xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_gem.c (revision 2e35facf82bcdd9b9eb9129f4fb31127b79249ec)
1 /*
2  * Copyright © 2014 Broadcom
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/device.h>
28 #include <linux/io.h>
29 #include <linux/sched/signal.h>
30 #include <linux/dma-fence-array.h>
31 
32 #include "uapi/drm/vc4_drm.h"
33 #include "vc4_drv.h"
34 #include "vc4_regs.h"
35 #include "vc4_trace.h"
36 
37 static void
38 vc4_queue_hangcheck(struct drm_device *dev)
39 {
40 	struct vc4_dev *vc4 = to_vc4_dev(dev);
41 
42 	mod_timer(&vc4->hangcheck.timer,
43 		  round_jiffies_up(jiffies + msecs_to_jiffies(100)));
44 }
45 
46 struct vc4_hang_state {
47 	struct drm_vc4_get_hang_state user_state;
48 
49 	u32 bo_count;
50 	struct drm_gem_object **bo;
51 };
52 
53 static void
54 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state)
55 {
56 	unsigned int i;
57 
58 	for (i = 0; i < state->user_state.bo_count; i++)
59 		drm_gem_object_put_unlocked(state->bo[i]);
60 
61 	kfree(state);
62 }
63 
64 int
65 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data,
66 			 struct drm_file *file_priv)
67 {
68 	struct drm_vc4_get_hang_state *get_state = data;
69 	struct drm_vc4_get_hang_state_bo *bo_state;
70 	struct vc4_hang_state *kernel_state;
71 	struct drm_vc4_get_hang_state *state;
72 	struct vc4_dev *vc4 = to_vc4_dev(dev);
73 	unsigned long irqflags;
74 	u32 i;
75 	int ret = 0;
76 
77 	if (!vc4->v3d) {
78 		DRM_DEBUG("VC4_GET_HANG_STATE with no VC4 V3D probed\n");
79 		return -ENODEV;
80 	}
81 
82 	spin_lock_irqsave(&vc4->job_lock, irqflags);
83 	kernel_state = vc4->hang_state;
84 	if (!kernel_state) {
85 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
86 		return -ENOENT;
87 	}
88 	state = &kernel_state->user_state;
89 
90 	/* If the user's array isn't big enough, just return the
91 	 * required array size.
92 	 */
93 	if (get_state->bo_count < state->bo_count) {
94 		get_state->bo_count = state->bo_count;
95 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
96 		return 0;
97 	}
98 
99 	vc4->hang_state = NULL;
100 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
101 
102 	/* Save the user's BO pointer, so we don't stomp it with the memcpy. */
103 	state->bo = get_state->bo;
104 	memcpy(get_state, state, sizeof(*state));
105 
106 	bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL);
107 	if (!bo_state) {
108 		ret = -ENOMEM;
109 		goto err_free;
110 	}
111 
112 	for (i = 0; i < state->bo_count; i++) {
113 		struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]);
114 		u32 handle;
115 
116 		ret = drm_gem_handle_create(file_priv, kernel_state->bo[i],
117 					    &handle);
118 
119 		if (ret) {
120 			state->bo_count = i;
121 			goto err_delete_handle;
122 		}
123 		bo_state[i].handle = handle;
124 		bo_state[i].paddr = vc4_bo->base.paddr;
125 		bo_state[i].size = vc4_bo->base.base.size;
126 	}
127 
128 	if (copy_to_user(u64_to_user_ptr(get_state->bo),
129 			 bo_state,
130 			 state->bo_count * sizeof(*bo_state)))
131 		ret = -EFAULT;
132 
133 err_delete_handle:
134 	if (ret) {
135 		for (i = 0; i < state->bo_count; i++)
136 			drm_gem_handle_delete(file_priv, bo_state[i].handle);
137 	}
138 
139 err_free:
140 	vc4_free_hang_state(dev, kernel_state);
141 	kfree(bo_state);
142 
143 	return ret;
144 }
145 
146 static void
147 vc4_save_hang_state(struct drm_device *dev)
148 {
149 	struct vc4_dev *vc4 = to_vc4_dev(dev);
150 	struct drm_vc4_get_hang_state *state;
151 	struct vc4_hang_state *kernel_state;
152 	struct vc4_exec_info *exec[2];
153 	struct vc4_bo *bo;
154 	unsigned long irqflags;
155 	unsigned int i, j, k, unref_list_count;
156 
157 	kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL);
158 	if (!kernel_state)
159 		return;
160 
161 	state = &kernel_state->user_state;
162 
163 	spin_lock_irqsave(&vc4->job_lock, irqflags);
164 	exec[0] = vc4_first_bin_job(vc4);
165 	exec[1] = vc4_first_render_job(vc4);
166 	if (!exec[0] && !exec[1]) {
167 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
168 		return;
169 	}
170 
171 	/* Get the bos from both binner and renderer into hang state. */
172 	state->bo_count = 0;
173 	for (i = 0; i < 2; i++) {
174 		if (!exec[i])
175 			continue;
176 
177 		unref_list_count = 0;
178 		list_for_each_entry(bo, &exec[i]->unref_list, unref_head)
179 			unref_list_count++;
180 		state->bo_count += exec[i]->bo_count + unref_list_count;
181 	}
182 
183 	kernel_state->bo = kcalloc(state->bo_count,
184 				   sizeof(*kernel_state->bo), GFP_ATOMIC);
185 
186 	if (!kernel_state->bo) {
187 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
188 		return;
189 	}
190 
191 	k = 0;
192 	for (i = 0; i < 2; i++) {
193 		if (!exec[i])
194 			continue;
195 
196 		for (j = 0; j < exec[i]->bo_count; j++) {
197 			bo = to_vc4_bo(&exec[i]->bo[j]->base);
198 
199 			/* Retain BOs just in case they were marked purgeable.
200 			 * This prevents the BO from being purged before
201 			 * someone had a chance to dump the hang state.
202 			 */
203 			WARN_ON(!refcount_read(&bo->usecnt));
204 			refcount_inc(&bo->usecnt);
205 			drm_gem_object_get(&exec[i]->bo[j]->base);
206 			kernel_state->bo[k++] = &exec[i]->bo[j]->base;
207 		}
208 
209 		list_for_each_entry(bo, &exec[i]->unref_list, unref_head) {
210 			/* No need to retain BOs coming from the ->unref_list
211 			 * because they are naturally unpurgeable.
212 			 */
213 			drm_gem_object_get(&bo->base.base);
214 			kernel_state->bo[k++] = &bo->base.base;
215 		}
216 	}
217 
218 	WARN_ON_ONCE(k != state->bo_count);
219 
220 	if (exec[0])
221 		state->start_bin = exec[0]->ct0ca;
222 	if (exec[1])
223 		state->start_render = exec[1]->ct1ca;
224 
225 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
226 
227 	state->ct0ca = V3D_READ(V3D_CTNCA(0));
228 	state->ct0ea = V3D_READ(V3D_CTNEA(0));
229 
230 	state->ct1ca = V3D_READ(V3D_CTNCA(1));
231 	state->ct1ea = V3D_READ(V3D_CTNEA(1));
232 
233 	state->ct0cs = V3D_READ(V3D_CTNCS(0));
234 	state->ct1cs = V3D_READ(V3D_CTNCS(1));
235 
236 	state->ct0ra0 = V3D_READ(V3D_CT00RA0);
237 	state->ct1ra0 = V3D_READ(V3D_CT01RA0);
238 
239 	state->bpca = V3D_READ(V3D_BPCA);
240 	state->bpcs = V3D_READ(V3D_BPCS);
241 	state->bpoa = V3D_READ(V3D_BPOA);
242 	state->bpos = V3D_READ(V3D_BPOS);
243 
244 	state->vpmbase = V3D_READ(V3D_VPMBASE);
245 
246 	state->dbge = V3D_READ(V3D_DBGE);
247 	state->fdbgo = V3D_READ(V3D_FDBGO);
248 	state->fdbgb = V3D_READ(V3D_FDBGB);
249 	state->fdbgr = V3D_READ(V3D_FDBGR);
250 	state->fdbgs = V3D_READ(V3D_FDBGS);
251 	state->errstat = V3D_READ(V3D_ERRSTAT);
252 
253 	/* We need to turn purgeable BOs into unpurgeable ones so that
254 	 * userspace has a chance to dump the hang state before the kernel
255 	 * decides to purge those BOs.
256 	 * Note that BO consistency at dump time cannot be guaranteed. For
257 	 * example, if the owner of these BOs decides to re-use them or mark
258 	 * them purgeable again there's nothing we can do to prevent it.
259 	 */
260 	for (i = 0; i < kernel_state->user_state.bo_count; i++) {
261 		struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]);
262 
263 		if (bo->madv == __VC4_MADV_NOTSUPP)
264 			continue;
265 
266 		mutex_lock(&bo->madv_lock);
267 		if (!WARN_ON(bo->madv == __VC4_MADV_PURGED))
268 			bo->madv = VC4_MADV_WILLNEED;
269 		refcount_dec(&bo->usecnt);
270 		mutex_unlock(&bo->madv_lock);
271 	}
272 
273 	spin_lock_irqsave(&vc4->job_lock, irqflags);
274 	if (vc4->hang_state) {
275 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
276 		vc4_free_hang_state(dev, kernel_state);
277 	} else {
278 		vc4->hang_state = kernel_state;
279 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
280 	}
281 }
282 
283 static void
284 vc4_reset(struct drm_device *dev)
285 {
286 	struct vc4_dev *vc4 = to_vc4_dev(dev);
287 
288 	DRM_INFO("Resetting GPU.\n");
289 
290 	mutex_lock(&vc4->power_lock);
291 	if (vc4->power_refcount) {
292 		/* Power the device off and back on the by dropping the
293 		 * reference on runtime PM.
294 		 */
295 		pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev);
296 		pm_runtime_get_sync(&vc4->v3d->pdev->dev);
297 	}
298 	mutex_unlock(&vc4->power_lock);
299 
300 	vc4_irq_reset(dev);
301 
302 	/* Rearm the hangcheck -- another job might have been waiting
303 	 * for our hung one to get kicked off, and vc4_irq_reset()
304 	 * would have started it.
305 	 */
306 	vc4_queue_hangcheck(dev);
307 }
308 
309 static void
310 vc4_reset_work(struct work_struct *work)
311 {
312 	struct vc4_dev *vc4 =
313 		container_of(work, struct vc4_dev, hangcheck.reset_work);
314 
315 	vc4_save_hang_state(vc4->dev);
316 
317 	vc4_reset(vc4->dev);
318 }
319 
320 static void
321 vc4_hangcheck_elapsed(struct timer_list *t)
322 {
323 	struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer);
324 	struct drm_device *dev = vc4->dev;
325 	uint32_t ct0ca, ct1ca;
326 	unsigned long irqflags;
327 	struct vc4_exec_info *bin_exec, *render_exec;
328 
329 	spin_lock_irqsave(&vc4->job_lock, irqflags);
330 
331 	bin_exec = vc4_first_bin_job(vc4);
332 	render_exec = vc4_first_render_job(vc4);
333 
334 	/* If idle, we can stop watching for hangs. */
335 	if (!bin_exec && !render_exec) {
336 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
337 		return;
338 	}
339 
340 	ct0ca = V3D_READ(V3D_CTNCA(0));
341 	ct1ca = V3D_READ(V3D_CTNCA(1));
342 
343 	/* If we've made any progress in execution, rearm the timer
344 	 * and wait.
345 	 */
346 	if ((bin_exec && ct0ca != bin_exec->last_ct0ca) ||
347 	    (render_exec && ct1ca != render_exec->last_ct1ca)) {
348 		if (bin_exec)
349 			bin_exec->last_ct0ca = ct0ca;
350 		if (render_exec)
351 			render_exec->last_ct1ca = ct1ca;
352 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
353 		vc4_queue_hangcheck(dev);
354 		return;
355 	}
356 
357 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
358 
359 	/* We've gone too long with no progress, reset.  This has to
360 	 * be done from a work struct, since resetting can sleep and
361 	 * this timer hook isn't allowed to.
362 	 */
363 	schedule_work(&vc4->hangcheck.reset_work);
364 }
365 
366 static void
367 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end)
368 {
369 	struct vc4_dev *vc4 = to_vc4_dev(dev);
370 
371 	/* Set the current and end address of the control list.
372 	 * Writing the end register is what starts the job.
373 	 */
374 	V3D_WRITE(V3D_CTNCA(thread), start);
375 	V3D_WRITE(V3D_CTNEA(thread), end);
376 }
377 
378 int
379 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns,
380 		   bool interruptible)
381 {
382 	struct vc4_dev *vc4 = to_vc4_dev(dev);
383 	int ret = 0;
384 	unsigned long timeout_expire;
385 	DEFINE_WAIT(wait);
386 
387 	if (vc4->finished_seqno >= seqno)
388 		return 0;
389 
390 	if (timeout_ns == 0)
391 		return -ETIME;
392 
393 	timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns);
394 
395 	trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns);
396 	for (;;) {
397 		prepare_to_wait(&vc4->job_wait_queue, &wait,
398 				interruptible ? TASK_INTERRUPTIBLE :
399 				TASK_UNINTERRUPTIBLE);
400 
401 		if (interruptible && signal_pending(current)) {
402 			ret = -ERESTARTSYS;
403 			break;
404 		}
405 
406 		if (vc4->finished_seqno >= seqno)
407 			break;
408 
409 		if (timeout_ns != ~0ull) {
410 			if (time_after_eq(jiffies, timeout_expire)) {
411 				ret = -ETIME;
412 				break;
413 			}
414 			schedule_timeout(timeout_expire - jiffies);
415 		} else {
416 			schedule();
417 		}
418 	}
419 
420 	finish_wait(&vc4->job_wait_queue, &wait);
421 	trace_vc4_wait_for_seqno_end(dev, seqno);
422 
423 	return ret;
424 }
425 
426 static void
427 vc4_flush_caches(struct drm_device *dev)
428 {
429 	struct vc4_dev *vc4 = to_vc4_dev(dev);
430 
431 	/* Flush the GPU L2 caches.  These caches sit on top of system
432 	 * L3 (the 128kb or so shared with the CPU), and are
433 	 * non-allocating in the L3.
434 	 */
435 	V3D_WRITE(V3D_L2CACTL,
436 		  V3D_L2CACTL_L2CCLR);
437 
438 	V3D_WRITE(V3D_SLCACTL,
439 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
440 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) |
441 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) |
442 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC));
443 }
444 
445 static void
446 vc4_flush_texture_caches(struct drm_device *dev)
447 {
448 	struct vc4_dev *vc4 = to_vc4_dev(dev);
449 
450 	V3D_WRITE(V3D_L2CACTL,
451 		  V3D_L2CACTL_L2CCLR);
452 
453 	V3D_WRITE(V3D_SLCACTL,
454 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
455 		  VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC));
456 }
457 
458 /* Sets the registers for the next job to be actually be executed in
459  * the hardware.
460  *
461  * The job_lock should be held during this.
462  */
463 void
464 vc4_submit_next_bin_job(struct drm_device *dev)
465 {
466 	struct vc4_dev *vc4 = to_vc4_dev(dev);
467 	struct vc4_exec_info *exec;
468 
469 again:
470 	exec = vc4_first_bin_job(vc4);
471 	if (!exec)
472 		return;
473 
474 	vc4_flush_caches(dev);
475 
476 	/* Only start the perfmon if it was not already started by a previous
477 	 * job.
478 	 */
479 	if (exec->perfmon && vc4->active_perfmon != exec->perfmon)
480 		vc4_perfmon_start(vc4, exec->perfmon);
481 
482 	/* Either put the job in the binner if it uses the binner, or
483 	 * immediately move it to the to-be-rendered queue.
484 	 */
485 	if (exec->ct0ca != exec->ct0ea) {
486 		submit_cl(dev, 0, exec->ct0ca, exec->ct0ea);
487 	} else {
488 		struct vc4_exec_info *next;
489 
490 		vc4_move_job_to_render(dev, exec);
491 		next = vc4_first_bin_job(vc4);
492 
493 		/* We can't start the next bin job if the previous job had a
494 		 * different perfmon instance attached to it. The same goes
495 		 * if one of them had a perfmon attached to it and the other
496 		 * one doesn't.
497 		 */
498 		if (next && next->perfmon == exec->perfmon)
499 			goto again;
500 	}
501 }
502 
503 void
504 vc4_submit_next_render_job(struct drm_device *dev)
505 {
506 	struct vc4_dev *vc4 = to_vc4_dev(dev);
507 	struct vc4_exec_info *exec = vc4_first_render_job(vc4);
508 
509 	if (!exec)
510 		return;
511 
512 	/* A previous RCL may have written to one of our textures, and
513 	 * our full cache flush at bin time may have occurred before
514 	 * that RCL completed.  Flush the texture cache now, but not
515 	 * the instructions or uniforms (since we don't write those
516 	 * from an RCL).
517 	 */
518 	vc4_flush_texture_caches(dev);
519 
520 	submit_cl(dev, 1, exec->ct1ca, exec->ct1ea);
521 }
522 
523 void
524 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec)
525 {
526 	struct vc4_dev *vc4 = to_vc4_dev(dev);
527 	bool was_empty = list_empty(&vc4->render_job_list);
528 
529 	list_move_tail(&exec->head, &vc4->render_job_list);
530 	if (was_empty)
531 		vc4_submit_next_render_job(dev);
532 }
533 
534 static void
535 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno)
536 {
537 	struct vc4_bo *bo;
538 	unsigned i;
539 
540 	for (i = 0; i < exec->bo_count; i++) {
541 		bo = to_vc4_bo(&exec->bo[i]->base);
542 		bo->seqno = seqno;
543 
544 		reservation_object_add_shared_fence(bo->base.base.resv, exec->fence);
545 	}
546 
547 	list_for_each_entry(bo, &exec->unref_list, unref_head) {
548 		bo->seqno = seqno;
549 	}
550 
551 	for (i = 0; i < exec->rcl_write_bo_count; i++) {
552 		bo = to_vc4_bo(&exec->rcl_write_bo[i]->base);
553 		bo->write_seqno = seqno;
554 
555 		reservation_object_add_excl_fence(bo->base.base.resv, exec->fence);
556 	}
557 }
558 
559 static void
560 vc4_unlock_bo_reservations(struct drm_device *dev,
561 			   struct vc4_exec_info *exec,
562 			   struct ww_acquire_ctx *acquire_ctx)
563 {
564 	int i;
565 
566 	for (i = 0; i < exec->bo_count; i++) {
567 		struct drm_gem_object *bo = &exec->bo[i]->base;
568 
569 		ww_mutex_unlock(&bo->resv->lock);
570 	}
571 
572 	ww_acquire_fini(acquire_ctx);
573 }
574 
575 /* Takes the reservation lock on all the BOs being referenced, so that
576  * at queue submit time we can update the reservations.
577  *
578  * We don't lock the RCL the tile alloc/state BOs, or overflow memory
579  * (all of which are on exec->unref_list).  They're entirely private
580  * to vc4, so we don't attach dma-buf fences to them.
581  */
582 static int
583 vc4_lock_bo_reservations(struct drm_device *dev,
584 			 struct vc4_exec_info *exec,
585 			 struct ww_acquire_ctx *acquire_ctx)
586 {
587 	int contended_lock = -1;
588 	int i, ret;
589 	struct drm_gem_object *bo;
590 
591 	ww_acquire_init(acquire_ctx, &reservation_ww_class);
592 
593 retry:
594 	if (contended_lock != -1) {
595 		bo = &exec->bo[contended_lock]->base;
596 		ret = ww_mutex_lock_slow_interruptible(&bo->resv->lock,
597 						       acquire_ctx);
598 		if (ret) {
599 			ww_acquire_done(acquire_ctx);
600 			return ret;
601 		}
602 	}
603 
604 	for (i = 0; i < exec->bo_count; i++) {
605 		if (i == contended_lock)
606 			continue;
607 
608 		bo = &exec->bo[i]->base;
609 
610 		ret = ww_mutex_lock_interruptible(&bo->resv->lock, acquire_ctx);
611 		if (ret) {
612 			int j;
613 
614 			for (j = 0; j < i; j++) {
615 				bo = &exec->bo[j]->base;
616 				ww_mutex_unlock(&bo->resv->lock);
617 			}
618 
619 			if (contended_lock != -1 && contended_lock >= i) {
620 				bo = &exec->bo[contended_lock]->base;
621 
622 				ww_mutex_unlock(&bo->resv->lock);
623 			}
624 
625 			if (ret == -EDEADLK) {
626 				contended_lock = i;
627 				goto retry;
628 			}
629 
630 			ww_acquire_done(acquire_ctx);
631 			return ret;
632 		}
633 	}
634 
635 	ww_acquire_done(acquire_ctx);
636 
637 	/* Reserve space for our shared (read-only) fence references,
638 	 * before we commit the CL to the hardware.
639 	 */
640 	for (i = 0; i < exec->bo_count; i++) {
641 		bo = &exec->bo[i]->base;
642 
643 		ret = reservation_object_reserve_shared(bo->resv, 1);
644 		if (ret) {
645 			vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
646 			return ret;
647 		}
648 	}
649 
650 	return 0;
651 }
652 
653 /* Queues a struct vc4_exec_info for execution.  If no job is
654  * currently executing, then submits it.
655  *
656  * Unlike most GPUs, our hardware only handles one command list at a
657  * time.  To queue multiple jobs at once, we'd need to edit the
658  * previous command list to have a jump to the new one at the end, and
659  * then bump the end address.  That's a change for a later date,
660  * though.
661  */
662 static int
663 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec,
664 		 struct ww_acquire_ctx *acquire_ctx,
665 		 struct drm_syncobj *out_sync)
666 {
667 	struct vc4_dev *vc4 = to_vc4_dev(dev);
668 	struct vc4_exec_info *renderjob;
669 	uint64_t seqno;
670 	unsigned long irqflags;
671 	struct vc4_fence *fence;
672 
673 	fence = kzalloc(sizeof(*fence), GFP_KERNEL);
674 	if (!fence)
675 		return -ENOMEM;
676 	fence->dev = dev;
677 
678 	spin_lock_irqsave(&vc4->job_lock, irqflags);
679 
680 	seqno = ++vc4->emit_seqno;
681 	exec->seqno = seqno;
682 
683 	dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock,
684 		       vc4->dma_fence_context, exec->seqno);
685 	fence->seqno = exec->seqno;
686 	exec->fence = &fence->base;
687 
688 	if (out_sync)
689 		drm_syncobj_replace_fence(out_sync, exec->fence);
690 
691 	vc4_update_bo_seqnos(exec, seqno);
692 
693 	vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
694 
695 	list_add_tail(&exec->head, &vc4->bin_job_list);
696 
697 	/* If no bin job was executing and if the render job (if any) has the
698 	 * same perfmon as our job attached to it (or if both jobs don't have
699 	 * perfmon activated), then kick ours off.  Otherwise, it'll get
700 	 * started when the previous job's flush/render done interrupt occurs.
701 	 */
702 	renderjob = vc4_first_render_job(vc4);
703 	if (vc4_first_bin_job(vc4) == exec &&
704 	    (!renderjob || renderjob->perfmon == exec->perfmon)) {
705 		vc4_submit_next_bin_job(dev);
706 		vc4_queue_hangcheck(dev);
707 	}
708 
709 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
710 
711 	return 0;
712 }
713 
714 /**
715  * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects
716  * referenced by the job.
717  * @dev: DRM device
718  * @file_priv: DRM file for this fd
719  * @exec: V3D job being set up
720  *
721  * The command validator needs to reference BOs by their index within
722  * the submitted job's BO list.  This does the validation of the job's
723  * BO list and reference counting for the lifetime of the job.
724  */
725 static int
726 vc4_cl_lookup_bos(struct drm_device *dev,
727 		  struct drm_file *file_priv,
728 		  struct vc4_exec_info *exec)
729 {
730 	struct drm_vc4_submit_cl *args = exec->args;
731 	uint32_t *handles;
732 	int ret = 0;
733 	int i;
734 
735 	exec->bo_count = args->bo_handle_count;
736 
737 	if (!exec->bo_count) {
738 		/* See comment on bo_index for why we have to check
739 		 * this.
740 		 */
741 		DRM_DEBUG("Rendering requires BOs to validate\n");
742 		return -EINVAL;
743 	}
744 
745 	exec->bo = kvmalloc_array(exec->bo_count,
746 				    sizeof(struct drm_gem_cma_object *),
747 				    GFP_KERNEL | __GFP_ZERO);
748 	if (!exec->bo) {
749 		DRM_ERROR("Failed to allocate validated BO pointers\n");
750 		return -ENOMEM;
751 	}
752 
753 	handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL);
754 	if (!handles) {
755 		ret = -ENOMEM;
756 		DRM_ERROR("Failed to allocate incoming GEM handles\n");
757 		goto fail;
758 	}
759 
760 	if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles),
761 			   exec->bo_count * sizeof(uint32_t))) {
762 		ret = -EFAULT;
763 		DRM_ERROR("Failed to copy in GEM handles\n");
764 		goto fail;
765 	}
766 
767 	spin_lock(&file_priv->table_lock);
768 	for (i = 0; i < exec->bo_count; i++) {
769 		struct drm_gem_object *bo = idr_find(&file_priv->object_idr,
770 						     handles[i]);
771 		if (!bo) {
772 			DRM_DEBUG("Failed to look up GEM BO %d: %d\n",
773 				  i, handles[i]);
774 			ret = -EINVAL;
775 			break;
776 		}
777 
778 		drm_gem_object_get(bo);
779 		exec->bo[i] = (struct drm_gem_cma_object *)bo;
780 	}
781 	spin_unlock(&file_priv->table_lock);
782 
783 	if (ret)
784 		goto fail_put_bo;
785 
786 	for (i = 0; i < exec->bo_count; i++) {
787 		ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base));
788 		if (ret)
789 			goto fail_dec_usecnt;
790 	}
791 
792 	kvfree(handles);
793 	return 0;
794 
795 fail_dec_usecnt:
796 	/* Decrease usecnt on acquired objects.
797 	 * We cannot rely on  vc4_complete_exec() to release resources here,
798 	 * because vc4_complete_exec() has no information about which BO has
799 	 * had its ->usecnt incremented.
800 	 * To make things easier we just free everything explicitly and set
801 	 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release'
802 	 * step.
803 	 */
804 	for (i-- ; i >= 0; i--)
805 		vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base));
806 
807 fail_put_bo:
808 	/* Release any reference to acquired objects. */
809 	for (i = 0; i < exec->bo_count && exec->bo[i]; i++)
810 		drm_gem_object_put_unlocked(&exec->bo[i]->base);
811 
812 fail:
813 	kvfree(handles);
814 	kvfree(exec->bo);
815 	exec->bo = NULL;
816 	return ret;
817 }
818 
819 static int
820 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec)
821 {
822 	struct drm_vc4_submit_cl *args = exec->args;
823 	struct vc4_dev *vc4 = to_vc4_dev(dev);
824 	void *temp = NULL;
825 	void *bin;
826 	int ret = 0;
827 	uint32_t bin_offset = 0;
828 	uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size,
829 					     16);
830 	uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size;
831 	uint32_t exec_size = uniforms_offset + args->uniforms_size;
832 	uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) *
833 					  args->shader_rec_count);
834 	struct vc4_bo *bo;
835 
836 	if (shader_rec_offset < args->bin_cl_size ||
837 	    uniforms_offset < shader_rec_offset ||
838 	    exec_size < uniforms_offset ||
839 	    args->shader_rec_count >= (UINT_MAX /
840 					  sizeof(struct vc4_shader_state)) ||
841 	    temp_size < exec_size) {
842 		DRM_DEBUG("overflow in exec arguments\n");
843 		ret = -EINVAL;
844 		goto fail;
845 	}
846 
847 	/* Allocate space where we'll store the copied in user command lists
848 	 * and shader records.
849 	 *
850 	 * We don't just copy directly into the BOs because we need to
851 	 * read the contents back for validation, and I think the
852 	 * bo->vaddr is uncached access.
853 	 */
854 	temp = kvmalloc_array(temp_size, 1, GFP_KERNEL);
855 	if (!temp) {
856 		DRM_ERROR("Failed to allocate storage for copying "
857 			  "in bin/render CLs.\n");
858 		ret = -ENOMEM;
859 		goto fail;
860 	}
861 	bin = temp + bin_offset;
862 	exec->shader_rec_u = temp + shader_rec_offset;
863 	exec->uniforms_u = temp + uniforms_offset;
864 	exec->shader_state = temp + exec_size;
865 	exec->shader_state_size = args->shader_rec_count;
866 
867 	if (copy_from_user(bin,
868 			   u64_to_user_ptr(args->bin_cl),
869 			   args->bin_cl_size)) {
870 		ret = -EFAULT;
871 		goto fail;
872 	}
873 
874 	if (copy_from_user(exec->shader_rec_u,
875 			   u64_to_user_ptr(args->shader_rec),
876 			   args->shader_rec_size)) {
877 		ret = -EFAULT;
878 		goto fail;
879 	}
880 
881 	if (copy_from_user(exec->uniforms_u,
882 			   u64_to_user_ptr(args->uniforms),
883 			   args->uniforms_size)) {
884 		ret = -EFAULT;
885 		goto fail;
886 	}
887 
888 	bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL);
889 	if (IS_ERR(bo)) {
890 		DRM_ERROR("Couldn't allocate BO for binning\n");
891 		ret = PTR_ERR(bo);
892 		goto fail;
893 	}
894 	exec->exec_bo = &bo->base;
895 
896 	list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head,
897 		      &exec->unref_list);
898 
899 	exec->ct0ca = exec->exec_bo->paddr + bin_offset;
900 
901 	exec->bin_u = bin;
902 
903 	exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset;
904 	exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset;
905 	exec->shader_rec_size = args->shader_rec_size;
906 
907 	exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset;
908 	exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset;
909 	exec->uniforms_size = args->uniforms_size;
910 
911 	ret = vc4_validate_bin_cl(dev,
912 				  exec->exec_bo->vaddr + bin_offset,
913 				  bin,
914 				  exec);
915 	if (ret)
916 		goto fail;
917 
918 	ret = vc4_validate_shader_recs(dev, exec);
919 	if (ret)
920 		goto fail;
921 
922 	if (exec->found_tile_binning_mode_config_packet) {
923 		ret = vc4_v3d_bin_bo_get(vc4, &exec->bin_bo_used);
924 		if (ret)
925 			goto fail;
926 	}
927 
928 	/* Block waiting on any previous rendering into the CS's VBO,
929 	 * IB, or textures, so that pixels are actually written by the
930 	 * time we try to read them.
931 	 */
932 	ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true);
933 
934 fail:
935 	kvfree(temp);
936 	return ret;
937 }
938 
939 static void
940 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec)
941 {
942 	struct vc4_dev *vc4 = to_vc4_dev(dev);
943 	unsigned long irqflags;
944 	unsigned i;
945 
946 	/* If we got force-completed because of GPU reset rather than
947 	 * through our IRQ handler, signal the fence now.
948 	 */
949 	if (exec->fence) {
950 		dma_fence_signal(exec->fence);
951 		dma_fence_put(exec->fence);
952 	}
953 
954 	if (exec->bo) {
955 		for (i = 0; i < exec->bo_count; i++) {
956 			struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
957 
958 			vc4_bo_dec_usecnt(bo);
959 			drm_gem_object_put_unlocked(&exec->bo[i]->base);
960 		}
961 		kvfree(exec->bo);
962 	}
963 
964 	while (!list_empty(&exec->unref_list)) {
965 		struct vc4_bo *bo = list_first_entry(&exec->unref_list,
966 						     struct vc4_bo, unref_head);
967 		list_del(&bo->unref_head);
968 		drm_gem_object_put_unlocked(&bo->base.base);
969 	}
970 
971 	/* Free up the allocation of any bin slots we used. */
972 	spin_lock_irqsave(&vc4->job_lock, irqflags);
973 	vc4->bin_alloc_used &= ~exec->bin_slots;
974 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
975 
976 	/* Release the reference on the binner BO if needed. */
977 	if (exec->bin_bo_used)
978 		vc4_v3d_bin_bo_put(vc4);
979 
980 	/* Release the reference we had on the perf monitor. */
981 	vc4_perfmon_put(exec->perfmon);
982 
983 	vc4_v3d_pm_put(vc4);
984 
985 	kfree(exec);
986 }
987 
988 void
989 vc4_job_handle_completed(struct vc4_dev *vc4)
990 {
991 	unsigned long irqflags;
992 	struct vc4_seqno_cb *cb, *cb_temp;
993 
994 	spin_lock_irqsave(&vc4->job_lock, irqflags);
995 	while (!list_empty(&vc4->job_done_list)) {
996 		struct vc4_exec_info *exec =
997 			list_first_entry(&vc4->job_done_list,
998 					 struct vc4_exec_info, head);
999 		list_del(&exec->head);
1000 
1001 		spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1002 		vc4_complete_exec(vc4->dev, exec);
1003 		spin_lock_irqsave(&vc4->job_lock, irqflags);
1004 	}
1005 
1006 	list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) {
1007 		if (cb->seqno <= vc4->finished_seqno) {
1008 			list_del_init(&cb->work.entry);
1009 			schedule_work(&cb->work);
1010 		}
1011 	}
1012 
1013 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1014 }
1015 
1016 static void vc4_seqno_cb_work(struct work_struct *work)
1017 {
1018 	struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work);
1019 
1020 	cb->func(cb);
1021 }
1022 
1023 int vc4_queue_seqno_cb(struct drm_device *dev,
1024 		       struct vc4_seqno_cb *cb, uint64_t seqno,
1025 		       void (*func)(struct vc4_seqno_cb *cb))
1026 {
1027 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1028 	int ret = 0;
1029 	unsigned long irqflags;
1030 
1031 	cb->func = func;
1032 	INIT_WORK(&cb->work, vc4_seqno_cb_work);
1033 
1034 	spin_lock_irqsave(&vc4->job_lock, irqflags);
1035 	if (seqno > vc4->finished_seqno) {
1036 		cb->seqno = seqno;
1037 		list_add_tail(&cb->work.entry, &vc4->seqno_cb_list);
1038 	} else {
1039 		schedule_work(&cb->work);
1040 	}
1041 	spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1042 
1043 	return ret;
1044 }
1045 
1046 /* Scheduled when any job has been completed, this walks the list of
1047  * jobs that had completed and unrefs their BOs and frees their exec
1048  * structs.
1049  */
1050 static void
1051 vc4_job_done_work(struct work_struct *work)
1052 {
1053 	struct vc4_dev *vc4 =
1054 		container_of(work, struct vc4_dev, job_done_work);
1055 
1056 	vc4_job_handle_completed(vc4);
1057 }
1058 
1059 static int
1060 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev,
1061 				uint64_t seqno,
1062 				uint64_t *timeout_ns)
1063 {
1064 	unsigned long start = jiffies;
1065 	int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true);
1066 
1067 	if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) {
1068 		uint64_t delta = jiffies_to_nsecs(jiffies - start);
1069 
1070 		if (*timeout_ns >= delta)
1071 			*timeout_ns -= delta;
1072 	}
1073 
1074 	return ret;
1075 }
1076 
1077 int
1078 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data,
1079 		     struct drm_file *file_priv)
1080 {
1081 	struct drm_vc4_wait_seqno *args = data;
1082 
1083 	return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno,
1084 					       &args->timeout_ns);
1085 }
1086 
1087 int
1088 vc4_wait_bo_ioctl(struct drm_device *dev, void *data,
1089 		  struct drm_file *file_priv)
1090 {
1091 	int ret;
1092 	struct drm_vc4_wait_bo *args = data;
1093 	struct drm_gem_object *gem_obj;
1094 	struct vc4_bo *bo;
1095 
1096 	if (args->pad != 0)
1097 		return -EINVAL;
1098 
1099 	gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1100 	if (!gem_obj) {
1101 		DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1102 		return -EINVAL;
1103 	}
1104 	bo = to_vc4_bo(gem_obj);
1105 
1106 	ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno,
1107 					      &args->timeout_ns);
1108 
1109 	drm_gem_object_put_unlocked(gem_obj);
1110 	return ret;
1111 }
1112 
1113 /**
1114  * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4.
1115  * @dev: DRM device
1116  * @data: ioctl argument
1117  * @file_priv: DRM file for this fd
1118  *
1119  * This is the main entrypoint for userspace to submit a 3D frame to
1120  * the GPU.  Userspace provides the binner command list (if
1121  * applicable), and the kernel sets up the render command list to draw
1122  * to the framebuffer described in the ioctl, using the command lists
1123  * that the 3D engine's binner will produce.
1124  */
1125 int
1126 vc4_submit_cl_ioctl(struct drm_device *dev, void *data,
1127 		    struct drm_file *file_priv)
1128 {
1129 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1130 	struct vc4_file *vc4file = file_priv->driver_priv;
1131 	struct drm_vc4_submit_cl *args = data;
1132 	struct drm_syncobj *out_sync = NULL;
1133 	struct vc4_exec_info *exec;
1134 	struct ww_acquire_ctx acquire_ctx;
1135 	struct dma_fence *in_fence;
1136 	int ret = 0;
1137 
1138 	if (!vc4->v3d) {
1139 		DRM_DEBUG("VC4_SUBMIT_CL with no VC4 V3D probed\n");
1140 		return -ENODEV;
1141 	}
1142 
1143 	if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR |
1144 			     VC4_SUBMIT_CL_FIXED_RCL_ORDER |
1145 			     VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X |
1146 			     VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) {
1147 		DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags);
1148 		return -EINVAL;
1149 	}
1150 
1151 	if (args->pad2 != 0) {
1152 		DRM_DEBUG("Invalid pad: 0x%08x\n", args->pad2);
1153 		return -EINVAL;
1154 	}
1155 
1156 	exec = kcalloc(1, sizeof(*exec), GFP_KERNEL);
1157 	if (!exec) {
1158 		DRM_ERROR("malloc failure on exec struct\n");
1159 		return -ENOMEM;
1160 	}
1161 
1162 	ret = vc4_v3d_pm_get(vc4);
1163 	if (ret) {
1164 		kfree(exec);
1165 		return ret;
1166 	}
1167 
1168 	exec->args = args;
1169 	INIT_LIST_HEAD(&exec->unref_list);
1170 
1171 	ret = vc4_cl_lookup_bos(dev, file_priv, exec);
1172 	if (ret)
1173 		goto fail;
1174 
1175 	if (args->perfmonid) {
1176 		exec->perfmon = vc4_perfmon_find(vc4file,
1177 						 args->perfmonid);
1178 		if (!exec->perfmon) {
1179 			ret = -ENOENT;
1180 			goto fail;
1181 		}
1182 	}
1183 
1184 	if (args->in_sync) {
1185 		ret = drm_syncobj_find_fence(file_priv, args->in_sync,
1186 					     0, 0, &in_fence);
1187 		if (ret)
1188 			goto fail;
1189 
1190 		/* When the fence (or fence array) is exclusively from our
1191 		 * context we can skip the wait since jobs are executed in
1192 		 * order of their submission through this ioctl and this can
1193 		 * only have fences from a prior job.
1194 		 */
1195 		if (!dma_fence_match_context(in_fence,
1196 					     vc4->dma_fence_context)) {
1197 			ret = dma_fence_wait(in_fence, true);
1198 			if (ret) {
1199 				dma_fence_put(in_fence);
1200 				goto fail;
1201 			}
1202 		}
1203 
1204 		dma_fence_put(in_fence);
1205 	}
1206 
1207 	if (exec->args->bin_cl_size != 0) {
1208 		ret = vc4_get_bcl(dev, exec);
1209 		if (ret)
1210 			goto fail;
1211 	} else {
1212 		exec->ct0ca = 0;
1213 		exec->ct0ea = 0;
1214 	}
1215 
1216 	ret = vc4_get_rcl(dev, exec);
1217 	if (ret)
1218 		goto fail;
1219 
1220 	ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx);
1221 	if (ret)
1222 		goto fail;
1223 
1224 	if (args->out_sync) {
1225 		out_sync = drm_syncobj_find(file_priv, args->out_sync);
1226 		if (!out_sync) {
1227 			ret = -EINVAL;
1228 			goto fail;
1229 		}
1230 
1231 		/* We replace the fence in out_sync in vc4_queue_submit since
1232 		 * the render job could execute immediately after that call.
1233 		 * If it finishes before our ioctl processing resumes the
1234 		 * render job fence could already have been freed.
1235 		 */
1236 	}
1237 
1238 	/* Clear this out of the struct we'll be putting in the queue,
1239 	 * since it's part of our stack.
1240 	 */
1241 	exec->args = NULL;
1242 
1243 	ret = vc4_queue_submit(dev, exec, &acquire_ctx, out_sync);
1244 
1245 	/* The syncobj isn't part of the exec data and we need to free our
1246 	 * reference even if job submission failed.
1247 	 */
1248 	if (out_sync)
1249 		drm_syncobj_put(out_sync);
1250 
1251 	if (ret)
1252 		goto fail;
1253 
1254 	/* Return the seqno for our job. */
1255 	args->seqno = vc4->emit_seqno;
1256 
1257 	return 0;
1258 
1259 fail:
1260 	vc4_complete_exec(vc4->dev, exec);
1261 
1262 	return ret;
1263 }
1264 
1265 void
1266 vc4_gem_init(struct drm_device *dev)
1267 {
1268 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1269 
1270 	vc4->dma_fence_context = dma_fence_context_alloc(1);
1271 
1272 	INIT_LIST_HEAD(&vc4->bin_job_list);
1273 	INIT_LIST_HEAD(&vc4->render_job_list);
1274 	INIT_LIST_HEAD(&vc4->job_done_list);
1275 	INIT_LIST_HEAD(&vc4->seqno_cb_list);
1276 	spin_lock_init(&vc4->job_lock);
1277 
1278 	INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work);
1279 	timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0);
1280 
1281 	INIT_WORK(&vc4->job_done_work, vc4_job_done_work);
1282 
1283 	mutex_init(&vc4->power_lock);
1284 
1285 	INIT_LIST_HEAD(&vc4->purgeable.list);
1286 	mutex_init(&vc4->purgeable.lock);
1287 }
1288 
1289 void
1290 vc4_gem_destroy(struct drm_device *dev)
1291 {
1292 	struct vc4_dev *vc4 = to_vc4_dev(dev);
1293 
1294 	/* Waiting for exec to finish would need to be done before
1295 	 * unregistering V3D.
1296 	 */
1297 	WARN_ON(vc4->emit_seqno != vc4->finished_seqno);
1298 
1299 	/* V3D should already have disabled its interrupt and cleared
1300 	 * the overflow allocation registers.  Now free the object.
1301 	 */
1302 	if (vc4->bin_bo) {
1303 		drm_gem_object_put_unlocked(&vc4->bin_bo->base.base);
1304 		vc4->bin_bo = NULL;
1305 	}
1306 
1307 	if (vc4->hang_state)
1308 		vc4_free_hang_state(dev, vc4->hang_state);
1309 }
1310 
1311 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data,
1312 			  struct drm_file *file_priv)
1313 {
1314 	struct drm_vc4_gem_madvise *args = data;
1315 	struct drm_gem_object *gem_obj;
1316 	struct vc4_bo *bo;
1317 	int ret;
1318 
1319 	switch (args->madv) {
1320 	case VC4_MADV_DONTNEED:
1321 	case VC4_MADV_WILLNEED:
1322 		break;
1323 	default:
1324 		return -EINVAL;
1325 	}
1326 
1327 	if (args->pad != 0)
1328 		return -EINVAL;
1329 
1330 	gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1331 	if (!gem_obj) {
1332 		DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1333 		return -ENOENT;
1334 	}
1335 
1336 	bo = to_vc4_bo(gem_obj);
1337 
1338 	/* Only BOs exposed to userspace can be purged. */
1339 	if (bo->madv == __VC4_MADV_NOTSUPP) {
1340 		DRM_DEBUG("madvise not supported on this BO\n");
1341 		ret = -EINVAL;
1342 		goto out_put_gem;
1343 	}
1344 
1345 	/* Not sure it's safe to purge imported BOs. Let's just assume it's
1346 	 * not until proven otherwise.
1347 	 */
1348 	if (gem_obj->import_attach) {
1349 		DRM_DEBUG("madvise not supported on imported BOs\n");
1350 		ret = -EINVAL;
1351 		goto out_put_gem;
1352 	}
1353 
1354 	mutex_lock(&bo->madv_lock);
1355 
1356 	if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED &&
1357 	    !refcount_read(&bo->usecnt)) {
1358 		/* If the BO is about to be marked as purgeable, is not used
1359 		 * and is not already purgeable or purged, add it to the
1360 		 * purgeable list.
1361 		 */
1362 		vc4_bo_add_to_purgeable_pool(bo);
1363 	} else if (args->madv == VC4_MADV_WILLNEED &&
1364 		   bo->madv == VC4_MADV_DONTNEED &&
1365 		   !refcount_read(&bo->usecnt)) {
1366 		/* The BO has not been purged yet, just remove it from
1367 		 * the purgeable list.
1368 		 */
1369 		vc4_bo_remove_from_purgeable_pool(bo);
1370 	}
1371 
1372 	/* Save the purged state. */
1373 	args->retained = bo->madv != __VC4_MADV_PURGED;
1374 
1375 	/* Update internal madv state only if the bo was not purged. */
1376 	if (bo->madv != __VC4_MADV_PURGED)
1377 		bo->madv = args->madv;
1378 
1379 	mutex_unlock(&bo->madv_lock);
1380 
1381 	ret = 0;
1382 
1383 out_put_gem:
1384 	drm_gem_object_put_unlocked(gem_obj);
1385 
1386 	return ret;
1387 }
1388