xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_dsi.c (revision fa538f7cf05aab61cd91e01c160d4a09c81b8ffe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 DSI0/DSI1 module
8  *
9  * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
10  * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
11  * controller.
12  *
13  * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
14  * while the compute module brings both DSI0 and DSI1 out.
15  *
16  * This driver has been tested for DSI1 video-mode display only
17  * currently, with most of the information necessary for DSI0
18  * hopefully present.
19  */
20 
21 #include <linux/clk-provider.h>
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/component.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dmaengine.h>
27 #include <linux/i2c.h>
28 #include <linux/io.h>
29 #include <linux/of_address.h>
30 #include <linux/of_platform.h>
31 #include <linux/pm_runtime.h>
32 
33 #include <drm/drm_atomic_helper.h>
34 #include <drm/drm_bridge.h>
35 #include <drm/drm_edid.h>
36 #include <drm/drm_mipi_dsi.h>
37 #include <drm/drm_of.h>
38 #include <drm/drm_panel.h>
39 #include <drm/drm_probe_helper.h>
40 #include <drm/drm_simple_kms_helper.h>
41 
42 #include "vc4_drv.h"
43 #include "vc4_regs.h"
44 
45 #define DSI_CMD_FIFO_DEPTH  16
46 #define DSI_PIX_FIFO_DEPTH 256
47 #define DSI_PIX_FIFO_WIDTH   4
48 
49 #define DSI0_CTRL		0x00
50 
51 /* Command packet control. */
52 #define DSI0_TXPKT1C		0x04 /* AKA PKTC */
53 #define DSI1_TXPKT1C		0x04
54 # define DSI_TXPKT1C_TRIG_CMD_MASK	VC4_MASK(31, 24)
55 # define DSI_TXPKT1C_TRIG_CMD_SHIFT	24
56 # define DSI_TXPKT1C_CMD_REPEAT_MASK	VC4_MASK(23, 10)
57 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT	10
58 
59 # define DSI_TXPKT1C_DISPLAY_NO_MASK	VC4_MASK(9, 8)
60 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT	8
61 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
62 # define DSI_TXPKT1C_DISPLAY_NO_SHORT		0
63 /* Primary display where cmdfifo provides part of the payload and
64  * pixelvalve the rest.
65  */
66 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY		1
67 /* Secondary display where cmdfifo provides part of the payload and
68  * pixfifo the rest.
69  */
70 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY	2
71 
72 # define DSI_TXPKT1C_CMD_TX_TIME_MASK	VC4_MASK(7, 6)
73 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT	6
74 
75 # define DSI_TXPKT1C_CMD_CTRL_MASK	VC4_MASK(5, 4)
76 # define DSI_TXPKT1C_CMD_CTRL_SHIFT	4
77 /* Command only.  Uses TXPKT1H and DISPLAY_NO */
78 # define DSI_TXPKT1C_CMD_CTRL_TX	0
79 /* Command with BTA for either ack or read data. */
80 # define DSI_TXPKT1C_CMD_CTRL_RX	1
81 /* Trigger according to TRIG_CMD */
82 # define DSI_TXPKT1C_CMD_CTRL_TRIG	2
83 /* BTA alone for getting error status after a command, or a TE trigger
84  * without a previous command.
85  */
86 # define DSI_TXPKT1C_CMD_CTRL_BTA	3
87 
88 # define DSI_TXPKT1C_CMD_MODE_LP	BIT(3)
89 # define DSI_TXPKT1C_CMD_TYPE_LONG	BIT(2)
90 # define DSI_TXPKT1C_CMD_TE_EN		BIT(1)
91 # define DSI_TXPKT1C_CMD_EN		BIT(0)
92 
93 /* Command packet header. */
94 #define DSI0_TXPKT1H		0x08 /* AKA PKTH */
95 #define DSI1_TXPKT1H		0x08
96 # define DSI_TXPKT1H_BC_CMDFIFO_MASK	VC4_MASK(31, 24)
97 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT	24
98 # define DSI_TXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
99 # define DSI_TXPKT1H_BC_PARAM_SHIFT	8
100 # define DSI_TXPKT1H_BC_DT_MASK		VC4_MASK(7, 0)
101 # define DSI_TXPKT1H_BC_DT_SHIFT	0
102 
103 #define DSI0_RXPKT1H		0x0c /* AKA RX1_PKTH */
104 #define DSI1_RXPKT1H		0x14
105 # define DSI_RXPKT1H_CRC_ERR		BIT(31)
106 # define DSI_RXPKT1H_DET_ERR		BIT(30)
107 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
108 # define DSI_RXPKT1H_COR_ERR		BIT(28)
109 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
110 # define DSI_RXPKT1H_PKT_TYPE_LONG	BIT(24)
111 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
112 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
113 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
114 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
115 # define DSI_RXPKT1H_SHORT_1_MASK	VC4_MASK(23, 16)
116 # define DSI_RXPKT1H_SHORT_1_SHIFT	16
117 # define DSI_RXPKT1H_SHORT_0_MASK	VC4_MASK(15, 8)
118 # define DSI_RXPKT1H_SHORT_0_SHIFT	8
119 # define DSI_RXPKT1H_DT_LP_CMD_MASK	VC4_MASK(7, 0)
120 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT	0
121 
122 #define DSI0_RXPKT2H		0x10 /* AKA RX2_PKTH */
123 #define DSI1_RXPKT2H		0x18
124 # define DSI_RXPKT1H_DET_ERR		BIT(30)
125 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
126 # define DSI_RXPKT1H_COR_ERR		BIT(28)
127 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
128 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
129 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
130 # define DSI_RXPKT1H_DT_MASK		VC4_MASK(7, 0)
131 # define DSI_RXPKT1H_DT_SHIFT		0
132 
133 #define DSI0_TXPKT_CMD_FIFO	0x14 /* AKA CMD_DATAF */
134 #define DSI1_TXPKT_CMD_FIFO	0x1c
135 
136 #define DSI0_DISP0_CTRL		0x18
137 # define DSI_DISP0_PIX_CLK_DIV_MASK	VC4_MASK(21, 13)
138 # define DSI_DISP0_PIX_CLK_DIV_SHIFT	13
139 # define DSI_DISP0_LP_STOP_CTRL_MASK	VC4_MASK(12, 11)
140 # define DSI_DISP0_LP_STOP_CTRL_SHIFT	11
141 # define DSI_DISP0_LP_STOP_DISABLE	0
142 # define DSI_DISP0_LP_STOP_PERLINE	1
143 # define DSI_DISP0_LP_STOP_PERFRAME	2
144 
145 /* Transmit RGB pixels and null packets only during HACTIVE, instead
146  * of going to LP-STOP.
147  */
148 # define DSI_DISP_HACTIVE_NULL		BIT(10)
149 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
150 # define DSI_DISP_VBLP_CTRL		BIT(9)
151 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
152 # define DSI_DISP_HFP_CTRL		BIT(8)
153 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
154 # define DSI_DISP_HBP_CTRL		BIT(7)
155 # define DSI_DISP0_CHANNEL_MASK		VC4_MASK(6, 5)
156 # define DSI_DISP0_CHANNEL_SHIFT	5
157 /* Enables end events for HSYNC/VSYNC, not just start events. */
158 # define DSI_DISP0_ST_END		BIT(4)
159 # define DSI_DISP0_PFORMAT_MASK		VC4_MASK(3, 2)
160 # define DSI_DISP0_PFORMAT_SHIFT	2
161 # define DSI_PFORMAT_RGB565		0
162 # define DSI_PFORMAT_RGB666_PACKED	1
163 # define DSI_PFORMAT_RGB666		2
164 # define DSI_PFORMAT_RGB888		3
165 /* Default is VIDEO mode. */
166 # define DSI_DISP0_COMMAND_MODE		BIT(1)
167 # define DSI_DISP0_ENABLE		BIT(0)
168 
169 #define DSI0_DISP1_CTRL		0x1c
170 #define DSI1_DISP1_CTRL		0x2c
171 /* Format of the data written to TXPKT_PIX_FIFO. */
172 # define DSI_DISP1_PFORMAT_MASK		VC4_MASK(2, 1)
173 # define DSI_DISP1_PFORMAT_SHIFT	1
174 # define DSI_DISP1_PFORMAT_16BIT	0
175 # define DSI_DISP1_PFORMAT_24BIT	1
176 # define DSI_DISP1_PFORMAT_32BIT_LE	2
177 # define DSI_DISP1_PFORMAT_32BIT_BE	3
178 
179 /* DISP1 is always command mode. */
180 # define DSI_DISP1_ENABLE		BIT(0)
181 
182 #define DSI0_TXPKT_PIX_FIFO		0x20 /* AKA PIX_FIFO */
183 
184 #define DSI0_INT_STAT		0x24
185 #define DSI0_INT_EN		0x28
186 # define DSI1_INT_PHY_D3_ULPS		BIT(30)
187 # define DSI1_INT_PHY_D3_STOP		BIT(29)
188 # define DSI1_INT_PHY_D2_ULPS		BIT(28)
189 # define DSI1_INT_PHY_D2_STOP		BIT(27)
190 # define DSI1_INT_PHY_D1_ULPS		BIT(26)
191 # define DSI1_INT_PHY_D1_STOP		BIT(25)
192 # define DSI1_INT_PHY_D0_ULPS		BIT(24)
193 # define DSI1_INT_PHY_D0_STOP		BIT(23)
194 # define DSI1_INT_FIFO_ERR		BIT(22)
195 # define DSI1_INT_PHY_DIR_RTF		BIT(21)
196 # define DSI1_INT_PHY_RXLPDT		BIT(20)
197 # define DSI1_INT_PHY_RXTRIG		BIT(19)
198 # define DSI1_INT_PHY_D0_LPDT		BIT(18)
199 # define DSI1_INT_PHY_DIR_FTR		BIT(17)
200 
201 /* Signaled when the clock lane enters the given state. */
202 # define DSI1_INT_PHY_CLOCK_ULPS	BIT(16)
203 # define DSI1_INT_PHY_CLOCK_HS		BIT(15)
204 # define DSI1_INT_PHY_CLOCK_STOP	BIT(14)
205 
206 /* Signaled on timeouts */
207 # define DSI1_INT_PR_TO			BIT(13)
208 # define DSI1_INT_TA_TO			BIT(12)
209 # define DSI1_INT_LPRX_TO		BIT(11)
210 # define DSI1_INT_HSTX_TO		BIT(10)
211 
212 /* Contention on a line when trying to drive the line low */
213 # define DSI1_INT_ERR_CONT_LP1		BIT(9)
214 # define DSI1_INT_ERR_CONT_LP0		BIT(8)
215 
216 /* Control error: incorrect line state sequence on data lane 0. */
217 # define DSI1_INT_ERR_CONTROL		BIT(7)
218 /* LPDT synchronization error (bits received not a multiple of 8. */
219 
220 # define DSI1_INT_ERR_SYNC_ESC		BIT(6)
221 /* Signaled after receiving an error packet from the display in
222  * response to a read.
223  */
224 # define DSI1_INT_RXPKT2		BIT(5)
225 /* Signaled after receiving a packet.  The header and optional short
226  * response will be in RXPKT1H, and a long response will be in the
227  * RXPKT_FIFO.
228  */
229 # define DSI1_INT_RXPKT1		BIT(4)
230 # define DSI1_INT_TXPKT2_DONE		BIT(3)
231 # define DSI1_INT_TXPKT2_END		BIT(2)
232 /* Signaled after all repeats of TXPKT1 are transferred. */
233 # define DSI1_INT_TXPKT1_DONE		BIT(1)
234 /* Signaled after each TXPKT1 repeat is scheduled. */
235 # define DSI1_INT_TXPKT1_END		BIT(0)
236 
237 #define DSI1_INTERRUPTS_ALWAYS_ENABLED	(DSI1_INT_ERR_SYNC_ESC | \
238 					 DSI1_INT_ERR_CONTROL |	 \
239 					 DSI1_INT_ERR_CONT_LP0 | \
240 					 DSI1_INT_ERR_CONT_LP1 | \
241 					 DSI1_INT_HSTX_TO |	 \
242 					 DSI1_INT_LPRX_TO |	 \
243 					 DSI1_INT_TA_TO |	 \
244 					 DSI1_INT_PR_TO)
245 
246 #define DSI0_STAT		0x2c
247 #define DSI0_HSTX_TO_CNT	0x30
248 #define DSI0_LPRX_TO_CNT	0x34
249 #define DSI0_TA_TO_CNT		0x38
250 #define DSI0_PR_TO_CNT		0x3c
251 #define DSI0_PHYC		0x40
252 # define DSI1_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(25, 20)
253 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT	20
254 # define DSI1_PHYC_HS_CLK_CONTINUOUS	BIT(18)
255 # define DSI0_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(17, 12)
256 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT	12
257 # define DSI1_PHYC_CLANE_ULPS		BIT(17)
258 # define DSI1_PHYC_CLANE_ENABLE		BIT(16)
259 # define DSI_PHYC_DLANE3_ULPS		BIT(13)
260 # define DSI_PHYC_DLANE3_ENABLE		BIT(12)
261 # define DSI0_PHYC_HS_CLK_CONTINUOUS	BIT(10)
262 # define DSI0_PHYC_CLANE_ULPS		BIT(9)
263 # define DSI_PHYC_DLANE2_ULPS		BIT(9)
264 # define DSI0_PHYC_CLANE_ENABLE		BIT(8)
265 # define DSI_PHYC_DLANE2_ENABLE		BIT(8)
266 # define DSI_PHYC_DLANE1_ULPS		BIT(5)
267 # define DSI_PHYC_DLANE1_ENABLE		BIT(4)
268 # define DSI_PHYC_DLANE0_FORCE_STOP	BIT(2)
269 # define DSI_PHYC_DLANE0_ULPS		BIT(1)
270 # define DSI_PHYC_DLANE0_ENABLE		BIT(0)
271 
272 #define DSI0_HS_CLT0		0x44
273 #define DSI0_HS_CLT1		0x48
274 #define DSI0_HS_CLT2		0x4c
275 #define DSI0_HS_DLT3		0x50
276 #define DSI0_HS_DLT4		0x54
277 #define DSI0_HS_DLT5		0x58
278 #define DSI0_HS_DLT6		0x5c
279 #define DSI0_HS_DLT7		0x60
280 
281 #define DSI0_PHY_AFEC0		0x64
282 # define DSI0_PHY_AFEC0_DDR2CLK_EN		BIT(26)
283 # define DSI0_PHY_AFEC0_DDRCLK_EN		BIT(25)
284 # define DSI0_PHY_AFEC0_LATCH_ULPS		BIT(24)
285 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK		VC4_MASK(31, 29)
286 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT	29
287 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK		VC4_MASK(28, 26)
288 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT	26
289 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK		VC4_MASK(27, 23)
290 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT	23
291 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK		VC4_MASK(22, 20)
292 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT	20
293 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK		VC4_MASK(19, 17)
294 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT		17
295 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK	VC4_MASK(23, 20)
296 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT	20
297 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK	VC4_MASK(19, 16)
298 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT	16
299 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK	VC4_MASK(15, 12)
300 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT	12
301 # define DSI1_PHY_AFEC0_DDR2CLK_EN		BIT(16)
302 # define DSI1_PHY_AFEC0_DDRCLK_EN		BIT(15)
303 # define DSI1_PHY_AFEC0_LATCH_ULPS		BIT(14)
304 # define DSI1_PHY_AFEC0_RESET			BIT(13)
305 # define DSI1_PHY_AFEC0_PD			BIT(12)
306 # define DSI0_PHY_AFEC0_RESET			BIT(11)
307 # define DSI1_PHY_AFEC0_PD_BG			BIT(11)
308 # define DSI0_PHY_AFEC0_PD			BIT(10)
309 # define DSI1_PHY_AFEC0_PD_DLANE3		BIT(10)
310 # define DSI0_PHY_AFEC0_PD_BG			BIT(9)
311 # define DSI1_PHY_AFEC0_PD_DLANE2		BIT(9)
312 # define DSI0_PHY_AFEC0_PD_DLANE1		BIT(8)
313 # define DSI1_PHY_AFEC0_PD_DLANE1		BIT(8)
314 # define DSI_PHY_AFEC0_PTATADJ_MASK		VC4_MASK(7, 4)
315 # define DSI_PHY_AFEC0_PTATADJ_SHIFT		4
316 # define DSI_PHY_AFEC0_CTATADJ_MASK		VC4_MASK(3, 0)
317 # define DSI_PHY_AFEC0_CTATADJ_SHIFT		0
318 
319 #define DSI0_PHY_AFEC1		0x68
320 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK		VC4_MASK(10, 8)
321 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT	8
322 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK		VC4_MASK(6, 4)
323 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT	4
324 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK		VC4_MASK(2, 0)
325 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT		0
326 
327 #define DSI0_TST_SEL		0x6c
328 #define DSI0_TST_MON		0x70
329 #define DSI0_ID			0x74
330 # define DSI_ID_VALUE		0x00647369
331 
332 #define DSI1_CTRL		0x00
333 # define DSI_CTRL_HS_CLKC_MASK		VC4_MASK(15, 14)
334 # define DSI_CTRL_HS_CLKC_SHIFT		14
335 # define DSI_CTRL_HS_CLKC_BYTE		0
336 # define DSI_CTRL_HS_CLKC_DDR2		1
337 # define DSI_CTRL_HS_CLKC_DDR		2
338 
339 # define DSI_CTRL_RX_LPDT_EOT_DISABLE	BIT(13)
340 # define DSI_CTRL_LPDT_EOT_DISABLE	BIT(12)
341 # define DSI_CTRL_HSDT_EOT_DISABLE	BIT(11)
342 # define DSI_CTRL_SOFT_RESET_CFG	BIT(10)
343 # define DSI_CTRL_CAL_BYTE		BIT(9)
344 # define DSI_CTRL_INV_BYTE		BIT(8)
345 # define DSI_CTRL_CLR_LDF		BIT(7)
346 # define DSI0_CTRL_CLR_PBCF		BIT(6)
347 # define DSI1_CTRL_CLR_RXF		BIT(6)
348 # define DSI0_CTRL_CLR_CPBCF		BIT(5)
349 # define DSI1_CTRL_CLR_PDF		BIT(5)
350 # define DSI0_CTRL_CLR_PDF		BIT(4)
351 # define DSI1_CTRL_CLR_CDF		BIT(4)
352 # define DSI0_CTRL_CLR_CDF		BIT(3)
353 # define DSI0_CTRL_CTRL2		BIT(2)
354 # define DSI1_CTRL_DISABLE_DISP_CRCC	BIT(2)
355 # define DSI0_CTRL_CTRL1		BIT(1)
356 # define DSI1_CTRL_DISABLE_DISP_ECCC	BIT(1)
357 # define DSI0_CTRL_CTRL0		BIT(0)
358 # define DSI1_CTRL_EN			BIT(0)
359 # define DSI0_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
360 					 DSI0_CTRL_CLR_PBCF | \
361 					 DSI0_CTRL_CLR_CPBCF |	\
362 					 DSI0_CTRL_CLR_PDF | \
363 					 DSI0_CTRL_CLR_CDF)
364 # define DSI1_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
365 					 DSI1_CTRL_CLR_RXF | \
366 					 DSI1_CTRL_CLR_PDF | \
367 					 DSI1_CTRL_CLR_CDF)
368 
369 #define DSI1_TXPKT2C		0x0c
370 #define DSI1_TXPKT2H		0x10
371 #define DSI1_TXPKT_PIX_FIFO	0x20
372 #define DSI1_RXPKT_FIFO		0x24
373 #define DSI1_DISP0_CTRL		0x28
374 #define DSI1_INT_STAT		0x30
375 #define DSI1_INT_EN		0x34
376 /* State reporting bits.  These mostly behave like INT_STAT, where
377  * writing a 1 clears the bit.
378  */
379 #define DSI1_STAT		0x38
380 # define DSI1_STAT_PHY_D3_ULPS		BIT(31)
381 # define DSI1_STAT_PHY_D3_STOP		BIT(30)
382 # define DSI1_STAT_PHY_D2_ULPS		BIT(29)
383 # define DSI1_STAT_PHY_D2_STOP		BIT(28)
384 # define DSI1_STAT_PHY_D1_ULPS		BIT(27)
385 # define DSI1_STAT_PHY_D1_STOP		BIT(26)
386 # define DSI1_STAT_PHY_D0_ULPS		BIT(25)
387 # define DSI1_STAT_PHY_D0_STOP		BIT(24)
388 # define DSI1_STAT_FIFO_ERR		BIT(23)
389 # define DSI1_STAT_PHY_RXLPDT		BIT(22)
390 # define DSI1_STAT_PHY_RXTRIG		BIT(21)
391 # define DSI1_STAT_PHY_D0_LPDT		BIT(20)
392 /* Set when in forward direction */
393 # define DSI1_STAT_PHY_DIR		BIT(19)
394 # define DSI1_STAT_PHY_CLOCK_ULPS	BIT(18)
395 # define DSI1_STAT_PHY_CLOCK_HS		BIT(17)
396 # define DSI1_STAT_PHY_CLOCK_STOP	BIT(16)
397 # define DSI1_STAT_PR_TO		BIT(15)
398 # define DSI1_STAT_TA_TO		BIT(14)
399 # define DSI1_STAT_LPRX_TO		BIT(13)
400 # define DSI1_STAT_HSTX_TO		BIT(12)
401 # define DSI1_STAT_ERR_CONT_LP1		BIT(11)
402 # define DSI1_STAT_ERR_CONT_LP0		BIT(10)
403 # define DSI1_STAT_ERR_CONTROL		BIT(9)
404 # define DSI1_STAT_ERR_SYNC_ESC		BIT(8)
405 # define DSI1_STAT_RXPKT2		BIT(7)
406 # define DSI1_STAT_RXPKT1		BIT(6)
407 # define DSI1_STAT_TXPKT2_BUSY		BIT(5)
408 # define DSI1_STAT_TXPKT2_DONE		BIT(4)
409 # define DSI1_STAT_TXPKT2_END		BIT(3)
410 # define DSI1_STAT_TXPKT1_BUSY		BIT(2)
411 # define DSI1_STAT_TXPKT1_DONE		BIT(1)
412 # define DSI1_STAT_TXPKT1_END		BIT(0)
413 
414 #define DSI1_HSTX_TO_CNT	0x3c
415 #define DSI1_LPRX_TO_CNT	0x40
416 #define DSI1_TA_TO_CNT		0x44
417 #define DSI1_PR_TO_CNT		0x48
418 #define DSI1_PHYC		0x4c
419 
420 #define DSI1_HS_CLT0		0x50
421 # define DSI_HS_CLT0_CZERO_MASK		VC4_MASK(26, 18)
422 # define DSI_HS_CLT0_CZERO_SHIFT	18
423 # define DSI_HS_CLT0_CPRE_MASK		VC4_MASK(17, 9)
424 # define DSI_HS_CLT0_CPRE_SHIFT		9
425 # define DSI_HS_CLT0_CPREP_MASK		VC4_MASK(8, 0)
426 # define DSI_HS_CLT0_CPREP_SHIFT	0
427 
428 #define DSI1_HS_CLT1		0x54
429 # define DSI_HS_CLT1_CTRAIL_MASK	VC4_MASK(17, 9)
430 # define DSI_HS_CLT1_CTRAIL_SHIFT	9
431 # define DSI_HS_CLT1_CPOST_MASK		VC4_MASK(8, 0)
432 # define DSI_HS_CLT1_CPOST_SHIFT	0
433 
434 #define DSI1_HS_CLT2		0x58
435 # define DSI_HS_CLT2_WUP_MASK		VC4_MASK(23, 0)
436 # define DSI_HS_CLT2_WUP_SHIFT		0
437 
438 #define DSI1_HS_DLT3		0x5c
439 # define DSI_HS_DLT3_EXIT_MASK		VC4_MASK(26, 18)
440 # define DSI_HS_DLT3_EXIT_SHIFT		18
441 # define DSI_HS_DLT3_ZERO_MASK		VC4_MASK(17, 9)
442 # define DSI_HS_DLT3_ZERO_SHIFT		9
443 # define DSI_HS_DLT3_PRE_MASK		VC4_MASK(8, 0)
444 # define DSI_HS_DLT3_PRE_SHIFT		0
445 
446 #define DSI1_HS_DLT4		0x60
447 # define DSI_HS_DLT4_ANLAT_MASK		VC4_MASK(22, 18)
448 # define DSI_HS_DLT4_ANLAT_SHIFT	18
449 # define DSI_HS_DLT4_TRAIL_MASK		VC4_MASK(17, 9)
450 # define DSI_HS_DLT4_TRAIL_SHIFT	9
451 # define DSI_HS_DLT4_LPX_MASK		VC4_MASK(8, 0)
452 # define DSI_HS_DLT4_LPX_SHIFT		0
453 
454 #define DSI1_HS_DLT5		0x64
455 # define DSI_HS_DLT5_INIT_MASK		VC4_MASK(23, 0)
456 # define DSI_HS_DLT5_INIT_SHIFT		0
457 
458 #define DSI1_HS_DLT6		0x68
459 # define DSI_HS_DLT6_TA_GET_MASK	VC4_MASK(31, 24)
460 # define DSI_HS_DLT6_TA_GET_SHIFT	24
461 # define DSI_HS_DLT6_TA_SURE_MASK	VC4_MASK(23, 16)
462 # define DSI_HS_DLT6_TA_SURE_SHIFT	16
463 # define DSI_HS_DLT6_TA_GO_MASK		VC4_MASK(15, 8)
464 # define DSI_HS_DLT6_TA_GO_SHIFT	8
465 # define DSI_HS_DLT6_LP_LPX_MASK	VC4_MASK(7, 0)
466 # define DSI_HS_DLT6_LP_LPX_SHIFT	0
467 
468 #define DSI1_HS_DLT7		0x6c
469 # define DSI_HS_DLT7_LP_WUP_MASK	VC4_MASK(23, 0)
470 # define DSI_HS_DLT7_LP_WUP_SHIFT	0
471 
472 #define DSI1_PHY_AFEC0		0x70
473 
474 #define DSI1_PHY_AFEC1		0x74
475 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK	VC4_MASK(19, 16)
476 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT	16
477 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK	VC4_MASK(15, 12)
478 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT	12
479 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK	VC4_MASK(11, 8)
480 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT	8
481 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK	VC4_MASK(7, 4)
482 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT	4
483 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK	VC4_MASK(3, 0)
484 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT	0
485 
486 #define DSI1_TST_SEL		0x78
487 #define DSI1_TST_MON		0x7c
488 #define DSI1_PHY_TST1		0x80
489 #define DSI1_PHY_TST2		0x84
490 #define DSI1_PHY_FIFO_STAT	0x88
491 /* Actually, all registers in the range that aren't otherwise claimed
492  * will return the ID.
493  */
494 #define DSI1_ID			0x8c
495 
496 /* General DSI hardware state. */
497 struct vc4_dsi {
498 	struct platform_device *pdev;
499 
500 	struct mipi_dsi_host dsi_host;
501 	struct drm_encoder *encoder;
502 	struct drm_bridge *bridge;
503 	struct list_head bridge_chain;
504 
505 	void __iomem *regs;
506 
507 	struct dma_chan *reg_dma_chan;
508 	dma_addr_t reg_dma_paddr;
509 	u32 *reg_dma_mem;
510 	dma_addr_t reg_paddr;
511 
512 	/* Whether we're on bcm2835's DSI0 or DSI1. */
513 	int port;
514 
515 	/* DSI channel for the panel we're connected to. */
516 	u32 channel;
517 	u32 lanes;
518 	u32 format;
519 	u32 divider;
520 	u32 mode_flags;
521 
522 	/* Input clock from CPRMAN to the digital PHY, for the DSI
523 	 * escape clock.
524 	 */
525 	struct clk *escape_clock;
526 
527 	/* Input clock to the analog PHY, used to generate the DSI bit
528 	 * clock.
529 	 */
530 	struct clk *pll_phy_clock;
531 
532 	/* HS Clocks generated within the DSI analog PHY. */
533 	struct clk_fixed_factor phy_clocks[3];
534 
535 	struct clk_hw_onecell_data *clk_onecell;
536 
537 	/* Pixel clock output to the pixelvalve, generated from the HS
538 	 * clock.
539 	 */
540 	struct clk *pixel_clock;
541 
542 	struct completion xfer_completion;
543 	int xfer_result;
544 
545 	struct debugfs_regset32 regset;
546 };
547 
548 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
549 
550 static inline void
551 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
552 {
553 	struct dma_chan *chan = dsi->reg_dma_chan;
554 	struct dma_async_tx_descriptor *tx;
555 	dma_cookie_t cookie;
556 	int ret;
557 
558 	/* DSI0 should be able to write normally. */
559 	if (!chan) {
560 		writel(val, dsi->regs + offset);
561 		return;
562 	}
563 
564 	*dsi->reg_dma_mem = val;
565 
566 	tx = chan->device->device_prep_dma_memcpy(chan,
567 						  dsi->reg_paddr + offset,
568 						  dsi->reg_dma_paddr,
569 						  4, 0);
570 	if (!tx) {
571 		DRM_ERROR("Failed to set up DMA register write\n");
572 		return;
573 	}
574 
575 	cookie = tx->tx_submit(tx);
576 	ret = dma_submit_error(cookie);
577 	if (ret) {
578 		DRM_ERROR("Failed to submit DMA: %d\n", ret);
579 		return;
580 	}
581 	ret = dma_sync_wait(chan, cookie);
582 	if (ret)
583 		DRM_ERROR("Failed to wait for DMA: %d\n", ret);
584 }
585 
586 #define DSI_READ(offset) readl(dsi->regs + (offset))
587 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
588 #define DSI_PORT_READ(offset) \
589 	DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
590 #define DSI_PORT_WRITE(offset, val) \
591 	DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
592 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
593 
594 /* VC4 DSI encoder KMS struct */
595 struct vc4_dsi_encoder {
596 	struct vc4_encoder base;
597 	struct vc4_dsi *dsi;
598 };
599 
600 static inline struct vc4_dsi_encoder *
601 to_vc4_dsi_encoder(struct drm_encoder *encoder)
602 {
603 	return container_of(encoder, struct vc4_dsi_encoder, base.base);
604 }
605 
606 static const struct debugfs_reg32 dsi0_regs[] = {
607 	VC4_REG32(DSI0_CTRL),
608 	VC4_REG32(DSI0_STAT),
609 	VC4_REG32(DSI0_HSTX_TO_CNT),
610 	VC4_REG32(DSI0_LPRX_TO_CNT),
611 	VC4_REG32(DSI0_TA_TO_CNT),
612 	VC4_REG32(DSI0_PR_TO_CNT),
613 	VC4_REG32(DSI0_DISP0_CTRL),
614 	VC4_REG32(DSI0_DISP1_CTRL),
615 	VC4_REG32(DSI0_INT_STAT),
616 	VC4_REG32(DSI0_INT_EN),
617 	VC4_REG32(DSI0_PHYC),
618 	VC4_REG32(DSI0_HS_CLT0),
619 	VC4_REG32(DSI0_HS_CLT1),
620 	VC4_REG32(DSI0_HS_CLT2),
621 	VC4_REG32(DSI0_HS_DLT3),
622 	VC4_REG32(DSI0_HS_DLT4),
623 	VC4_REG32(DSI0_HS_DLT5),
624 	VC4_REG32(DSI0_HS_DLT6),
625 	VC4_REG32(DSI0_HS_DLT7),
626 	VC4_REG32(DSI0_PHY_AFEC0),
627 	VC4_REG32(DSI0_PHY_AFEC1),
628 	VC4_REG32(DSI0_ID),
629 };
630 
631 static const struct debugfs_reg32 dsi1_regs[] = {
632 	VC4_REG32(DSI1_CTRL),
633 	VC4_REG32(DSI1_STAT),
634 	VC4_REG32(DSI1_HSTX_TO_CNT),
635 	VC4_REG32(DSI1_LPRX_TO_CNT),
636 	VC4_REG32(DSI1_TA_TO_CNT),
637 	VC4_REG32(DSI1_PR_TO_CNT),
638 	VC4_REG32(DSI1_DISP0_CTRL),
639 	VC4_REG32(DSI1_DISP1_CTRL),
640 	VC4_REG32(DSI1_INT_STAT),
641 	VC4_REG32(DSI1_INT_EN),
642 	VC4_REG32(DSI1_PHYC),
643 	VC4_REG32(DSI1_HS_CLT0),
644 	VC4_REG32(DSI1_HS_CLT1),
645 	VC4_REG32(DSI1_HS_CLT2),
646 	VC4_REG32(DSI1_HS_DLT3),
647 	VC4_REG32(DSI1_HS_DLT4),
648 	VC4_REG32(DSI1_HS_DLT5),
649 	VC4_REG32(DSI1_HS_DLT6),
650 	VC4_REG32(DSI1_HS_DLT7),
651 	VC4_REG32(DSI1_PHY_AFEC0),
652 	VC4_REG32(DSI1_PHY_AFEC1),
653 	VC4_REG32(DSI1_ID),
654 };
655 
656 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
657 {
658 	u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
659 
660 	if (latch)
661 		afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
662 	else
663 		afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
664 
665 	DSI_PORT_WRITE(PHY_AFEC0, afec0);
666 }
667 
668 /* Enters or exits Ultra Low Power State. */
669 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
670 {
671 	bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
672 	u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
673 			 DSI_PHYC_DLANE0_ULPS |
674 			 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
675 			 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
676 			 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
677 	u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
678 			 DSI1_STAT_PHY_D0_ULPS |
679 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
680 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
681 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
682 	u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
683 			 DSI1_STAT_PHY_D0_STOP |
684 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
685 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
686 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
687 	int ret;
688 	bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
689 				       DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
690 
691 	if (ulps == ulps_currently_enabled)
692 		return;
693 
694 	DSI_PORT_WRITE(STAT, stat_ulps);
695 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
696 	ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
697 	if (ret) {
698 		dev_warn(&dsi->pdev->dev,
699 			 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
700 			 DSI_PORT_READ(STAT));
701 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
702 		vc4_dsi_latch_ulps(dsi, false);
703 		return;
704 	}
705 
706 	/* The DSI module can't be disabled while the module is
707 	 * generating ULPS state.  So, to be able to disable the
708 	 * module, we have the AFE latch the ULPS state and continue
709 	 * on to having the module enter STOP.
710 	 */
711 	vc4_dsi_latch_ulps(dsi, ulps);
712 
713 	DSI_PORT_WRITE(STAT, stat_stop);
714 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
715 	ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
716 	if (ret) {
717 		dev_warn(&dsi->pdev->dev,
718 			 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
719 			 DSI_PORT_READ(STAT));
720 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
721 		return;
722 	}
723 }
724 
725 static u32
726 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
727 {
728 	/* The HS timings have to be rounded up to a multiple of 8
729 	 * because we're using the byte clock.
730 	 */
731 	return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
732 }
733 
734 /* ESC always runs at 100Mhz. */
735 #define ESC_TIME_NS 10
736 
737 static u32
738 dsi_esc_timing(u32 ns)
739 {
740 	return DIV_ROUND_UP(ns, ESC_TIME_NS);
741 }
742 
743 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
744 {
745 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
746 	struct vc4_dsi *dsi = vc4_encoder->dsi;
747 	struct device *dev = &dsi->pdev->dev;
748 	struct drm_bridge *iter;
749 
750 	list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
751 		if (iter->funcs->disable)
752 			iter->funcs->disable(iter);
753 	}
754 
755 	vc4_dsi_ulps(dsi, true);
756 
757 	list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) {
758 		if (iter->funcs->post_disable)
759 			iter->funcs->post_disable(iter);
760 	}
761 
762 	clk_disable_unprepare(dsi->pll_phy_clock);
763 	clk_disable_unprepare(dsi->escape_clock);
764 	clk_disable_unprepare(dsi->pixel_clock);
765 
766 	pm_runtime_put(dev);
767 }
768 
769 /* Extends the mode's blank intervals to handle BCM2835's integer-only
770  * DSI PLL divider.
771  *
772  * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
773  * driver since most peripherals are hanging off of the PLLD_PER
774  * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
775  * the pixel clock), only has an integer divider off of DSI.
776  *
777  * To get our panel mode to refresh at the expected 60Hz, we need to
778  * extend the horizontal blank time.  This means we drive a
779  * higher-than-expected clock rate to the panel, but that's what the
780  * firmware does too.
781  */
782 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
783 				       const struct drm_display_mode *mode,
784 				       struct drm_display_mode *adjusted_mode)
785 {
786 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
787 	struct vc4_dsi *dsi = vc4_encoder->dsi;
788 	struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
789 	unsigned long parent_rate = clk_get_rate(phy_parent);
790 	unsigned long pixel_clock_hz = mode->clock * 1000;
791 	unsigned long pll_clock = pixel_clock_hz * dsi->divider;
792 	int divider;
793 
794 	/* Find what divider gets us a faster clock than the requested
795 	 * pixel clock.
796 	 */
797 	for (divider = 1; divider < 8; divider++) {
798 		if (parent_rate / divider < pll_clock) {
799 			divider--;
800 			break;
801 		}
802 	}
803 
804 	/* Now that we've picked a PLL divider, calculate back to its
805 	 * pixel clock.
806 	 */
807 	pll_clock = parent_rate / divider;
808 	pixel_clock_hz = pll_clock / dsi->divider;
809 
810 	adjusted_mode->clock = pixel_clock_hz / 1000;
811 
812 	/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
813 	adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
814 				mode->clock;
815 	adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
816 	adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
817 
818 	return true;
819 }
820 
821 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
822 {
823 	struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
824 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
825 	struct vc4_dsi *dsi = vc4_encoder->dsi;
826 	struct device *dev = &dsi->pdev->dev;
827 	bool debug_dump_regs = false;
828 	struct drm_bridge *iter;
829 	unsigned long hs_clock;
830 	u32 ui_ns;
831 	/* Minimum LP state duration in escape clock cycles. */
832 	u32 lpx = dsi_esc_timing(60);
833 	unsigned long pixel_clock_hz = mode->clock * 1000;
834 	unsigned long dsip_clock;
835 	unsigned long phy_clock;
836 	int ret;
837 
838 	ret = pm_runtime_get_sync(dev);
839 	if (ret) {
840 		DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
841 		return;
842 	}
843 
844 	if (debug_dump_regs) {
845 		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
846 		dev_info(&dsi->pdev->dev, "DSI regs before:\n");
847 		drm_print_regset32(&p, &dsi->regset);
848 	}
849 
850 	/* Round up the clk_set_rate() request slightly, since
851 	 * PLLD_DSI1 is an integer divider and its rate selection will
852 	 * never round up.
853 	 */
854 	phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
855 	ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
856 	if (ret) {
857 		dev_err(&dsi->pdev->dev,
858 			"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
859 	}
860 
861 	/* Reset the DSI and all its fifos. */
862 	DSI_PORT_WRITE(CTRL,
863 		       DSI_CTRL_SOFT_RESET_CFG |
864 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
865 
866 	DSI_PORT_WRITE(CTRL,
867 		       DSI_CTRL_HSDT_EOT_DISABLE |
868 		       DSI_CTRL_RX_LPDT_EOT_DISABLE);
869 
870 	/* Clear all stat bits so we see what has happened during enable. */
871 	DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
872 
873 	/* Set AFE CTR00/CTR1 to release powerdown of analog. */
874 	if (dsi->port == 0) {
875 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
876 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
877 
878 		if (dsi->lanes < 2)
879 			afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
880 
881 		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
882 			afec0 |= DSI0_PHY_AFEC0_RESET;
883 
884 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
885 
886 		DSI_PORT_WRITE(PHY_AFEC1,
887 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
888 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
889 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
890 	} else {
891 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
892 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
893 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
894 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
895 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
896 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
897 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
898 
899 		if (dsi->lanes < 4)
900 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
901 		if (dsi->lanes < 3)
902 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
903 		if (dsi->lanes < 2)
904 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
905 
906 		afec0 |= DSI1_PHY_AFEC0_RESET;
907 
908 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
909 
910 		DSI_PORT_WRITE(PHY_AFEC1, 0);
911 
912 		/* AFEC reset hold time */
913 		mdelay(1);
914 	}
915 
916 	ret = clk_prepare_enable(dsi->escape_clock);
917 	if (ret) {
918 		DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
919 		return;
920 	}
921 
922 	ret = clk_prepare_enable(dsi->pll_phy_clock);
923 	if (ret) {
924 		DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
925 		return;
926 	}
927 
928 	hs_clock = clk_get_rate(dsi->pll_phy_clock);
929 
930 	/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
931 	 * not the pixel clock rate.  DSIxP take from the APHY's byte,
932 	 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
933 	 * that rate.  Separately, a value derived from PIX_CLK_DIV
934 	 * and HS_CLKC is fed into the PV to divide down to the actual
935 	 * pixel clock for pushing pixels into DSI.
936 	 */
937 	dsip_clock = phy_clock / 8;
938 	ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
939 	if (ret) {
940 		dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
941 			dsip_clock, ret);
942 	}
943 
944 	ret = clk_prepare_enable(dsi->pixel_clock);
945 	if (ret) {
946 		DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
947 		return;
948 	}
949 
950 	/* How many ns one DSI unit interval is.  Note that the clock
951 	 * is DDR, so there's an extra divide by 2.
952 	 */
953 	ui_ns = DIV_ROUND_UP(500000000, hs_clock);
954 
955 	DSI_PORT_WRITE(HS_CLT0,
956 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
957 				     DSI_HS_CLT0_CZERO) |
958 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
959 				     DSI_HS_CLT0_CPRE) |
960 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
961 				     DSI_HS_CLT0_CPREP));
962 
963 	DSI_PORT_WRITE(HS_CLT1,
964 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
965 				     DSI_HS_CLT1_CTRAIL) |
966 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
967 				     DSI_HS_CLT1_CPOST));
968 
969 	DSI_PORT_WRITE(HS_CLT2,
970 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
971 				     DSI_HS_CLT2_WUP));
972 
973 	DSI_PORT_WRITE(HS_DLT3,
974 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
975 				     DSI_HS_DLT3_EXIT) |
976 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
977 				     DSI_HS_DLT3_ZERO) |
978 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
979 				     DSI_HS_DLT3_PRE));
980 
981 	DSI_PORT_WRITE(HS_DLT4,
982 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
983 				     DSI_HS_DLT4_LPX) |
984 		       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
985 					 dsi_hs_timing(ui_ns, 60, 4)),
986 				     DSI_HS_DLT4_TRAIL) |
987 		       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
988 
989 	/* T_INIT is how long STOP is driven after power-up to
990 	 * indicate to the slave (also coming out of power-up) that
991 	 * master init is complete, and should be greater than the
992 	 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
993 	 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
994 	 * T_INIT,SLAVE, while allowing protocols on top of it to give
995 	 * greater minimums.  The vc4 firmware uses an extremely
996 	 * conservative 5ms, and we maintain that here.
997 	 */
998 	DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
999 							    5 * 1000 * 1000, 0),
1000 					      DSI_HS_DLT5_INIT));
1001 
1002 	DSI_PORT_WRITE(HS_DLT6,
1003 		       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1004 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1005 		       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1006 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1007 
1008 	DSI_PORT_WRITE(HS_DLT7,
1009 		       VC4_SET_FIELD(dsi_esc_timing(1000000),
1010 				     DSI_HS_DLT7_LP_WUP));
1011 
1012 	DSI_PORT_WRITE(PHYC,
1013 		       DSI_PHYC_DLANE0_ENABLE |
1014 		       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1015 		       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1016 		       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1017 		       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1018 		       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1019 			0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1020 		       (dsi->port == 0 ?
1021 			VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1022 			VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1023 
1024 	DSI_PORT_WRITE(CTRL,
1025 		       DSI_PORT_READ(CTRL) |
1026 		       DSI_CTRL_CAL_BYTE);
1027 
1028 	/* HS timeout in HS clock cycles: disabled. */
1029 	DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1030 	/* LP receive timeout in HS clocks. */
1031 	DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1032 	/* Bus turnaround timeout */
1033 	DSI_PORT_WRITE(TA_TO_CNT, 100000);
1034 	/* Display reset sequence timeout */
1035 	DSI_PORT_WRITE(PR_TO_CNT, 100000);
1036 
1037 	/* Set up DISP1 for transferring long command payloads through
1038 	 * the pixfifo.
1039 	 */
1040 	DSI_PORT_WRITE(DISP1_CTRL,
1041 		       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1042 				     DSI_DISP1_PFORMAT) |
1043 		       DSI_DISP1_ENABLE);
1044 
1045 	/* Ungate the block. */
1046 	if (dsi->port == 0)
1047 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1048 	else
1049 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1050 
1051 	/* Bring AFE out of reset. */
1052 	if (dsi->port == 0) {
1053 	} else {
1054 		DSI_PORT_WRITE(PHY_AFEC0,
1055 			       DSI_PORT_READ(PHY_AFEC0) &
1056 			       ~DSI1_PHY_AFEC0_RESET);
1057 	}
1058 
1059 	vc4_dsi_ulps(dsi, false);
1060 
1061 	list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
1062 		if (iter->funcs->pre_enable)
1063 			iter->funcs->pre_enable(iter);
1064 	}
1065 
1066 	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1067 		DSI_PORT_WRITE(DISP0_CTRL,
1068 			       VC4_SET_FIELD(dsi->divider,
1069 					     DSI_DISP0_PIX_CLK_DIV) |
1070 			       VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1071 			       VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1072 					     DSI_DISP0_LP_STOP_CTRL) |
1073 			       DSI_DISP0_ST_END |
1074 			       DSI_DISP0_ENABLE);
1075 	} else {
1076 		DSI_PORT_WRITE(DISP0_CTRL,
1077 			       DSI_DISP0_COMMAND_MODE |
1078 			       DSI_DISP0_ENABLE);
1079 	}
1080 
1081 	list_for_each_entry(iter, &dsi->bridge_chain, chain_node) {
1082 		if (iter->funcs->enable)
1083 			iter->funcs->enable(iter);
1084 	}
1085 
1086 	if (debug_dump_regs) {
1087 		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1088 		dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1089 		drm_print_regset32(&p, &dsi->regset);
1090 	}
1091 }
1092 
1093 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1094 				     const struct mipi_dsi_msg *msg)
1095 {
1096 	struct vc4_dsi *dsi = host_to_dsi(host);
1097 	struct mipi_dsi_packet packet;
1098 	u32 pkth = 0, pktc = 0;
1099 	int i, ret;
1100 	bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1101 	u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1102 
1103 	mipi_dsi_create_packet(&packet, msg);
1104 
1105 	pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1106 	pkth |= VC4_SET_FIELD(packet.header[1] |
1107 			      (packet.header[2] << 8),
1108 			      DSI_TXPKT1H_BC_PARAM);
1109 	if (is_long) {
1110 		/* Divide data across the various FIFOs we have available.
1111 		 * The command FIFO takes byte-oriented data, but is of
1112 		 * limited size. The pixel FIFO (never actually used for
1113 		 * pixel data in reality) is word oriented, and substantially
1114 		 * larger. So, we use the pixel FIFO for most of the data,
1115 		 * sending the residual bytes in the command FIFO at the start.
1116 		 *
1117 		 * With this arrangement, the command FIFO will never get full.
1118 		 */
1119 		if (packet.payload_length <= 16) {
1120 			cmd_fifo_len = packet.payload_length;
1121 			pix_fifo_len = 0;
1122 		} else {
1123 			cmd_fifo_len = (packet.payload_length %
1124 					DSI_PIX_FIFO_WIDTH);
1125 			pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1126 					DSI_PIX_FIFO_WIDTH);
1127 		}
1128 
1129 		WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1130 
1131 		pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1132 	}
1133 
1134 	if (msg->rx_len) {
1135 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1136 				      DSI_TXPKT1C_CMD_CTRL);
1137 	} else {
1138 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1139 				      DSI_TXPKT1C_CMD_CTRL);
1140 	}
1141 
1142 	for (i = 0; i < cmd_fifo_len; i++)
1143 		DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1144 	for (i = 0; i < pix_fifo_len; i++) {
1145 		const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1146 
1147 		DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1148 			       pix[0] |
1149 			       pix[1] << 8 |
1150 			       pix[2] << 16 |
1151 			       pix[3] << 24);
1152 	}
1153 
1154 	if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1155 		pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1156 	if (is_long)
1157 		pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1158 
1159 	/* Send one copy of the packet.  Larger repeats are used for pixel
1160 	 * data in command mode.
1161 	 */
1162 	pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1163 
1164 	pktc |= DSI_TXPKT1C_CMD_EN;
1165 	if (pix_fifo_len) {
1166 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1167 				      DSI_TXPKT1C_DISPLAY_NO);
1168 	} else {
1169 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1170 				      DSI_TXPKT1C_DISPLAY_NO);
1171 	}
1172 
1173 	/* Enable the appropriate interrupt for the transfer completion. */
1174 	dsi->xfer_result = 0;
1175 	reinit_completion(&dsi->xfer_completion);
1176 	DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1177 	if (msg->rx_len) {
1178 		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1179 					DSI1_INT_PHY_DIR_RTF));
1180 	} else {
1181 		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1182 					DSI1_INT_TXPKT1_DONE));
1183 	}
1184 
1185 	/* Send the packet. */
1186 	DSI_PORT_WRITE(TXPKT1H, pkth);
1187 	DSI_PORT_WRITE(TXPKT1C, pktc);
1188 
1189 	if (!wait_for_completion_timeout(&dsi->xfer_completion,
1190 					 msecs_to_jiffies(1000))) {
1191 		dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1192 		dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1193 			DSI_PORT_READ(INT_STAT));
1194 		ret = -ETIMEDOUT;
1195 	} else {
1196 		ret = dsi->xfer_result;
1197 	}
1198 
1199 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1200 
1201 	if (ret)
1202 		goto reset_fifo_and_return;
1203 
1204 	if (ret == 0 && msg->rx_len) {
1205 		u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1206 		u8 *msg_rx = msg->rx_buf;
1207 
1208 		if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1209 			u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1210 						  DSI_RXPKT1H_BC_PARAM);
1211 
1212 			if (rxlen != msg->rx_len) {
1213 				DRM_ERROR("DSI returned %db, expecting %db\n",
1214 					  rxlen, (int)msg->rx_len);
1215 				ret = -ENXIO;
1216 				goto reset_fifo_and_return;
1217 			}
1218 
1219 			for (i = 0; i < msg->rx_len; i++)
1220 				msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1221 		} else {
1222 			/* FINISHME: Handle AWER */
1223 
1224 			msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1225 						  DSI_RXPKT1H_SHORT_0);
1226 			if (msg->rx_len > 1) {
1227 				msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1228 							  DSI_RXPKT1H_SHORT_1);
1229 			}
1230 		}
1231 	}
1232 
1233 	return ret;
1234 
1235 reset_fifo_and_return:
1236 	DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1237 
1238 	DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1239 	udelay(1);
1240 	DSI_PORT_WRITE(CTRL,
1241 		       DSI_PORT_READ(CTRL) |
1242 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1243 
1244 	DSI_PORT_WRITE(TXPKT1C, 0);
1245 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1246 	return ret;
1247 }
1248 
1249 static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1250 			       struct mipi_dsi_device *device)
1251 {
1252 	struct vc4_dsi *dsi = host_to_dsi(host);
1253 
1254 	dsi->lanes = device->lanes;
1255 	dsi->channel = device->channel;
1256 	dsi->mode_flags = device->mode_flags;
1257 
1258 	switch (device->format) {
1259 	case MIPI_DSI_FMT_RGB888:
1260 		dsi->format = DSI_PFORMAT_RGB888;
1261 		dsi->divider = 24 / dsi->lanes;
1262 		break;
1263 	case MIPI_DSI_FMT_RGB666:
1264 		dsi->format = DSI_PFORMAT_RGB666;
1265 		dsi->divider = 24 / dsi->lanes;
1266 		break;
1267 	case MIPI_DSI_FMT_RGB666_PACKED:
1268 		dsi->format = DSI_PFORMAT_RGB666_PACKED;
1269 		dsi->divider = 18 / dsi->lanes;
1270 		break;
1271 	case MIPI_DSI_FMT_RGB565:
1272 		dsi->format = DSI_PFORMAT_RGB565;
1273 		dsi->divider = 16 / dsi->lanes;
1274 		break;
1275 	default:
1276 		dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1277 			dsi->format);
1278 		return 0;
1279 	}
1280 
1281 	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1282 		dev_err(&dsi->pdev->dev,
1283 			"Only VIDEO mode panels supported currently.\n");
1284 		return 0;
1285 	}
1286 
1287 	return 0;
1288 }
1289 
1290 static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1291 			       struct mipi_dsi_device *device)
1292 {
1293 	return 0;
1294 }
1295 
1296 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1297 	.attach = vc4_dsi_host_attach,
1298 	.detach = vc4_dsi_host_detach,
1299 	.transfer = vc4_dsi_host_transfer,
1300 };
1301 
1302 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1303 	.disable = vc4_dsi_encoder_disable,
1304 	.enable = vc4_dsi_encoder_enable,
1305 	.mode_fixup = vc4_dsi_encoder_mode_fixup,
1306 };
1307 
1308 static const struct of_device_id vc4_dsi_dt_match[] = {
1309 	{ .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1310 	{}
1311 };
1312 
1313 static void dsi_handle_error(struct vc4_dsi *dsi,
1314 			     irqreturn_t *ret, u32 stat, u32 bit,
1315 			     const char *type)
1316 {
1317 	if (!(stat & bit))
1318 		return;
1319 
1320 	DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1321 	*ret = IRQ_HANDLED;
1322 }
1323 
1324 /*
1325  * Initial handler for port 1 where we need the reg_dma workaround.
1326  * The register DMA writes sleep, so we can't do it in the top half.
1327  * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1328  * parent interrupt contrller until our interrupt thread is done.
1329  */
1330 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1331 {
1332 	struct vc4_dsi *dsi = data;
1333 	u32 stat = DSI_PORT_READ(INT_STAT);
1334 
1335 	if (!stat)
1336 		return IRQ_NONE;
1337 
1338 	return IRQ_WAKE_THREAD;
1339 }
1340 
1341 /*
1342  * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1343  * 1 where we need the reg_dma workaround.
1344  */
1345 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1346 {
1347 	struct vc4_dsi *dsi = data;
1348 	u32 stat = DSI_PORT_READ(INT_STAT);
1349 	irqreturn_t ret = IRQ_NONE;
1350 
1351 	DSI_PORT_WRITE(INT_STAT, stat);
1352 
1353 	dsi_handle_error(dsi, &ret, stat,
1354 			 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1355 	dsi_handle_error(dsi, &ret, stat,
1356 			 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1357 	dsi_handle_error(dsi, &ret, stat,
1358 			 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1359 	dsi_handle_error(dsi, &ret, stat,
1360 			 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1361 	dsi_handle_error(dsi, &ret, stat,
1362 			 DSI1_INT_HSTX_TO, "HSTX timeout");
1363 	dsi_handle_error(dsi, &ret, stat,
1364 			 DSI1_INT_LPRX_TO, "LPRX timeout");
1365 	dsi_handle_error(dsi, &ret, stat,
1366 			 DSI1_INT_TA_TO, "turnaround timeout");
1367 	dsi_handle_error(dsi, &ret, stat,
1368 			 DSI1_INT_PR_TO, "peripheral reset timeout");
1369 
1370 	if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1371 		complete(&dsi->xfer_completion);
1372 		ret = IRQ_HANDLED;
1373 	} else if (stat & DSI1_INT_HSTX_TO) {
1374 		complete(&dsi->xfer_completion);
1375 		dsi->xfer_result = -ETIMEDOUT;
1376 		ret = IRQ_HANDLED;
1377 	}
1378 
1379 	return ret;
1380 }
1381 
1382 /**
1383  * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1384  * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1385  * @dsi: DSI encoder
1386  */
1387 static int
1388 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1389 {
1390 	struct device *dev = &dsi->pdev->dev;
1391 	const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1392 	static const struct {
1393 		const char *dsi0_name, *dsi1_name;
1394 		int div;
1395 	} phy_clocks[] = {
1396 		{ "dsi0_byte", "dsi1_byte", 8 },
1397 		{ "dsi0_ddr2", "dsi1_ddr2", 4 },
1398 		{ "dsi0_ddr", "dsi1_ddr", 2 },
1399 	};
1400 	int i;
1401 
1402 	dsi->clk_onecell = devm_kzalloc(dev,
1403 					sizeof(*dsi->clk_onecell) +
1404 					ARRAY_SIZE(phy_clocks) *
1405 					sizeof(struct clk_hw *),
1406 					GFP_KERNEL);
1407 	if (!dsi->clk_onecell)
1408 		return -ENOMEM;
1409 	dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1410 
1411 	for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1412 		struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1413 		struct clk_init_data init;
1414 		int ret;
1415 
1416 		/* We just use core fixed factor clock ops for the PHY
1417 		 * clocks.  The clocks are actually gated by the
1418 		 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1419 		 * setting if we use the DDR/DDR2 clocks.  However,
1420 		 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1421 		 * setting both our parent DSI PLL's rate and this
1422 		 * clock's rate, so it knows if DDR/DDR2 are going to
1423 		 * be used and could enable the gates itself.
1424 		 */
1425 		fix->mult = 1;
1426 		fix->div = phy_clocks[i].div;
1427 		fix->hw.init = &init;
1428 
1429 		memset(&init, 0, sizeof(init));
1430 		init.parent_names = &parent_name;
1431 		init.num_parents = 1;
1432 		if (dsi->port == 1)
1433 			init.name = phy_clocks[i].dsi1_name;
1434 		else
1435 			init.name = phy_clocks[i].dsi0_name;
1436 		init.ops = &clk_fixed_factor_ops;
1437 
1438 		ret = devm_clk_hw_register(dev, &fix->hw);
1439 		if (ret)
1440 			return ret;
1441 
1442 		dsi->clk_onecell->hws[i] = &fix->hw;
1443 	}
1444 
1445 	return of_clk_add_hw_provider(dev->of_node,
1446 				      of_clk_hw_onecell_get,
1447 				      dsi->clk_onecell);
1448 }
1449 
1450 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1451 {
1452 	struct platform_device *pdev = to_platform_device(dev);
1453 	struct drm_device *drm = dev_get_drvdata(master);
1454 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1455 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1456 	struct vc4_dsi_encoder *vc4_dsi_encoder;
1457 	struct drm_panel *panel;
1458 	const struct of_device_id *match;
1459 	dma_cap_mask_t dma_mask;
1460 	int ret;
1461 
1462 	match = of_match_device(vc4_dsi_dt_match, dev);
1463 	if (!match)
1464 		return -ENODEV;
1465 
1466 	dsi->port = (uintptr_t)match->data;
1467 
1468 	vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1469 				       GFP_KERNEL);
1470 	if (!vc4_dsi_encoder)
1471 		return -ENOMEM;
1472 
1473 	INIT_LIST_HEAD(&dsi->bridge_chain);
1474 	vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1475 	vc4_dsi_encoder->dsi = dsi;
1476 	dsi->encoder = &vc4_dsi_encoder->base.base;
1477 
1478 	dsi->regs = vc4_ioremap_regs(pdev, 0);
1479 	if (IS_ERR(dsi->regs))
1480 		return PTR_ERR(dsi->regs);
1481 
1482 	dsi->regset.base = dsi->regs;
1483 	if (dsi->port == 0) {
1484 		dsi->regset.regs = dsi0_regs;
1485 		dsi->regset.nregs = ARRAY_SIZE(dsi0_regs);
1486 	} else {
1487 		dsi->regset.regs = dsi1_regs;
1488 		dsi->regset.nregs = ARRAY_SIZE(dsi1_regs);
1489 	}
1490 
1491 	if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1492 		dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1493 			DSI_PORT_READ(ID), DSI_ID_VALUE);
1494 		return -ENODEV;
1495 	}
1496 
1497 	/* DSI1 has a broken AXI slave that doesn't respond to writes
1498 	 * from the ARM.  It does handle writes from the DMA engine,
1499 	 * so set up a channel for talking to it.
1500 	 */
1501 	if (dsi->port == 1) {
1502 		dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1503 						      &dsi->reg_dma_paddr,
1504 						      GFP_KERNEL);
1505 		if (!dsi->reg_dma_mem) {
1506 			DRM_ERROR("Failed to get DMA memory\n");
1507 			return -ENOMEM;
1508 		}
1509 
1510 		dma_cap_zero(dma_mask);
1511 		dma_cap_set(DMA_MEMCPY, dma_mask);
1512 		dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1513 		if (IS_ERR(dsi->reg_dma_chan)) {
1514 			ret = PTR_ERR(dsi->reg_dma_chan);
1515 			if (ret != -EPROBE_DEFER)
1516 				DRM_ERROR("Failed to get DMA channel: %d\n",
1517 					  ret);
1518 			return ret;
1519 		}
1520 
1521 		/* Get the physical address of the device's registers.  The
1522 		 * struct resource for the regs gives us the bus address
1523 		 * instead.
1524 		 */
1525 		dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1526 							     0, NULL, NULL));
1527 	}
1528 
1529 	init_completion(&dsi->xfer_completion);
1530 	/* At startup enable error-reporting interrupts and nothing else. */
1531 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1532 	/* Clear any existing interrupt state. */
1533 	DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1534 
1535 	if (dsi->reg_dma_mem)
1536 		ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1537 						vc4_dsi_irq_defer_to_thread_handler,
1538 						vc4_dsi_irq_handler,
1539 						IRQF_ONESHOT,
1540 						"vc4 dsi", dsi);
1541 	else
1542 		ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1543 				       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1544 	if (ret) {
1545 		if (ret != -EPROBE_DEFER)
1546 			dev_err(dev, "Failed to get interrupt: %d\n", ret);
1547 		return ret;
1548 	}
1549 
1550 	dsi->escape_clock = devm_clk_get(dev, "escape");
1551 	if (IS_ERR(dsi->escape_clock)) {
1552 		ret = PTR_ERR(dsi->escape_clock);
1553 		if (ret != -EPROBE_DEFER)
1554 			dev_err(dev, "Failed to get escape clock: %d\n", ret);
1555 		return ret;
1556 	}
1557 
1558 	dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1559 	if (IS_ERR(dsi->pll_phy_clock)) {
1560 		ret = PTR_ERR(dsi->pll_phy_clock);
1561 		if (ret != -EPROBE_DEFER)
1562 			dev_err(dev, "Failed to get phy clock: %d\n", ret);
1563 		return ret;
1564 	}
1565 
1566 	dsi->pixel_clock = devm_clk_get(dev, "pixel");
1567 	if (IS_ERR(dsi->pixel_clock)) {
1568 		ret = PTR_ERR(dsi->pixel_clock);
1569 		if (ret != -EPROBE_DEFER)
1570 			dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1571 		return ret;
1572 	}
1573 
1574 	ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
1575 					  &panel, &dsi->bridge);
1576 	if (ret) {
1577 		/* If the bridge or panel pointed by dev->of_node is not
1578 		 * enabled, just return 0 here so that we don't prevent the DRM
1579 		 * dev from being registered. Of course that means the DSI
1580 		 * encoder won't be exposed, but that's not a problem since
1581 		 * nothing is connected to it.
1582 		 */
1583 		if (ret == -ENODEV)
1584 			return 0;
1585 
1586 		return ret;
1587 	}
1588 
1589 	if (panel) {
1590 		dsi->bridge = devm_drm_panel_bridge_add_typed(dev, panel,
1591 							      DRM_MODE_CONNECTOR_DSI);
1592 		if (IS_ERR(dsi->bridge))
1593 			return PTR_ERR(dsi->bridge);
1594 	}
1595 
1596 	/* The esc clock rate is supposed to always be 100Mhz. */
1597 	ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1598 	if (ret) {
1599 		dev_err(dev, "Failed to set esc clock: %d\n", ret);
1600 		return ret;
1601 	}
1602 
1603 	ret = vc4_dsi_init_phy_clocks(dsi);
1604 	if (ret)
1605 		return ret;
1606 
1607 	if (dsi->port == 1)
1608 		vc4->dsi1 = dsi;
1609 
1610 	drm_simple_encoder_init(drm, dsi->encoder, DRM_MODE_ENCODER_DSI);
1611 	drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1612 
1613 	ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL, 0);
1614 	if (ret) {
1615 		dev_err(dev, "bridge attach failed: %d\n", ret);
1616 		return ret;
1617 	}
1618 	/* Disable the atomic helper calls into the bridge.  We
1619 	 * manually call the bridge pre_enable / enable / etc. calls
1620 	 * from our driver, since we need to sequence them within the
1621 	 * encoder's enable/disable paths.
1622 	 */
1623 	list_splice_init(&dsi->encoder->bridge_chain, &dsi->bridge_chain);
1624 
1625 	if (dsi->port == 0)
1626 		vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset);
1627 	else
1628 		vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset);
1629 
1630 	pm_runtime_enable(dev);
1631 
1632 	return 0;
1633 }
1634 
1635 static void vc4_dsi_unbind(struct device *dev, struct device *master,
1636 			   void *data)
1637 {
1638 	struct drm_device *drm = dev_get_drvdata(master);
1639 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1640 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1641 
1642 	if (dsi->bridge)
1643 		pm_runtime_disable(dev);
1644 
1645 	/*
1646 	 * Restore the bridge_chain so the bridge detach procedure can happen
1647 	 * normally.
1648 	 */
1649 	list_splice_init(&dsi->bridge_chain, &dsi->encoder->bridge_chain);
1650 	drm_encoder_cleanup(dsi->encoder);
1651 
1652 	if (dsi->port == 1)
1653 		vc4->dsi1 = NULL;
1654 }
1655 
1656 static const struct component_ops vc4_dsi_ops = {
1657 	.bind   = vc4_dsi_bind,
1658 	.unbind = vc4_dsi_unbind,
1659 };
1660 
1661 static int vc4_dsi_dev_probe(struct platform_device *pdev)
1662 {
1663 	struct device *dev = &pdev->dev;
1664 	struct vc4_dsi *dsi;
1665 	int ret;
1666 
1667 	dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1668 	if (!dsi)
1669 		return -ENOMEM;
1670 	dev_set_drvdata(dev, dsi);
1671 
1672 	dsi->pdev = pdev;
1673 
1674 	/* Note, the initialization sequence for DSI and panels is
1675 	 * tricky.  The component bind above won't get past its
1676 	 * -EPROBE_DEFER until the panel/bridge probes.  The
1677 	 * panel/bridge will return -EPROBE_DEFER until it has a
1678 	 * mipi_dsi_host to register its device to.  So, we register
1679 	 * the host during pdev probe time, so vc4 as a whole can then
1680 	 * -EPROBE_DEFER its component bind process until the panel
1681 	 * successfully attaches.
1682 	 */
1683 	dsi->dsi_host.ops = &vc4_dsi_host_ops;
1684 	dsi->dsi_host.dev = dev;
1685 	mipi_dsi_host_register(&dsi->dsi_host);
1686 
1687 	ret = component_add(&pdev->dev, &vc4_dsi_ops);
1688 	if (ret) {
1689 		mipi_dsi_host_unregister(&dsi->dsi_host);
1690 		return ret;
1691 	}
1692 
1693 	return 0;
1694 }
1695 
1696 static int vc4_dsi_dev_remove(struct platform_device *pdev)
1697 {
1698 	struct device *dev = &pdev->dev;
1699 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1700 
1701 	component_del(&pdev->dev, &vc4_dsi_ops);
1702 	mipi_dsi_host_unregister(&dsi->dsi_host);
1703 
1704 	return 0;
1705 }
1706 
1707 struct platform_driver vc4_dsi_driver = {
1708 	.probe = vc4_dsi_dev_probe,
1709 	.remove = vc4_dsi_dev_remove,
1710 	.driver = {
1711 		.name = "vc4_dsi",
1712 		.of_match_table = vc4_dsi_dt_match,
1713 	},
1714 };
1715