xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_dsi.c (revision d236d361)
1 /*
2  * Copyright (C) 2016 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 as published by
6  * the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program.  If not, see <http://www.gnu.org/licenses/>.
15  */
16 
17 /**
18  * DOC: VC4 DSI0/DSI1 module
19  *
20  * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
21  * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
22  * controller.
23  *
24  * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
25  * while the compute module brings both DSI0 and DSI1 out.
26  *
27  * This driver has been tested for DSI1 video-mode display only
28  * currently, with most of the information necessary for DSI0
29  * hopefully present.
30  */
31 
32 #include "drm_atomic_helper.h"
33 #include "drm_crtc_helper.h"
34 #include "drm_edid.h"
35 #include "drm_mipi_dsi.h"
36 #include "drm_panel.h"
37 #include "linux/clk.h"
38 #include "linux/clk-provider.h"
39 #include "linux/completion.h"
40 #include "linux/component.h"
41 #include "linux/dmaengine.h"
42 #include "linux/i2c.h"
43 #include "linux/of_address.h"
44 #include "linux/of_platform.h"
45 #include "linux/pm_runtime.h"
46 #include "vc4_drv.h"
47 #include "vc4_regs.h"
48 
49 #define DSI_CMD_FIFO_DEPTH  16
50 #define DSI_PIX_FIFO_DEPTH 256
51 #define DSI_PIX_FIFO_WIDTH   4
52 
53 #define DSI0_CTRL		0x00
54 
55 /* Command packet control. */
56 #define DSI0_TXPKT1C		0x04 /* AKA PKTC */
57 #define DSI1_TXPKT1C		0x04
58 # define DSI_TXPKT1C_TRIG_CMD_MASK	VC4_MASK(31, 24)
59 # define DSI_TXPKT1C_TRIG_CMD_SHIFT	24
60 # define DSI_TXPKT1C_CMD_REPEAT_MASK	VC4_MASK(23, 10)
61 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT	10
62 
63 # define DSI_TXPKT1C_DISPLAY_NO_MASK	VC4_MASK(9, 8)
64 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT	8
65 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
66 # define DSI_TXPKT1C_DISPLAY_NO_SHORT		0
67 /* Primary display where cmdfifo provides part of the payload and
68  * pixelvalve the rest.
69  */
70 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY		1
71 /* Secondary display where cmdfifo provides part of the payload and
72  * pixfifo the rest.
73  */
74 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY	2
75 
76 # define DSI_TXPKT1C_CMD_TX_TIME_MASK	VC4_MASK(7, 6)
77 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT	6
78 
79 # define DSI_TXPKT1C_CMD_CTRL_MASK	VC4_MASK(5, 4)
80 # define DSI_TXPKT1C_CMD_CTRL_SHIFT	4
81 /* Command only.  Uses TXPKT1H and DISPLAY_NO */
82 # define DSI_TXPKT1C_CMD_CTRL_TX	0
83 /* Command with BTA for either ack or read data. */
84 # define DSI_TXPKT1C_CMD_CTRL_RX	1
85 /* Trigger according to TRIG_CMD */
86 # define DSI_TXPKT1C_CMD_CTRL_TRIG	2
87 /* BTA alone for getting error status after a command, or a TE trigger
88  * without a previous command.
89  */
90 # define DSI_TXPKT1C_CMD_CTRL_BTA	3
91 
92 # define DSI_TXPKT1C_CMD_MODE_LP	BIT(3)
93 # define DSI_TXPKT1C_CMD_TYPE_LONG	BIT(2)
94 # define DSI_TXPKT1C_CMD_TE_EN		BIT(1)
95 # define DSI_TXPKT1C_CMD_EN		BIT(0)
96 
97 /* Command packet header. */
98 #define DSI0_TXPKT1H		0x08 /* AKA PKTH */
99 #define DSI1_TXPKT1H		0x08
100 # define DSI_TXPKT1H_BC_CMDFIFO_MASK	VC4_MASK(31, 24)
101 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT	24
102 # define DSI_TXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
103 # define DSI_TXPKT1H_BC_PARAM_SHIFT	8
104 # define DSI_TXPKT1H_BC_DT_MASK		VC4_MASK(7, 0)
105 # define DSI_TXPKT1H_BC_DT_SHIFT	0
106 
107 #define DSI0_RXPKT1H		0x0c /* AKA RX1_PKTH */
108 #define DSI1_RXPKT1H		0x14
109 # define DSI_RXPKT1H_CRC_ERR		BIT(31)
110 # define DSI_RXPKT1H_DET_ERR		BIT(30)
111 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
112 # define DSI_RXPKT1H_COR_ERR		BIT(28)
113 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
114 # define DSI_RXPKT1H_PKT_TYPE_LONG	BIT(24)
115 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
116 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
117 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
118 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
119 # define DSI_RXPKT1H_SHORT_1_MASK	VC4_MASK(23, 16)
120 # define DSI_RXPKT1H_SHORT_1_SHIFT	16
121 # define DSI_RXPKT1H_SHORT_0_MASK	VC4_MASK(15, 8)
122 # define DSI_RXPKT1H_SHORT_0_SHIFT	8
123 # define DSI_RXPKT1H_DT_LP_CMD_MASK	VC4_MASK(7, 0)
124 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT	0
125 
126 #define DSI0_RXPKT2H		0x10 /* AKA RX2_PKTH */
127 #define DSI1_RXPKT2H		0x18
128 # define DSI_RXPKT1H_DET_ERR		BIT(30)
129 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
130 # define DSI_RXPKT1H_COR_ERR		BIT(28)
131 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
132 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
133 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
134 # define DSI_RXPKT1H_DT_MASK		VC4_MASK(7, 0)
135 # define DSI_RXPKT1H_DT_SHIFT		0
136 
137 #define DSI0_TXPKT_CMD_FIFO	0x14 /* AKA CMD_DATAF */
138 #define DSI1_TXPKT_CMD_FIFO	0x1c
139 
140 #define DSI0_DISP0_CTRL		0x18
141 # define DSI_DISP0_PIX_CLK_DIV_MASK	VC4_MASK(21, 13)
142 # define DSI_DISP0_PIX_CLK_DIV_SHIFT	13
143 # define DSI_DISP0_LP_STOP_CTRL_MASK	VC4_MASK(12, 11)
144 # define DSI_DISP0_LP_STOP_CTRL_SHIFT	11
145 # define DSI_DISP0_LP_STOP_DISABLE	0
146 # define DSI_DISP0_LP_STOP_PERLINE	1
147 # define DSI_DISP0_LP_STOP_PERFRAME	2
148 
149 /* Transmit RGB pixels and null packets only during HACTIVE, instead
150  * of going to LP-STOP.
151  */
152 # define DSI_DISP_HACTIVE_NULL		BIT(10)
153 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
154 # define DSI_DISP_VBLP_CTRL		BIT(9)
155 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
156 # define DSI_DISP_HFP_CTRL		BIT(8)
157 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
158 # define DSI_DISP_HBP_CTRL		BIT(7)
159 # define DSI_DISP0_CHANNEL_MASK		VC4_MASK(6, 5)
160 # define DSI_DISP0_CHANNEL_SHIFT	5
161 /* Enables end events for HSYNC/VSYNC, not just start events. */
162 # define DSI_DISP0_ST_END		BIT(4)
163 # define DSI_DISP0_PFORMAT_MASK		VC4_MASK(3, 2)
164 # define DSI_DISP0_PFORMAT_SHIFT	2
165 # define DSI_PFORMAT_RGB565		0
166 # define DSI_PFORMAT_RGB666_PACKED	1
167 # define DSI_PFORMAT_RGB666		2
168 # define DSI_PFORMAT_RGB888		3
169 /* Default is VIDEO mode. */
170 # define DSI_DISP0_COMMAND_MODE		BIT(1)
171 # define DSI_DISP0_ENABLE		BIT(0)
172 
173 #define DSI0_DISP1_CTRL		0x1c
174 #define DSI1_DISP1_CTRL		0x2c
175 /* Format of the data written to TXPKT_PIX_FIFO. */
176 # define DSI_DISP1_PFORMAT_MASK		VC4_MASK(2, 1)
177 # define DSI_DISP1_PFORMAT_SHIFT	1
178 # define DSI_DISP1_PFORMAT_16BIT	0
179 # define DSI_DISP1_PFORMAT_24BIT	1
180 # define DSI_DISP1_PFORMAT_32BIT_LE	2
181 # define DSI_DISP1_PFORMAT_32BIT_BE	3
182 
183 /* DISP1 is always command mode. */
184 # define DSI_DISP1_ENABLE		BIT(0)
185 
186 #define DSI0_TXPKT_PIX_FIFO		0x20 /* AKA PIX_FIFO */
187 
188 #define DSI0_INT_STAT		0x24
189 #define DSI0_INT_EN		0x28
190 # define DSI1_INT_PHY_D3_ULPS		BIT(30)
191 # define DSI1_INT_PHY_D3_STOP		BIT(29)
192 # define DSI1_INT_PHY_D2_ULPS		BIT(28)
193 # define DSI1_INT_PHY_D2_STOP		BIT(27)
194 # define DSI1_INT_PHY_D1_ULPS		BIT(26)
195 # define DSI1_INT_PHY_D1_STOP		BIT(25)
196 # define DSI1_INT_PHY_D0_ULPS		BIT(24)
197 # define DSI1_INT_PHY_D0_STOP		BIT(23)
198 # define DSI1_INT_FIFO_ERR		BIT(22)
199 # define DSI1_INT_PHY_DIR_RTF		BIT(21)
200 # define DSI1_INT_PHY_RXLPDT		BIT(20)
201 # define DSI1_INT_PHY_RXTRIG		BIT(19)
202 # define DSI1_INT_PHY_D0_LPDT		BIT(18)
203 # define DSI1_INT_PHY_DIR_FTR		BIT(17)
204 
205 /* Signaled when the clock lane enters the given state. */
206 # define DSI1_INT_PHY_CLOCK_ULPS	BIT(16)
207 # define DSI1_INT_PHY_CLOCK_HS		BIT(15)
208 # define DSI1_INT_PHY_CLOCK_STOP	BIT(14)
209 
210 /* Signaled on timeouts */
211 # define DSI1_INT_PR_TO			BIT(13)
212 # define DSI1_INT_TA_TO			BIT(12)
213 # define DSI1_INT_LPRX_TO		BIT(11)
214 # define DSI1_INT_HSTX_TO		BIT(10)
215 
216 /* Contention on a line when trying to drive the line low */
217 # define DSI1_INT_ERR_CONT_LP1		BIT(9)
218 # define DSI1_INT_ERR_CONT_LP0		BIT(8)
219 
220 /* Control error: incorrect line state sequence on data lane 0. */
221 # define DSI1_INT_ERR_CONTROL		BIT(7)
222 /* LPDT synchronization error (bits received not a multiple of 8. */
223 
224 # define DSI1_INT_ERR_SYNC_ESC		BIT(6)
225 /* Signaled after receiving an error packet from the display in
226  * response to a read.
227  */
228 # define DSI1_INT_RXPKT2		BIT(5)
229 /* Signaled after receiving a packet.  The header and optional short
230  * response will be in RXPKT1H, and a long response will be in the
231  * RXPKT_FIFO.
232  */
233 # define DSI1_INT_RXPKT1		BIT(4)
234 # define DSI1_INT_TXPKT2_DONE		BIT(3)
235 # define DSI1_INT_TXPKT2_END		BIT(2)
236 /* Signaled after all repeats of TXPKT1 are transferred. */
237 # define DSI1_INT_TXPKT1_DONE		BIT(1)
238 /* Signaled after each TXPKT1 repeat is scheduled. */
239 # define DSI1_INT_TXPKT1_END		BIT(0)
240 
241 #define DSI1_INTERRUPTS_ALWAYS_ENABLED	(DSI1_INT_ERR_SYNC_ESC | \
242 					 DSI1_INT_ERR_CONTROL |	 \
243 					 DSI1_INT_ERR_CONT_LP0 | \
244 					 DSI1_INT_ERR_CONT_LP1 | \
245 					 DSI1_INT_HSTX_TO |	 \
246 					 DSI1_INT_LPRX_TO |	 \
247 					 DSI1_INT_TA_TO |	 \
248 					 DSI1_INT_PR_TO)
249 
250 #define DSI0_STAT		0x2c
251 #define DSI0_HSTX_TO_CNT	0x30
252 #define DSI0_LPRX_TO_CNT	0x34
253 #define DSI0_TA_TO_CNT		0x38
254 #define DSI0_PR_TO_CNT		0x3c
255 #define DSI0_PHYC		0x40
256 # define DSI1_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(25, 20)
257 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT	20
258 # define DSI1_PHYC_HS_CLK_CONTINUOUS	BIT(18)
259 # define DSI0_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(17, 12)
260 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT	12
261 # define DSI1_PHYC_CLANE_ULPS		BIT(17)
262 # define DSI1_PHYC_CLANE_ENABLE		BIT(16)
263 # define DSI_PHYC_DLANE3_ULPS		BIT(13)
264 # define DSI_PHYC_DLANE3_ENABLE		BIT(12)
265 # define DSI0_PHYC_HS_CLK_CONTINUOUS	BIT(10)
266 # define DSI0_PHYC_CLANE_ULPS		BIT(9)
267 # define DSI_PHYC_DLANE2_ULPS		BIT(9)
268 # define DSI0_PHYC_CLANE_ENABLE		BIT(8)
269 # define DSI_PHYC_DLANE2_ENABLE		BIT(8)
270 # define DSI_PHYC_DLANE1_ULPS		BIT(5)
271 # define DSI_PHYC_DLANE1_ENABLE		BIT(4)
272 # define DSI_PHYC_DLANE0_FORCE_STOP	BIT(2)
273 # define DSI_PHYC_DLANE0_ULPS		BIT(1)
274 # define DSI_PHYC_DLANE0_ENABLE		BIT(0)
275 
276 #define DSI0_HS_CLT0		0x44
277 #define DSI0_HS_CLT1		0x48
278 #define DSI0_HS_CLT2		0x4c
279 #define DSI0_HS_DLT3		0x50
280 #define DSI0_HS_DLT4		0x54
281 #define DSI0_HS_DLT5		0x58
282 #define DSI0_HS_DLT6		0x5c
283 #define DSI0_HS_DLT7		0x60
284 
285 #define DSI0_PHY_AFEC0		0x64
286 # define DSI0_PHY_AFEC0_DDR2CLK_EN		BIT(26)
287 # define DSI0_PHY_AFEC0_DDRCLK_EN		BIT(25)
288 # define DSI0_PHY_AFEC0_LATCH_ULPS		BIT(24)
289 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK		VC4_MASK(31, 29)
290 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT	29
291 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK		VC4_MASK(28, 26)
292 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT	26
293 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK		VC4_MASK(27, 23)
294 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT	23
295 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK		VC4_MASK(22, 20)
296 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT	20
297 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK		VC4_MASK(19, 17)
298 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT		17
299 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK	VC4_MASK(23, 20)
300 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT	20
301 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK	VC4_MASK(19, 16)
302 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT	16
303 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK	VC4_MASK(15, 12)
304 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT	12
305 # define DSI1_PHY_AFEC0_DDR2CLK_EN		BIT(16)
306 # define DSI1_PHY_AFEC0_DDRCLK_EN		BIT(15)
307 # define DSI1_PHY_AFEC0_LATCH_ULPS		BIT(14)
308 # define DSI1_PHY_AFEC0_RESET			BIT(13)
309 # define DSI1_PHY_AFEC0_PD			BIT(12)
310 # define DSI0_PHY_AFEC0_RESET			BIT(11)
311 # define DSI1_PHY_AFEC0_PD_BG			BIT(11)
312 # define DSI0_PHY_AFEC0_PD			BIT(10)
313 # define DSI1_PHY_AFEC0_PD_DLANE3		BIT(10)
314 # define DSI0_PHY_AFEC0_PD_BG			BIT(9)
315 # define DSI1_PHY_AFEC0_PD_DLANE2		BIT(9)
316 # define DSI0_PHY_AFEC0_PD_DLANE1		BIT(8)
317 # define DSI1_PHY_AFEC0_PD_DLANE1		BIT(8)
318 # define DSI_PHY_AFEC0_PTATADJ_MASK		VC4_MASK(7, 4)
319 # define DSI_PHY_AFEC0_PTATADJ_SHIFT		4
320 # define DSI_PHY_AFEC0_CTATADJ_MASK		VC4_MASK(3, 0)
321 # define DSI_PHY_AFEC0_CTATADJ_SHIFT		0
322 
323 #define DSI0_PHY_AFEC1		0x68
324 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK		VC4_MASK(10, 8)
325 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT	8
326 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK		VC4_MASK(6, 4)
327 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT	4
328 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK		VC4_MASK(2, 0)
329 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT		0
330 
331 #define DSI0_TST_SEL		0x6c
332 #define DSI0_TST_MON		0x70
333 #define DSI0_ID			0x74
334 # define DSI_ID_VALUE		0x00647369
335 
336 #define DSI1_CTRL		0x00
337 # define DSI_CTRL_HS_CLKC_MASK		VC4_MASK(15, 14)
338 # define DSI_CTRL_HS_CLKC_SHIFT		14
339 # define DSI_CTRL_HS_CLKC_BYTE		0
340 # define DSI_CTRL_HS_CLKC_DDR2		1
341 # define DSI_CTRL_HS_CLKC_DDR		2
342 
343 # define DSI_CTRL_RX_LPDT_EOT_DISABLE	BIT(13)
344 # define DSI_CTRL_LPDT_EOT_DISABLE	BIT(12)
345 # define DSI_CTRL_HSDT_EOT_DISABLE	BIT(11)
346 # define DSI_CTRL_SOFT_RESET_CFG	BIT(10)
347 # define DSI_CTRL_CAL_BYTE		BIT(9)
348 # define DSI_CTRL_INV_BYTE		BIT(8)
349 # define DSI_CTRL_CLR_LDF		BIT(7)
350 # define DSI0_CTRL_CLR_PBCF		BIT(6)
351 # define DSI1_CTRL_CLR_RXF		BIT(6)
352 # define DSI0_CTRL_CLR_CPBCF		BIT(5)
353 # define DSI1_CTRL_CLR_PDF		BIT(5)
354 # define DSI0_CTRL_CLR_PDF		BIT(4)
355 # define DSI1_CTRL_CLR_CDF		BIT(4)
356 # define DSI0_CTRL_CLR_CDF		BIT(3)
357 # define DSI0_CTRL_CTRL2		BIT(2)
358 # define DSI1_CTRL_DISABLE_DISP_CRCC	BIT(2)
359 # define DSI0_CTRL_CTRL1		BIT(1)
360 # define DSI1_CTRL_DISABLE_DISP_ECCC	BIT(1)
361 # define DSI0_CTRL_CTRL0		BIT(0)
362 # define DSI1_CTRL_EN			BIT(0)
363 # define DSI0_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
364 					 DSI0_CTRL_CLR_PBCF | \
365 					 DSI0_CTRL_CLR_CPBCF |	\
366 					 DSI0_CTRL_CLR_PDF | \
367 					 DSI0_CTRL_CLR_CDF)
368 # define DSI1_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
369 					 DSI1_CTRL_CLR_RXF | \
370 					 DSI1_CTRL_CLR_PDF | \
371 					 DSI1_CTRL_CLR_CDF)
372 
373 #define DSI1_TXPKT2C		0x0c
374 #define DSI1_TXPKT2H		0x10
375 #define DSI1_TXPKT_PIX_FIFO	0x20
376 #define DSI1_RXPKT_FIFO		0x24
377 #define DSI1_DISP0_CTRL		0x28
378 #define DSI1_INT_STAT		0x30
379 #define DSI1_INT_EN		0x34
380 /* State reporting bits.  These mostly behave like INT_STAT, where
381  * writing a 1 clears the bit.
382  */
383 #define DSI1_STAT		0x38
384 # define DSI1_STAT_PHY_D3_ULPS		BIT(31)
385 # define DSI1_STAT_PHY_D3_STOP		BIT(30)
386 # define DSI1_STAT_PHY_D2_ULPS		BIT(29)
387 # define DSI1_STAT_PHY_D2_STOP		BIT(28)
388 # define DSI1_STAT_PHY_D1_ULPS		BIT(27)
389 # define DSI1_STAT_PHY_D1_STOP		BIT(26)
390 # define DSI1_STAT_PHY_D0_ULPS		BIT(25)
391 # define DSI1_STAT_PHY_D0_STOP		BIT(24)
392 # define DSI1_STAT_FIFO_ERR		BIT(23)
393 # define DSI1_STAT_PHY_RXLPDT		BIT(22)
394 # define DSI1_STAT_PHY_RXTRIG		BIT(21)
395 # define DSI1_STAT_PHY_D0_LPDT		BIT(20)
396 /* Set when in forward direction */
397 # define DSI1_STAT_PHY_DIR		BIT(19)
398 # define DSI1_STAT_PHY_CLOCK_ULPS	BIT(18)
399 # define DSI1_STAT_PHY_CLOCK_HS		BIT(17)
400 # define DSI1_STAT_PHY_CLOCK_STOP	BIT(16)
401 # define DSI1_STAT_PR_TO		BIT(15)
402 # define DSI1_STAT_TA_TO		BIT(14)
403 # define DSI1_STAT_LPRX_TO		BIT(13)
404 # define DSI1_STAT_HSTX_TO		BIT(12)
405 # define DSI1_STAT_ERR_CONT_LP1		BIT(11)
406 # define DSI1_STAT_ERR_CONT_LP0		BIT(10)
407 # define DSI1_STAT_ERR_CONTROL		BIT(9)
408 # define DSI1_STAT_ERR_SYNC_ESC		BIT(8)
409 # define DSI1_STAT_RXPKT2		BIT(7)
410 # define DSI1_STAT_RXPKT1		BIT(6)
411 # define DSI1_STAT_TXPKT2_BUSY		BIT(5)
412 # define DSI1_STAT_TXPKT2_DONE		BIT(4)
413 # define DSI1_STAT_TXPKT2_END		BIT(3)
414 # define DSI1_STAT_TXPKT1_BUSY		BIT(2)
415 # define DSI1_STAT_TXPKT1_DONE		BIT(1)
416 # define DSI1_STAT_TXPKT1_END		BIT(0)
417 
418 #define DSI1_HSTX_TO_CNT	0x3c
419 #define DSI1_LPRX_TO_CNT	0x40
420 #define DSI1_TA_TO_CNT		0x44
421 #define DSI1_PR_TO_CNT		0x48
422 #define DSI1_PHYC		0x4c
423 
424 #define DSI1_HS_CLT0		0x50
425 # define DSI_HS_CLT0_CZERO_MASK		VC4_MASK(26, 18)
426 # define DSI_HS_CLT0_CZERO_SHIFT	18
427 # define DSI_HS_CLT0_CPRE_MASK		VC4_MASK(17, 9)
428 # define DSI_HS_CLT0_CPRE_SHIFT		9
429 # define DSI_HS_CLT0_CPREP_MASK		VC4_MASK(8, 0)
430 # define DSI_HS_CLT0_CPREP_SHIFT	0
431 
432 #define DSI1_HS_CLT1		0x54
433 # define DSI_HS_CLT1_CTRAIL_MASK	VC4_MASK(17, 9)
434 # define DSI_HS_CLT1_CTRAIL_SHIFT	9
435 # define DSI_HS_CLT1_CPOST_MASK		VC4_MASK(8, 0)
436 # define DSI_HS_CLT1_CPOST_SHIFT	0
437 
438 #define DSI1_HS_CLT2		0x58
439 # define DSI_HS_CLT2_WUP_MASK		VC4_MASK(23, 0)
440 # define DSI_HS_CLT2_WUP_SHIFT		0
441 
442 #define DSI1_HS_DLT3		0x5c
443 # define DSI_HS_DLT3_EXIT_MASK		VC4_MASK(26, 18)
444 # define DSI_HS_DLT3_EXIT_SHIFT		18
445 # define DSI_HS_DLT3_ZERO_MASK		VC4_MASK(17, 9)
446 # define DSI_HS_DLT3_ZERO_SHIFT		9
447 # define DSI_HS_DLT3_PRE_MASK		VC4_MASK(8, 0)
448 # define DSI_HS_DLT3_PRE_SHIFT		0
449 
450 #define DSI1_HS_DLT4		0x60
451 # define DSI_HS_DLT4_ANLAT_MASK		VC4_MASK(22, 18)
452 # define DSI_HS_DLT4_ANLAT_SHIFT	18
453 # define DSI_HS_DLT4_TRAIL_MASK		VC4_MASK(17, 9)
454 # define DSI_HS_DLT4_TRAIL_SHIFT	9
455 # define DSI_HS_DLT4_LPX_MASK		VC4_MASK(8, 0)
456 # define DSI_HS_DLT4_LPX_SHIFT		0
457 
458 #define DSI1_HS_DLT5		0x64
459 # define DSI_HS_DLT5_INIT_MASK		VC4_MASK(23, 0)
460 # define DSI_HS_DLT5_INIT_SHIFT		0
461 
462 #define DSI1_HS_DLT6		0x68
463 # define DSI_HS_DLT6_TA_GET_MASK	VC4_MASK(31, 24)
464 # define DSI_HS_DLT6_TA_GET_SHIFT	24
465 # define DSI_HS_DLT6_TA_SURE_MASK	VC4_MASK(23, 16)
466 # define DSI_HS_DLT6_TA_SURE_SHIFT	16
467 # define DSI_HS_DLT6_TA_GO_MASK		VC4_MASK(15, 8)
468 # define DSI_HS_DLT6_TA_GO_SHIFT	8
469 # define DSI_HS_DLT6_LP_LPX_MASK	VC4_MASK(7, 0)
470 # define DSI_HS_DLT6_LP_LPX_SHIFT	0
471 
472 #define DSI1_HS_DLT7		0x6c
473 # define DSI_HS_DLT7_LP_WUP_MASK	VC4_MASK(23, 0)
474 # define DSI_HS_DLT7_LP_WUP_SHIFT	0
475 
476 #define DSI1_PHY_AFEC0		0x70
477 
478 #define DSI1_PHY_AFEC1		0x74
479 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK	VC4_MASK(19, 16)
480 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT	16
481 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK	VC4_MASK(15, 12)
482 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT	12
483 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK	VC4_MASK(11, 8)
484 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT	8
485 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK	VC4_MASK(7, 4)
486 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT	4
487 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK	VC4_MASK(3, 0)
488 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT	0
489 
490 #define DSI1_TST_SEL		0x78
491 #define DSI1_TST_MON		0x7c
492 #define DSI1_PHY_TST1		0x80
493 #define DSI1_PHY_TST2		0x84
494 #define DSI1_PHY_FIFO_STAT	0x88
495 /* Actually, all registers in the range that aren't otherwise claimed
496  * will return the ID.
497  */
498 #define DSI1_ID			0x8c
499 
500 /* General DSI hardware state. */
501 struct vc4_dsi {
502 	struct platform_device *pdev;
503 
504 	struct mipi_dsi_host dsi_host;
505 	struct drm_encoder *encoder;
506 	struct drm_connector *connector;
507 	struct drm_panel *panel;
508 
509 	void __iomem *regs;
510 
511 	struct dma_chan *reg_dma_chan;
512 	dma_addr_t reg_dma_paddr;
513 	u32 *reg_dma_mem;
514 	dma_addr_t reg_paddr;
515 
516 	/* Whether we're on bcm2835's DSI0 or DSI1. */
517 	int port;
518 
519 	/* DSI channel for the panel we're connected to. */
520 	u32 channel;
521 	u32 lanes;
522 	enum mipi_dsi_pixel_format format;
523 	u32 mode_flags;
524 
525 	/* Input clock from CPRMAN to the digital PHY, for the DSI
526 	 * escape clock.
527 	 */
528 	struct clk *escape_clock;
529 
530 	/* Input clock to the analog PHY, used to generate the DSI bit
531 	 * clock.
532 	 */
533 	struct clk *pll_phy_clock;
534 
535 	/* HS Clocks generated within the DSI analog PHY. */
536 	struct clk_fixed_factor phy_clocks[3];
537 
538 	struct clk_hw_onecell_data *clk_onecell;
539 
540 	/* Pixel clock output to the pixelvalve, generated from the HS
541 	 * clock.
542 	 */
543 	struct clk *pixel_clock;
544 
545 	struct completion xfer_completion;
546 	int xfer_result;
547 };
548 
549 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
550 
551 static inline void
552 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
553 {
554 	struct dma_chan *chan = dsi->reg_dma_chan;
555 	struct dma_async_tx_descriptor *tx;
556 	dma_cookie_t cookie;
557 	int ret;
558 
559 	/* DSI0 should be able to write normally. */
560 	if (!chan) {
561 		writel(val, dsi->regs + offset);
562 		return;
563 	}
564 
565 	*dsi->reg_dma_mem = val;
566 
567 	tx = chan->device->device_prep_dma_memcpy(chan,
568 						  dsi->reg_paddr + offset,
569 						  dsi->reg_dma_paddr,
570 						  4, 0);
571 	if (!tx) {
572 		DRM_ERROR("Failed to set up DMA register write\n");
573 		return;
574 	}
575 
576 	cookie = tx->tx_submit(tx);
577 	ret = dma_submit_error(cookie);
578 	if (ret) {
579 		DRM_ERROR("Failed to submit DMA: %d\n", ret);
580 		return;
581 	}
582 	ret = dma_sync_wait(chan, cookie);
583 	if (ret)
584 		DRM_ERROR("Failed to wait for DMA: %d\n", ret);
585 }
586 
587 #define DSI_READ(offset) readl(dsi->regs + (offset))
588 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
589 #define DSI_PORT_READ(offset) \
590 	DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
591 #define DSI_PORT_WRITE(offset, val) \
592 	DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
593 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
594 
595 /* VC4 DSI encoder KMS struct */
596 struct vc4_dsi_encoder {
597 	struct vc4_encoder base;
598 	struct vc4_dsi *dsi;
599 };
600 
601 static inline struct vc4_dsi_encoder *
602 to_vc4_dsi_encoder(struct drm_encoder *encoder)
603 {
604 	return container_of(encoder, struct vc4_dsi_encoder, base.base);
605 }
606 
607 /* VC4 DSI connector KMS struct */
608 struct vc4_dsi_connector {
609 	struct drm_connector base;
610 	struct vc4_dsi *dsi;
611 };
612 
613 static inline struct vc4_dsi_connector *
614 to_vc4_dsi_connector(struct drm_connector *connector)
615 {
616 	return container_of(connector, struct vc4_dsi_connector, base);
617 }
618 
619 #define DSI_REG(reg) { reg, #reg }
620 static const struct {
621 	u32 reg;
622 	const char *name;
623 } dsi0_regs[] = {
624 	DSI_REG(DSI0_CTRL),
625 	DSI_REG(DSI0_STAT),
626 	DSI_REG(DSI0_HSTX_TO_CNT),
627 	DSI_REG(DSI0_LPRX_TO_CNT),
628 	DSI_REG(DSI0_TA_TO_CNT),
629 	DSI_REG(DSI0_PR_TO_CNT),
630 	DSI_REG(DSI0_DISP0_CTRL),
631 	DSI_REG(DSI0_DISP1_CTRL),
632 	DSI_REG(DSI0_INT_STAT),
633 	DSI_REG(DSI0_INT_EN),
634 	DSI_REG(DSI0_PHYC),
635 	DSI_REG(DSI0_HS_CLT0),
636 	DSI_REG(DSI0_HS_CLT1),
637 	DSI_REG(DSI0_HS_CLT2),
638 	DSI_REG(DSI0_HS_DLT3),
639 	DSI_REG(DSI0_HS_DLT4),
640 	DSI_REG(DSI0_HS_DLT5),
641 	DSI_REG(DSI0_HS_DLT6),
642 	DSI_REG(DSI0_HS_DLT7),
643 	DSI_REG(DSI0_PHY_AFEC0),
644 	DSI_REG(DSI0_PHY_AFEC1),
645 	DSI_REG(DSI0_ID),
646 };
647 
648 static const struct {
649 	u32 reg;
650 	const char *name;
651 } dsi1_regs[] = {
652 	DSI_REG(DSI1_CTRL),
653 	DSI_REG(DSI1_STAT),
654 	DSI_REG(DSI1_HSTX_TO_CNT),
655 	DSI_REG(DSI1_LPRX_TO_CNT),
656 	DSI_REG(DSI1_TA_TO_CNT),
657 	DSI_REG(DSI1_PR_TO_CNT),
658 	DSI_REG(DSI1_DISP0_CTRL),
659 	DSI_REG(DSI1_DISP1_CTRL),
660 	DSI_REG(DSI1_INT_STAT),
661 	DSI_REG(DSI1_INT_EN),
662 	DSI_REG(DSI1_PHYC),
663 	DSI_REG(DSI1_HS_CLT0),
664 	DSI_REG(DSI1_HS_CLT1),
665 	DSI_REG(DSI1_HS_CLT2),
666 	DSI_REG(DSI1_HS_DLT3),
667 	DSI_REG(DSI1_HS_DLT4),
668 	DSI_REG(DSI1_HS_DLT5),
669 	DSI_REG(DSI1_HS_DLT6),
670 	DSI_REG(DSI1_HS_DLT7),
671 	DSI_REG(DSI1_PHY_AFEC0),
672 	DSI_REG(DSI1_PHY_AFEC1),
673 	DSI_REG(DSI1_ID),
674 };
675 
676 static void vc4_dsi_dump_regs(struct vc4_dsi *dsi)
677 {
678 	int i;
679 
680 	if (dsi->port == 0) {
681 		for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
682 			DRM_INFO("0x%04x (%s): 0x%08x\n",
683 				 dsi0_regs[i].reg, dsi0_regs[i].name,
684 				 DSI_READ(dsi0_regs[i].reg));
685 		}
686 	} else {
687 		for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
688 			DRM_INFO("0x%04x (%s): 0x%08x\n",
689 				 dsi1_regs[i].reg, dsi1_regs[i].name,
690 				 DSI_READ(dsi1_regs[i].reg));
691 		}
692 	}
693 }
694 
695 #ifdef CONFIG_DEBUG_FS
696 int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused)
697 {
698 	struct drm_info_node *node = (struct drm_info_node *)m->private;
699 	struct drm_device *drm = node->minor->dev;
700 	struct vc4_dev *vc4 = to_vc4_dev(drm);
701 	int dsi_index = (uintptr_t)node->info_ent->data;
702 	struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL);
703 	int i;
704 
705 	if (!dsi)
706 		return 0;
707 
708 	if (dsi->port == 0) {
709 		for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
710 			seq_printf(m, "0x%04x (%s): 0x%08x\n",
711 				   dsi0_regs[i].reg, dsi0_regs[i].name,
712 				   DSI_READ(dsi0_regs[i].reg));
713 		}
714 	} else {
715 		for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
716 			seq_printf(m, "0x%04x (%s): 0x%08x\n",
717 				   dsi1_regs[i].reg, dsi1_regs[i].name,
718 				   DSI_READ(dsi1_regs[i].reg));
719 		}
720 	}
721 
722 	return 0;
723 }
724 #endif
725 
726 static enum drm_connector_status
727 vc4_dsi_connector_detect(struct drm_connector *connector, bool force)
728 {
729 	struct vc4_dsi_connector *vc4_connector =
730 		to_vc4_dsi_connector(connector);
731 	struct vc4_dsi *dsi = vc4_connector->dsi;
732 
733 	if (dsi->panel)
734 		return connector_status_connected;
735 	else
736 		return connector_status_disconnected;
737 }
738 
739 static void vc4_dsi_connector_destroy(struct drm_connector *connector)
740 {
741 	drm_connector_unregister(connector);
742 	drm_connector_cleanup(connector);
743 }
744 
745 static int vc4_dsi_connector_get_modes(struct drm_connector *connector)
746 {
747 	struct vc4_dsi_connector *vc4_connector =
748 		to_vc4_dsi_connector(connector);
749 	struct vc4_dsi *dsi = vc4_connector->dsi;
750 
751 	if (dsi->panel)
752 		return drm_panel_get_modes(dsi->panel);
753 
754 	return 0;
755 }
756 
757 static const struct drm_connector_funcs vc4_dsi_connector_funcs = {
758 	.dpms = drm_atomic_helper_connector_dpms,
759 	.detect = vc4_dsi_connector_detect,
760 	.fill_modes = drm_helper_probe_single_connector_modes,
761 	.destroy = vc4_dsi_connector_destroy,
762 	.reset = drm_atomic_helper_connector_reset,
763 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
764 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
765 };
766 
767 static const struct drm_connector_helper_funcs vc4_dsi_connector_helper_funcs = {
768 	.get_modes = vc4_dsi_connector_get_modes,
769 };
770 
771 static struct drm_connector *vc4_dsi_connector_init(struct drm_device *dev,
772 						    struct vc4_dsi *dsi)
773 {
774 	struct drm_connector *connector;
775 	struct vc4_dsi_connector *dsi_connector;
776 
777 	dsi_connector = devm_kzalloc(dev->dev, sizeof(*dsi_connector),
778 				     GFP_KERNEL);
779 	if (!dsi_connector)
780 		return ERR_PTR(-ENOMEM);
781 
782 	connector = &dsi_connector->base;
783 
784 	dsi_connector->dsi = dsi;
785 
786 	drm_connector_init(dev, connector, &vc4_dsi_connector_funcs,
787 			   DRM_MODE_CONNECTOR_DSI);
788 	drm_connector_helper_add(connector, &vc4_dsi_connector_helper_funcs);
789 
790 	connector->polled = 0;
791 	connector->interlace_allowed = 0;
792 	connector->doublescan_allowed = 0;
793 
794 	drm_mode_connector_attach_encoder(connector, dsi->encoder);
795 
796 	return connector;
797 }
798 
799 static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
800 {
801 	drm_encoder_cleanup(encoder);
802 }
803 
804 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
805 	.destroy = vc4_dsi_encoder_destroy,
806 };
807 
808 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
809 {
810 	u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
811 
812 	if (latch)
813 		afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
814 	else
815 		afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
816 
817 	DSI_PORT_WRITE(PHY_AFEC0, afec0);
818 }
819 
820 /* Enters or exits Ultra Low Power State. */
821 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
822 {
823 	bool continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
824 	u32 phyc_ulps = ((continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
825 			 DSI_PHYC_DLANE0_ULPS |
826 			 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
827 			 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
828 			 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
829 	u32 stat_ulps = ((continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
830 			 DSI1_STAT_PHY_D0_ULPS |
831 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
832 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
833 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
834 	u32 stat_stop = ((continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
835 			 DSI1_STAT_PHY_D0_STOP |
836 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
837 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
838 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
839 	int ret;
840 
841 	DSI_PORT_WRITE(STAT, stat_ulps);
842 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
843 	ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
844 	if (ret) {
845 		dev_warn(&dsi->pdev->dev,
846 			 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
847 			 DSI_PORT_READ(STAT));
848 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
849 		vc4_dsi_latch_ulps(dsi, false);
850 		return;
851 	}
852 
853 	/* The DSI module can't be disabled while the module is
854 	 * generating ULPS state.  So, to be able to disable the
855 	 * module, we have the AFE latch the ULPS state and continue
856 	 * on to having the module enter STOP.
857 	 */
858 	vc4_dsi_latch_ulps(dsi, ulps);
859 
860 	DSI_PORT_WRITE(STAT, stat_stop);
861 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
862 	ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
863 	if (ret) {
864 		dev_warn(&dsi->pdev->dev,
865 			 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
866 			 DSI_PORT_READ(STAT));
867 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
868 		return;
869 	}
870 }
871 
872 static u32
873 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
874 {
875 	/* The HS timings have to be rounded up to a multiple of 8
876 	 * because we're using the byte clock.
877 	 */
878 	return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
879 }
880 
881 /* ESC always runs at 100Mhz. */
882 #define ESC_TIME_NS 10
883 
884 static u32
885 dsi_esc_timing(u32 ns)
886 {
887 	return DIV_ROUND_UP(ns, ESC_TIME_NS);
888 }
889 
890 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
891 {
892 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
893 	struct vc4_dsi *dsi = vc4_encoder->dsi;
894 	struct device *dev = &dsi->pdev->dev;
895 
896 	drm_panel_disable(dsi->panel);
897 
898 	vc4_dsi_ulps(dsi, true);
899 
900 	drm_panel_unprepare(dsi->panel);
901 
902 	clk_disable_unprepare(dsi->pll_phy_clock);
903 	clk_disable_unprepare(dsi->escape_clock);
904 	clk_disable_unprepare(dsi->pixel_clock);
905 
906 	pm_runtime_put(dev);
907 }
908 
909 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
910 {
911 	struct drm_display_mode *mode = &encoder->crtc->mode;
912 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
913 	struct vc4_dsi *dsi = vc4_encoder->dsi;
914 	struct device *dev = &dsi->pdev->dev;
915 	u32 format = 0, divider = 0;
916 	bool debug_dump_regs = false;
917 	unsigned long hs_clock;
918 	u32 ui_ns;
919 	/* Minimum LP state duration in escape clock cycles. */
920 	u32 lpx = dsi_esc_timing(60);
921 	unsigned long pixel_clock_hz = mode->clock * 1000;
922 	unsigned long dsip_clock;
923 	unsigned long phy_clock;
924 	int ret;
925 
926 	ret = pm_runtime_get_sync(dev);
927 	if (ret) {
928 		DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
929 		return;
930 	}
931 
932 	ret = drm_panel_prepare(dsi->panel);
933 	if (ret) {
934 		DRM_ERROR("Panel failed to prepare\n");
935 		return;
936 	}
937 
938 	if (debug_dump_regs) {
939 		DRM_INFO("DSI regs before:\n");
940 		vc4_dsi_dump_regs(dsi);
941 	}
942 
943 	switch (dsi->format) {
944 	case MIPI_DSI_FMT_RGB888:
945 		format = DSI_PFORMAT_RGB888;
946 		divider = 24 / dsi->lanes;
947 		break;
948 	case MIPI_DSI_FMT_RGB666:
949 		format = DSI_PFORMAT_RGB666;
950 		divider = 24 / dsi->lanes;
951 		break;
952 	case MIPI_DSI_FMT_RGB666_PACKED:
953 		format = DSI_PFORMAT_RGB666_PACKED;
954 		divider = 18 / dsi->lanes;
955 		break;
956 	case MIPI_DSI_FMT_RGB565:
957 		format = DSI_PFORMAT_RGB565;
958 		divider = 16 / dsi->lanes;
959 		break;
960 	}
961 
962 	phy_clock = pixel_clock_hz * divider;
963 	ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
964 	if (ret) {
965 		dev_err(&dsi->pdev->dev,
966 			"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
967 	}
968 
969 	/* Reset the DSI and all its fifos. */
970 	DSI_PORT_WRITE(CTRL,
971 		       DSI_CTRL_SOFT_RESET_CFG |
972 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
973 
974 	DSI_PORT_WRITE(CTRL,
975 		       DSI_CTRL_HSDT_EOT_DISABLE |
976 		       DSI_CTRL_RX_LPDT_EOT_DISABLE);
977 
978 	/* Clear all stat bits so we see what has happened during enable. */
979 	DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
980 
981 	/* Set AFE CTR00/CTR1 to release powerdown of analog. */
982 	if (dsi->port == 0) {
983 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
984 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
985 
986 		if (dsi->lanes < 2)
987 			afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
988 
989 		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
990 			afec0 |= DSI0_PHY_AFEC0_RESET;
991 
992 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
993 
994 		DSI_PORT_WRITE(PHY_AFEC1,
995 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
996 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
997 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
998 	} else {
999 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
1000 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
1001 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
1002 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
1003 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
1004 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
1005 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
1006 
1007 		if (dsi->lanes < 4)
1008 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
1009 		if (dsi->lanes < 3)
1010 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
1011 		if (dsi->lanes < 2)
1012 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
1013 
1014 		afec0 |= DSI1_PHY_AFEC0_RESET;
1015 
1016 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
1017 
1018 		DSI_PORT_WRITE(PHY_AFEC1, 0);
1019 
1020 		/* AFEC reset hold time */
1021 		mdelay(1);
1022 	}
1023 
1024 	ret = clk_prepare_enable(dsi->escape_clock);
1025 	if (ret) {
1026 		DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
1027 		return;
1028 	}
1029 
1030 	ret = clk_prepare_enable(dsi->pll_phy_clock);
1031 	if (ret) {
1032 		DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
1033 		return;
1034 	}
1035 
1036 	hs_clock = clk_get_rate(dsi->pll_phy_clock);
1037 
1038 	/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
1039 	 * not the pixel clock rate.  DSIxP take from the APHY's byte,
1040 	 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
1041 	 * that rate.  Separately, a value derived from PIX_CLK_DIV
1042 	 * and HS_CLKC is fed into the PV to divide down to the actual
1043 	 * pixel clock for pushing pixels into DSI.
1044 	 */
1045 	dsip_clock = phy_clock / 8;
1046 	ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
1047 	if (ret) {
1048 		dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
1049 			dsip_clock, ret);
1050 	}
1051 
1052 	ret = clk_prepare_enable(dsi->pixel_clock);
1053 	if (ret) {
1054 		DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
1055 		return;
1056 	}
1057 
1058 	/* How many ns one DSI unit interval is.  Note that the clock
1059 	 * is DDR, so there's an extra divide by 2.
1060 	 */
1061 	ui_ns = DIV_ROUND_UP(500000000, hs_clock);
1062 
1063 	DSI_PORT_WRITE(HS_CLT0,
1064 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
1065 				     DSI_HS_CLT0_CZERO) |
1066 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
1067 				     DSI_HS_CLT0_CPRE) |
1068 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
1069 				     DSI_HS_CLT0_CPREP));
1070 
1071 	DSI_PORT_WRITE(HS_CLT1,
1072 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
1073 				     DSI_HS_CLT1_CTRAIL) |
1074 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
1075 				     DSI_HS_CLT1_CPOST));
1076 
1077 	DSI_PORT_WRITE(HS_CLT2,
1078 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
1079 				     DSI_HS_CLT2_WUP));
1080 
1081 	DSI_PORT_WRITE(HS_DLT3,
1082 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
1083 				     DSI_HS_DLT3_EXIT) |
1084 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
1085 				     DSI_HS_DLT3_ZERO) |
1086 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
1087 				     DSI_HS_DLT3_PRE));
1088 
1089 	DSI_PORT_WRITE(HS_DLT4,
1090 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
1091 				     DSI_HS_DLT4_LPX) |
1092 		       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
1093 					 dsi_hs_timing(ui_ns, 60, 4)),
1094 				     DSI_HS_DLT4_TRAIL) |
1095 		       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1096 
1097 	DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000, 5000),
1098 					      DSI_HS_DLT5_INIT));
1099 
1100 	DSI_PORT_WRITE(HS_DLT6,
1101 		       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1102 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1103 		       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1104 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1105 
1106 	DSI_PORT_WRITE(HS_DLT7,
1107 		       VC4_SET_FIELD(dsi_esc_timing(1000000),
1108 				     DSI_HS_DLT7_LP_WUP));
1109 
1110 	DSI_PORT_WRITE(PHYC,
1111 		       DSI_PHYC_DLANE0_ENABLE |
1112 		       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1113 		       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1114 		       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1115 		       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1116 		       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1117 			0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1118 		       (dsi->port == 0 ?
1119 			VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1120 			VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1121 
1122 	DSI_PORT_WRITE(CTRL,
1123 		       DSI_PORT_READ(CTRL) |
1124 		       DSI_CTRL_CAL_BYTE);
1125 
1126 	/* HS timeout in HS clock cycles: disabled. */
1127 	DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1128 	/* LP receive timeout in HS clocks. */
1129 	DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1130 	/* Bus turnaround timeout */
1131 	DSI_PORT_WRITE(TA_TO_CNT, 100000);
1132 	/* Display reset sequence timeout */
1133 	DSI_PORT_WRITE(PR_TO_CNT, 100000);
1134 
1135 	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1136 		DSI_PORT_WRITE(DISP0_CTRL,
1137 			       VC4_SET_FIELD(divider, DSI_DISP0_PIX_CLK_DIV) |
1138 			       VC4_SET_FIELD(format, DSI_DISP0_PFORMAT) |
1139 			       VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1140 					     DSI_DISP0_LP_STOP_CTRL) |
1141 			       DSI_DISP0_ST_END |
1142 			       DSI_DISP0_ENABLE);
1143 	} else {
1144 		DSI_PORT_WRITE(DISP0_CTRL,
1145 			       DSI_DISP0_COMMAND_MODE |
1146 			       DSI_DISP0_ENABLE);
1147 	}
1148 
1149 	/* Set up DISP1 for transferring long command payloads through
1150 	 * the pixfifo.
1151 	 */
1152 	DSI_PORT_WRITE(DISP1_CTRL,
1153 		       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1154 				     DSI_DISP1_PFORMAT) |
1155 		       DSI_DISP1_ENABLE);
1156 
1157 	/* Ungate the block. */
1158 	if (dsi->port == 0)
1159 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1160 	else
1161 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1162 
1163 	/* Bring AFE out of reset. */
1164 	if (dsi->port == 0) {
1165 	} else {
1166 		DSI_PORT_WRITE(PHY_AFEC0,
1167 			       DSI_PORT_READ(PHY_AFEC0) &
1168 			       ~DSI1_PHY_AFEC0_RESET);
1169 	}
1170 
1171 	vc4_dsi_ulps(dsi, false);
1172 
1173 	if (debug_dump_regs) {
1174 		DRM_INFO("DSI regs after:\n");
1175 		vc4_dsi_dump_regs(dsi);
1176 	}
1177 
1178 	ret = drm_panel_enable(dsi->panel);
1179 	if (ret) {
1180 		DRM_ERROR("Panel failed to enable\n");
1181 		drm_panel_unprepare(dsi->panel);
1182 		return;
1183 	}
1184 }
1185 
1186 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1187 				     const struct mipi_dsi_msg *msg)
1188 {
1189 	struct vc4_dsi *dsi = host_to_dsi(host);
1190 	struct mipi_dsi_packet packet;
1191 	u32 pkth = 0, pktc = 0;
1192 	int i, ret;
1193 	bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1194 	u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1195 
1196 	mipi_dsi_create_packet(&packet, msg);
1197 
1198 	pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1199 	pkth |= VC4_SET_FIELD(packet.header[1] |
1200 			      (packet.header[2] << 8),
1201 			      DSI_TXPKT1H_BC_PARAM);
1202 	if (is_long) {
1203 		/* Divide data across the various FIFOs we have available.
1204 		 * The command FIFO takes byte-oriented data, but is of
1205 		 * limited size. The pixel FIFO (never actually used for
1206 		 * pixel data in reality) is word oriented, and substantially
1207 		 * larger. So, we use the pixel FIFO for most of the data,
1208 		 * sending the residual bytes in the command FIFO at the start.
1209 		 *
1210 		 * With this arrangement, the command FIFO will never get full.
1211 		 */
1212 		if (packet.payload_length <= 16) {
1213 			cmd_fifo_len = packet.payload_length;
1214 			pix_fifo_len = 0;
1215 		} else {
1216 			cmd_fifo_len = (packet.payload_length %
1217 					DSI_PIX_FIFO_WIDTH);
1218 			pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1219 					DSI_PIX_FIFO_WIDTH);
1220 		}
1221 
1222 		WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1223 
1224 		pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1225 	}
1226 
1227 	if (msg->rx_len) {
1228 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1229 				      DSI_TXPKT1C_CMD_CTRL);
1230 	} else {
1231 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1232 				      DSI_TXPKT1C_CMD_CTRL);
1233 	}
1234 
1235 	for (i = 0; i < cmd_fifo_len; i++)
1236 		DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1237 	for (i = 0; i < pix_fifo_len; i++) {
1238 		const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1239 
1240 		DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1241 			       pix[0] |
1242 			       pix[1] << 8 |
1243 			       pix[2] << 16 |
1244 			       pix[3] << 24);
1245 	}
1246 
1247 	if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1248 		pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1249 	if (is_long)
1250 		pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1251 
1252 	/* Send one copy of the packet.  Larger repeats are used for pixel
1253 	 * data in command mode.
1254 	 */
1255 	pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1256 
1257 	pktc |= DSI_TXPKT1C_CMD_EN;
1258 	if (pix_fifo_len) {
1259 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1260 				      DSI_TXPKT1C_DISPLAY_NO);
1261 	} else {
1262 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1263 				      DSI_TXPKT1C_DISPLAY_NO);
1264 	}
1265 
1266 	/* Enable the appropriate interrupt for the transfer completion. */
1267 	dsi->xfer_result = 0;
1268 	reinit_completion(&dsi->xfer_completion);
1269 	DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1270 	if (msg->rx_len) {
1271 		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1272 					DSI1_INT_PHY_DIR_RTF));
1273 	} else {
1274 		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1275 					DSI1_INT_TXPKT1_DONE));
1276 	}
1277 
1278 	/* Send the packet. */
1279 	DSI_PORT_WRITE(TXPKT1H, pkth);
1280 	DSI_PORT_WRITE(TXPKT1C, pktc);
1281 
1282 	if (!wait_for_completion_timeout(&dsi->xfer_completion,
1283 					 msecs_to_jiffies(1000))) {
1284 		dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1285 		dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1286 			DSI_PORT_READ(INT_STAT));
1287 		ret = -ETIMEDOUT;
1288 	} else {
1289 		ret = dsi->xfer_result;
1290 	}
1291 
1292 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1293 
1294 	if (ret)
1295 		goto reset_fifo_and_return;
1296 
1297 	if (ret == 0 && msg->rx_len) {
1298 		u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1299 		u8 *msg_rx = msg->rx_buf;
1300 
1301 		if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1302 			u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1303 						  DSI_RXPKT1H_BC_PARAM);
1304 
1305 			if (rxlen != msg->rx_len) {
1306 				DRM_ERROR("DSI returned %db, expecting %db\n",
1307 					  rxlen, (int)msg->rx_len);
1308 				ret = -ENXIO;
1309 				goto reset_fifo_and_return;
1310 			}
1311 
1312 			for (i = 0; i < msg->rx_len; i++)
1313 				msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1314 		} else {
1315 			/* FINISHME: Handle AWER */
1316 
1317 			msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1318 						  DSI_RXPKT1H_SHORT_0);
1319 			if (msg->rx_len > 1) {
1320 				msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1321 							  DSI_RXPKT1H_SHORT_1);
1322 			}
1323 		}
1324 	}
1325 
1326 	return ret;
1327 
1328 reset_fifo_and_return:
1329 	DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1330 
1331 	DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1332 	udelay(1);
1333 	DSI_PORT_WRITE(CTRL,
1334 		       DSI_PORT_READ(CTRL) |
1335 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1336 
1337 	DSI_PORT_WRITE(TXPKT1C, 0);
1338 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1339 	return ret;
1340 }
1341 
1342 static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1343 			       struct mipi_dsi_device *device)
1344 {
1345 	struct vc4_dsi *dsi = host_to_dsi(host);
1346 	int ret = 0;
1347 
1348 	dsi->lanes = device->lanes;
1349 	dsi->channel = device->channel;
1350 	dsi->format = device->format;
1351 	dsi->mode_flags = device->mode_flags;
1352 
1353 	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1354 		dev_err(&dsi->pdev->dev,
1355 			"Only VIDEO mode panels supported currently.\n");
1356 		return 0;
1357 	}
1358 
1359 	dsi->panel = of_drm_find_panel(device->dev.of_node);
1360 	if (!dsi->panel)
1361 		return 0;
1362 
1363 	ret = drm_panel_attach(dsi->panel, dsi->connector);
1364 	if (ret != 0)
1365 		return ret;
1366 
1367 	drm_helper_hpd_irq_event(dsi->connector->dev);
1368 
1369 	return 0;
1370 }
1371 
1372 static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1373 			       struct mipi_dsi_device *device)
1374 {
1375 	struct vc4_dsi *dsi = host_to_dsi(host);
1376 
1377 	if (dsi->panel) {
1378 		int ret = drm_panel_detach(dsi->panel);
1379 
1380 		if (ret)
1381 			return ret;
1382 
1383 		dsi->panel = NULL;
1384 
1385 		drm_helper_hpd_irq_event(dsi->connector->dev);
1386 	}
1387 
1388 	return 0;
1389 }
1390 
1391 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1392 	.attach = vc4_dsi_host_attach,
1393 	.detach = vc4_dsi_host_detach,
1394 	.transfer = vc4_dsi_host_transfer,
1395 };
1396 
1397 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1398 	.disable = vc4_dsi_encoder_disable,
1399 	.enable = vc4_dsi_encoder_enable,
1400 };
1401 
1402 static const struct of_device_id vc4_dsi_dt_match[] = {
1403 	{ .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1404 	{}
1405 };
1406 
1407 static void dsi_handle_error(struct vc4_dsi *dsi,
1408 			     irqreturn_t *ret, u32 stat, u32 bit,
1409 			     const char *type)
1410 {
1411 	if (!(stat & bit))
1412 		return;
1413 
1414 	DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1415 	*ret = IRQ_HANDLED;
1416 }
1417 
1418 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1419 {
1420 	struct vc4_dsi *dsi = data;
1421 	u32 stat = DSI_PORT_READ(INT_STAT);
1422 	irqreturn_t ret = IRQ_NONE;
1423 
1424 	DSI_PORT_WRITE(INT_STAT, stat);
1425 
1426 	dsi_handle_error(dsi, &ret, stat,
1427 			 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1428 	dsi_handle_error(dsi, &ret, stat,
1429 			 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1430 	dsi_handle_error(dsi, &ret, stat,
1431 			 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1432 	dsi_handle_error(dsi, &ret, stat,
1433 			 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1434 	dsi_handle_error(dsi, &ret, stat,
1435 			 DSI1_INT_HSTX_TO, "HSTX timeout");
1436 	dsi_handle_error(dsi, &ret, stat,
1437 			 DSI1_INT_LPRX_TO, "LPRX timeout");
1438 	dsi_handle_error(dsi, &ret, stat,
1439 			 DSI1_INT_TA_TO, "turnaround timeout");
1440 	dsi_handle_error(dsi, &ret, stat,
1441 			 DSI1_INT_PR_TO, "peripheral reset timeout");
1442 
1443 	if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1444 		complete(&dsi->xfer_completion);
1445 		ret = IRQ_HANDLED;
1446 	} else if (stat & DSI1_INT_HSTX_TO) {
1447 		complete(&dsi->xfer_completion);
1448 		dsi->xfer_result = -ETIMEDOUT;
1449 		ret = IRQ_HANDLED;
1450 	}
1451 
1452 	return ret;
1453 }
1454 
1455 /**
1456  * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1457  * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1458  * @dsi: DSI encoder
1459  */
1460 static int
1461 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1462 {
1463 	struct device *dev = &dsi->pdev->dev;
1464 	const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1465 	static const struct {
1466 		const char *dsi0_name, *dsi1_name;
1467 		int div;
1468 	} phy_clocks[] = {
1469 		{ "dsi0_byte", "dsi1_byte", 8 },
1470 		{ "dsi0_ddr2", "dsi1_ddr2", 4 },
1471 		{ "dsi0_ddr", "dsi1_ddr", 2 },
1472 	};
1473 	int i;
1474 
1475 	dsi->clk_onecell = devm_kzalloc(dev,
1476 					sizeof(*dsi->clk_onecell) +
1477 					ARRAY_SIZE(phy_clocks) *
1478 					sizeof(struct clk_hw *),
1479 					GFP_KERNEL);
1480 	if (!dsi->clk_onecell)
1481 		return -ENOMEM;
1482 	dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1483 
1484 	for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1485 		struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1486 		struct clk_init_data init;
1487 		int ret;
1488 
1489 		/* We just use core fixed factor clock ops for the PHY
1490 		 * clocks.  The clocks are actually gated by the
1491 		 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1492 		 * setting if we use the DDR/DDR2 clocks.  However,
1493 		 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1494 		 * setting both our parent DSI PLL's rate and this
1495 		 * clock's rate, so it knows if DDR/DDR2 are going to
1496 		 * be used and could enable the gates itself.
1497 		 */
1498 		fix->mult = 1;
1499 		fix->div = phy_clocks[i].div;
1500 		fix->hw.init = &init;
1501 
1502 		memset(&init, 0, sizeof(init));
1503 		init.parent_names = &parent_name;
1504 		init.num_parents = 1;
1505 		if (dsi->port == 1)
1506 			init.name = phy_clocks[i].dsi1_name;
1507 		else
1508 			init.name = phy_clocks[i].dsi0_name;
1509 		init.ops = &clk_fixed_factor_ops;
1510 
1511 		ret = devm_clk_hw_register(dev, &fix->hw);
1512 		if (ret)
1513 			return ret;
1514 
1515 		dsi->clk_onecell->hws[i] = &fix->hw;
1516 	}
1517 
1518 	return of_clk_add_hw_provider(dev->of_node,
1519 				      of_clk_hw_onecell_get,
1520 				      dsi->clk_onecell);
1521 }
1522 
1523 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1524 {
1525 	struct platform_device *pdev = to_platform_device(dev);
1526 	struct drm_device *drm = dev_get_drvdata(master);
1527 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1528 	struct vc4_dsi *dsi;
1529 	struct vc4_dsi_encoder *vc4_dsi_encoder;
1530 	const struct of_device_id *match;
1531 	dma_cap_mask_t dma_mask;
1532 	int ret;
1533 
1534 	dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1535 	if (!dsi)
1536 		return -ENOMEM;
1537 
1538 	match = of_match_device(vc4_dsi_dt_match, dev);
1539 	if (!match)
1540 		return -ENODEV;
1541 
1542 	dsi->port = (uintptr_t)match->data;
1543 
1544 	vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1545 				       GFP_KERNEL);
1546 	if (!vc4_dsi_encoder)
1547 		return -ENOMEM;
1548 	vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1549 	vc4_dsi_encoder->dsi = dsi;
1550 	dsi->encoder = &vc4_dsi_encoder->base.base;
1551 
1552 	dsi->pdev = pdev;
1553 	dsi->regs = vc4_ioremap_regs(pdev, 0);
1554 	if (IS_ERR(dsi->regs))
1555 		return PTR_ERR(dsi->regs);
1556 
1557 	if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1558 		dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1559 			DSI_PORT_READ(ID), DSI_ID_VALUE);
1560 		return -ENODEV;
1561 	}
1562 
1563 	/* DSI1 has a broken AXI slave that doesn't respond to writes
1564 	 * from the ARM.  It does handle writes from the DMA engine,
1565 	 * so set up a channel for talking to it.
1566 	 */
1567 	if (dsi->port == 1) {
1568 		dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1569 						      &dsi->reg_dma_paddr,
1570 						      GFP_KERNEL);
1571 		if (!dsi->reg_dma_mem) {
1572 			DRM_ERROR("Failed to get DMA memory\n");
1573 			return -ENOMEM;
1574 		}
1575 
1576 		dma_cap_zero(dma_mask);
1577 		dma_cap_set(DMA_MEMCPY, dma_mask);
1578 		dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1579 		if (IS_ERR(dsi->reg_dma_chan)) {
1580 			ret = PTR_ERR(dsi->reg_dma_chan);
1581 			if (ret != -EPROBE_DEFER)
1582 				DRM_ERROR("Failed to get DMA channel: %d\n",
1583 					  ret);
1584 			return ret;
1585 		}
1586 
1587 		/* Get the physical address of the device's registers.  The
1588 		 * struct resource for the regs gives us the bus address
1589 		 * instead.
1590 		 */
1591 		dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1592 							     0, NULL, NULL));
1593 	}
1594 
1595 	init_completion(&dsi->xfer_completion);
1596 	/* At startup enable error-reporting interrupts and nothing else. */
1597 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1598 	/* Clear any existing interrupt state. */
1599 	DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1600 
1601 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1602 			       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1603 	if (ret) {
1604 		if (ret != -EPROBE_DEFER)
1605 			dev_err(dev, "Failed to get interrupt: %d\n", ret);
1606 		return ret;
1607 	}
1608 
1609 	dsi->escape_clock = devm_clk_get(dev, "escape");
1610 	if (IS_ERR(dsi->escape_clock)) {
1611 		ret = PTR_ERR(dsi->escape_clock);
1612 		if (ret != -EPROBE_DEFER)
1613 			dev_err(dev, "Failed to get escape clock: %d\n", ret);
1614 		return ret;
1615 	}
1616 
1617 	dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1618 	if (IS_ERR(dsi->pll_phy_clock)) {
1619 		ret = PTR_ERR(dsi->pll_phy_clock);
1620 		if (ret != -EPROBE_DEFER)
1621 			dev_err(dev, "Failed to get phy clock: %d\n", ret);
1622 		return ret;
1623 	}
1624 
1625 	dsi->pixel_clock = devm_clk_get(dev, "pixel");
1626 	if (IS_ERR(dsi->pixel_clock)) {
1627 		ret = PTR_ERR(dsi->pixel_clock);
1628 		if (ret != -EPROBE_DEFER)
1629 			dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1630 		return ret;
1631 	}
1632 
1633 	/* The esc clock rate is supposed to always be 100Mhz. */
1634 	ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1635 	if (ret) {
1636 		dev_err(dev, "Failed to set esc clock: %d\n", ret);
1637 		return ret;
1638 	}
1639 
1640 	ret = vc4_dsi_init_phy_clocks(dsi);
1641 	if (ret)
1642 		return ret;
1643 
1644 	if (dsi->port == 1)
1645 		vc4->dsi1 = dsi;
1646 
1647 	drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
1648 			 DRM_MODE_ENCODER_DSI, NULL);
1649 	drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1650 
1651 	dsi->connector = vc4_dsi_connector_init(drm, dsi);
1652 	if (IS_ERR(dsi->connector)) {
1653 		ret = PTR_ERR(dsi->connector);
1654 		goto err_destroy_encoder;
1655 	}
1656 
1657 	dsi->dsi_host.ops = &vc4_dsi_host_ops;
1658 	dsi->dsi_host.dev = dev;
1659 
1660 	mipi_dsi_host_register(&dsi->dsi_host);
1661 
1662 	dev_set_drvdata(dev, dsi);
1663 
1664 	pm_runtime_enable(dev);
1665 
1666 	return 0;
1667 
1668 err_destroy_encoder:
1669 	vc4_dsi_encoder_destroy(dsi->encoder);
1670 
1671 	return ret;
1672 }
1673 
1674 static void vc4_dsi_unbind(struct device *dev, struct device *master,
1675 			   void *data)
1676 {
1677 	struct drm_device *drm = dev_get_drvdata(master);
1678 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1679 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1680 
1681 	pm_runtime_disable(dev);
1682 
1683 	vc4_dsi_connector_destroy(dsi->connector);
1684 	vc4_dsi_encoder_destroy(dsi->encoder);
1685 
1686 	mipi_dsi_host_unregister(&dsi->dsi_host);
1687 
1688 	clk_disable_unprepare(dsi->pll_phy_clock);
1689 	clk_disable_unprepare(dsi->escape_clock);
1690 
1691 	if (dsi->port == 1)
1692 		vc4->dsi1 = NULL;
1693 }
1694 
1695 static const struct component_ops vc4_dsi_ops = {
1696 	.bind   = vc4_dsi_bind,
1697 	.unbind = vc4_dsi_unbind,
1698 };
1699 
1700 static int vc4_dsi_dev_probe(struct platform_device *pdev)
1701 {
1702 	return component_add(&pdev->dev, &vc4_dsi_ops);
1703 }
1704 
1705 static int vc4_dsi_dev_remove(struct platform_device *pdev)
1706 {
1707 	component_del(&pdev->dev, &vc4_dsi_ops);
1708 	return 0;
1709 }
1710 
1711 struct platform_driver vc4_dsi_driver = {
1712 	.probe = vc4_dsi_dev_probe,
1713 	.remove = vc4_dsi_dev_remove,
1714 	.driver = {
1715 		.name = "vc4_dsi",
1716 		.of_match_table = vc4_dsi_dt_match,
1717 	},
1718 };
1719