xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_dsi.c (revision e2c75e76)
1 /*
2  * Copyright (C) 2016 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 as published by
6  * the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program.  If not, see <http://www.gnu.org/licenses/>.
15  */
16 
17 /**
18  * DOC: VC4 DSI0/DSI1 module
19  *
20  * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
21  * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
22  * controller.
23  *
24  * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
25  * while the compute module brings both DSI0 and DSI1 out.
26  *
27  * This driver has been tested for DSI1 video-mode display only
28  * currently, with most of the information necessary for DSI0
29  * hopefully present.
30  */
31 
32 #include <drm/drm_atomic_helper.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drm_mipi_dsi.h>
36 #include <drm/drm_of.h>
37 #include <drm/drm_panel.h>
38 #include <linux/clk.h>
39 #include <linux/clk-provider.h>
40 #include <linux/completion.h>
41 #include <linux/component.h>
42 #include <linux/dmaengine.h>
43 #include <linux/i2c.h>
44 #include <linux/of_address.h>
45 #include <linux/of_platform.h>
46 #include <linux/pm_runtime.h>
47 #include "vc4_drv.h"
48 #include "vc4_regs.h"
49 
50 #define DSI_CMD_FIFO_DEPTH  16
51 #define DSI_PIX_FIFO_DEPTH 256
52 #define DSI_PIX_FIFO_WIDTH   4
53 
54 #define DSI0_CTRL		0x00
55 
56 /* Command packet control. */
57 #define DSI0_TXPKT1C		0x04 /* AKA PKTC */
58 #define DSI1_TXPKT1C		0x04
59 # define DSI_TXPKT1C_TRIG_CMD_MASK	VC4_MASK(31, 24)
60 # define DSI_TXPKT1C_TRIG_CMD_SHIFT	24
61 # define DSI_TXPKT1C_CMD_REPEAT_MASK	VC4_MASK(23, 10)
62 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT	10
63 
64 # define DSI_TXPKT1C_DISPLAY_NO_MASK	VC4_MASK(9, 8)
65 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT	8
66 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
67 # define DSI_TXPKT1C_DISPLAY_NO_SHORT		0
68 /* Primary display where cmdfifo provides part of the payload and
69  * pixelvalve the rest.
70  */
71 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY		1
72 /* Secondary display where cmdfifo provides part of the payload and
73  * pixfifo the rest.
74  */
75 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY	2
76 
77 # define DSI_TXPKT1C_CMD_TX_TIME_MASK	VC4_MASK(7, 6)
78 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT	6
79 
80 # define DSI_TXPKT1C_CMD_CTRL_MASK	VC4_MASK(5, 4)
81 # define DSI_TXPKT1C_CMD_CTRL_SHIFT	4
82 /* Command only.  Uses TXPKT1H and DISPLAY_NO */
83 # define DSI_TXPKT1C_CMD_CTRL_TX	0
84 /* Command with BTA for either ack or read data. */
85 # define DSI_TXPKT1C_CMD_CTRL_RX	1
86 /* Trigger according to TRIG_CMD */
87 # define DSI_TXPKT1C_CMD_CTRL_TRIG	2
88 /* BTA alone for getting error status after a command, or a TE trigger
89  * without a previous command.
90  */
91 # define DSI_TXPKT1C_CMD_CTRL_BTA	3
92 
93 # define DSI_TXPKT1C_CMD_MODE_LP	BIT(3)
94 # define DSI_TXPKT1C_CMD_TYPE_LONG	BIT(2)
95 # define DSI_TXPKT1C_CMD_TE_EN		BIT(1)
96 # define DSI_TXPKT1C_CMD_EN		BIT(0)
97 
98 /* Command packet header. */
99 #define DSI0_TXPKT1H		0x08 /* AKA PKTH */
100 #define DSI1_TXPKT1H		0x08
101 # define DSI_TXPKT1H_BC_CMDFIFO_MASK	VC4_MASK(31, 24)
102 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT	24
103 # define DSI_TXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
104 # define DSI_TXPKT1H_BC_PARAM_SHIFT	8
105 # define DSI_TXPKT1H_BC_DT_MASK		VC4_MASK(7, 0)
106 # define DSI_TXPKT1H_BC_DT_SHIFT	0
107 
108 #define DSI0_RXPKT1H		0x0c /* AKA RX1_PKTH */
109 #define DSI1_RXPKT1H		0x14
110 # define DSI_RXPKT1H_CRC_ERR		BIT(31)
111 # define DSI_RXPKT1H_DET_ERR		BIT(30)
112 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
113 # define DSI_RXPKT1H_COR_ERR		BIT(28)
114 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
115 # define DSI_RXPKT1H_PKT_TYPE_LONG	BIT(24)
116 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
117 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
118 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
119 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
120 # define DSI_RXPKT1H_SHORT_1_MASK	VC4_MASK(23, 16)
121 # define DSI_RXPKT1H_SHORT_1_SHIFT	16
122 # define DSI_RXPKT1H_SHORT_0_MASK	VC4_MASK(15, 8)
123 # define DSI_RXPKT1H_SHORT_0_SHIFT	8
124 # define DSI_RXPKT1H_DT_LP_CMD_MASK	VC4_MASK(7, 0)
125 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT	0
126 
127 #define DSI0_RXPKT2H		0x10 /* AKA RX2_PKTH */
128 #define DSI1_RXPKT2H		0x18
129 # define DSI_RXPKT1H_DET_ERR		BIT(30)
130 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
131 # define DSI_RXPKT1H_COR_ERR		BIT(28)
132 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
133 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
134 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
135 # define DSI_RXPKT1H_DT_MASK		VC4_MASK(7, 0)
136 # define DSI_RXPKT1H_DT_SHIFT		0
137 
138 #define DSI0_TXPKT_CMD_FIFO	0x14 /* AKA CMD_DATAF */
139 #define DSI1_TXPKT_CMD_FIFO	0x1c
140 
141 #define DSI0_DISP0_CTRL		0x18
142 # define DSI_DISP0_PIX_CLK_DIV_MASK	VC4_MASK(21, 13)
143 # define DSI_DISP0_PIX_CLK_DIV_SHIFT	13
144 # define DSI_DISP0_LP_STOP_CTRL_MASK	VC4_MASK(12, 11)
145 # define DSI_DISP0_LP_STOP_CTRL_SHIFT	11
146 # define DSI_DISP0_LP_STOP_DISABLE	0
147 # define DSI_DISP0_LP_STOP_PERLINE	1
148 # define DSI_DISP0_LP_STOP_PERFRAME	2
149 
150 /* Transmit RGB pixels and null packets only during HACTIVE, instead
151  * of going to LP-STOP.
152  */
153 # define DSI_DISP_HACTIVE_NULL		BIT(10)
154 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
155 # define DSI_DISP_VBLP_CTRL		BIT(9)
156 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
157 # define DSI_DISP_HFP_CTRL		BIT(8)
158 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
159 # define DSI_DISP_HBP_CTRL		BIT(7)
160 # define DSI_DISP0_CHANNEL_MASK		VC4_MASK(6, 5)
161 # define DSI_DISP0_CHANNEL_SHIFT	5
162 /* Enables end events for HSYNC/VSYNC, not just start events. */
163 # define DSI_DISP0_ST_END		BIT(4)
164 # define DSI_DISP0_PFORMAT_MASK		VC4_MASK(3, 2)
165 # define DSI_DISP0_PFORMAT_SHIFT	2
166 # define DSI_PFORMAT_RGB565		0
167 # define DSI_PFORMAT_RGB666_PACKED	1
168 # define DSI_PFORMAT_RGB666		2
169 # define DSI_PFORMAT_RGB888		3
170 /* Default is VIDEO mode. */
171 # define DSI_DISP0_COMMAND_MODE		BIT(1)
172 # define DSI_DISP0_ENABLE		BIT(0)
173 
174 #define DSI0_DISP1_CTRL		0x1c
175 #define DSI1_DISP1_CTRL		0x2c
176 /* Format of the data written to TXPKT_PIX_FIFO. */
177 # define DSI_DISP1_PFORMAT_MASK		VC4_MASK(2, 1)
178 # define DSI_DISP1_PFORMAT_SHIFT	1
179 # define DSI_DISP1_PFORMAT_16BIT	0
180 # define DSI_DISP1_PFORMAT_24BIT	1
181 # define DSI_DISP1_PFORMAT_32BIT_LE	2
182 # define DSI_DISP1_PFORMAT_32BIT_BE	3
183 
184 /* DISP1 is always command mode. */
185 # define DSI_DISP1_ENABLE		BIT(0)
186 
187 #define DSI0_TXPKT_PIX_FIFO		0x20 /* AKA PIX_FIFO */
188 
189 #define DSI0_INT_STAT		0x24
190 #define DSI0_INT_EN		0x28
191 # define DSI1_INT_PHY_D3_ULPS		BIT(30)
192 # define DSI1_INT_PHY_D3_STOP		BIT(29)
193 # define DSI1_INT_PHY_D2_ULPS		BIT(28)
194 # define DSI1_INT_PHY_D2_STOP		BIT(27)
195 # define DSI1_INT_PHY_D1_ULPS		BIT(26)
196 # define DSI1_INT_PHY_D1_STOP		BIT(25)
197 # define DSI1_INT_PHY_D0_ULPS		BIT(24)
198 # define DSI1_INT_PHY_D0_STOP		BIT(23)
199 # define DSI1_INT_FIFO_ERR		BIT(22)
200 # define DSI1_INT_PHY_DIR_RTF		BIT(21)
201 # define DSI1_INT_PHY_RXLPDT		BIT(20)
202 # define DSI1_INT_PHY_RXTRIG		BIT(19)
203 # define DSI1_INT_PHY_D0_LPDT		BIT(18)
204 # define DSI1_INT_PHY_DIR_FTR		BIT(17)
205 
206 /* Signaled when the clock lane enters the given state. */
207 # define DSI1_INT_PHY_CLOCK_ULPS	BIT(16)
208 # define DSI1_INT_PHY_CLOCK_HS		BIT(15)
209 # define DSI1_INT_PHY_CLOCK_STOP	BIT(14)
210 
211 /* Signaled on timeouts */
212 # define DSI1_INT_PR_TO			BIT(13)
213 # define DSI1_INT_TA_TO			BIT(12)
214 # define DSI1_INT_LPRX_TO		BIT(11)
215 # define DSI1_INT_HSTX_TO		BIT(10)
216 
217 /* Contention on a line when trying to drive the line low */
218 # define DSI1_INT_ERR_CONT_LP1		BIT(9)
219 # define DSI1_INT_ERR_CONT_LP0		BIT(8)
220 
221 /* Control error: incorrect line state sequence on data lane 0. */
222 # define DSI1_INT_ERR_CONTROL		BIT(7)
223 /* LPDT synchronization error (bits received not a multiple of 8. */
224 
225 # define DSI1_INT_ERR_SYNC_ESC		BIT(6)
226 /* Signaled after receiving an error packet from the display in
227  * response to a read.
228  */
229 # define DSI1_INT_RXPKT2		BIT(5)
230 /* Signaled after receiving a packet.  The header and optional short
231  * response will be in RXPKT1H, and a long response will be in the
232  * RXPKT_FIFO.
233  */
234 # define DSI1_INT_RXPKT1		BIT(4)
235 # define DSI1_INT_TXPKT2_DONE		BIT(3)
236 # define DSI1_INT_TXPKT2_END		BIT(2)
237 /* Signaled after all repeats of TXPKT1 are transferred. */
238 # define DSI1_INT_TXPKT1_DONE		BIT(1)
239 /* Signaled after each TXPKT1 repeat is scheduled. */
240 # define DSI1_INT_TXPKT1_END		BIT(0)
241 
242 #define DSI1_INTERRUPTS_ALWAYS_ENABLED	(DSI1_INT_ERR_SYNC_ESC | \
243 					 DSI1_INT_ERR_CONTROL |	 \
244 					 DSI1_INT_ERR_CONT_LP0 | \
245 					 DSI1_INT_ERR_CONT_LP1 | \
246 					 DSI1_INT_HSTX_TO |	 \
247 					 DSI1_INT_LPRX_TO |	 \
248 					 DSI1_INT_TA_TO |	 \
249 					 DSI1_INT_PR_TO)
250 
251 #define DSI0_STAT		0x2c
252 #define DSI0_HSTX_TO_CNT	0x30
253 #define DSI0_LPRX_TO_CNT	0x34
254 #define DSI0_TA_TO_CNT		0x38
255 #define DSI0_PR_TO_CNT		0x3c
256 #define DSI0_PHYC		0x40
257 # define DSI1_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(25, 20)
258 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT	20
259 # define DSI1_PHYC_HS_CLK_CONTINUOUS	BIT(18)
260 # define DSI0_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(17, 12)
261 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT	12
262 # define DSI1_PHYC_CLANE_ULPS		BIT(17)
263 # define DSI1_PHYC_CLANE_ENABLE		BIT(16)
264 # define DSI_PHYC_DLANE3_ULPS		BIT(13)
265 # define DSI_PHYC_DLANE3_ENABLE		BIT(12)
266 # define DSI0_PHYC_HS_CLK_CONTINUOUS	BIT(10)
267 # define DSI0_PHYC_CLANE_ULPS		BIT(9)
268 # define DSI_PHYC_DLANE2_ULPS		BIT(9)
269 # define DSI0_PHYC_CLANE_ENABLE		BIT(8)
270 # define DSI_PHYC_DLANE2_ENABLE		BIT(8)
271 # define DSI_PHYC_DLANE1_ULPS		BIT(5)
272 # define DSI_PHYC_DLANE1_ENABLE		BIT(4)
273 # define DSI_PHYC_DLANE0_FORCE_STOP	BIT(2)
274 # define DSI_PHYC_DLANE0_ULPS		BIT(1)
275 # define DSI_PHYC_DLANE0_ENABLE		BIT(0)
276 
277 #define DSI0_HS_CLT0		0x44
278 #define DSI0_HS_CLT1		0x48
279 #define DSI0_HS_CLT2		0x4c
280 #define DSI0_HS_DLT3		0x50
281 #define DSI0_HS_DLT4		0x54
282 #define DSI0_HS_DLT5		0x58
283 #define DSI0_HS_DLT6		0x5c
284 #define DSI0_HS_DLT7		0x60
285 
286 #define DSI0_PHY_AFEC0		0x64
287 # define DSI0_PHY_AFEC0_DDR2CLK_EN		BIT(26)
288 # define DSI0_PHY_AFEC0_DDRCLK_EN		BIT(25)
289 # define DSI0_PHY_AFEC0_LATCH_ULPS		BIT(24)
290 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK		VC4_MASK(31, 29)
291 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT	29
292 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK		VC4_MASK(28, 26)
293 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT	26
294 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK		VC4_MASK(27, 23)
295 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT	23
296 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK		VC4_MASK(22, 20)
297 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT	20
298 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK		VC4_MASK(19, 17)
299 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT		17
300 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK	VC4_MASK(23, 20)
301 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT	20
302 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK	VC4_MASK(19, 16)
303 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT	16
304 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK	VC4_MASK(15, 12)
305 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT	12
306 # define DSI1_PHY_AFEC0_DDR2CLK_EN		BIT(16)
307 # define DSI1_PHY_AFEC0_DDRCLK_EN		BIT(15)
308 # define DSI1_PHY_AFEC0_LATCH_ULPS		BIT(14)
309 # define DSI1_PHY_AFEC0_RESET			BIT(13)
310 # define DSI1_PHY_AFEC0_PD			BIT(12)
311 # define DSI0_PHY_AFEC0_RESET			BIT(11)
312 # define DSI1_PHY_AFEC0_PD_BG			BIT(11)
313 # define DSI0_PHY_AFEC0_PD			BIT(10)
314 # define DSI1_PHY_AFEC0_PD_DLANE3		BIT(10)
315 # define DSI0_PHY_AFEC0_PD_BG			BIT(9)
316 # define DSI1_PHY_AFEC0_PD_DLANE2		BIT(9)
317 # define DSI0_PHY_AFEC0_PD_DLANE1		BIT(8)
318 # define DSI1_PHY_AFEC0_PD_DLANE1		BIT(8)
319 # define DSI_PHY_AFEC0_PTATADJ_MASK		VC4_MASK(7, 4)
320 # define DSI_PHY_AFEC0_PTATADJ_SHIFT		4
321 # define DSI_PHY_AFEC0_CTATADJ_MASK		VC4_MASK(3, 0)
322 # define DSI_PHY_AFEC0_CTATADJ_SHIFT		0
323 
324 #define DSI0_PHY_AFEC1		0x68
325 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK		VC4_MASK(10, 8)
326 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT	8
327 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK		VC4_MASK(6, 4)
328 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT	4
329 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK		VC4_MASK(2, 0)
330 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT		0
331 
332 #define DSI0_TST_SEL		0x6c
333 #define DSI0_TST_MON		0x70
334 #define DSI0_ID			0x74
335 # define DSI_ID_VALUE		0x00647369
336 
337 #define DSI1_CTRL		0x00
338 # define DSI_CTRL_HS_CLKC_MASK		VC4_MASK(15, 14)
339 # define DSI_CTRL_HS_CLKC_SHIFT		14
340 # define DSI_CTRL_HS_CLKC_BYTE		0
341 # define DSI_CTRL_HS_CLKC_DDR2		1
342 # define DSI_CTRL_HS_CLKC_DDR		2
343 
344 # define DSI_CTRL_RX_LPDT_EOT_DISABLE	BIT(13)
345 # define DSI_CTRL_LPDT_EOT_DISABLE	BIT(12)
346 # define DSI_CTRL_HSDT_EOT_DISABLE	BIT(11)
347 # define DSI_CTRL_SOFT_RESET_CFG	BIT(10)
348 # define DSI_CTRL_CAL_BYTE		BIT(9)
349 # define DSI_CTRL_INV_BYTE		BIT(8)
350 # define DSI_CTRL_CLR_LDF		BIT(7)
351 # define DSI0_CTRL_CLR_PBCF		BIT(6)
352 # define DSI1_CTRL_CLR_RXF		BIT(6)
353 # define DSI0_CTRL_CLR_CPBCF		BIT(5)
354 # define DSI1_CTRL_CLR_PDF		BIT(5)
355 # define DSI0_CTRL_CLR_PDF		BIT(4)
356 # define DSI1_CTRL_CLR_CDF		BIT(4)
357 # define DSI0_CTRL_CLR_CDF		BIT(3)
358 # define DSI0_CTRL_CTRL2		BIT(2)
359 # define DSI1_CTRL_DISABLE_DISP_CRCC	BIT(2)
360 # define DSI0_CTRL_CTRL1		BIT(1)
361 # define DSI1_CTRL_DISABLE_DISP_ECCC	BIT(1)
362 # define DSI0_CTRL_CTRL0		BIT(0)
363 # define DSI1_CTRL_EN			BIT(0)
364 # define DSI0_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
365 					 DSI0_CTRL_CLR_PBCF | \
366 					 DSI0_CTRL_CLR_CPBCF |	\
367 					 DSI0_CTRL_CLR_PDF | \
368 					 DSI0_CTRL_CLR_CDF)
369 # define DSI1_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
370 					 DSI1_CTRL_CLR_RXF | \
371 					 DSI1_CTRL_CLR_PDF | \
372 					 DSI1_CTRL_CLR_CDF)
373 
374 #define DSI1_TXPKT2C		0x0c
375 #define DSI1_TXPKT2H		0x10
376 #define DSI1_TXPKT_PIX_FIFO	0x20
377 #define DSI1_RXPKT_FIFO		0x24
378 #define DSI1_DISP0_CTRL		0x28
379 #define DSI1_INT_STAT		0x30
380 #define DSI1_INT_EN		0x34
381 /* State reporting bits.  These mostly behave like INT_STAT, where
382  * writing a 1 clears the bit.
383  */
384 #define DSI1_STAT		0x38
385 # define DSI1_STAT_PHY_D3_ULPS		BIT(31)
386 # define DSI1_STAT_PHY_D3_STOP		BIT(30)
387 # define DSI1_STAT_PHY_D2_ULPS		BIT(29)
388 # define DSI1_STAT_PHY_D2_STOP		BIT(28)
389 # define DSI1_STAT_PHY_D1_ULPS		BIT(27)
390 # define DSI1_STAT_PHY_D1_STOP		BIT(26)
391 # define DSI1_STAT_PHY_D0_ULPS		BIT(25)
392 # define DSI1_STAT_PHY_D0_STOP		BIT(24)
393 # define DSI1_STAT_FIFO_ERR		BIT(23)
394 # define DSI1_STAT_PHY_RXLPDT		BIT(22)
395 # define DSI1_STAT_PHY_RXTRIG		BIT(21)
396 # define DSI1_STAT_PHY_D0_LPDT		BIT(20)
397 /* Set when in forward direction */
398 # define DSI1_STAT_PHY_DIR		BIT(19)
399 # define DSI1_STAT_PHY_CLOCK_ULPS	BIT(18)
400 # define DSI1_STAT_PHY_CLOCK_HS		BIT(17)
401 # define DSI1_STAT_PHY_CLOCK_STOP	BIT(16)
402 # define DSI1_STAT_PR_TO		BIT(15)
403 # define DSI1_STAT_TA_TO		BIT(14)
404 # define DSI1_STAT_LPRX_TO		BIT(13)
405 # define DSI1_STAT_HSTX_TO		BIT(12)
406 # define DSI1_STAT_ERR_CONT_LP1		BIT(11)
407 # define DSI1_STAT_ERR_CONT_LP0		BIT(10)
408 # define DSI1_STAT_ERR_CONTROL		BIT(9)
409 # define DSI1_STAT_ERR_SYNC_ESC		BIT(8)
410 # define DSI1_STAT_RXPKT2		BIT(7)
411 # define DSI1_STAT_RXPKT1		BIT(6)
412 # define DSI1_STAT_TXPKT2_BUSY		BIT(5)
413 # define DSI1_STAT_TXPKT2_DONE		BIT(4)
414 # define DSI1_STAT_TXPKT2_END		BIT(3)
415 # define DSI1_STAT_TXPKT1_BUSY		BIT(2)
416 # define DSI1_STAT_TXPKT1_DONE		BIT(1)
417 # define DSI1_STAT_TXPKT1_END		BIT(0)
418 
419 #define DSI1_HSTX_TO_CNT	0x3c
420 #define DSI1_LPRX_TO_CNT	0x40
421 #define DSI1_TA_TO_CNT		0x44
422 #define DSI1_PR_TO_CNT		0x48
423 #define DSI1_PHYC		0x4c
424 
425 #define DSI1_HS_CLT0		0x50
426 # define DSI_HS_CLT0_CZERO_MASK		VC4_MASK(26, 18)
427 # define DSI_HS_CLT0_CZERO_SHIFT	18
428 # define DSI_HS_CLT0_CPRE_MASK		VC4_MASK(17, 9)
429 # define DSI_HS_CLT0_CPRE_SHIFT		9
430 # define DSI_HS_CLT0_CPREP_MASK		VC4_MASK(8, 0)
431 # define DSI_HS_CLT0_CPREP_SHIFT	0
432 
433 #define DSI1_HS_CLT1		0x54
434 # define DSI_HS_CLT1_CTRAIL_MASK	VC4_MASK(17, 9)
435 # define DSI_HS_CLT1_CTRAIL_SHIFT	9
436 # define DSI_HS_CLT1_CPOST_MASK		VC4_MASK(8, 0)
437 # define DSI_HS_CLT1_CPOST_SHIFT	0
438 
439 #define DSI1_HS_CLT2		0x58
440 # define DSI_HS_CLT2_WUP_MASK		VC4_MASK(23, 0)
441 # define DSI_HS_CLT2_WUP_SHIFT		0
442 
443 #define DSI1_HS_DLT3		0x5c
444 # define DSI_HS_DLT3_EXIT_MASK		VC4_MASK(26, 18)
445 # define DSI_HS_DLT3_EXIT_SHIFT		18
446 # define DSI_HS_DLT3_ZERO_MASK		VC4_MASK(17, 9)
447 # define DSI_HS_DLT3_ZERO_SHIFT		9
448 # define DSI_HS_DLT3_PRE_MASK		VC4_MASK(8, 0)
449 # define DSI_HS_DLT3_PRE_SHIFT		0
450 
451 #define DSI1_HS_DLT4		0x60
452 # define DSI_HS_DLT4_ANLAT_MASK		VC4_MASK(22, 18)
453 # define DSI_HS_DLT4_ANLAT_SHIFT	18
454 # define DSI_HS_DLT4_TRAIL_MASK		VC4_MASK(17, 9)
455 # define DSI_HS_DLT4_TRAIL_SHIFT	9
456 # define DSI_HS_DLT4_LPX_MASK		VC4_MASK(8, 0)
457 # define DSI_HS_DLT4_LPX_SHIFT		0
458 
459 #define DSI1_HS_DLT5		0x64
460 # define DSI_HS_DLT5_INIT_MASK		VC4_MASK(23, 0)
461 # define DSI_HS_DLT5_INIT_SHIFT		0
462 
463 #define DSI1_HS_DLT6		0x68
464 # define DSI_HS_DLT6_TA_GET_MASK	VC4_MASK(31, 24)
465 # define DSI_HS_DLT6_TA_GET_SHIFT	24
466 # define DSI_HS_DLT6_TA_SURE_MASK	VC4_MASK(23, 16)
467 # define DSI_HS_DLT6_TA_SURE_SHIFT	16
468 # define DSI_HS_DLT6_TA_GO_MASK		VC4_MASK(15, 8)
469 # define DSI_HS_DLT6_TA_GO_SHIFT	8
470 # define DSI_HS_DLT6_LP_LPX_MASK	VC4_MASK(7, 0)
471 # define DSI_HS_DLT6_LP_LPX_SHIFT	0
472 
473 #define DSI1_HS_DLT7		0x6c
474 # define DSI_HS_DLT7_LP_WUP_MASK	VC4_MASK(23, 0)
475 # define DSI_HS_DLT7_LP_WUP_SHIFT	0
476 
477 #define DSI1_PHY_AFEC0		0x70
478 
479 #define DSI1_PHY_AFEC1		0x74
480 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK	VC4_MASK(19, 16)
481 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT	16
482 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK	VC4_MASK(15, 12)
483 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT	12
484 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK	VC4_MASK(11, 8)
485 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT	8
486 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK	VC4_MASK(7, 4)
487 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT	4
488 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK	VC4_MASK(3, 0)
489 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT	0
490 
491 #define DSI1_TST_SEL		0x78
492 #define DSI1_TST_MON		0x7c
493 #define DSI1_PHY_TST1		0x80
494 #define DSI1_PHY_TST2		0x84
495 #define DSI1_PHY_FIFO_STAT	0x88
496 /* Actually, all registers in the range that aren't otherwise claimed
497  * will return the ID.
498  */
499 #define DSI1_ID			0x8c
500 
501 /* General DSI hardware state. */
502 struct vc4_dsi {
503 	struct platform_device *pdev;
504 
505 	struct mipi_dsi_host dsi_host;
506 	struct drm_encoder *encoder;
507 	struct drm_bridge *bridge;
508 
509 	void __iomem *regs;
510 
511 	struct dma_chan *reg_dma_chan;
512 	dma_addr_t reg_dma_paddr;
513 	u32 *reg_dma_mem;
514 	dma_addr_t reg_paddr;
515 
516 	/* Whether we're on bcm2835's DSI0 or DSI1. */
517 	int port;
518 
519 	/* DSI channel for the panel we're connected to. */
520 	u32 channel;
521 	u32 lanes;
522 	u32 format;
523 	u32 divider;
524 	u32 mode_flags;
525 
526 	/* Input clock from CPRMAN to the digital PHY, for the DSI
527 	 * escape clock.
528 	 */
529 	struct clk *escape_clock;
530 
531 	/* Input clock to the analog PHY, used to generate the DSI bit
532 	 * clock.
533 	 */
534 	struct clk *pll_phy_clock;
535 
536 	/* HS Clocks generated within the DSI analog PHY. */
537 	struct clk_fixed_factor phy_clocks[3];
538 
539 	struct clk_hw_onecell_data *clk_onecell;
540 
541 	/* Pixel clock output to the pixelvalve, generated from the HS
542 	 * clock.
543 	 */
544 	struct clk *pixel_clock;
545 
546 	struct completion xfer_completion;
547 	int xfer_result;
548 };
549 
550 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
551 
552 static inline void
553 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
554 {
555 	struct dma_chan *chan = dsi->reg_dma_chan;
556 	struct dma_async_tx_descriptor *tx;
557 	dma_cookie_t cookie;
558 	int ret;
559 
560 	/* DSI0 should be able to write normally. */
561 	if (!chan) {
562 		writel(val, dsi->regs + offset);
563 		return;
564 	}
565 
566 	*dsi->reg_dma_mem = val;
567 
568 	tx = chan->device->device_prep_dma_memcpy(chan,
569 						  dsi->reg_paddr + offset,
570 						  dsi->reg_dma_paddr,
571 						  4, 0);
572 	if (!tx) {
573 		DRM_ERROR("Failed to set up DMA register write\n");
574 		return;
575 	}
576 
577 	cookie = tx->tx_submit(tx);
578 	ret = dma_submit_error(cookie);
579 	if (ret) {
580 		DRM_ERROR("Failed to submit DMA: %d\n", ret);
581 		return;
582 	}
583 	ret = dma_sync_wait(chan, cookie);
584 	if (ret)
585 		DRM_ERROR("Failed to wait for DMA: %d\n", ret);
586 }
587 
588 #define DSI_READ(offset) readl(dsi->regs + (offset))
589 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
590 #define DSI_PORT_READ(offset) \
591 	DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
592 #define DSI_PORT_WRITE(offset, val) \
593 	DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
594 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
595 
596 /* VC4 DSI encoder KMS struct */
597 struct vc4_dsi_encoder {
598 	struct vc4_encoder base;
599 	struct vc4_dsi *dsi;
600 };
601 
602 static inline struct vc4_dsi_encoder *
603 to_vc4_dsi_encoder(struct drm_encoder *encoder)
604 {
605 	return container_of(encoder, struct vc4_dsi_encoder, base.base);
606 }
607 
608 #define DSI_REG(reg) { reg, #reg }
609 static const struct {
610 	u32 reg;
611 	const char *name;
612 } dsi0_regs[] = {
613 	DSI_REG(DSI0_CTRL),
614 	DSI_REG(DSI0_STAT),
615 	DSI_REG(DSI0_HSTX_TO_CNT),
616 	DSI_REG(DSI0_LPRX_TO_CNT),
617 	DSI_REG(DSI0_TA_TO_CNT),
618 	DSI_REG(DSI0_PR_TO_CNT),
619 	DSI_REG(DSI0_DISP0_CTRL),
620 	DSI_REG(DSI0_DISP1_CTRL),
621 	DSI_REG(DSI0_INT_STAT),
622 	DSI_REG(DSI0_INT_EN),
623 	DSI_REG(DSI0_PHYC),
624 	DSI_REG(DSI0_HS_CLT0),
625 	DSI_REG(DSI0_HS_CLT1),
626 	DSI_REG(DSI0_HS_CLT2),
627 	DSI_REG(DSI0_HS_DLT3),
628 	DSI_REG(DSI0_HS_DLT4),
629 	DSI_REG(DSI0_HS_DLT5),
630 	DSI_REG(DSI0_HS_DLT6),
631 	DSI_REG(DSI0_HS_DLT7),
632 	DSI_REG(DSI0_PHY_AFEC0),
633 	DSI_REG(DSI0_PHY_AFEC1),
634 	DSI_REG(DSI0_ID),
635 };
636 
637 static const struct {
638 	u32 reg;
639 	const char *name;
640 } dsi1_regs[] = {
641 	DSI_REG(DSI1_CTRL),
642 	DSI_REG(DSI1_STAT),
643 	DSI_REG(DSI1_HSTX_TO_CNT),
644 	DSI_REG(DSI1_LPRX_TO_CNT),
645 	DSI_REG(DSI1_TA_TO_CNT),
646 	DSI_REG(DSI1_PR_TO_CNT),
647 	DSI_REG(DSI1_DISP0_CTRL),
648 	DSI_REG(DSI1_DISP1_CTRL),
649 	DSI_REG(DSI1_INT_STAT),
650 	DSI_REG(DSI1_INT_EN),
651 	DSI_REG(DSI1_PHYC),
652 	DSI_REG(DSI1_HS_CLT0),
653 	DSI_REG(DSI1_HS_CLT1),
654 	DSI_REG(DSI1_HS_CLT2),
655 	DSI_REG(DSI1_HS_DLT3),
656 	DSI_REG(DSI1_HS_DLT4),
657 	DSI_REG(DSI1_HS_DLT5),
658 	DSI_REG(DSI1_HS_DLT6),
659 	DSI_REG(DSI1_HS_DLT7),
660 	DSI_REG(DSI1_PHY_AFEC0),
661 	DSI_REG(DSI1_PHY_AFEC1),
662 	DSI_REG(DSI1_ID),
663 };
664 
665 static void vc4_dsi_dump_regs(struct vc4_dsi *dsi)
666 {
667 	int i;
668 
669 	if (dsi->port == 0) {
670 		for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
671 			DRM_INFO("0x%04x (%s): 0x%08x\n",
672 				 dsi0_regs[i].reg, dsi0_regs[i].name,
673 				 DSI_READ(dsi0_regs[i].reg));
674 		}
675 	} else {
676 		for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
677 			DRM_INFO("0x%04x (%s): 0x%08x\n",
678 				 dsi1_regs[i].reg, dsi1_regs[i].name,
679 				 DSI_READ(dsi1_regs[i].reg));
680 		}
681 	}
682 }
683 
684 #ifdef CONFIG_DEBUG_FS
685 int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused)
686 {
687 	struct drm_info_node *node = (struct drm_info_node *)m->private;
688 	struct drm_device *drm = node->minor->dev;
689 	struct vc4_dev *vc4 = to_vc4_dev(drm);
690 	int dsi_index = (uintptr_t)node->info_ent->data;
691 	struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL);
692 	int i;
693 
694 	if (!dsi)
695 		return 0;
696 
697 	if (dsi->port == 0) {
698 		for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
699 			seq_printf(m, "0x%04x (%s): 0x%08x\n",
700 				   dsi0_regs[i].reg, dsi0_regs[i].name,
701 				   DSI_READ(dsi0_regs[i].reg));
702 		}
703 	} else {
704 		for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
705 			seq_printf(m, "0x%04x (%s): 0x%08x\n",
706 				   dsi1_regs[i].reg, dsi1_regs[i].name,
707 				   DSI_READ(dsi1_regs[i].reg));
708 		}
709 	}
710 
711 	return 0;
712 }
713 #endif
714 
715 static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
716 {
717 	drm_encoder_cleanup(encoder);
718 }
719 
720 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
721 	.destroy = vc4_dsi_encoder_destroy,
722 };
723 
724 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
725 {
726 	u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
727 
728 	if (latch)
729 		afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
730 	else
731 		afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
732 
733 	DSI_PORT_WRITE(PHY_AFEC0, afec0);
734 }
735 
736 /* Enters or exits Ultra Low Power State. */
737 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
738 {
739 	bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
740 	u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
741 			 DSI_PHYC_DLANE0_ULPS |
742 			 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
743 			 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
744 			 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
745 	u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
746 			 DSI1_STAT_PHY_D0_ULPS |
747 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
748 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
749 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
750 	u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
751 			 DSI1_STAT_PHY_D0_STOP |
752 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
753 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
754 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
755 	int ret;
756 
757 	DSI_PORT_WRITE(STAT, stat_ulps);
758 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
759 	ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
760 	if (ret) {
761 		dev_warn(&dsi->pdev->dev,
762 			 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
763 			 DSI_PORT_READ(STAT));
764 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
765 		vc4_dsi_latch_ulps(dsi, false);
766 		return;
767 	}
768 
769 	/* The DSI module can't be disabled while the module is
770 	 * generating ULPS state.  So, to be able to disable the
771 	 * module, we have the AFE latch the ULPS state and continue
772 	 * on to having the module enter STOP.
773 	 */
774 	vc4_dsi_latch_ulps(dsi, ulps);
775 
776 	DSI_PORT_WRITE(STAT, stat_stop);
777 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
778 	ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
779 	if (ret) {
780 		dev_warn(&dsi->pdev->dev,
781 			 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
782 			 DSI_PORT_READ(STAT));
783 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
784 		return;
785 	}
786 }
787 
788 static u32
789 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
790 {
791 	/* The HS timings have to be rounded up to a multiple of 8
792 	 * because we're using the byte clock.
793 	 */
794 	return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
795 }
796 
797 /* ESC always runs at 100Mhz. */
798 #define ESC_TIME_NS 10
799 
800 static u32
801 dsi_esc_timing(u32 ns)
802 {
803 	return DIV_ROUND_UP(ns, ESC_TIME_NS);
804 }
805 
806 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
807 {
808 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
809 	struct vc4_dsi *dsi = vc4_encoder->dsi;
810 	struct device *dev = &dsi->pdev->dev;
811 
812 	vc4_dsi_ulps(dsi, true);
813 
814 	clk_disable_unprepare(dsi->pll_phy_clock);
815 	clk_disable_unprepare(dsi->escape_clock);
816 	clk_disable_unprepare(dsi->pixel_clock);
817 
818 	pm_runtime_put(dev);
819 }
820 
821 /* Extends the mode's blank intervals to handle BCM2835's integer-only
822  * DSI PLL divider.
823  *
824  * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
825  * driver since most peripherals are hanging off of the PLLD_PER
826  * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
827  * the pixel clock), only has an integer divider off of DSI.
828  *
829  * To get our panel mode to refresh at the expected 60Hz, we need to
830  * extend the horizontal blank time.  This means we drive a
831  * higher-than-expected clock rate to the panel, but that's what the
832  * firmware does too.
833  */
834 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
835 				       const struct drm_display_mode *mode,
836 				       struct drm_display_mode *adjusted_mode)
837 {
838 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
839 	struct vc4_dsi *dsi = vc4_encoder->dsi;
840 	struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
841 	unsigned long parent_rate = clk_get_rate(phy_parent);
842 	unsigned long pixel_clock_hz = mode->clock * 1000;
843 	unsigned long pll_clock = pixel_clock_hz * dsi->divider;
844 	int divider;
845 
846 	/* Find what divider gets us a faster clock than the requested
847 	 * pixel clock.
848 	 */
849 	for (divider = 1; divider < 8; divider++) {
850 		if (parent_rate / divider < pll_clock) {
851 			divider--;
852 			break;
853 		}
854 	}
855 
856 	/* Now that we've picked a PLL divider, calculate back to its
857 	 * pixel clock.
858 	 */
859 	pll_clock = parent_rate / divider;
860 	pixel_clock_hz = pll_clock / dsi->divider;
861 
862 	adjusted_mode->clock = pixel_clock_hz / 1000;
863 
864 	/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
865 	adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
866 				mode->clock;
867 	adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
868 	adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
869 
870 	return true;
871 }
872 
873 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
874 {
875 	struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
876 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
877 	struct vc4_dsi *dsi = vc4_encoder->dsi;
878 	struct device *dev = &dsi->pdev->dev;
879 	bool debug_dump_regs = false;
880 	unsigned long hs_clock;
881 	u32 ui_ns;
882 	/* Minimum LP state duration in escape clock cycles. */
883 	u32 lpx = dsi_esc_timing(60);
884 	unsigned long pixel_clock_hz = mode->clock * 1000;
885 	unsigned long dsip_clock;
886 	unsigned long phy_clock;
887 	int ret;
888 
889 	ret = pm_runtime_get_sync(dev);
890 	if (ret) {
891 		DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
892 		return;
893 	}
894 
895 	if (debug_dump_regs) {
896 		DRM_INFO("DSI regs before:\n");
897 		vc4_dsi_dump_regs(dsi);
898 	}
899 
900 	/* Round up the clk_set_rate() request slightly, since
901 	 * PLLD_DSI1 is an integer divider and its rate selection will
902 	 * never round up.
903 	 */
904 	phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
905 	ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
906 	if (ret) {
907 		dev_err(&dsi->pdev->dev,
908 			"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
909 	}
910 
911 	/* Reset the DSI and all its fifos. */
912 	DSI_PORT_WRITE(CTRL,
913 		       DSI_CTRL_SOFT_RESET_CFG |
914 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
915 
916 	DSI_PORT_WRITE(CTRL,
917 		       DSI_CTRL_HSDT_EOT_DISABLE |
918 		       DSI_CTRL_RX_LPDT_EOT_DISABLE);
919 
920 	/* Clear all stat bits so we see what has happened during enable. */
921 	DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
922 
923 	/* Set AFE CTR00/CTR1 to release powerdown of analog. */
924 	if (dsi->port == 0) {
925 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
926 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
927 
928 		if (dsi->lanes < 2)
929 			afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
930 
931 		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
932 			afec0 |= DSI0_PHY_AFEC0_RESET;
933 
934 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
935 
936 		DSI_PORT_WRITE(PHY_AFEC1,
937 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
938 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
939 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
940 	} else {
941 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
942 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
943 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
944 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
945 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
946 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
947 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
948 
949 		if (dsi->lanes < 4)
950 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
951 		if (dsi->lanes < 3)
952 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
953 		if (dsi->lanes < 2)
954 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
955 
956 		afec0 |= DSI1_PHY_AFEC0_RESET;
957 
958 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
959 
960 		DSI_PORT_WRITE(PHY_AFEC1, 0);
961 
962 		/* AFEC reset hold time */
963 		mdelay(1);
964 	}
965 
966 	ret = clk_prepare_enable(dsi->escape_clock);
967 	if (ret) {
968 		DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
969 		return;
970 	}
971 
972 	ret = clk_prepare_enable(dsi->pll_phy_clock);
973 	if (ret) {
974 		DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
975 		return;
976 	}
977 
978 	hs_clock = clk_get_rate(dsi->pll_phy_clock);
979 
980 	/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
981 	 * not the pixel clock rate.  DSIxP take from the APHY's byte,
982 	 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
983 	 * that rate.  Separately, a value derived from PIX_CLK_DIV
984 	 * and HS_CLKC is fed into the PV to divide down to the actual
985 	 * pixel clock for pushing pixels into DSI.
986 	 */
987 	dsip_clock = phy_clock / 8;
988 	ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
989 	if (ret) {
990 		dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
991 			dsip_clock, ret);
992 	}
993 
994 	ret = clk_prepare_enable(dsi->pixel_clock);
995 	if (ret) {
996 		DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
997 		return;
998 	}
999 
1000 	/* How many ns one DSI unit interval is.  Note that the clock
1001 	 * is DDR, so there's an extra divide by 2.
1002 	 */
1003 	ui_ns = DIV_ROUND_UP(500000000, hs_clock);
1004 
1005 	DSI_PORT_WRITE(HS_CLT0,
1006 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
1007 				     DSI_HS_CLT0_CZERO) |
1008 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
1009 				     DSI_HS_CLT0_CPRE) |
1010 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
1011 				     DSI_HS_CLT0_CPREP));
1012 
1013 	DSI_PORT_WRITE(HS_CLT1,
1014 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
1015 				     DSI_HS_CLT1_CTRAIL) |
1016 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
1017 				     DSI_HS_CLT1_CPOST));
1018 
1019 	DSI_PORT_WRITE(HS_CLT2,
1020 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
1021 				     DSI_HS_CLT2_WUP));
1022 
1023 	DSI_PORT_WRITE(HS_DLT3,
1024 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
1025 				     DSI_HS_DLT3_EXIT) |
1026 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
1027 				     DSI_HS_DLT3_ZERO) |
1028 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
1029 				     DSI_HS_DLT3_PRE));
1030 
1031 	DSI_PORT_WRITE(HS_DLT4,
1032 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
1033 				     DSI_HS_DLT4_LPX) |
1034 		       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
1035 					 dsi_hs_timing(ui_ns, 60, 4)),
1036 				     DSI_HS_DLT4_TRAIL) |
1037 		       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1038 
1039 	/* T_INIT is how long STOP is driven after power-up to
1040 	 * indicate to the slave (also coming out of power-up) that
1041 	 * master init is complete, and should be greater than the
1042 	 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
1043 	 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1044 	 * T_INIT,SLAVE, while allowing protocols on top of it to give
1045 	 * greater minimums.  The vc4 firmware uses an extremely
1046 	 * conservative 5ms, and we maintain that here.
1047 	 */
1048 	DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
1049 							    5 * 1000 * 1000, 0),
1050 					      DSI_HS_DLT5_INIT));
1051 
1052 	DSI_PORT_WRITE(HS_DLT6,
1053 		       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1054 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1055 		       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1056 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1057 
1058 	DSI_PORT_WRITE(HS_DLT7,
1059 		       VC4_SET_FIELD(dsi_esc_timing(1000000),
1060 				     DSI_HS_DLT7_LP_WUP));
1061 
1062 	DSI_PORT_WRITE(PHYC,
1063 		       DSI_PHYC_DLANE0_ENABLE |
1064 		       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1065 		       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1066 		       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1067 		       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1068 		       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1069 			0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1070 		       (dsi->port == 0 ?
1071 			VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1072 			VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1073 
1074 	DSI_PORT_WRITE(CTRL,
1075 		       DSI_PORT_READ(CTRL) |
1076 		       DSI_CTRL_CAL_BYTE);
1077 
1078 	/* HS timeout in HS clock cycles: disabled. */
1079 	DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1080 	/* LP receive timeout in HS clocks. */
1081 	DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1082 	/* Bus turnaround timeout */
1083 	DSI_PORT_WRITE(TA_TO_CNT, 100000);
1084 	/* Display reset sequence timeout */
1085 	DSI_PORT_WRITE(PR_TO_CNT, 100000);
1086 
1087 	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1088 		DSI_PORT_WRITE(DISP0_CTRL,
1089 			       VC4_SET_FIELD(dsi->divider,
1090 					     DSI_DISP0_PIX_CLK_DIV) |
1091 			       VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1092 			       VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1093 					     DSI_DISP0_LP_STOP_CTRL) |
1094 			       DSI_DISP0_ST_END |
1095 			       DSI_DISP0_ENABLE);
1096 	} else {
1097 		DSI_PORT_WRITE(DISP0_CTRL,
1098 			       DSI_DISP0_COMMAND_MODE |
1099 			       DSI_DISP0_ENABLE);
1100 	}
1101 
1102 	/* Set up DISP1 for transferring long command payloads through
1103 	 * the pixfifo.
1104 	 */
1105 	DSI_PORT_WRITE(DISP1_CTRL,
1106 		       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1107 				     DSI_DISP1_PFORMAT) |
1108 		       DSI_DISP1_ENABLE);
1109 
1110 	/* Ungate the block. */
1111 	if (dsi->port == 0)
1112 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1113 	else
1114 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1115 
1116 	/* Bring AFE out of reset. */
1117 	if (dsi->port == 0) {
1118 	} else {
1119 		DSI_PORT_WRITE(PHY_AFEC0,
1120 			       DSI_PORT_READ(PHY_AFEC0) &
1121 			       ~DSI1_PHY_AFEC0_RESET);
1122 	}
1123 
1124 	vc4_dsi_ulps(dsi, false);
1125 
1126 	if (debug_dump_regs) {
1127 		DRM_INFO("DSI regs after:\n");
1128 		vc4_dsi_dump_regs(dsi);
1129 	}
1130 }
1131 
1132 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1133 				     const struct mipi_dsi_msg *msg)
1134 {
1135 	struct vc4_dsi *dsi = host_to_dsi(host);
1136 	struct mipi_dsi_packet packet;
1137 	u32 pkth = 0, pktc = 0;
1138 	int i, ret;
1139 	bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1140 	u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1141 
1142 	mipi_dsi_create_packet(&packet, msg);
1143 
1144 	pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1145 	pkth |= VC4_SET_FIELD(packet.header[1] |
1146 			      (packet.header[2] << 8),
1147 			      DSI_TXPKT1H_BC_PARAM);
1148 	if (is_long) {
1149 		/* Divide data across the various FIFOs we have available.
1150 		 * The command FIFO takes byte-oriented data, but is of
1151 		 * limited size. The pixel FIFO (never actually used for
1152 		 * pixel data in reality) is word oriented, and substantially
1153 		 * larger. So, we use the pixel FIFO for most of the data,
1154 		 * sending the residual bytes in the command FIFO at the start.
1155 		 *
1156 		 * With this arrangement, the command FIFO will never get full.
1157 		 */
1158 		if (packet.payload_length <= 16) {
1159 			cmd_fifo_len = packet.payload_length;
1160 			pix_fifo_len = 0;
1161 		} else {
1162 			cmd_fifo_len = (packet.payload_length %
1163 					DSI_PIX_FIFO_WIDTH);
1164 			pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1165 					DSI_PIX_FIFO_WIDTH);
1166 		}
1167 
1168 		WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1169 
1170 		pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1171 	}
1172 
1173 	if (msg->rx_len) {
1174 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1175 				      DSI_TXPKT1C_CMD_CTRL);
1176 	} else {
1177 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1178 				      DSI_TXPKT1C_CMD_CTRL);
1179 	}
1180 
1181 	for (i = 0; i < cmd_fifo_len; i++)
1182 		DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1183 	for (i = 0; i < pix_fifo_len; i++) {
1184 		const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1185 
1186 		DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1187 			       pix[0] |
1188 			       pix[1] << 8 |
1189 			       pix[2] << 16 |
1190 			       pix[3] << 24);
1191 	}
1192 
1193 	if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1194 		pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1195 	if (is_long)
1196 		pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1197 
1198 	/* Send one copy of the packet.  Larger repeats are used for pixel
1199 	 * data in command mode.
1200 	 */
1201 	pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1202 
1203 	pktc |= DSI_TXPKT1C_CMD_EN;
1204 	if (pix_fifo_len) {
1205 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1206 				      DSI_TXPKT1C_DISPLAY_NO);
1207 	} else {
1208 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1209 				      DSI_TXPKT1C_DISPLAY_NO);
1210 	}
1211 
1212 	/* Enable the appropriate interrupt for the transfer completion. */
1213 	dsi->xfer_result = 0;
1214 	reinit_completion(&dsi->xfer_completion);
1215 	DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1216 	if (msg->rx_len) {
1217 		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1218 					DSI1_INT_PHY_DIR_RTF));
1219 	} else {
1220 		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1221 					DSI1_INT_TXPKT1_DONE));
1222 	}
1223 
1224 	/* Send the packet. */
1225 	DSI_PORT_WRITE(TXPKT1H, pkth);
1226 	DSI_PORT_WRITE(TXPKT1C, pktc);
1227 
1228 	if (!wait_for_completion_timeout(&dsi->xfer_completion,
1229 					 msecs_to_jiffies(1000))) {
1230 		dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1231 		dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1232 			DSI_PORT_READ(INT_STAT));
1233 		ret = -ETIMEDOUT;
1234 	} else {
1235 		ret = dsi->xfer_result;
1236 	}
1237 
1238 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1239 
1240 	if (ret)
1241 		goto reset_fifo_and_return;
1242 
1243 	if (ret == 0 && msg->rx_len) {
1244 		u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1245 		u8 *msg_rx = msg->rx_buf;
1246 
1247 		if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1248 			u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1249 						  DSI_RXPKT1H_BC_PARAM);
1250 
1251 			if (rxlen != msg->rx_len) {
1252 				DRM_ERROR("DSI returned %db, expecting %db\n",
1253 					  rxlen, (int)msg->rx_len);
1254 				ret = -ENXIO;
1255 				goto reset_fifo_and_return;
1256 			}
1257 
1258 			for (i = 0; i < msg->rx_len; i++)
1259 				msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1260 		} else {
1261 			/* FINISHME: Handle AWER */
1262 
1263 			msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1264 						  DSI_RXPKT1H_SHORT_0);
1265 			if (msg->rx_len > 1) {
1266 				msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1267 							  DSI_RXPKT1H_SHORT_1);
1268 			}
1269 		}
1270 	}
1271 
1272 	return ret;
1273 
1274 reset_fifo_and_return:
1275 	DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1276 
1277 	DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1278 	udelay(1);
1279 	DSI_PORT_WRITE(CTRL,
1280 		       DSI_PORT_READ(CTRL) |
1281 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1282 
1283 	DSI_PORT_WRITE(TXPKT1C, 0);
1284 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1285 	return ret;
1286 }
1287 
1288 static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1289 			       struct mipi_dsi_device *device)
1290 {
1291 	struct vc4_dsi *dsi = host_to_dsi(host);
1292 
1293 	dsi->lanes = device->lanes;
1294 	dsi->channel = device->channel;
1295 	dsi->mode_flags = device->mode_flags;
1296 
1297 	switch (device->format) {
1298 	case MIPI_DSI_FMT_RGB888:
1299 		dsi->format = DSI_PFORMAT_RGB888;
1300 		dsi->divider = 24 / dsi->lanes;
1301 		break;
1302 	case MIPI_DSI_FMT_RGB666:
1303 		dsi->format = DSI_PFORMAT_RGB666;
1304 		dsi->divider = 24 / dsi->lanes;
1305 		break;
1306 	case MIPI_DSI_FMT_RGB666_PACKED:
1307 		dsi->format = DSI_PFORMAT_RGB666_PACKED;
1308 		dsi->divider = 18 / dsi->lanes;
1309 		break;
1310 	case MIPI_DSI_FMT_RGB565:
1311 		dsi->format = DSI_PFORMAT_RGB565;
1312 		dsi->divider = 16 / dsi->lanes;
1313 		break;
1314 	default:
1315 		dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1316 			dsi->format);
1317 		return 0;
1318 	}
1319 
1320 	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1321 		dev_err(&dsi->pdev->dev,
1322 			"Only VIDEO mode panels supported currently.\n");
1323 		return 0;
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1330 			       struct mipi_dsi_device *device)
1331 {
1332 	return 0;
1333 }
1334 
1335 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1336 	.attach = vc4_dsi_host_attach,
1337 	.detach = vc4_dsi_host_detach,
1338 	.transfer = vc4_dsi_host_transfer,
1339 };
1340 
1341 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1342 	.disable = vc4_dsi_encoder_disable,
1343 	.enable = vc4_dsi_encoder_enable,
1344 	.mode_fixup = vc4_dsi_encoder_mode_fixup,
1345 };
1346 
1347 static const struct of_device_id vc4_dsi_dt_match[] = {
1348 	{ .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1349 	{}
1350 };
1351 
1352 static void dsi_handle_error(struct vc4_dsi *dsi,
1353 			     irqreturn_t *ret, u32 stat, u32 bit,
1354 			     const char *type)
1355 {
1356 	if (!(stat & bit))
1357 		return;
1358 
1359 	DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1360 	*ret = IRQ_HANDLED;
1361 }
1362 
1363 /*
1364  * Initial handler for port 1 where we need the reg_dma workaround.
1365  * The register DMA writes sleep, so we can't do it in the top half.
1366  * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1367  * parent interrupt contrller until our interrupt thread is done.
1368  */
1369 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1370 {
1371 	struct vc4_dsi *dsi = data;
1372 	u32 stat = DSI_PORT_READ(INT_STAT);
1373 
1374 	if (!stat)
1375 		return IRQ_NONE;
1376 
1377 	return IRQ_WAKE_THREAD;
1378 }
1379 
1380 /*
1381  * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1382  * 1 where we need the reg_dma workaround.
1383  */
1384 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1385 {
1386 	struct vc4_dsi *dsi = data;
1387 	u32 stat = DSI_PORT_READ(INT_STAT);
1388 	irqreturn_t ret = IRQ_NONE;
1389 
1390 	DSI_PORT_WRITE(INT_STAT, stat);
1391 
1392 	dsi_handle_error(dsi, &ret, stat,
1393 			 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1394 	dsi_handle_error(dsi, &ret, stat,
1395 			 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1396 	dsi_handle_error(dsi, &ret, stat,
1397 			 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1398 	dsi_handle_error(dsi, &ret, stat,
1399 			 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1400 	dsi_handle_error(dsi, &ret, stat,
1401 			 DSI1_INT_HSTX_TO, "HSTX timeout");
1402 	dsi_handle_error(dsi, &ret, stat,
1403 			 DSI1_INT_LPRX_TO, "LPRX timeout");
1404 	dsi_handle_error(dsi, &ret, stat,
1405 			 DSI1_INT_TA_TO, "turnaround timeout");
1406 	dsi_handle_error(dsi, &ret, stat,
1407 			 DSI1_INT_PR_TO, "peripheral reset timeout");
1408 
1409 	if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1410 		complete(&dsi->xfer_completion);
1411 		ret = IRQ_HANDLED;
1412 	} else if (stat & DSI1_INT_HSTX_TO) {
1413 		complete(&dsi->xfer_completion);
1414 		dsi->xfer_result = -ETIMEDOUT;
1415 		ret = IRQ_HANDLED;
1416 	}
1417 
1418 	return ret;
1419 }
1420 
1421 /**
1422  * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1423  * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1424  * @dsi: DSI encoder
1425  */
1426 static int
1427 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1428 {
1429 	struct device *dev = &dsi->pdev->dev;
1430 	const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1431 	static const struct {
1432 		const char *dsi0_name, *dsi1_name;
1433 		int div;
1434 	} phy_clocks[] = {
1435 		{ "dsi0_byte", "dsi1_byte", 8 },
1436 		{ "dsi0_ddr2", "dsi1_ddr2", 4 },
1437 		{ "dsi0_ddr", "dsi1_ddr", 2 },
1438 	};
1439 	int i;
1440 
1441 	dsi->clk_onecell = devm_kzalloc(dev,
1442 					sizeof(*dsi->clk_onecell) +
1443 					ARRAY_SIZE(phy_clocks) *
1444 					sizeof(struct clk_hw *),
1445 					GFP_KERNEL);
1446 	if (!dsi->clk_onecell)
1447 		return -ENOMEM;
1448 	dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1449 
1450 	for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1451 		struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1452 		struct clk_init_data init;
1453 		int ret;
1454 
1455 		/* We just use core fixed factor clock ops for the PHY
1456 		 * clocks.  The clocks are actually gated by the
1457 		 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1458 		 * setting if we use the DDR/DDR2 clocks.  However,
1459 		 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1460 		 * setting both our parent DSI PLL's rate and this
1461 		 * clock's rate, so it knows if DDR/DDR2 are going to
1462 		 * be used and could enable the gates itself.
1463 		 */
1464 		fix->mult = 1;
1465 		fix->div = phy_clocks[i].div;
1466 		fix->hw.init = &init;
1467 
1468 		memset(&init, 0, sizeof(init));
1469 		init.parent_names = &parent_name;
1470 		init.num_parents = 1;
1471 		if (dsi->port == 1)
1472 			init.name = phy_clocks[i].dsi1_name;
1473 		else
1474 			init.name = phy_clocks[i].dsi0_name;
1475 		init.ops = &clk_fixed_factor_ops;
1476 
1477 		ret = devm_clk_hw_register(dev, &fix->hw);
1478 		if (ret)
1479 			return ret;
1480 
1481 		dsi->clk_onecell->hws[i] = &fix->hw;
1482 	}
1483 
1484 	return of_clk_add_hw_provider(dev->of_node,
1485 				      of_clk_hw_onecell_get,
1486 				      dsi->clk_onecell);
1487 }
1488 
1489 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1490 {
1491 	struct platform_device *pdev = to_platform_device(dev);
1492 	struct drm_device *drm = dev_get_drvdata(master);
1493 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1494 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1495 	struct vc4_dsi_encoder *vc4_dsi_encoder;
1496 	struct drm_panel *panel;
1497 	const struct of_device_id *match;
1498 	dma_cap_mask_t dma_mask;
1499 	int ret;
1500 
1501 	match = of_match_device(vc4_dsi_dt_match, dev);
1502 	if (!match)
1503 		return -ENODEV;
1504 
1505 	dsi->port = (uintptr_t)match->data;
1506 
1507 	vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1508 				       GFP_KERNEL);
1509 	if (!vc4_dsi_encoder)
1510 		return -ENOMEM;
1511 	vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1512 	vc4_dsi_encoder->dsi = dsi;
1513 	dsi->encoder = &vc4_dsi_encoder->base.base;
1514 
1515 	dsi->regs = vc4_ioremap_regs(pdev, 0);
1516 	if (IS_ERR(dsi->regs))
1517 		return PTR_ERR(dsi->regs);
1518 
1519 	if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1520 		dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1521 			DSI_PORT_READ(ID), DSI_ID_VALUE);
1522 		return -ENODEV;
1523 	}
1524 
1525 	/* DSI1 has a broken AXI slave that doesn't respond to writes
1526 	 * from the ARM.  It does handle writes from the DMA engine,
1527 	 * so set up a channel for talking to it.
1528 	 */
1529 	if (dsi->port == 1) {
1530 		dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1531 						      &dsi->reg_dma_paddr,
1532 						      GFP_KERNEL);
1533 		if (!dsi->reg_dma_mem) {
1534 			DRM_ERROR("Failed to get DMA memory\n");
1535 			return -ENOMEM;
1536 		}
1537 
1538 		dma_cap_zero(dma_mask);
1539 		dma_cap_set(DMA_MEMCPY, dma_mask);
1540 		dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1541 		if (IS_ERR(dsi->reg_dma_chan)) {
1542 			ret = PTR_ERR(dsi->reg_dma_chan);
1543 			if (ret != -EPROBE_DEFER)
1544 				DRM_ERROR("Failed to get DMA channel: %d\n",
1545 					  ret);
1546 			return ret;
1547 		}
1548 
1549 		/* Get the physical address of the device's registers.  The
1550 		 * struct resource for the regs gives us the bus address
1551 		 * instead.
1552 		 */
1553 		dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1554 							     0, NULL, NULL));
1555 	}
1556 
1557 	init_completion(&dsi->xfer_completion);
1558 	/* At startup enable error-reporting interrupts and nothing else. */
1559 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1560 	/* Clear any existing interrupt state. */
1561 	DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1562 
1563 	if (dsi->reg_dma_mem)
1564 		ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1565 						vc4_dsi_irq_defer_to_thread_handler,
1566 						vc4_dsi_irq_handler,
1567 						IRQF_ONESHOT,
1568 						"vc4 dsi", dsi);
1569 	else
1570 		ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1571 				       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1572 	if (ret) {
1573 		if (ret != -EPROBE_DEFER)
1574 			dev_err(dev, "Failed to get interrupt: %d\n", ret);
1575 		return ret;
1576 	}
1577 
1578 	dsi->escape_clock = devm_clk_get(dev, "escape");
1579 	if (IS_ERR(dsi->escape_clock)) {
1580 		ret = PTR_ERR(dsi->escape_clock);
1581 		if (ret != -EPROBE_DEFER)
1582 			dev_err(dev, "Failed to get escape clock: %d\n", ret);
1583 		return ret;
1584 	}
1585 
1586 	dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1587 	if (IS_ERR(dsi->pll_phy_clock)) {
1588 		ret = PTR_ERR(dsi->pll_phy_clock);
1589 		if (ret != -EPROBE_DEFER)
1590 			dev_err(dev, "Failed to get phy clock: %d\n", ret);
1591 		return ret;
1592 	}
1593 
1594 	dsi->pixel_clock = devm_clk_get(dev, "pixel");
1595 	if (IS_ERR(dsi->pixel_clock)) {
1596 		ret = PTR_ERR(dsi->pixel_clock);
1597 		if (ret != -EPROBE_DEFER)
1598 			dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1599 		return ret;
1600 	}
1601 
1602 	ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
1603 					  &panel, &dsi->bridge);
1604 	if (ret)
1605 		return ret;
1606 
1607 	if (panel) {
1608 		dsi->bridge = devm_drm_panel_bridge_add(dev, panel,
1609 							DRM_MODE_CONNECTOR_DSI);
1610 		if (IS_ERR(dsi->bridge))
1611 			return PTR_ERR(dsi->bridge);
1612 	}
1613 
1614 	/* The esc clock rate is supposed to always be 100Mhz. */
1615 	ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1616 	if (ret) {
1617 		dev_err(dev, "Failed to set esc clock: %d\n", ret);
1618 		return ret;
1619 	}
1620 
1621 	ret = vc4_dsi_init_phy_clocks(dsi);
1622 	if (ret)
1623 		return ret;
1624 
1625 	if (dsi->port == 1)
1626 		vc4->dsi1 = dsi;
1627 
1628 	drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
1629 			 DRM_MODE_ENCODER_DSI, NULL);
1630 	drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1631 
1632 	ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
1633 	if (ret) {
1634 		dev_err(dev, "bridge attach failed: %d\n", ret);
1635 		return ret;
1636 	}
1637 
1638 	pm_runtime_enable(dev);
1639 
1640 	return 0;
1641 }
1642 
1643 static void vc4_dsi_unbind(struct device *dev, struct device *master,
1644 			   void *data)
1645 {
1646 	struct drm_device *drm = dev_get_drvdata(master);
1647 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1648 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1649 
1650 	pm_runtime_disable(dev);
1651 
1652 	vc4_dsi_encoder_destroy(dsi->encoder);
1653 
1654 	if (dsi->port == 1)
1655 		vc4->dsi1 = NULL;
1656 }
1657 
1658 static const struct component_ops vc4_dsi_ops = {
1659 	.bind   = vc4_dsi_bind,
1660 	.unbind = vc4_dsi_unbind,
1661 };
1662 
1663 static int vc4_dsi_dev_probe(struct platform_device *pdev)
1664 {
1665 	struct device *dev = &pdev->dev;
1666 	struct vc4_dsi *dsi;
1667 	int ret;
1668 
1669 	dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1670 	if (!dsi)
1671 		return -ENOMEM;
1672 	dev_set_drvdata(dev, dsi);
1673 
1674 	dsi->pdev = pdev;
1675 
1676 	/* Note, the initialization sequence for DSI and panels is
1677 	 * tricky.  The component bind above won't get past its
1678 	 * -EPROBE_DEFER until the panel/bridge probes.  The
1679 	 * panel/bridge will return -EPROBE_DEFER until it has a
1680 	 * mipi_dsi_host to register its device to.  So, we register
1681 	 * the host during pdev probe time, so vc4 as a whole can then
1682 	 * -EPROBE_DEFER its component bind process until the panel
1683 	 * successfully attaches.
1684 	 */
1685 	dsi->dsi_host.ops = &vc4_dsi_host_ops;
1686 	dsi->dsi_host.dev = dev;
1687 	mipi_dsi_host_register(&dsi->dsi_host);
1688 
1689 	ret = component_add(&pdev->dev, &vc4_dsi_ops);
1690 	if (ret) {
1691 		mipi_dsi_host_unregister(&dsi->dsi_host);
1692 		return ret;
1693 	}
1694 
1695 	return 0;
1696 }
1697 
1698 static int vc4_dsi_dev_remove(struct platform_device *pdev)
1699 {
1700 	struct device *dev = &pdev->dev;
1701 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1702 
1703 	component_del(&pdev->dev, &vc4_dsi_ops);
1704 	mipi_dsi_host_unregister(&dsi->dsi_host);
1705 
1706 	return 0;
1707 }
1708 
1709 struct platform_driver vc4_dsi_driver = {
1710 	.probe = vc4_dsi_dev_probe,
1711 	.remove = vc4_dsi_dev_remove,
1712 	.driver = {
1713 		.name = "vc4_dsi",
1714 		.of_match_table = vc4_dsi_dt_match,
1715 	},
1716 };
1717