1 /* 2 * Copyright (C) 2016 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License version 2 as published by 6 * the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program. If not, see <http://www.gnu.org/licenses/>. 15 */ 16 17 /** 18 * DOC: VC4 DSI0/DSI1 module 19 * 20 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a 21 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI 22 * controller. 23 * 24 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector, 25 * while the compute module brings both DSI0 and DSI1 out. 26 * 27 * This driver has been tested for DSI1 video-mode display only 28 * currently, with most of the information necessary for DSI0 29 * hopefully present. 30 */ 31 32 #include "drm_atomic_helper.h" 33 #include "drm_crtc_helper.h" 34 #include "drm_edid.h" 35 #include "drm_mipi_dsi.h" 36 #include "drm_panel.h" 37 #include "linux/clk.h" 38 #include "linux/clk-provider.h" 39 #include "linux/completion.h" 40 #include "linux/component.h" 41 #include "linux/dmaengine.h" 42 #include "linux/i2c.h" 43 #include "linux/of_address.h" 44 #include "linux/of_platform.h" 45 #include "linux/pm_runtime.h" 46 #include "vc4_drv.h" 47 #include "vc4_regs.h" 48 49 #define DSI_CMD_FIFO_DEPTH 16 50 #define DSI_PIX_FIFO_DEPTH 256 51 #define DSI_PIX_FIFO_WIDTH 4 52 53 #define DSI0_CTRL 0x00 54 55 /* Command packet control. */ 56 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */ 57 #define DSI1_TXPKT1C 0x04 58 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24) 59 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24 60 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10) 61 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10 62 63 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8) 64 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8 65 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */ 66 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0 67 /* Primary display where cmdfifo provides part of the payload and 68 * pixelvalve the rest. 69 */ 70 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1 71 /* Secondary display where cmdfifo provides part of the payload and 72 * pixfifo the rest. 73 */ 74 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2 75 76 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6) 77 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6 78 79 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4) 80 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4 81 /* Command only. Uses TXPKT1H and DISPLAY_NO */ 82 # define DSI_TXPKT1C_CMD_CTRL_TX 0 83 /* Command with BTA for either ack or read data. */ 84 # define DSI_TXPKT1C_CMD_CTRL_RX 1 85 /* Trigger according to TRIG_CMD */ 86 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2 87 /* BTA alone for getting error status after a command, or a TE trigger 88 * without a previous command. 89 */ 90 # define DSI_TXPKT1C_CMD_CTRL_BTA 3 91 92 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3) 93 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2) 94 # define DSI_TXPKT1C_CMD_TE_EN BIT(1) 95 # define DSI_TXPKT1C_CMD_EN BIT(0) 96 97 /* Command packet header. */ 98 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */ 99 #define DSI1_TXPKT1H 0x08 100 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24) 101 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24 102 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 103 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8 104 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0) 105 # define DSI_TXPKT1H_BC_DT_SHIFT 0 106 107 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */ 108 #define DSI1_RXPKT1H 0x14 109 # define DSI_RXPKT1H_CRC_ERR BIT(31) 110 # define DSI_RXPKT1H_DET_ERR BIT(30) 111 # define DSI_RXPKT1H_ECC_ERR BIT(29) 112 # define DSI_RXPKT1H_COR_ERR BIT(28) 113 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 114 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24) 115 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */ 116 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 117 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 118 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */ 119 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16) 120 # define DSI_RXPKT1H_SHORT_1_SHIFT 16 121 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8) 122 # define DSI_RXPKT1H_SHORT_0_SHIFT 8 123 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0) 124 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0 125 126 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */ 127 #define DSI1_RXPKT2H 0x18 128 # define DSI_RXPKT1H_DET_ERR BIT(30) 129 # define DSI_RXPKT1H_ECC_ERR BIT(29) 130 # define DSI_RXPKT1H_COR_ERR BIT(28) 131 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 132 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 133 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 134 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0) 135 # define DSI_RXPKT1H_DT_SHIFT 0 136 137 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */ 138 #define DSI1_TXPKT_CMD_FIFO 0x1c 139 140 #define DSI0_DISP0_CTRL 0x18 141 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13) 142 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13 143 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11) 144 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11 145 # define DSI_DISP0_LP_STOP_DISABLE 0 146 # define DSI_DISP0_LP_STOP_PERLINE 1 147 # define DSI_DISP0_LP_STOP_PERFRAME 2 148 149 /* Transmit RGB pixels and null packets only during HACTIVE, instead 150 * of going to LP-STOP. 151 */ 152 # define DSI_DISP_HACTIVE_NULL BIT(10) 153 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */ 154 # define DSI_DISP_VBLP_CTRL BIT(9) 155 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */ 156 # define DSI_DISP_HFP_CTRL BIT(8) 157 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */ 158 # define DSI_DISP_HBP_CTRL BIT(7) 159 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5) 160 # define DSI_DISP0_CHANNEL_SHIFT 5 161 /* Enables end events for HSYNC/VSYNC, not just start events. */ 162 # define DSI_DISP0_ST_END BIT(4) 163 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2) 164 # define DSI_DISP0_PFORMAT_SHIFT 2 165 # define DSI_PFORMAT_RGB565 0 166 # define DSI_PFORMAT_RGB666_PACKED 1 167 # define DSI_PFORMAT_RGB666 2 168 # define DSI_PFORMAT_RGB888 3 169 /* Default is VIDEO mode. */ 170 # define DSI_DISP0_COMMAND_MODE BIT(1) 171 # define DSI_DISP0_ENABLE BIT(0) 172 173 #define DSI0_DISP1_CTRL 0x1c 174 #define DSI1_DISP1_CTRL 0x2c 175 /* Format of the data written to TXPKT_PIX_FIFO. */ 176 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1) 177 # define DSI_DISP1_PFORMAT_SHIFT 1 178 # define DSI_DISP1_PFORMAT_16BIT 0 179 # define DSI_DISP1_PFORMAT_24BIT 1 180 # define DSI_DISP1_PFORMAT_32BIT_LE 2 181 # define DSI_DISP1_PFORMAT_32BIT_BE 3 182 183 /* DISP1 is always command mode. */ 184 # define DSI_DISP1_ENABLE BIT(0) 185 186 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */ 187 188 #define DSI0_INT_STAT 0x24 189 #define DSI0_INT_EN 0x28 190 # define DSI1_INT_PHY_D3_ULPS BIT(30) 191 # define DSI1_INT_PHY_D3_STOP BIT(29) 192 # define DSI1_INT_PHY_D2_ULPS BIT(28) 193 # define DSI1_INT_PHY_D2_STOP BIT(27) 194 # define DSI1_INT_PHY_D1_ULPS BIT(26) 195 # define DSI1_INT_PHY_D1_STOP BIT(25) 196 # define DSI1_INT_PHY_D0_ULPS BIT(24) 197 # define DSI1_INT_PHY_D0_STOP BIT(23) 198 # define DSI1_INT_FIFO_ERR BIT(22) 199 # define DSI1_INT_PHY_DIR_RTF BIT(21) 200 # define DSI1_INT_PHY_RXLPDT BIT(20) 201 # define DSI1_INT_PHY_RXTRIG BIT(19) 202 # define DSI1_INT_PHY_D0_LPDT BIT(18) 203 # define DSI1_INT_PHY_DIR_FTR BIT(17) 204 205 /* Signaled when the clock lane enters the given state. */ 206 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16) 207 # define DSI1_INT_PHY_CLOCK_HS BIT(15) 208 # define DSI1_INT_PHY_CLOCK_STOP BIT(14) 209 210 /* Signaled on timeouts */ 211 # define DSI1_INT_PR_TO BIT(13) 212 # define DSI1_INT_TA_TO BIT(12) 213 # define DSI1_INT_LPRX_TO BIT(11) 214 # define DSI1_INT_HSTX_TO BIT(10) 215 216 /* Contention on a line when trying to drive the line low */ 217 # define DSI1_INT_ERR_CONT_LP1 BIT(9) 218 # define DSI1_INT_ERR_CONT_LP0 BIT(8) 219 220 /* Control error: incorrect line state sequence on data lane 0. */ 221 # define DSI1_INT_ERR_CONTROL BIT(7) 222 /* LPDT synchronization error (bits received not a multiple of 8. */ 223 224 # define DSI1_INT_ERR_SYNC_ESC BIT(6) 225 /* Signaled after receiving an error packet from the display in 226 * response to a read. 227 */ 228 # define DSI1_INT_RXPKT2 BIT(5) 229 /* Signaled after receiving a packet. The header and optional short 230 * response will be in RXPKT1H, and a long response will be in the 231 * RXPKT_FIFO. 232 */ 233 # define DSI1_INT_RXPKT1 BIT(4) 234 # define DSI1_INT_TXPKT2_DONE BIT(3) 235 # define DSI1_INT_TXPKT2_END BIT(2) 236 /* Signaled after all repeats of TXPKT1 are transferred. */ 237 # define DSI1_INT_TXPKT1_DONE BIT(1) 238 /* Signaled after each TXPKT1 repeat is scheduled. */ 239 # define DSI1_INT_TXPKT1_END BIT(0) 240 241 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \ 242 DSI1_INT_ERR_CONTROL | \ 243 DSI1_INT_ERR_CONT_LP0 | \ 244 DSI1_INT_ERR_CONT_LP1 | \ 245 DSI1_INT_HSTX_TO | \ 246 DSI1_INT_LPRX_TO | \ 247 DSI1_INT_TA_TO | \ 248 DSI1_INT_PR_TO) 249 250 #define DSI0_STAT 0x2c 251 #define DSI0_HSTX_TO_CNT 0x30 252 #define DSI0_LPRX_TO_CNT 0x34 253 #define DSI0_TA_TO_CNT 0x38 254 #define DSI0_PR_TO_CNT 0x3c 255 #define DSI0_PHYC 0x40 256 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20) 257 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20 258 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18) 259 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12) 260 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12 261 # define DSI1_PHYC_CLANE_ULPS BIT(17) 262 # define DSI1_PHYC_CLANE_ENABLE BIT(16) 263 # define DSI_PHYC_DLANE3_ULPS BIT(13) 264 # define DSI_PHYC_DLANE3_ENABLE BIT(12) 265 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10) 266 # define DSI0_PHYC_CLANE_ULPS BIT(9) 267 # define DSI_PHYC_DLANE2_ULPS BIT(9) 268 # define DSI0_PHYC_CLANE_ENABLE BIT(8) 269 # define DSI_PHYC_DLANE2_ENABLE BIT(8) 270 # define DSI_PHYC_DLANE1_ULPS BIT(5) 271 # define DSI_PHYC_DLANE1_ENABLE BIT(4) 272 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2) 273 # define DSI_PHYC_DLANE0_ULPS BIT(1) 274 # define DSI_PHYC_DLANE0_ENABLE BIT(0) 275 276 #define DSI0_HS_CLT0 0x44 277 #define DSI0_HS_CLT1 0x48 278 #define DSI0_HS_CLT2 0x4c 279 #define DSI0_HS_DLT3 0x50 280 #define DSI0_HS_DLT4 0x54 281 #define DSI0_HS_DLT5 0x58 282 #define DSI0_HS_DLT6 0x5c 283 #define DSI0_HS_DLT7 0x60 284 285 #define DSI0_PHY_AFEC0 0x64 286 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26) 287 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25) 288 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24) 289 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29) 290 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29 291 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26) 292 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26 293 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23) 294 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23 295 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20) 296 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20 297 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17) 298 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17 299 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20) 300 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20 301 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16) 302 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16 303 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12) 304 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12 305 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16) 306 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15) 307 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14) 308 # define DSI1_PHY_AFEC0_RESET BIT(13) 309 # define DSI1_PHY_AFEC0_PD BIT(12) 310 # define DSI0_PHY_AFEC0_RESET BIT(11) 311 # define DSI1_PHY_AFEC0_PD_BG BIT(11) 312 # define DSI0_PHY_AFEC0_PD BIT(10) 313 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10) 314 # define DSI0_PHY_AFEC0_PD_BG BIT(9) 315 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9) 316 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8) 317 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8) 318 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4) 319 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4 320 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0) 321 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0 322 323 #define DSI0_PHY_AFEC1 0x68 324 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8) 325 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8 326 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4) 327 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4 328 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0) 329 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0 330 331 #define DSI0_TST_SEL 0x6c 332 #define DSI0_TST_MON 0x70 333 #define DSI0_ID 0x74 334 # define DSI_ID_VALUE 0x00647369 335 336 #define DSI1_CTRL 0x00 337 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14) 338 # define DSI_CTRL_HS_CLKC_SHIFT 14 339 # define DSI_CTRL_HS_CLKC_BYTE 0 340 # define DSI_CTRL_HS_CLKC_DDR2 1 341 # define DSI_CTRL_HS_CLKC_DDR 2 342 343 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13) 344 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12) 345 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11) 346 # define DSI_CTRL_SOFT_RESET_CFG BIT(10) 347 # define DSI_CTRL_CAL_BYTE BIT(9) 348 # define DSI_CTRL_INV_BYTE BIT(8) 349 # define DSI_CTRL_CLR_LDF BIT(7) 350 # define DSI0_CTRL_CLR_PBCF BIT(6) 351 # define DSI1_CTRL_CLR_RXF BIT(6) 352 # define DSI0_CTRL_CLR_CPBCF BIT(5) 353 # define DSI1_CTRL_CLR_PDF BIT(5) 354 # define DSI0_CTRL_CLR_PDF BIT(4) 355 # define DSI1_CTRL_CLR_CDF BIT(4) 356 # define DSI0_CTRL_CLR_CDF BIT(3) 357 # define DSI0_CTRL_CTRL2 BIT(2) 358 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2) 359 # define DSI0_CTRL_CTRL1 BIT(1) 360 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1) 361 # define DSI0_CTRL_CTRL0 BIT(0) 362 # define DSI1_CTRL_EN BIT(0) 363 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 364 DSI0_CTRL_CLR_PBCF | \ 365 DSI0_CTRL_CLR_CPBCF | \ 366 DSI0_CTRL_CLR_PDF | \ 367 DSI0_CTRL_CLR_CDF) 368 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 369 DSI1_CTRL_CLR_RXF | \ 370 DSI1_CTRL_CLR_PDF | \ 371 DSI1_CTRL_CLR_CDF) 372 373 #define DSI1_TXPKT2C 0x0c 374 #define DSI1_TXPKT2H 0x10 375 #define DSI1_TXPKT_PIX_FIFO 0x20 376 #define DSI1_RXPKT_FIFO 0x24 377 #define DSI1_DISP0_CTRL 0x28 378 #define DSI1_INT_STAT 0x30 379 #define DSI1_INT_EN 0x34 380 /* State reporting bits. These mostly behave like INT_STAT, where 381 * writing a 1 clears the bit. 382 */ 383 #define DSI1_STAT 0x38 384 # define DSI1_STAT_PHY_D3_ULPS BIT(31) 385 # define DSI1_STAT_PHY_D3_STOP BIT(30) 386 # define DSI1_STAT_PHY_D2_ULPS BIT(29) 387 # define DSI1_STAT_PHY_D2_STOP BIT(28) 388 # define DSI1_STAT_PHY_D1_ULPS BIT(27) 389 # define DSI1_STAT_PHY_D1_STOP BIT(26) 390 # define DSI1_STAT_PHY_D0_ULPS BIT(25) 391 # define DSI1_STAT_PHY_D0_STOP BIT(24) 392 # define DSI1_STAT_FIFO_ERR BIT(23) 393 # define DSI1_STAT_PHY_RXLPDT BIT(22) 394 # define DSI1_STAT_PHY_RXTRIG BIT(21) 395 # define DSI1_STAT_PHY_D0_LPDT BIT(20) 396 /* Set when in forward direction */ 397 # define DSI1_STAT_PHY_DIR BIT(19) 398 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18) 399 # define DSI1_STAT_PHY_CLOCK_HS BIT(17) 400 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16) 401 # define DSI1_STAT_PR_TO BIT(15) 402 # define DSI1_STAT_TA_TO BIT(14) 403 # define DSI1_STAT_LPRX_TO BIT(13) 404 # define DSI1_STAT_HSTX_TO BIT(12) 405 # define DSI1_STAT_ERR_CONT_LP1 BIT(11) 406 # define DSI1_STAT_ERR_CONT_LP0 BIT(10) 407 # define DSI1_STAT_ERR_CONTROL BIT(9) 408 # define DSI1_STAT_ERR_SYNC_ESC BIT(8) 409 # define DSI1_STAT_RXPKT2 BIT(7) 410 # define DSI1_STAT_RXPKT1 BIT(6) 411 # define DSI1_STAT_TXPKT2_BUSY BIT(5) 412 # define DSI1_STAT_TXPKT2_DONE BIT(4) 413 # define DSI1_STAT_TXPKT2_END BIT(3) 414 # define DSI1_STAT_TXPKT1_BUSY BIT(2) 415 # define DSI1_STAT_TXPKT1_DONE BIT(1) 416 # define DSI1_STAT_TXPKT1_END BIT(0) 417 418 #define DSI1_HSTX_TO_CNT 0x3c 419 #define DSI1_LPRX_TO_CNT 0x40 420 #define DSI1_TA_TO_CNT 0x44 421 #define DSI1_PR_TO_CNT 0x48 422 #define DSI1_PHYC 0x4c 423 424 #define DSI1_HS_CLT0 0x50 425 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18) 426 # define DSI_HS_CLT0_CZERO_SHIFT 18 427 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9) 428 # define DSI_HS_CLT0_CPRE_SHIFT 9 429 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0) 430 # define DSI_HS_CLT0_CPREP_SHIFT 0 431 432 #define DSI1_HS_CLT1 0x54 433 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9) 434 # define DSI_HS_CLT1_CTRAIL_SHIFT 9 435 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0) 436 # define DSI_HS_CLT1_CPOST_SHIFT 0 437 438 #define DSI1_HS_CLT2 0x58 439 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0) 440 # define DSI_HS_CLT2_WUP_SHIFT 0 441 442 #define DSI1_HS_DLT3 0x5c 443 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18) 444 # define DSI_HS_DLT3_EXIT_SHIFT 18 445 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9) 446 # define DSI_HS_DLT3_ZERO_SHIFT 9 447 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0) 448 # define DSI_HS_DLT3_PRE_SHIFT 0 449 450 #define DSI1_HS_DLT4 0x60 451 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18) 452 # define DSI_HS_DLT4_ANLAT_SHIFT 18 453 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9) 454 # define DSI_HS_DLT4_TRAIL_SHIFT 9 455 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0) 456 # define DSI_HS_DLT4_LPX_SHIFT 0 457 458 #define DSI1_HS_DLT5 0x64 459 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0) 460 # define DSI_HS_DLT5_INIT_SHIFT 0 461 462 #define DSI1_HS_DLT6 0x68 463 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24) 464 # define DSI_HS_DLT6_TA_GET_SHIFT 24 465 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16) 466 # define DSI_HS_DLT6_TA_SURE_SHIFT 16 467 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8) 468 # define DSI_HS_DLT6_TA_GO_SHIFT 8 469 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0) 470 # define DSI_HS_DLT6_LP_LPX_SHIFT 0 471 472 #define DSI1_HS_DLT7 0x6c 473 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0) 474 # define DSI_HS_DLT7_LP_WUP_SHIFT 0 475 476 #define DSI1_PHY_AFEC0 0x70 477 478 #define DSI1_PHY_AFEC1 0x74 479 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16) 480 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16 481 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12) 482 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12 483 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8) 484 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8 485 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4) 486 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4 487 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0) 488 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0 489 490 #define DSI1_TST_SEL 0x78 491 #define DSI1_TST_MON 0x7c 492 #define DSI1_PHY_TST1 0x80 493 #define DSI1_PHY_TST2 0x84 494 #define DSI1_PHY_FIFO_STAT 0x88 495 /* Actually, all registers in the range that aren't otherwise claimed 496 * will return the ID. 497 */ 498 #define DSI1_ID 0x8c 499 500 /* General DSI hardware state. */ 501 struct vc4_dsi { 502 struct platform_device *pdev; 503 504 struct mipi_dsi_host dsi_host; 505 struct drm_encoder *encoder; 506 struct drm_connector *connector; 507 struct drm_panel *panel; 508 509 void __iomem *regs; 510 511 struct dma_chan *reg_dma_chan; 512 dma_addr_t reg_dma_paddr; 513 u32 *reg_dma_mem; 514 dma_addr_t reg_paddr; 515 516 /* Whether we're on bcm2835's DSI0 or DSI1. */ 517 int port; 518 519 /* DSI channel for the panel we're connected to. */ 520 u32 channel; 521 u32 lanes; 522 enum mipi_dsi_pixel_format format; 523 u32 mode_flags; 524 525 /* Input clock from CPRMAN to the digital PHY, for the DSI 526 * escape clock. 527 */ 528 struct clk *escape_clock; 529 530 /* Input clock to the analog PHY, used to generate the DSI bit 531 * clock. 532 */ 533 struct clk *pll_phy_clock; 534 535 /* HS Clocks generated within the DSI analog PHY. */ 536 struct clk_fixed_factor phy_clocks[3]; 537 538 struct clk_hw_onecell_data *clk_onecell; 539 540 /* Pixel clock output to the pixelvalve, generated from the HS 541 * clock. 542 */ 543 struct clk *pixel_clock; 544 545 struct completion xfer_completion; 546 int xfer_result; 547 }; 548 549 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host) 550 551 static inline void 552 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val) 553 { 554 struct dma_chan *chan = dsi->reg_dma_chan; 555 struct dma_async_tx_descriptor *tx; 556 dma_cookie_t cookie; 557 int ret; 558 559 /* DSI0 should be able to write normally. */ 560 if (!chan) { 561 writel(val, dsi->regs + offset); 562 return; 563 } 564 565 *dsi->reg_dma_mem = val; 566 567 tx = chan->device->device_prep_dma_memcpy(chan, 568 dsi->reg_paddr + offset, 569 dsi->reg_dma_paddr, 570 4, 0); 571 if (!tx) { 572 DRM_ERROR("Failed to set up DMA register write\n"); 573 return; 574 } 575 576 cookie = tx->tx_submit(tx); 577 ret = dma_submit_error(cookie); 578 if (ret) { 579 DRM_ERROR("Failed to submit DMA: %d\n", ret); 580 return; 581 } 582 ret = dma_sync_wait(chan, cookie); 583 if (ret) 584 DRM_ERROR("Failed to wait for DMA: %d\n", ret); 585 } 586 587 #define DSI_READ(offset) readl(dsi->regs + (offset)) 588 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val) 589 #define DSI_PORT_READ(offset) \ 590 DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset) 591 #define DSI_PORT_WRITE(offset, val) \ 592 DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val) 593 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit) 594 595 /* VC4 DSI encoder KMS struct */ 596 struct vc4_dsi_encoder { 597 struct vc4_encoder base; 598 struct vc4_dsi *dsi; 599 }; 600 601 static inline struct vc4_dsi_encoder * 602 to_vc4_dsi_encoder(struct drm_encoder *encoder) 603 { 604 return container_of(encoder, struct vc4_dsi_encoder, base.base); 605 } 606 607 /* VC4 DSI connector KMS struct */ 608 struct vc4_dsi_connector { 609 struct drm_connector base; 610 struct vc4_dsi *dsi; 611 }; 612 613 static inline struct vc4_dsi_connector * 614 to_vc4_dsi_connector(struct drm_connector *connector) 615 { 616 return container_of(connector, struct vc4_dsi_connector, base); 617 } 618 619 #define DSI_REG(reg) { reg, #reg } 620 static const struct { 621 u32 reg; 622 const char *name; 623 } dsi0_regs[] = { 624 DSI_REG(DSI0_CTRL), 625 DSI_REG(DSI0_STAT), 626 DSI_REG(DSI0_HSTX_TO_CNT), 627 DSI_REG(DSI0_LPRX_TO_CNT), 628 DSI_REG(DSI0_TA_TO_CNT), 629 DSI_REG(DSI0_PR_TO_CNT), 630 DSI_REG(DSI0_DISP0_CTRL), 631 DSI_REG(DSI0_DISP1_CTRL), 632 DSI_REG(DSI0_INT_STAT), 633 DSI_REG(DSI0_INT_EN), 634 DSI_REG(DSI0_PHYC), 635 DSI_REG(DSI0_HS_CLT0), 636 DSI_REG(DSI0_HS_CLT1), 637 DSI_REG(DSI0_HS_CLT2), 638 DSI_REG(DSI0_HS_DLT3), 639 DSI_REG(DSI0_HS_DLT4), 640 DSI_REG(DSI0_HS_DLT5), 641 DSI_REG(DSI0_HS_DLT6), 642 DSI_REG(DSI0_HS_DLT7), 643 DSI_REG(DSI0_PHY_AFEC0), 644 DSI_REG(DSI0_PHY_AFEC1), 645 DSI_REG(DSI0_ID), 646 }; 647 648 static const struct { 649 u32 reg; 650 const char *name; 651 } dsi1_regs[] = { 652 DSI_REG(DSI1_CTRL), 653 DSI_REG(DSI1_STAT), 654 DSI_REG(DSI1_HSTX_TO_CNT), 655 DSI_REG(DSI1_LPRX_TO_CNT), 656 DSI_REG(DSI1_TA_TO_CNT), 657 DSI_REG(DSI1_PR_TO_CNT), 658 DSI_REG(DSI1_DISP0_CTRL), 659 DSI_REG(DSI1_DISP1_CTRL), 660 DSI_REG(DSI1_INT_STAT), 661 DSI_REG(DSI1_INT_EN), 662 DSI_REG(DSI1_PHYC), 663 DSI_REG(DSI1_HS_CLT0), 664 DSI_REG(DSI1_HS_CLT1), 665 DSI_REG(DSI1_HS_CLT2), 666 DSI_REG(DSI1_HS_DLT3), 667 DSI_REG(DSI1_HS_DLT4), 668 DSI_REG(DSI1_HS_DLT5), 669 DSI_REG(DSI1_HS_DLT6), 670 DSI_REG(DSI1_HS_DLT7), 671 DSI_REG(DSI1_PHY_AFEC0), 672 DSI_REG(DSI1_PHY_AFEC1), 673 DSI_REG(DSI1_ID), 674 }; 675 676 static void vc4_dsi_dump_regs(struct vc4_dsi *dsi) 677 { 678 int i; 679 680 if (dsi->port == 0) { 681 for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) { 682 DRM_INFO("0x%04x (%s): 0x%08x\n", 683 dsi0_regs[i].reg, dsi0_regs[i].name, 684 DSI_READ(dsi0_regs[i].reg)); 685 } 686 } else { 687 for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) { 688 DRM_INFO("0x%04x (%s): 0x%08x\n", 689 dsi1_regs[i].reg, dsi1_regs[i].name, 690 DSI_READ(dsi1_regs[i].reg)); 691 } 692 } 693 } 694 695 #ifdef CONFIG_DEBUG_FS 696 int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused) 697 { 698 struct drm_info_node *node = (struct drm_info_node *)m->private; 699 struct drm_device *drm = node->minor->dev; 700 struct vc4_dev *vc4 = to_vc4_dev(drm); 701 int dsi_index = (uintptr_t)node->info_ent->data; 702 struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL); 703 int i; 704 705 if (!dsi) 706 return 0; 707 708 if (dsi->port == 0) { 709 for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) { 710 seq_printf(m, "0x%04x (%s): 0x%08x\n", 711 dsi0_regs[i].reg, dsi0_regs[i].name, 712 DSI_READ(dsi0_regs[i].reg)); 713 } 714 } else { 715 for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) { 716 seq_printf(m, "0x%04x (%s): 0x%08x\n", 717 dsi1_regs[i].reg, dsi1_regs[i].name, 718 DSI_READ(dsi1_regs[i].reg)); 719 } 720 } 721 722 return 0; 723 } 724 #endif 725 726 static enum drm_connector_status 727 vc4_dsi_connector_detect(struct drm_connector *connector, bool force) 728 { 729 struct vc4_dsi_connector *vc4_connector = 730 to_vc4_dsi_connector(connector); 731 struct vc4_dsi *dsi = vc4_connector->dsi; 732 733 if (dsi->panel) 734 return connector_status_connected; 735 else 736 return connector_status_disconnected; 737 } 738 739 static void vc4_dsi_connector_destroy(struct drm_connector *connector) 740 { 741 drm_connector_unregister(connector); 742 drm_connector_cleanup(connector); 743 } 744 745 static int vc4_dsi_connector_get_modes(struct drm_connector *connector) 746 { 747 struct vc4_dsi_connector *vc4_connector = 748 to_vc4_dsi_connector(connector); 749 struct vc4_dsi *dsi = vc4_connector->dsi; 750 751 if (dsi->panel) 752 return drm_panel_get_modes(dsi->panel); 753 754 return 0; 755 } 756 757 static const struct drm_connector_funcs vc4_dsi_connector_funcs = { 758 .dpms = drm_atomic_helper_connector_dpms, 759 .detect = vc4_dsi_connector_detect, 760 .fill_modes = drm_helper_probe_single_connector_modes, 761 .destroy = vc4_dsi_connector_destroy, 762 .reset = drm_atomic_helper_connector_reset, 763 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, 764 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 765 }; 766 767 static const struct drm_connector_helper_funcs vc4_dsi_connector_helper_funcs = { 768 .get_modes = vc4_dsi_connector_get_modes, 769 }; 770 771 static struct drm_connector *vc4_dsi_connector_init(struct drm_device *dev, 772 struct vc4_dsi *dsi) 773 { 774 struct drm_connector *connector; 775 struct vc4_dsi_connector *dsi_connector; 776 777 dsi_connector = devm_kzalloc(dev->dev, sizeof(*dsi_connector), 778 GFP_KERNEL); 779 if (!dsi_connector) 780 return ERR_PTR(-ENOMEM); 781 782 connector = &dsi_connector->base; 783 784 dsi_connector->dsi = dsi; 785 786 drm_connector_init(dev, connector, &vc4_dsi_connector_funcs, 787 DRM_MODE_CONNECTOR_DSI); 788 drm_connector_helper_add(connector, &vc4_dsi_connector_helper_funcs); 789 790 connector->polled = 0; 791 connector->interlace_allowed = 0; 792 connector->doublescan_allowed = 0; 793 794 drm_mode_connector_attach_encoder(connector, dsi->encoder); 795 796 return connector; 797 } 798 799 static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder) 800 { 801 drm_encoder_cleanup(encoder); 802 } 803 804 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = { 805 .destroy = vc4_dsi_encoder_destroy, 806 }; 807 808 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch) 809 { 810 u32 afec0 = DSI_PORT_READ(PHY_AFEC0); 811 812 if (latch) 813 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 814 else 815 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 816 817 DSI_PORT_WRITE(PHY_AFEC0, afec0); 818 } 819 820 /* Enters or exits Ultra Low Power State. */ 821 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps) 822 { 823 bool continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS; 824 u32 phyc_ulps = ((continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) | 825 DSI_PHYC_DLANE0_ULPS | 826 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) | 827 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) | 828 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0)); 829 u32 stat_ulps = ((continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) | 830 DSI1_STAT_PHY_D0_ULPS | 831 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) | 832 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) | 833 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0)); 834 u32 stat_stop = ((continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) | 835 DSI1_STAT_PHY_D0_STOP | 836 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) | 837 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) | 838 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0)); 839 int ret; 840 841 DSI_PORT_WRITE(STAT, stat_ulps); 842 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps); 843 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200); 844 if (ret) { 845 dev_warn(&dsi->pdev->dev, 846 "Timeout waiting for DSI ULPS entry: STAT 0x%08x", 847 DSI_PORT_READ(STAT)); 848 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 849 vc4_dsi_latch_ulps(dsi, false); 850 return; 851 } 852 853 /* The DSI module can't be disabled while the module is 854 * generating ULPS state. So, to be able to disable the 855 * module, we have the AFE latch the ULPS state and continue 856 * on to having the module enter STOP. 857 */ 858 vc4_dsi_latch_ulps(dsi, ulps); 859 860 DSI_PORT_WRITE(STAT, stat_stop); 861 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 862 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200); 863 if (ret) { 864 dev_warn(&dsi->pdev->dev, 865 "Timeout waiting for DSI STOP entry: STAT 0x%08x", 866 DSI_PORT_READ(STAT)); 867 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 868 return; 869 } 870 } 871 872 static u32 873 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui) 874 { 875 /* The HS timings have to be rounded up to a multiple of 8 876 * because we're using the byte clock. 877 */ 878 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8); 879 } 880 881 /* ESC always runs at 100Mhz. */ 882 #define ESC_TIME_NS 10 883 884 static u32 885 dsi_esc_timing(u32 ns) 886 { 887 return DIV_ROUND_UP(ns, ESC_TIME_NS); 888 } 889 890 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder) 891 { 892 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 893 struct vc4_dsi *dsi = vc4_encoder->dsi; 894 struct device *dev = &dsi->pdev->dev; 895 896 drm_panel_disable(dsi->panel); 897 898 vc4_dsi_ulps(dsi, true); 899 900 drm_panel_unprepare(dsi->panel); 901 902 clk_disable_unprepare(dsi->pll_phy_clock); 903 clk_disable_unprepare(dsi->escape_clock); 904 clk_disable_unprepare(dsi->pixel_clock); 905 906 pm_runtime_put(dev); 907 } 908 909 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder) 910 { 911 struct drm_display_mode *mode = &encoder->crtc->mode; 912 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 913 struct vc4_dsi *dsi = vc4_encoder->dsi; 914 struct device *dev = &dsi->pdev->dev; 915 u32 format = 0, divider = 0; 916 bool debug_dump_regs = false; 917 unsigned long hs_clock; 918 u32 ui_ns; 919 /* Minimum LP state duration in escape clock cycles. */ 920 u32 lpx = dsi_esc_timing(60); 921 unsigned long pixel_clock_hz = mode->clock * 1000; 922 unsigned long dsip_clock; 923 unsigned long phy_clock; 924 int ret; 925 926 ret = pm_runtime_get_sync(dev); 927 if (ret) { 928 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port); 929 return; 930 } 931 932 ret = drm_panel_prepare(dsi->panel); 933 if (ret) { 934 DRM_ERROR("Panel failed to prepare\n"); 935 return; 936 } 937 938 if (debug_dump_regs) { 939 DRM_INFO("DSI regs before:\n"); 940 vc4_dsi_dump_regs(dsi); 941 } 942 943 switch (dsi->format) { 944 case MIPI_DSI_FMT_RGB888: 945 format = DSI_PFORMAT_RGB888; 946 divider = 24 / dsi->lanes; 947 break; 948 case MIPI_DSI_FMT_RGB666: 949 format = DSI_PFORMAT_RGB666; 950 divider = 24 / dsi->lanes; 951 break; 952 case MIPI_DSI_FMT_RGB666_PACKED: 953 format = DSI_PFORMAT_RGB666_PACKED; 954 divider = 18 / dsi->lanes; 955 break; 956 case MIPI_DSI_FMT_RGB565: 957 format = DSI_PFORMAT_RGB565; 958 divider = 16 / dsi->lanes; 959 break; 960 } 961 962 phy_clock = pixel_clock_hz * divider; 963 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock); 964 if (ret) { 965 dev_err(&dsi->pdev->dev, 966 "Failed to set phy clock to %ld: %d\n", phy_clock, ret); 967 } 968 969 /* Reset the DSI and all its fifos. */ 970 DSI_PORT_WRITE(CTRL, 971 DSI_CTRL_SOFT_RESET_CFG | 972 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 973 974 DSI_PORT_WRITE(CTRL, 975 DSI_CTRL_HSDT_EOT_DISABLE | 976 DSI_CTRL_RX_LPDT_EOT_DISABLE); 977 978 /* Clear all stat bits so we see what has happened during enable. */ 979 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT)); 980 981 /* Set AFE CTR00/CTR1 to release powerdown of analog. */ 982 if (dsi->port == 0) { 983 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 984 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ)); 985 986 if (dsi->lanes < 2) 987 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1; 988 989 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) 990 afec0 |= DSI0_PHY_AFEC0_RESET; 991 992 DSI_PORT_WRITE(PHY_AFEC0, afec0); 993 994 DSI_PORT_WRITE(PHY_AFEC1, 995 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) | 996 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) | 997 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE)); 998 } else { 999 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 1000 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) | 1001 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) | 1002 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) | 1003 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) | 1004 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) | 1005 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3)); 1006 1007 if (dsi->lanes < 4) 1008 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3; 1009 if (dsi->lanes < 3) 1010 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2; 1011 if (dsi->lanes < 2) 1012 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1; 1013 1014 afec0 |= DSI1_PHY_AFEC0_RESET; 1015 1016 DSI_PORT_WRITE(PHY_AFEC0, afec0); 1017 1018 DSI_PORT_WRITE(PHY_AFEC1, 0); 1019 1020 /* AFEC reset hold time */ 1021 mdelay(1); 1022 } 1023 1024 ret = clk_prepare_enable(dsi->escape_clock); 1025 if (ret) { 1026 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret); 1027 return; 1028 } 1029 1030 ret = clk_prepare_enable(dsi->pll_phy_clock); 1031 if (ret) { 1032 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret); 1033 return; 1034 } 1035 1036 hs_clock = clk_get_rate(dsi->pll_phy_clock); 1037 1038 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate, 1039 * not the pixel clock rate. DSIxP take from the APHY's byte, 1040 * DDR2, or DDR4 clock (we use byte) and feed into the PV at 1041 * that rate. Separately, a value derived from PIX_CLK_DIV 1042 * and HS_CLKC is fed into the PV to divide down to the actual 1043 * pixel clock for pushing pixels into DSI. 1044 */ 1045 dsip_clock = phy_clock / 8; 1046 ret = clk_set_rate(dsi->pixel_clock, dsip_clock); 1047 if (ret) { 1048 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n", 1049 dsip_clock, ret); 1050 } 1051 1052 ret = clk_prepare_enable(dsi->pixel_clock); 1053 if (ret) { 1054 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret); 1055 return; 1056 } 1057 1058 /* How many ns one DSI unit interval is. Note that the clock 1059 * is DDR, so there's an extra divide by 2. 1060 */ 1061 ui_ns = DIV_ROUND_UP(500000000, hs_clock); 1062 1063 DSI_PORT_WRITE(HS_CLT0, 1064 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0), 1065 DSI_HS_CLT0_CZERO) | 1066 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8), 1067 DSI_HS_CLT0_CPRE) | 1068 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0), 1069 DSI_HS_CLT0_CPREP)); 1070 1071 DSI_PORT_WRITE(HS_CLT1, 1072 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0), 1073 DSI_HS_CLT1_CTRAIL) | 1074 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52), 1075 DSI_HS_CLT1_CPOST)); 1076 1077 DSI_PORT_WRITE(HS_CLT2, 1078 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0), 1079 DSI_HS_CLT2_WUP)); 1080 1081 DSI_PORT_WRITE(HS_DLT3, 1082 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0), 1083 DSI_HS_DLT3_EXIT) | 1084 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6), 1085 DSI_HS_DLT3_ZERO) | 1086 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4), 1087 DSI_HS_DLT3_PRE)); 1088 1089 DSI_PORT_WRITE(HS_DLT4, 1090 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0), 1091 DSI_HS_DLT4_LPX) | 1092 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8), 1093 dsi_hs_timing(ui_ns, 60, 4)), 1094 DSI_HS_DLT4_TRAIL) | 1095 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT)); 1096 1097 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000, 5000), 1098 DSI_HS_DLT5_INIT)); 1099 1100 DSI_PORT_WRITE(HS_DLT6, 1101 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) | 1102 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) | 1103 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) | 1104 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX)); 1105 1106 DSI_PORT_WRITE(HS_DLT7, 1107 VC4_SET_FIELD(dsi_esc_timing(1000000), 1108 DSI_HS_DLT7_LP_WUP)); 1109 1110 DSI_PORT_WRITE(PHYC, 1111 DSI_PHYC_DLANE0_ENABLE | 1112 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) | 1113 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) | 1114 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) | 1115 DSI_PORT_BIT(PHYC_CLANE_ENABLE) | 1116 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ? 1117 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) | 1118 (dsi->port == 0 ? 1119 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) : 1120 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT))); 1121 1122 DSI_PORT_WRITE(CTRL, 1123 DSI_PORT_READ(CTRL) | 1124 DSI_CTRL_CAL_BYTE); 1125 1126 /* HS timeout in HS clock cycles: disabled. */ 1127 DSI_PORT_WRITE(HSTX_TO_CNT, 0); 1128 /* LP receive timeout in HS clocks. */ 1129 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff); 1130 /* Bus turnaround timeout */ 1131 DSI_PORT_WRITE(TA_TO_CNT, 100000); 1132 /* Display reset sequence timeout */ 1133 DSI_PORT_WRITE(PR_TO_CNT, 100000); 1134 1135 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 1136 DSI_PORT_WRITE(DISP0_CTRL, 1137 VC4_SET_FIELD(divider, DSI_DISP0_PIX_CLK_DIV) | 1138 VC4_SET_FIELD(format, DSI_DISP0_PFORMAT) | 1139 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME, 1140 DSI_DISP0_LP_STOP_CTRL) | 1141 DSI_DISP0_ST_END | 1142 DSI_DISP0_ENABLE); 1143 } else { 1144 DSI_PORT_WRITE(DISP0_CTRL, 1145 DSI_DISP0_COMMAND_MODE | 1146 DSI_DISP0_ENABLE); 1147 } 1148 1149 /* Set up DISP1 for transferring long command payloads through 1150 * the pixfifo. 1151 */ 1152 DSI_PORT_WRITE(DISP1_CTRL, 1153 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE, 1154 DSI_DISP1_PFORMAT) | 1155 DSI_DISP1_ENABLE); 1156 1157 /* Ungate the block. */ 1158 if (dsi->port == 0) 1159 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0); 1160 else 1161 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN); 1162 1163 /* Bring AFE out of reset. */ 1164 if (dsi->port == 0) { 1165 } else { 1166 DSI_PORT_WRITE(PHY_AFEC0, 1167 DSI_PORT_READ(PHY_AFEC0) & 1168 ~DSI1_PHY_AFEC0_RESET); 1169 } 1170 1171 vc4_dsi_ulps(dsi, false); 1172 1173 if (debug_dump_regs) { 1174 DRM_INFO("DSI regs after:\n"); 1175 vc4_dsi_dump_regs(dsi); 1176 } 1177 1178 ret = drm_panel_enable(dsi->panel); 1179 if (ret) { 1180 DRM_ERROR("Panel failed to enable\n"); 1181 drm_panel_unprepare(dsi->panel); 1182 return; 1183 } 1184 } 1185 1186 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host, 1187 const struct mipi_dsi_msg *msg) 1188 { 1189 struct vc4_dsi *dsi = host_to_dsi(host); 1190 struct mipi_dsi_packet packet; 1191 u32 pkth = 0, pktc = 0; 1192 int i, ret; 1193 bool is_long = mipi_dsi_packet_format_is_long(msg->type); 1194 u32 cmd_fifo_len = 0, pix_fifo_len = 0; 1195 1196 mipi_dsi_create_packet(&packet, msg); 1197 1198 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT); 1199 pkth |= VC4_SET_FIELD(packet.header[1] | 1200 (packet.header[2] << 8), 1201 DSI_TXPKT1H_BC_PARAM); 1202 if (is_long) { 1203 /* Divide data across the various FIFOs we have available. 1204 * The command FIFO takes byte-oriented data, but is of 1205 * limited size. The pixel FIFO (never actually used for 1206 * pixel data in reality) is word oriented, and substantially 1207 * larger. So, we use the pixel FIFO for most of the data, 1208 * sending the residual bytes in the command FIFO at the start. 1209 * 1210 * With this arrangement, the command FIFO will never get full. 1211 */ 1212 if (packet.payload_length <= 16) { 1213 cmd_fifo_len = packet.payload_length; 1214 pix_fifo_len = 0; 1215 } else { 1216 cmd_fifo_len = (packet.payload_length % 1217 DSI_PIX_FIFO_WIDTH); 1218 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) / 1219 DSI_PIX_FIFO_WIDTH); 1220 } 1221 1222 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH); 1223 1224 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO); 1225 } 1226 1227 if (msg->rx_len) { 1228 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX, 1229 DSI_TXPKT1C_CMD_CTRL); 1230 } else { 1231 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX, 1232 DSI_TXPKT1C_CMD_CTRL); 1233 } 1234 1235 for (i = 0; i < cmd_fifo_len; i++) 1236 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]); 1237 for (i = 0; i < pix_fifo_len; i++) { 1238 const u8 *pix = packet.payload + cmd_fifo_len + i * 4; 1239 1240 DSI_PORT_WRITE(TXPKT_PIX_FIFO, 1241 pix[0] | 1242 pix[1] << 8 | 1243 pix[2] << 16 | 1244 pix[3] << 24); 1245 } 1246 1247 if (msg->flags & MIPI_DSI_MSG_USE_LPM) 1248 pktc |= DSI_TXPKT1C_CMD_MODE_LP; 1249 if (is_long) 1250 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG; 1251 1252 /* Send one copy of the packet. Larger repeats are used for pixel 1253 * data in command mode. 1254 */ 1255 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT); 1256 1257 pktc |= DSI_TXPKT1C_CMD_EN; 1258 if (pix_fifo_len) { 1259 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY, 1260 DSI_TXPKT1C_DISPLAY_NO); 1261 } else { 1262 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT, 1263 DSI_TXPKT1C_DISPLAY_NO); 1264 } 1265 1266 /* Enable the appropriate interrupt for the transfer completion. */ 1267 dsi->xfer_result = 0; 1268 reinit_completion(&dsi->xfer_completion); 1269 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF); 1270 if (msg->rx_len) { 1271 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1272 DSI1_INT_PHY_DIR_RTF)); 1273 } else { 1274 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1275 DSI1_INT_TXPKT1_DONE)); 1276 } 1277 1278 /* Send the packet. */ 1279 DSI_PORT_WRITE(TXPKT1H, pkth); 1280 DSI_PORT_WRITE(TXPKT1C, pktc); 1281 1282 if (!wait_for_completion_timeout(&dsi->xfer_completion, 1283 msecs_to_jiffies(1000))) { 1284 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout"); 1285 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n", 1286 DSI_PORT_READ(INT_STAT)); 1287 ret = -ETIMEDOUT; 1288 } else { 1289 ret = dsi->xfer_result; 1290 } 1291 1292 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1293 1294 if (ret) 1295 goto reset_fifo_and_return; 1296 1297 if (ret == 0 && msg->rx_len) { 1298 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H); 1299 u8 *msg_rx = msg->rx_buf; 1300 1301 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) { 1302 u32 rxlen = VC4_GET_FIELD(rxpkt1h, 1303 DSI_RXPKT1H_BC_PARAM); 1304 1305 if (rxlen != msg->rx_len) { 1306 DRM_ERROR("DSI returned %db, expecting %db\n", 1307 rxlen, (int)msg->rx_len); 1308 ret = -ENXIO; 1309 goto reset_fifo_and_return; 1310 } 1311 1312 for (i = 0; i < msg->rx_len; i++) 1313 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO); 1314 } else { 1315 /* FINISHME: Handle AWER */ 1316 1317 msg_rx[0] = VC4_GET_FIELD(rxpkt1h, 1318 DSI_RXPKT1H_SHORT_0); 1319 if (msg->rx_len > 1) { 1320 msg_rx[1] = VC4_GET_FIELD(rxpkt1h, 1321 DSI_RXPKT1H_SHORT_1); 1322 } 1323 } 1324 } 1325 1326 return ret; 1327 1328 reset_fifo_and_return: 1329 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret); 1330 1331 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN); 1332 udelay(1); 1333 DSI_PORT_WRITE(CTRL, 1334 DSI_PORT_READ(CTRL) | 1335 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 1336 1337 DSI_PORT_WRITE(TXPKT1C, 0); 1338 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1339 return ret; 1340 } 1341 1342 static int vc4_dsi_host_attach(struct mipi_dsi_host *host, 1343 struct mipi_dsi_device *device) 1344 { 1345 struct vc4_dsi *dsi = host_to_dsi(host); 1346 int ret = 0; 1347 1348 dsi->lanes = device->lanes; 1349 dsi->channel = device->channel; 1350 dsi->format = device->format; 1351 dsi->mode_flags = device->mode_flags; 1352 1353 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) { 1354 dev_err(&dsi->pdev->dev, 1355 "Only VIDEO mode panels supported currently.\n"); 1356 return 0; 1357 } 1358 1359 dsi->panel = of_drm_find_panel(device->dev.of_node); 1360 if (!dsi->panel) 1361 return 0; 1362 1363 ret = drm_panel_attach(dsi->panel, dsi->connector); 1364 if (ret != 0) 1365 return ret; 1366 1367 drm_helper_hpd_irq_event(dsi->connector->dev); 1368 1369 return 0; 1370 } 1371 1372 static int vc4_dsi_host_detach(struct mipi_dsi_host *host, 1373 struct mipi_dsi_device *device) 1374 { 1375 struct vc4_dsi *dsi = host_to_dsi(host); 1376 1377 if (dsi->panel) { 1378 int ret = drm_panel_detach(dsi->panel); 1379 1380 if (ret) 1381 return ret; 1382 1383 dsi->panel = NULL; 1384 1385 drm_helper_hpd_irq_event(dsi->connector->dev); 1386 } 1387 1388 return 0; 1389 } 1390 1391 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = { 1392 .attach = vc4_dsi_host_attach, 1393 .detach = vc4_dsi_host_detach, 1394 .transfer = vc4_dsi_host_transfer, 1395 }; 1396 1397 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = { 1398 .disable = vc4_dsi_encoder_disable, 1399 .enable = vc4_dsi_encoder_enable, 1400 }; 1401 1402 static const struct of_device_id vc4_dsi_dt_match[] = { 1403 { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 }, 1404 {} 1405 }; 1406 1407 static void dsi_handle_error(struct vc4_dsi *dsi, 1408 irqreturn_t *ret, u32 stat, u32 bit, 1409 const char *type) 1410 { 1411 if (!(stat & bit)) 1412 return; 1413 1414 DRM_ERROR("DSI%d: %s error\n", dsi->port, type); 1415 *ret = IRQ_HANDLED; 1416 } 1417 1418 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data) 1419 { 1420 struct vc4_dsi *dsi = data; 1421 u32 stat = DSI_PORT_READ(INT_STAT); 1422 irqreturn_t ret = IRQ_NONE; 1423 1424 DSI_PORT_WRITE(INT_STAT, stat); 1425 1426 dsi_handle_error(dsi, &ret, stat, 1427 DSI1_INT_ERR_SYNC_ESC, "LPDT sync"); 1428 dsi_handle_error(dsi, &ret, stat, 1429 DSI1_INT_ERR_CONTROL, "data lane 0 sequence"); 1430 dsi_handle_error(dsi, &ret, stat, 1431 DSI1_INT_ERR_CONT_LP0, "LP0 contention"); 1432 dsi_handle_error(dsi, &ret, stat, 1433 DSI1_INT_ERR_CONT_LP1, "LP1 contention"); 1434 dsi_handle_error(dsi, &ret, stat, 1435 DSI1_INT_HSTX_TO, "HSTX timeout"); 1436 dsi_handle_error(dsi, &ret, stat, 1437 DSI1_INT_LPRX_TO, "LPRX timeout"); 1438 dsi_handle_error(dsi, &ret, stat, 1439 DSI1_INT_TA_TO, "turnaround timeout"); 1440 dsi_handle_error(dsi, &ret, stat, 1441 DSI1_INT_PR_TO, "peripheral reset timeout"); 1442 1443 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) { 1444 complete(&dsi->xfer_completion); 1445 ret = IRQ_HANDLED; 1446 } else if (stat & DSI1_INT_HSTX_TO) { 1447 complete(&dsi->xfer_completion); 1448 dsi->xfer_result = -ETIMEDOUT; 1449 ret = IRQ_HANDLED; 1450 } 1451 1452 return ret; 1453 } 1454 1455 /** 1456 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog 1457 * PHY that are consumed by CPRMAN (clk-bcm2835.c). 1458 * @dsi: DSI encoder 1459 */ 1460 static int 1461 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi) 1462 { 1463 struct device *dev = &dsi->pdev->dev; 1464 const char *parent_name = __clk_get_name(dsi->pll_phy_clock); 1465 static const struct { 1466 const char *dsi0_name, *dsi1_name; 1467 int div; 1468 } phy_clocks[] = { 1469 { "dsi0_byte", "dsi1_byte", 8 }, 1470 { "dsi0_ddr2", "dsi1_ddr2", 4 }, 1471 { "dsi0_ddr", "dsi1_ddr", 2 }, 1472 }; 1473 int i; 1474 1475 dsi->clk_onecell = devm_kzalloc(dev, 1476 sizeof(*dsi->clk_onecell) + 1477 ARRAY_SIZE(phy_clocks) * 1478 sizeof(struct clk_hw *), 1479 GFP_KERNEL); 1480 if (!dsi->clk_onecell) 1481 return -ENOMEM; 1482 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks); 1483 1484 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) { 1485 struct clk_fixed_factor *fix = &dsi->phy_clocks[i]; 1486 struct clk_init_data init; 1487 int ret; 1488 1489 /* We just use core fixed factor clock ops for the PHY 1490 * clocks. The clocks are actually gated by the 1491 * PHY_AFEC0_DDRCLK_EN bits, which we should be 1492 * setting if we use the DDR/DDR2 clocks. However, 1493 * vc4_dsi_encoder_enable() is setting up both AFEC0, 1494 * setting both our parent DSI PLL's rate and this 1495 * clock's rate, so it knows if DDR/DDR2 are going to 1496 * be used and could enable the gates itself. 1497 */ 1498 fix->mult = 1; 1499 fix->div = phy_clocks[i].div; 1500 fix->hw.init = &init; 1501 1502 memset(&init, 0, sizeof(init)); 1503 init.parent_names = &parent_name; 1504 init.num_parents = 1; 1505 if (dsi->port == 1) 1506 init.name = phy_clocks[i].dsi1_name; 1507 else 1508 init.name = phy_clocks[i].dsi0_name; 1509 init.ops = &clk_fixed_factor_ops; 1510 1511 ret = devm_clk_hw_register(dev, &fix->hw); 1512 if (ret) 1513 return ret; 1514 1515 dsi->clk_onecell->hws[i] = &fix->hw; 1516 } 1517 1518 return of_clk_add_hw_provider(dev->of_node, 1519 of_clk_hw_onecell_get, 1520 dsi->clk_onecell); 1521 } 1522 1523 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data) 1524 { 1525 struct platform_device *pdev = to_platform_device(dev); 1526 struct drm_device *drm = dev_get_drvdata(master); 1527 struct vc4_dev *vc4 = to_vc4_dev(drm); 1528 struct vc4_dsi *dsi; 1529 struct vc4_dsi_encoder *vc4_dsi_encoder; 1530 const struct of_device_id *match; 1531 dma_cap_mask_t dma_mask; 1532 int ret; 1533 1534 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); 1535 if (!dsi) 1536 return -ENOMEM; 1537 1538 match = of_match_device(vc4_dsi_dt_match, dev); 1539 if (!match) 1540 return -ENODEV; 1541 1542 dsi->port = (uintptr_t)match->data; 1543 1544 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder), 1545 GFP_KERNEL); 1546 if (!vc4_dsi_encoder) 1547 return -ENOMEM; 1548 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1; 1549 vc4_dsi_encoder->dsi = dsi; 1550 dsi->encoder = &vc4_dsi_encoder->base.base; 1551 1552 dsi->pdev = pdev; 1553 dsi->regs = vc4_ioremap_regs(pdev, 0); 1554 if (IS_ERR(dsi->regs)) 1555 return PTR_ERR(dsi->regs); 1556 1557 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) { 1558 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n", 1559 DSI_PORT_READ(ID), DSI_ID_VALUE); 1560 return -ENODEV; 1561 } 1562 1563 /* DSI1 has a broken AXI slave that doesn't respond to writes 1564 * from the ARM. It does handle writes from the DMA engine, 1565 * so set up a channel for talking to it. 1566 */ 1567 if (dsi->port == 1) { 1568 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4, 1569 &dsi->reg_dma_paddr, 1570 GFP_KERNEL); 1571 if (!dsi->reg_dma_mem) { 1572 DRM_ERROR("Failed to get DMA memory\n"); 1573 return -ENOMEM; 1574 } 1575 1576 dma_cap_zero(dma_mask); 1577 dma_cap_set(DMA_MEMCPY, dma_mask); 1578 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask); 1579 if (IS_ERR(dsi->reg_dma_chan)) { 1580 ret = PTR_ERR(dsi->reg_dma_chan); 1581 if (ret != -EPROBE_DEFER) 1582 DRM_ERROR("Failed to get DMA channel: %d\n", 1583 ret); 1584 return ret; 1585 } 1586 1587 /* Get the physical address of the device's registers. The 1588 * struct resource for the regs gives us the bus address 1589 * instead. 1590 */ 1591 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node, 1592 0, NULL, NULL)); 1593 } 1594 1595 init_completion(&dsi->xfer_completion); 1596 /* At startup enable error-reporting interrupts and nothing else. */ 1597 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1598 /* Clear any existing interrupt state. */ 1599 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT)); 1600 1601 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1602 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi); 1603 if (ret) { 1604 if (ret != -EPROBE_DEFER) 1605 dev_err(dev, "Failed to get interrupt: %d\n", ret); 1606 return ret; 1607 } 1608 1609 dsi->escape_clock = devm_clk_get(dev, "escape"); 1610 if (IS_ERR(dsi->escape_clock)) { 1611 ret = PTR_ERR(dsi->escape_clock); 1612 if (ret != -EPROBE_DEFER) 1613 dev_err(dev, "Failed to get escape clock: %d\n", ret); 1614 return ret; 1615 } 1616 1617 dsi->pll_phy_clock = devm_clk_get(dev, "phy"); 1618 if (IS_ERR(dsi->pll_phy_clock)) { 1619 ret = PTR_ERR(dsi->pll_phy_clock); 1620 if (ret != -EPROBE_DEFER) 1621 dev_err(dev, "Failed to get phy clock: %d\n", ret); 1622 return ret; 1623 } 1624 1625 dsi->pixel_clock = devm_clk_get(dev, "pixel"); 1626 if (IS_ERR(dsi->pixel_clock)) { 1627 ret = PTR_ERR(dsi->pixel_clock); 1628 if (ret != -EPROBE_DEFER) 1629 dev_err(dev, "Failed to get pixel clock: %d\n", ret); 1630 return ret; 1631 } 1632 1633 /* The esc clock rate is supposed to always be 100Mhz. */ 1634 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000); 1635 if (ret) { 1636 dev_err(dev, "Failed to set esc clock: %d\n", ret); 1637 return ret; 1638 } 1639 1640 ret = vc4_dsi_init_phy_clocks(dsi); 1641 if (ret) 1642 return ret; 1643 1644 if (dsi->port == 1) 1645 vc4->dsi1 = dsi; 1646 1647 drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs, 1648 DRM_MODE_ENCODER_DSI, NULL); 1649 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs); 1650 1651 dsi->connector = vc4_dsi_connector_init(drm, dsi); 1652 if (IS_ERR(dsi->connector)) { 1653 ret = PTR_ERR(dsi->connector); 1654 goto err_destroy_encoder; 1655 } 1656 1657 dsi->dsi_host.ops = &vc4_dsi_host_ops; 1658 dsi->dsi_host.dev = dev; 1659 1660 mipi_dsi_host_register(&dsi->dsi_host); 1661 1662 dev_set_drvdata(dev, dsi); 1663 1664 pm_runtime_enable(dev); 1665 1666 return 0; 1667 1668 err_destroy_encoder: 1669 vc4_dsi_encoder_destroy(dsi->encoder); 1670 1671 return ret; 1672 } 1673 1674 static void vc4_dsi_unbind(struct device *dev, struct device *master, 1675 void *data) 1676 { 1677 struct drm_device *drm = dev_get_drvdata(master); 1678 struct vc4_dev *vc4 = to_vc4_dev(drm); 1679 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1680 1681 pm_runtime_disable(dev); 1682 1683 vc4_dsi_connector_destroy(dsi->connector); 1684 vc4_dsi_encoder_destroy(dsi->encoder); 1685 1686 mipi_dsi_host_unregister(&dsi->dsi_host); 1687 1688 clk_disable_unprepare(dsi->pll_phy_clock); 1689 clk_disable_unprepare(dsi->escape_clock); 1690 1691 if (dsi->port == 1) 1692 vc4->dsi1 = NULL; 1693 } 1694 1695 static const struct component_ops vc4_dsi_ops = { 1696 .bind = vc4_dsi_bind, 1697 .unbind = vc4_dsi_unbind, 1698 }; 1699 1700 static int vc4_dsi_dev_probe(struct platform_device *pdev) 1701 { 1702 return component_add(&pdev->dev, &vc4_dsi_ops); 1703 } 1704 1705 static int vc4_dsi_dev_remove(struct platform_device *pdev) 1706 { 1707 component_del(&pdev->dev, &vc4_dsi_ops); 1708 return 0; 1709 } 1710 1711 struct platform_driver vc4_dsi_driver = { 1712 .probe = vc4_dsi_dev_probe, 1713 .remove = vc4_dsi_dev_remove, 1714 .driver = { 1715 .name = "vc4_dsi", 1716 .of_match_table = vc4_dsi_dt_match, 1717 }, 1718 }; 1719