4->emit_seqno; 1256 1257 return 0; 1258 1259 fail: 1260 vc4_complete_exec(&vc4->base, exec); 1261 1262 return ret; 1263 } 1264 1265 static void vc4_gem_destroy(struct drm_device *dev, void *unused); 1266 int vc4_gem_init(struct drm_device *dev) 1267 { 1268 struct vc4_dev *vc4 = to_vc4_dev(dev); 1269 int ret; 1270 1271 if (WARN_ON_ONCE(vc4->is_vc5)) 1272 return -ENODEV; 1273 1274 vc4->dma_fence_context = dma_fence_context_alloc(1); 1275 1276 INIT_LIST_HEAD(&vc4->bin_job_list); 1277 INIT_LIST_HEAD(&vc4->render_job_list); 1278 INIT_LIST_HEAD(&vc4->job_done_list); 1279 INIT_LIST_HEAD(&vc4->seqno_cb_list); 1280 spin_lock_init(&vc4->job_lock); 1281 1282 INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work); 1283 timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0); 1284 1285 INIT_WORK(&vc4->job_done_work, vc4_job_done_work); 1286 1287 ret = drmm_mutex_init(dev, &vc4->power_lock); 1288 if (ret) 1289 return ret; 1290 1291 INIT_LIST_HEAD(&vc4->purgeable.list); 1292 1293 ret = drmm_mutex_init(dev, &vc4->purgeable.lock); 1294 if (ret) 1295 return ret; 1296 1297 return drmm_add_action_or_reset(dev, vc4_gem_destroy, NULL); 1298 } 1299 1300 static void vc4_gem_destroy(struct drm_device *dev, void *unused) 1301 { 1302 struct vc4_dev *vc4 = to_vc4_dev(dev); 1303 1304 /* Waiting for exec to finish would need to be done before 1305 * unregistering V3D. 1306 */ 1307 WARN_ON(vc4->emit_seqno != vc4->finished_seqno); 1308 1309 /* V3D should already have disabled its interrupt and cleared 1310 * the overflow allocation registers. Now free the object. 1311 */ 1312 if (vc4->bin_bo) { 1313 drm_gem_object_put(&vc4->bin_bo->base.base); 1314 vc4->bin_bo = NULL; 1315 } 1316 1317 if (vc4->hang_state) 1318 vc4_free_hang_state(dev, vc4->hang_state); 1319 } 1320 1321 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data, 1322 struct drm_file *file_priv) 1323 { 1324 struct vc4_dev *vc4 = to_vc4_dev(dev); 1325 struct drm_vc4_gem_madvise *args = data; 1326 struct drm_gem_object *gem_obj; 1327 struct vc4_bo *bo; 1328 int ret; 1329 1330 if (WARN_ON_ONCE(vc4->is_vc5)) 1331 return -ENODEV; 1332 1333 switch (args->madv) { 1334 case VC4_MADV_DONTNEED: 1335 case VC4_MADV_WILLNEED: 1336 break; 1337 default: 1338 return -EINVAL; 1339 } 1340 1341 if (args->pad != 0) 1342 return -EINVAL; 1343 1344 gem_obj = drm_gem_object_lookup(file_priv, args->handle); 1345 if (!gem_obj) { 1346 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle); 1347 return -ENOENT; 1348 } 1349 1350 bo = to_vc4_bo(gem_obj); 1351 1352 /* Only BOs exposed to userspace can be purged. */ 1353 if (bo->madv == __VC4_MADV_NOTSUPP) { 1354 DRM_DEBUG("madvise not supported on this BO\n"); 1355 ret = -EINVAL; 1356 goto out_put_gem; 1357 } 1358 1359 /* Not sure it's safe to purge imported BOs. Let's just assume it's 1360 * not until proven otherwise. 1361 */ 1362 if (gem_obj->import_attach) { 1363 DRM_DEBUG("madvise not supported on imported BOs\n"); 1364 ret = -EINVAL; 1365 goto out_put_gem; 1366 } 1367 1368 mutex_lock(&bo->madv_lock); 1369 1370 if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED && 1371 !refcount_read(&bo->usecnt)) { 1372 /* If the BO is about to be marked as purgeable, is not used 1373 * and is not already purgeable or purged, add it to the 1374 * purgeable list. 1375 */ 1376 vc4_bo_add_to_purgeable_pool(bo); 1377 } else if (args->madv == VC4_MADV_WILLNEED && 1378 bo->madv == VC4_MADV_DONTNEED && 1379 !refcount_read(&bo->usecnt)) { 1380 /* The BO has not been purged yet, just remove it from 1381 * the purgeable list. 1382 */ 1383 vc4_bo_remove_from_purgeable_pool(bo); 1384 } 1385 1386 /* Save the purged state. */ 1387 args->retained = bo->madv != __VC4_MADV_PURGED; 1388 1389 /* Update internal madv state only if the bo was not purged. */ 1390 if (bo->madv != __VC4_MADV_PURGED) 1391 bo->madv = args->madv; 1392 1393 mutex_unlock(&bo->madv_lock); 1394 1395 ret = 0; 1396 1397 out_put_gem: 1398 drm_gem_object_put(gem_obj); 1399 1400 return ret; 1401 } 1402