1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 DSI0/DSI1 module 8 * 9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a 10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI 11 * controller. 12 * 13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector, 14 * while the compute module brings both DSI0 and DSI1 out. 15 * 16 * This driver has been tested for DSI1 video-mode display only 17 * currently, with most of the information necessary for DSI0 18 * hopefully present. 19 */ 20 21 #include <linux/clk-provider.h> 22 #include <linux/clk.h> 23 #include <linux/completion.h> 24 #include <linux/component.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/dmaengine.h> 27 #include <linux/i2c.h> 28 #include <linux/io.h> 29 #include <linux/of_address.h> 30 #include <linux/of_platform.h> 31 #include <linux/pm_runtime.h> 32 33 #include <drm/drm_atomic_helper.h> 34 #include <drm/drm_bridge.h> 35 #include <drm/drm_edid.h> 36 #include <drm/drm_mipi_dsi.h> 37 #include <drm/drm_of.h> 38 #include <drm/drm_panel.h> 39 #include <drm/drm_probe_helper.h> 40 #include <drm/drm_simple_kms_helper.h> 41 42 #include "vc4_drv.h" 43 #include "vc4_regs.h" 44 45 #define DSI_CMD_FIFO_DEPTH 16 46 #define DSI_PIX_FIFO_DEPTH 256 47 #define DSI_PIX_FIFO_WIDTH 4 48 49 #define DSI0_CTRL 0x00 50 51 /* Command packet control. */ 52 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */ 53 #define DSI1_TXPKT1C 0x04 54 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24) 55 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24 56 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10) 57 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10 58 59 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8) 60 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8 61 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */ 62 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0 63 /* Primary display where cmdfifo provides part of the payload and 64 * pixelvalve the rest. 65 */ 66 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1 67 /* Secondary display where cmdfifo provides part of the payload and 68 * pixfifo the rest. 69 */ 70 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2 71 72 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6) 73 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6 74 75 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4) 76 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4 77 /* Command only. Uses TXPKT1H and DISPLAY_NO */ 78 # define DSI_TXPKT1C_CMD_CTRL_TX 0 79 /* Command with BTA for either ack or read data. */ 80 # define DSI_TXPKT1C_CMD_CTRL_RX 1 81 /* Trigger according to TRIG_CMD */ 82 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2 83 /* BTA alone for getting error status after a command, or a TE trigger 84 * without a previous command. 85 */ 86 # define DSI_TXPKT1C_CMD_CTRL_BTA 3 87 88 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3) 89 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2) 90 # define DSI_TXPKT1C_CMD_TE_EN BIT(1) 91 # define DSI_TXPKT1C_CMD_EN BIT(0) 92 93 /* Command packet header. */ 94 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */ 95 #define DSI1_TXPKT1H 0x08 96 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24) 97 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24 98 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 99 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8 100 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0) 101 # define DSI_TXPKT1H_BC_DT_SHIFT 0 102 103 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */ 104 #define DSI1_RXPKT1H 0x14 105 # define DSI_RXPKT1H_CRC_ERR BIT(31) 106 # define DSI_RXPKT1H_DET_ERR BIT(30) 107 # define DSI_RXPKT1H_ECC_ERR BIT(29) 108 # define DSI_RXPKT1H_COR_ERR BIT(28) 109 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 110 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24) 111 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */ 112 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 113 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 114 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */ 115 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16) 116 # define DSI_RXPKT1H_SHORT_1_SHIFT 16 117 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8) 118 # define DSI_RXPKT1H_SHORT_0_SHIFT 8 119 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0) 120 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0 121 122 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */ 123 #define DSI1_RXPKT2H 0x18 124 # define DSI_RXPKT1H_DET_ERR BIT(30) 125 # define DSI_RXPKT1H_ECC_ERR BIT(29) 126 # define DSI_RXPKT1H_COR_ERR BIT(28) 127 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 128 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 129 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 130 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0) 131 # define DSI_RXPKT1H_DT_SHIFT 0 132 133 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */ 134 #define DSI1_TXPKT_CMD_FIFO 0x1c 135 136 #define DSI0_DISP0_CTRL 0x18 137 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13) 138 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13 139 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11) 140 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11 141 # define DSI_DISP0_LP_STOP_DISABLE 0 142 # define DSI_DISP0_LP_STOP_PERLINE 1 143 # define DSI_DISP0_LP_STOP_PERFRAME 2 144 145 /* Transmit RGB pixels and null packets only during HACTIVE, instead 146 * of going to LP-STOP. 147 */ 148 # define DSI_DISP_HACTIVE_NULL BIT(10) 149 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */ 150 # define DSI_DISP_VBLP_CTRL BIT(9) 151 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */ 152 # define DSI_DISP_HFP_CTRL BIT(8) 153 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */ 154 # define DSI_DISP_HBP_CTRL BIT(7) 155 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5) 156 # define DSI_DISP0_CHANNEL_SHIFT 5 157 /* Enables end events for HSYNC/VSYNC, not just start events. */ 158 # define DSI_DISP0_ST_END BIT(4) 159 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2) 160 # define DSI_DISP0_PFORMAT_SHIFT 2 161 # define DSI_PFORMAT_RGB565 0 162 # define DSI_PFORMAT_RGB666_PACKED 1 163 # define DSI_PFORMAT_RGB666 2 164 # define DSI_PFORMAT_RGB888 3 165 /* Default is VIDEO mode. */ 166 # define DSI_DISP0_COMMAND_MODE BIT(1) 167 # define DSI_DISP0_ENABLE BIT(0) 168 169 #define DSI0_DISP1_CTRL 0x1c 170 #define DSI1_DISP1_CTRL 0x2c 171 /* Format of the data written to TXPKT_PIX_FIFO. */ 172 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1) 173 # define DSI_DISP1_PFORMAT_SHIFT 1 174 # define DSI_DISP1_PFORMAT_16BIT 0 175 # define DSI_DISP1_PFORMAT_24BIT 1 176 # define DSI_DISP1_PFORMAT_32BIT_LE 2 177 # define DSI_DISP1_PFORMAT_32BIT_BE 3 178 179 /* DISP1 is always command mode. */ 180 # define DSI_DISP1_ENABLE BIT(0) 181 182 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */ 183 184 #define DSI0_INT_STAT 0x24 185 #define DSI0_INT_EN 0x28 186 # define DSI0_INT_FIFO_ERR BIT(25) 187 # define DSI0_INT_CMDC_DONE_MASK VC4_MASK(24, 23) 188 # define DSI0_INT_CMDC_DONE_SHIFT 23 189 # define DSI0_INT_CMDC_DONE_NO_REPEAT 1 190 # define DSI0_INT_CMDC_DONE_REPEAT 3 191 # define DSI0_INT_PHY_DIR_RTF BIT(22) 192 # define DSI0_INT_PHY_D1_ULPS BIT(21) 193 # define DSI0_INT_PHY_D1_STOP BIT(20) 194 # define DSI0_INT_PHY_RXLPDT BIT(19) 195 # define DSI0_INT_PHY_RXTRIG BIT(18) 196 # define DSI0_INT_PHY_D0_ULPS BIT(17) 197 # define DSI0_INT_PHY_D0_LPDT BIT(16) 198 # define DSI0_INT_PHY_D0_FTR BIT(15) 199 # define DSI0_INT_PHY_D0_STOP BIT(14) 200 /* Signaled when the clock lane enters the given state. */ 201 # define DSI0_INT_PHY_CLK_ULPS BIT(13) 202 # define DSI0_INT_PHY_CLK_HS BIT(12) 203 # define DSI0_INT_PHY_CLK_FTR BIT(11) 204 /* Signaled on timeouts */ 205 # define DSI0_INT_PR_TO BIT(10) 206 # define DSI0_INT_TA_TO BIT(9) 207 # define DSI0_INT_LPRX_TO BIT(8) 208 # define DSI0_INT_HSTX_TO BIT(7) 209 /* Contention on a line when trying to drive the line low */ 210 # define DSI0_INT_ERR_CONT_LP1 BIT(6) 211 # define DSI0_INT_ERR_CONT_LP0 BIT(5) 212 /* Control error: incorrect line state sequence on data lane 0. */ 213 # define DSI0_INT_ERR_CONTROL BIT(4) 214 # define DSI0_INT_ERR_SYNC_ESC BIT(3) 215 # define DSI0_INT_RX2_PKT BIT(2) 216 # define DSI0_INT_RX1_PKT BIT(1) 217 # define DSI0_INT_CMD_PKT BIT(0) 218 219 #define DSI0_INTERRUPTS_ALWAYS_ENABLED (DSI0_INT_ERR_SYNC_ESC | \ 220 DSI0_INT_ERR_CONTROL | \ 221 DSI0_INT_ERR_CONT_LP0 | \ 222 DSI0_INT_ERR_CONT_LP1 | \ 223 DSI0_INT_HSTX_TO | \ 224 DSI0_INT_LPRX_TO | \ 225 DSI0_INT_TA_TO | \ 226 DSI0_INT_PR_TO) 227 228 # define DSI1_INT_PHY_D3_ULPS BIT(30) 229 # define DSI1_INT_PHY_D3_STOP BIT(29) 230 # define DSI1_INT_PHY_D2_ULPS BIT(28) 231 # define DSI1_INT_PHY_D2_STOP BIT(27) 232 # define DSI1_INT_PHY_D1_ULPS BIT(26) 233 # define DSI1_INT_PHY_D1_STOP BIT(25) 234 # define DSI1_INT_PHY_D0_ULPS BIT(24) 235 # define DSI1_INT_PHY_D0_STOP BIT(23) 236 # define DSI1_INT_FIFO_ERR BIT(22) 237 # define DSI1_INT_PHY_DIR_RTF BIT(21) 238 # define DSI1_INT_PHY_RXLPDT BIT(20) 239 # define DSI1_INT_PHY_RXTRIG BIT(19) 240 # define DSI1_INT_PHY_D0_LPDT BIT(18) 241 # define DSI1_INT_PHY_DIR_FTR BIT(17) 242 243 /* Signaled when the clock lane enters the given state. */ 244 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16) 245 # define DSI1_INT_PHY_CLOCK_HS BIT(15) 246 # define DSI1_INT_PHY_CLOCK_STOP BIT(14) 247 248 /* Signaled on timeouts */ 249 # define DSI1_INT_PR_TO BIT(13) 250 # define DSI1_INT_TA_TO BIT(12) 251 # define DSI1_INT_LPRX_TO BIT(11) 252 # define DSI1_INT_HSTX_TO BIT(10) 253 254 /* Contention on a line when trying to drive the line low */ 255 # define DSI1_INT_ERR_CONT_LP1 BIT(9) 256 # define DSI1_INT_ERR_CONT_LP0 BIT(8) 257 258 /* Control error: incorrect line state sequence on data lane 0. */ 259 # define DSI1_INT_ERR_CONTROL BIT(7) 260 /* LPDT synchronization error (bits received not a multiple of 8. */ 261 262 # define DSI1_INT_ERR_SYNC_ESC BIT(6) 263 /* Signaled after receiving an error packet from the display in 264 * response to a read. 265 */ 266 # define DSI1_INT_RXPKT2 BIT(5) 267 /* Signaled after receiving a packet. The header and optional short 268 * response will be in RXPKT1H, and a long response will be in the 269 * RXPKT_FIFO. 270 */ 271 # define DSI1_INT_RXPKT1 BIT(4) 272 # define DSI1_INT_TXPKT2_DONE BIT(3) 273 # define DSI1_INT_TXPKT2_END BIT(2) 274 /* Signaled after all repeats of TXPKT1 are transferred. */ 275 # define DSI1_INT_TXPKT1_DONE BIT(1) 276 /* Signaled after each TXPKT1 repeat is scheduled. */ 277 # define DSI1_INT_TXPKT1_END BIT(0) 278 279 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \ 280 DSI1_INT_ERR_CONTROL | \ 281 DSI1_INT_ERR_CONT_LP0 | \ 282 DSI1_INT_ERR_CONT_LP1 | \ 283 DSI1_INT_HSTX_TO | \ 284 DSI1_INT_LPRX_TO | \ 285 DSI1_INT_TA_TO | \ 286 DSI1_INT_PR_TO) 287 288 #define DSI0_STAT 0x2c 289 #define DSI0_HSTX_TO_CNT 0x30 290 #define DSI0_LPRX_TO_CNT 0x34 291 #define DSI0_TA_TO_CNT 0x38 292 #define DSI0_PR_TO_CNT 0x3c 293 #define DSI0_PHYC 0x40 294 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20) 295 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20 296 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18) 297 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12) 298 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12 299 # define DSI1_PHYC_CLANE_ULPS BIT(17) 300 # define DSI1_PHYC_CLANE_ENABLE BIT(16) 301 # define DSI_PHYC_DLANE3_ULPS BIT(13) 302 # define DSI_PHYC_DLANE3_ENABLE BIT(12) 303 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10) 304 # define DSI0_PHYC_CLANE_ULPS BIT(9) 305 # define DSI_PHYC_DLANE2_ULPS BIT(9) 306 # define DSI0_PHYC_CLANE_ENABLE BIT(8) 307 # define DSI_PHYC_DLANE2_ENABLE BIT(8) 308 # define DSI_PHYC_DLANE1_ULPS BIT(5) 309 # define DSI_PHYC_DLANE1_ENABLE BIT(4) 310 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2) 311 # define DSI_PHYC_DLANE0_ULPS BIT(1) 312 # define DSI_PHYC_DLANE0_ENABLE BIT(0) 313 314 #define DSI0_HS_CLT0 0x44 315 #define DSI0_HS_CLT1 0x48 316 #define DSI0_HS_CLT2 0x4c 317 #define DSI0_HS_DLT3 0x50 318 #define DSI0_HS_DLT4 0x54 319 #define DSI0_HS_DLT5 0x58 320 #define DSI0_HS_DLT6 0x5c 321 #define DSI0_HS_DLT7 0x60 322 323 #define DSI0_PHY_AFEC0 0x64 324 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26) 325 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25) 326 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24) 327 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29) 328 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29 329 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26) 330 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26 331 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23) 332 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23 333 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20) 334 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20 335 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17) 336 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17 337 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20) 338 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20 339 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16) 340 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16 341 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12) 342 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12 343 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16) 344 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15) 345 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14) 346 # define DSI1_PHY_AFEC0_RESET BIT(13) 347 # define DSI1_PHY_AFEC0_PD BIT(12) 348 # define DSI0_PHY_AFEC0_RESET BIT(11) 349 # define DSI1_PHY_AFEC0_PD_BG BIT(11) 350 # define DSI0_PHY_AFEC0_PD BIT(10) 351 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(10) 352 # define DSI0_PHY_AFEC0_PD_BG BIT(9) 353 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9) 354 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8) 355 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(8) 356 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4) 357 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4 358 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0) 359 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0 360 361 #define DSI0_PHY_AFEC1 0x68 362 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8) 363 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8 364 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4) 365 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4 366 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0) 367 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0 368 369 #define DSI0_TST_SEL 0x6c 370 #define DSI0_TST_MON 0x70 371 #define DSI0_ID 0x74 372 # define DSI_ID_VALUE 0x00647369 373 374 #define DSI1_CTRL 0x00 375 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14) 376 # define DSI_CTRL_HS_CLKC_SHIFT 14 377 # define DSI_CTRL_HS_CLKC_BYTE 0 378 # define DSI_CTRL_HS_CLKC_DDR2 1 379 # define DSI_CTRL_HS_CLKC_DDR 2 380 381 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13) 382 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12) 383 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11) 384 # define DSI_CTRL_SOFT_RESET_CFG BIT(10) 385 # define DSI_CTRL_CAL_BYTE BIT(9) 386 # define DSI_CTRL_INV_BYTE BIT(8) 387 # define DSI_CTRL_CLR_LDF BIT(7) 388 # define DSI0_CTRL_CLR_PBCF BIT(6) 389 # define DSI1_CTRL_CLR_RXF BIT(6) 390 # define DSI0_CTRL_CLR_CPBCF BIT(5) 391 # define DSI1_CTRL_CLR_PDF BIT(5) 392 # define DSI0_CTRL_CLR_PDF BIT(4) 393 # define DSI1_CTRL_CLR_CDF BIT(4) 394 # define DSI0_CTRL_CLR_CDF BIT(3) 395 # define DSI0_CTRL_CTRL2 BIT(2) 396 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2) 397 # define DSI0_CTRL_CTRL1 BIT(1) 398 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1) 399 # define DSI0_CTRL_CTRL0 BIT(0) 400 # define DSI1_CTRL_EN BIT(0) 401 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 402 DSI0_CTRL_CLR_PBCF | \ 403 DSI0_CTRL_CLR_CPBCF | \ 404 DSI0_CTRL_CLR_PDF | \ 405 DSI0_CTRL_CLR_CDF) 406 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 407 DSI1_CTRL_CLR_RXF | \ 408 DSI1_CTRL_CLR_PDF | \ 409 DSI1_CTRL_CLR_CDF) 410 411 #define DSI1_TXPKT2C 0x0c 412 #define DSI1_TXPKT2H 0x10 413 #define DSI1_TXPKT_PIX_FIFO 0x20 414 #define DSI1_RXPKT_FIFO 0x24 415 #define DSI1_DISP0_CTRL 0x28 416 #define DSI1_INT_STAT 0x30 417 #define DSI1_INT_EN 0x34 418 /* State reporting bits. These mostly behave like INT_STAT, where 419 * writing a 1 clears the bit. 420 */ 421 #define DSI1_STAT 0x38 422 # define DSI1_STAT_PHY_D3_ULPS BIT(31) 423 # define DSI1_STAT_PHY_D3_STOP BIT(30) 424 # define DSI1_STAT_PHY_D2_ULPS BIT(29) 425 # define DSI1_STAT_PHY_D2_STOP BIT(28) 426 # define DSI1_STAT_PHY_D1_ULPS BIT(27) 427 # define DSI1_STAT_PHY_D1_STOP BIT(26) 428 # define DSI1_STAT_PHY_D0_ULPS BIT(25) 429 # define DSI1_STAT_PHY_D0_STOP BIT(24) 430 # define DSI1_STAT_FIFO_ERR BIT(23) 431 # define DSI1_STAT_PHY_RXLPDT BIT(22) 432 # define DSI1_STAT_PHY_RXTRIG BIT(21) 433 # define DSI1_STAT_PHY_D0_LPDT BIT(20) 434 /* Set when in forward direction */ 435 # define DSI1_STAT_PHY_DIR BIT(19) 436 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18) 437 # define DSI1_STAT_PHY_CLOCK_HS BIT(17) 438 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16) 439 # define DSI1_STAT_PR_TO BIT(15) 440 # define DSI1_STAT_TA_TO BIT(14) 441 # define DSI1_STAT_LPRX_TO BIT(13) 442 # define DSI1_STAT_HSTX_TO BIT(12) 443 # define DSI1_STAT_ERR_CONT_LP1 BIT(11) 444 # define DSI1_STAT_ERR_CONT_LP0 BIT(10) 445 # define DSI1_STAT_ERR_CONTROL BIT(9) 446 # define DSI1_STAT_ERR_SYNC_ESC BIT(8) 447 # define DSI1_STAT_RXPKT2 BIT(7) 448 # define DSI1_STAT_RXPKT1 BIT(6) 449 # define DSI1_STAT_TXPKT2_BUSY BIT(5) 450 # define DSI1_STAT_TXPKT2_DONE BIT(4) 451 # define DSI1_STAT_TXPKT2_END BIT(3) 452 # define DSI1_STAT_TXPKT1_BUSY BIT(2) 453 # define DSI1_STAT_TXPKT1_DONE BIT(1) 454 # define DSI1_STAT_TXPKT1_END BIT(0) 455 456 #define DSI1_HSTX_TO_CNT 0x3c 457 #define DSI1_LPRX_TO_CNT 0x40 458 #define DSI1_TA_TO_CNT 0x44 459 #define DSI1_PR_TO_CNT 0x48 460 #define DSI1_PHYC 0x4c 461 462 #define DSI1_HS_CLT0 0x50 463 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18) 464 # define DSI_HS_CLT0_CZERO_SHIFT 18 465 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9) 466 # define DSI_HS_CLT0_CPRE_SHIFT 9 467 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0) 468 # define DSI_HS_CLT0_CPREP_SHIFT 0 469 470 #define DSI1_HS_CLT1 0x54 471 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9) 472 # define DSI_HS_CLT1_CTRAIL_SHIFT 9 473 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0) 474 # define DSI_HS_CLT1_CPOST_SHIFT 0 475 476 #define DSI1_HS_CLT2 0x58 477 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0) 478 # define DSI_HS_CLT2_WUP_SHIFT 0 479 480 #define DSI1_HS_DLT3 0x5c 481 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18) 482 # define DSI_HS_DLT3_EXIT_SHIFT 18 483 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9) 484 # define DSI_HS_DLT3_ZERO_SHIFT 9 485 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0) 486 # define DSI_HS_DLT3_PRE_SHIFT 0 487 488 #define DSI1_HS_DLT4 0x60 489 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18) 490 # define DSI_HS_DLT4_ANLAT_SHIFT 18 491 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9) 492 # define DSI_HS_DLT4_TRAIL_SHIFT 9 493 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0) 494 # define DSI_HS_DLT4_LPX_SHIFT 0 495 496 #define DSI1_HS_DLT5 0x64 497 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0) 498 # define DSI_HS_DLT5_INIT_SHIFT 0 499 500 #define DSI1_HS_DLT6 0x68 501 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24) 502 # define DSI_HS_DLT6_TA_GET_SHIFT 24 503 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16) 504 # define DSI_HS_DLT6_TA_SURE_SHIFT 16 505 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8) 506 # define DSI_HS_DLT6_TA_GO_SHIFT 8 507 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0) 508 # define DSI_HS_DLT6_LP_LPX_SHIFT 0 509 510 #define DSI1_HS_DLT7 0x6c 511 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0) 512 # define DSI_HS_DLT7_LP_WUP_SHIFT 0 513 514 #define DSI1_PHY_AFEC0 0x70 515 516 #define DSI1_PHY_AFEC1 0x74 517 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16) 518 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16 519 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12) 520 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12 521 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8) 522 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8 523 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4) 524 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4 525 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0) 526 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0 527 528 #define DSI1_TST_SEL 0x78 529 #define DSI1_TST_MON 0x7c 530 #define DSI1_PHY_TST1 0x80 531 #define DSI1_PHY_TST2 0x84 532 #define DSI1_PHY_FIFO_STAT 0x88 533 /* Actually, all registers in the range that aren't otherwise claimed 534 * will return the ID. 535 */ 536 #define DSI1_ID 0x8c 537 538 struct vc4_dsi_variant { 539 /* Whether we're on bcm2835's DSI0 or DSI1. */ 540 unsigned int port; 541 542 bool broken_axi_workaround; 543 544 const char *debugfs_name; 545 const struct debugfs_reg32 *regs; 546 size_t nregs; 547 548 }; 549 550 /* General DSI hardware state. */ 551 struct vc4_dsi { 552 struct vc4_encoder encoder; 553 struct mipi_dsi_host dsi_host; 554 555 struct kref kref; 556 557 struct platform_device *pdev; 558 559 struct drm_bridge *bridge; 560 struct list_head bridge_chain; 561 562 void __iomem *regs; 563 564 struct dma_chan *reg_dma_chan; 565 dma_addr_t reg_dma_paddr; 566 u32 *reg_dma_mem; 567 dma_addr_t reg_paddr; 568 569 const struct vc4_dsi_variant *variant; 570 571 /* DSI channel for the panel we're connected to. */ 572 u32 channel; 573 u32 lanes; 574 u32 format; 575 u32 divider; 576 u32 mode_flags; 577 578 /* Input clock from CPRMAN to the digital PHY, for the DSI 579 * escape clock. 580 */ 581 struct clk *escape_clock; 582 583 /* Input clock to the analog PHY, used to generate the DSI bit 584 * clock. 585 */ 586 struct clk *pll_phy_clock; 587 588 /* HS Clocks generated within the DSI analog PHY. */ 589 struct clk_fixed_factor phy_clocks[3]; 590 591 struct clk_hw_onecell_data *clk_onecell; 592 593 /* Pixel clock output to the pixelvalve, generated from the HS 594 * clock. 595 */ 596 struct clk *pixel_clock; 597 598 struct completion xfer_completion; 599 int xfer_result; 600 601 struct debugfs_regset32 regset; 602 }; 603 604 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host) 605 606 static inline struct vc4_dsi * 607 to_vc4_dsi(struct drm_encoder *encoder) 608 { 609 return container_of(encoder, struct vc4_dsi, encoder.base); 610 } 611 612 static inline void 613 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val) 614 { 615 struct dma_chan *chan = dsi->reg_dma_chan; 616 struct dma_async_tx_descriptor *tx; 617 dma_cookie_t cookie; 618 int ret; 619 620 /* DSI0 should be able to write normally. */ 621 if (!chan) { 622 writel(val, dsi->regs + offset); 623 return; 624 } 625 626 *dsi->reg_dma_mem = val; 627 628 tx = chan->device->device_prep_dma_memcpy(chan, 629 dsi->reg_paddr + offset, 630 dsi->reg_dma_paddr, 631 4, 0); 632 if (!tx) { 633 DRM_ERROR("Failed to set up DMA register write\n"); 634 return; 635 } 636 637 cookie = tx->tx_submit(tx); 638 ret = dma_submit_error(cookie); 639 if (ret) { 640 DRM_ERROR("Failed to submit DMA: %d\n", ret); 641 return; 642 } 643 ret = dma_sync_wait(chan, cookie); 644 if (ret) 645 DRM_ERROR("Failed to wait for DMA: %d\n", ret); 646 } 647 648 #define DSI_READ(offset) readl(dsi->regs + (offset)) 649 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val) 650 #define DSI_PORT_READ(offset) \ 651 DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset) 652 #define DSI_PORT_WRITE(offset, val) \ 653 DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val) 654 #define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit) 655 656 static const struct debugfs_reg32 dsi0_regs[] = { 657 VC4_REG32(DSI0_CTRL), 658 VC4_REG32(DSI0_STAT), 659 VC4_REG32(DSI0_HSTX_TO_CNT), 660 VC4_REG32(DSI0_LPRX_TO_CNT), 661 VC4_REG32(DSI0_TA_TO_CNT), 662 VC4_REG32(DSI0_PR_TO_CNT), 663 VC4_REG32(DSI0_DISP0_CTRL), 664 VC4_REG32(DSI0_DISP1_CTRL), 665 VC4_REG32(DSI0_INT_STAT), 666 VC4_REG32(DSI0_INT_EN), 667 VC4_REG32(DSI0_PHYC), 668 VC4_REG32(DSI0_HS_CLT0), 669 VC4_REG32(DSI0_HS_CLT1), 670 VC4_REG32(DSI0_HS_CLT2), 671 VC4_REG32(DSI0_HS_DLT3), 672 VC4_REG32(DSI0_HS_DLT4), 673 VC4_REG32(DSI0_HS_DLT5), 674 VC4_REG32(DSI0_HS_DLT6), 675 VC4_REG32(DSI0_HS_DLT7), 676 VC4_REG32(DSI0_PHY_AFEC0), 677 VC4_REG32(DSI0_PHY_AFEC1), 678 VC4_REG32(DSI0_ID), 679 }; 680 681 static const struct debugfs_reg32 dsi1_regs[] = { 682 VC4_REG32(DSI1_CTRL), 683 VC4_REG32(DSI1_STAT), 684 VC4_REG32(DSI1_HSTX_TO_CNT), 685 VC4_REG32(DSI1_LPRX_TO_CNT), 686 VC4_REG32(DSI1_TA_TO_CNT), 687 VC4_REG32(DSI1_PR_TO_CNT), 688 VC4_REG32(DSI1_DISP0_CTRL), 689 VC4_REG32(DSI1_DISP1_CTRL), 690 VC4_REG32(DSI1_INT_STAT), 691 VC4_REG32(DSI1_INT_EN), 692 VC4_REG32(DSI1_PHYC), 693 VC4_REG32(DSI1_HS_CLT0), 694 VC4_REG32(DSI1_HS_CLT1), 695 VC4_REG32(DSI1_HS_CLT2), 696 VC4_REG32(DSI1_HS_DLT3), 697 VC4_REG32(DSI1_HS_DLT4), 698 VC4_REG32(DSI1_HS_DLT5), 699 VC4_REG32(DSI1_HS_DLT6), 700 VC4_REG32(DSI1_HS_DLT7), 701 VC4_REG32(DSI1_PHY_AFEC0), 702 VC4_REG32(DSI1_PHY_AFEC1), 703 VC4_REG32(DSI1_ID), 704 }; 705 706 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch) 707 { 708 u32 afec0 = DSI_PORT_READ(PHY_AFEC0); 709 710 if (latch) 711 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 712 else 713 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 714 715 DSI_PORT_WRITE(PHY_AFEC0, afec0); 716 } 717 718 /* Enters or exits Ultra Low Power State. */ 719 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps) 720 { 721 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS; 722 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) | 723 DSI_PHYC_DLANE0_ULPS | 724 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) | 725 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) | 726 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0)); 727 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) | 728 DSI1_STAT_PHY_D0_ULPS | 729 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) | 730 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) | 731 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0)); 732 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) | 733 DSI1_STAT_PHY_D0_STOP | 734 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) | 735 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) | 736 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0)); 737 int ret; 738 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) & 739 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS)); 740 741 if (ulps == ulps_currently_enabled) 742 return; 743 744 DSI_PORT_WRITE(STAT, stat_ulps); 745 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps); 746 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200); 747 if (ret) { 748 dev_warn(&dsi->pdev->dev, 749 "Timeout waiting for DSI ULPS entry: STAT 0x%08x", 750 DSI_PORT_READ(STAT)); 751 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 752 vc4_dsi_latch_ulps(dsi, false); 753 return; 754 } 755 756 /* The DSI module can't be disabled while the module is 757 * generating ULPS state. So, to be able to disable the 758 * module, we have the AFE latch the ULPS state and continue 759 * on to having the module enter STOP. 760 */ 761 vc4_dsi_latch_ulps(dsi, ulps); 762 763 DSI_PORT_WRITE(STAT, stat_stop); 764 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 765 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200); 766 if (ret) { 767 dev_warn(&dsi->pdev->dev, 768 "Timeout waiting for DSI STOP entry: STAT 0x%08x", 769 DSI_PORT_READ(STAT)); 770 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 771 return; 772 } 773 } 774 775 static u32 776 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui) 777 { 778 /* The HS timings have to be rounded up to a multiple of 8 779 * because we're using the byte clock. 780 */ 781 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8); 782 } 783 784 /* ESC always runs at 100Mhz. */ 785 #define ESC_TIME_NS 10 786 787 static u32 788 dsi_esc_timing(u32 ns) 789 { 790 return DIV_ROUND_UP(ns, ESC_TIME_NS); 791 } 792 793 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder) 794 { 795 struct vc4_dsi *dsi = to_vc4_dsi(encoder); 796 struct device *dev = &dsi->pdev->dev; 797 struct drm_bridge *iter; 798 799 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) { 800 if (iter->funcs->disable) 801 iter->funcs->disable(iter); 802 803 if (iter == dsi->bridge) 804 break; 805 } 806 807 vc4_dsi_ulps(dsi, true); 808 809 list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) { 810 if (iter->funcs->post_disable) 811 iter->funcs->post_disable(iter); 812 } 813 814 clk_disable_unprepare(dsi->pll_phy_clock); 815 clk_disable_unprepare(dsi->escape_clock); 816 clk_disable_unprepare(dsi->pixel_clock); 817 818 pm_runtime_put(dev); 819 } 820 821 /* Extends the mode's blank intervals to handle BCM2835's integer-only 822 * DSI PLL divider. 823 * 824 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display 825 * driver since most peripherals are hanging off of the PLLD_PER 826 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore 827 * the pixel clock), only has an integer divider off of DSI. 828 * 829 * To get our panel mode to refresh at the expected 60Hz, we need to 830 * extend the horizontal blank time. This means we drive a 831 * higher-than-expected clock rate to the panel, but that's what the 832 * firmware does too. 833 */ 834 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder, 835 const struct drm_display_mode *mode, 836 struct drm_display_mode *adjusted_mode) 837 { 838 struct vc4_dsi *dsi = to_vc4_dsi(encoder); 839 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock); 840 unsigned long parent_rate = clk_get_rate(phy_parent); 841 unsigned long pixel_clock_hz = mode->clock * 1000; 842 unsigned long pll_clock = pixel_clock_hz * dsi->divider; 843 int divider; 844 845 /* Find what divider gets us a faster clock than the requested 846 * pixel clock. 847 */ 848 for (divider = 1; divider < 255; divider++) { 849 if (parent_rate / (divider + 1) < pll_clock) 850 break; 851 } 852 853 /* Now that we've picked a PLL divider, calculate back to its 854 * pixel clock. 855 */ 856 pll_clock = parent_rate / divider; 857 pixel_clock_hz = pll_clock / dsi->divider; 858 859 adjusted_mode->clock = pixel_clock_hz / 1000; 860 861 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */ 862 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal / 863 mode->clock; 864 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal; 865 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal; 866 867 return true; 868 } 869 870 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder) 871 { 872 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; 873 struct vc4_dsi *dsi = to_vc4_dsi(encoder); 874 struct device *dev = &dsi->pdev->dev; 875 bool debug_dump_regs = false; 876 struct drm_bridge *iter; 877 unsigned long hs_clock; 878 u32 ui_ns; 879 /* Minimum LP state duration in escape clock cycles. */ 880 u32 lpx = dsi_esc_timing(60); 881 unsigned long pixel_clock_hz = mode->clock * 1000; 882 unsigned long dsip_clock; 883 unsigned long phy_clock; 884 int ret; 885 886 ret = pm_runtime_resume_and_get(dev); 887 if (ret) { 888 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port); 889 return; 890 } 891 892 if (debug_dump_regs) { 893 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 894 dev_info(&dsi->pdev->dev, "DSI regs before:\n"); 895 drm_print_regset32(&p, &dsi->regset); 896 } 897 898 /* Round up the clk_set_rate() request slightly, since 899 * PLLD_DSI1 is an integer divider and its rate selection will 900 * never round up. 901 */ 902 phy_clock = (pixel_clock_hz + 1000) * dsi->divider; 903 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock); 904 if (ret) { 905 dev_err(&dsi->pdev->dev, 906 "Failed to set phy clock to %ld: %d\n", phy_clock, ret); 907 } 908 909 /* Reset the DSI and all its fifos. */ 910 DSI_PORT_WRITE(CTRL, 911 DSI_CTRL_SOFT_RESET_CFG | 912 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 913 914 DSI_PORT_WRITE(CTRL, 915 DSI_CTRL_HSDT_EOT_DISABLE | 916 DSI_CTRL_RX_LPDT_EOT_DISABLE); 917 918 /* Clear all stat bits so we see what has happened during enable. */ 919 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT)); 920 921 /* Set AFE CTR00/CTR1 to release powerdown of analog. */ 922 if (dsi->variant->port == 0) { 923 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 924 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ)); 925 926 if (dsi->lanes < 2) 927 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1; 928 929 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) 930 afec0 |= DSI0_PHY_AFEC0_RESET; 931 932 DSI_PORT_WRITE(PHY_AFEC0, afec0); 933 934 /* AFEC reset hold time */ 935 mdelay(1); 936 937 DSI_PORT_WRITE(PHY_AFEC1, 938 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) | 939 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) | 940 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE)); 941 } else { 942 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 943 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) | 944 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) | 945 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) | 946 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) | 947 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) | 948 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3)); 949 950 if (dsi->lanes < 4) 951 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3; 952 if (dsi->lanes < 3) 953 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2; 954 if (dsi->lanes < 2) 955 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1; 956 957 afec0 |= DSI1_PHY_AFEC0_RESET; 958 959 DSI_PORT_WRITE(PHY_AFEC0, afec0); 960 961 DSI_PORT_WRITE(PHY_AFEC1, 0); 962 963 /* AFEC reset hold time */ 964 mdelay(1); 965 } 966 967 ret = clk_prepare_enable(dsi->escape_clock); 968 if (ret) { 969 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret); 970 return; 971 } 972 973 ret = clk_prepare_enable(dsi->pll_phy_clock); 974 if (ret) { 975 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret); 976 return; 977 } 978 979 hs_clock = clk_get_rate(dsi->pll_phy_clock); 980 981 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate, 982 * not the pixel clock rate. DSIxP take from the APHY's byte, 983 * DDR2, or DDR4 clock (we use byte) and feed into the PV at 984 * that rate. Separately, a value derived from PIX_CLK_DIV 985 * and HS_CLKC is fed into the PV to divide down to the actual 986 * pixel clock for pushing pixels into DSI. 987 */ 988 dsip_clock = phy_clock / 8; 989 ret = clk_set_rate(dsi->pixel_clock, dsip_clock); 990 if (ret) { 991 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n", 992 dsip_clock, ret); 993 } 994 995 ret = clk_prepare_enable(dsi->pixel_clock); 996 if (ret) { 997 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret); 998 return; 999 } 1000 1001 /* How many ns one DSI unit interval is. Note that the clock 1002 * is DDR, so there's an extra divide by 2. 1003 */ 1004 ui_ns = DIV_ROUND_UP(500000000, hs_clock); 1005 1006 DSI_PORT_WRITE(HS_CLT0, 1007 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0), 1008 DSI_HS_CLT0_CZERO) | 1009 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8), 1010 DSI_HS_CLT0_CPRE) | 1011 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0), 1012 DSI_HS_CLT0_CPREP)); 1013 1014 DSI_PORT_WRITE(HS_CLT1, 1015 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0), 1016 DSI_HS_CLT1_CTRAIL) | 1017 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52), 1018 DSI_HS_CLT1_CPOST)); 1019 1020 DSI_PORT_WRITE(HS_CLT2, 1021 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0), 1022 DSI_HS_CLT2_WUP)); 1023 1024 DSI_PORT_WRITE(HS_DLT3, 1025 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0), 1026 DSI_HS_DLT3_EXIT) | 1027 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6), 1028 DSI_HS_DLT3_ZERO) | 1029 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4), 1030 DSI_HS_DLT3_PRE)); 1031 1032 DSI_PORT_WRITE(HS_DLT4, 1033 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0), 1034 DSI_HS_DLT4_LPX) | 1035 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8), 1036 dsi_hs_timing(ui_ns, 60, 4)), 1037 DSI_HS_DLT4_TRAIL) | 1038 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT)); 1039 1040 /* T_INIT is how long STOP is driven after power-up to 1041 * indicate to the slave (also coming out of power-up) that 1042 * master init is complete, and should be greater than the 1043 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The 1044 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and 1045 * T_INIT,SLAVE, while allowing protocols on top of it to give 1046 * greater minimums. The vc4 firmware uses an extremely 1047 * conservative 5ms, and we maintain that here. 1048 */ 1049 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1050 5 * 1000 * 1000, 0), 1051 DSI_HS_DLT5_INIT)); 1052 1053 DSI_PORT_WRITE(HS_DLT6, 1054 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) | 1055 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) | 1056 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) | 1057 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX)); 1058 1059 DSI_PORT_WRITE(HS_DLT7, 1060 VC4_SET_FIELD(dsi_esc_timing(1000000), 1061 DSI_HS_DLT7_LP_WUP)); 1062 1063 DSI_PORT_WRITE(PHYC, 1064 DSI_PHYC_DLANE0_ENABLE | 1065 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) | 1066 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) | 1067 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) | 1068 DSI_PORT_BIT(PHYC_CLANE_ENABLE) | 1069 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ? 1070 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) | 1071 (dsi->variant->port == 0 ? 1072 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) : 1073 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT))); 1074 1075 DSI_PORT_WRITE(CTRL, 1076 DSI_PORT_READ(CTRL) | 1077 DSI_CTRL_CAL_BYTE); 1078 1079 /* HS timeout in HS clock cycles: disabled. */ 1080 DSI_PORT_WRITE(HSTX_TO_CNT, 0); 1081 /* LP receive timeout in HS clocks. */ 1082 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff); 1083 /* Bus turnaround timeout */ 1084 DSI_PORT_WRITE(TA_TO_CNT, 100000); 1085 /* Display reset sequence timeout */ 1086 DSI_PORT_WRITE(PR_TO_CNT, 100000); 1087 1088 /* Set up DISP1 for transferring long command payloads through 1089 * the pixfifo. 1090 */ 1091 DSI_PORT_WRITE(DISP1_CTRL, 1092 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE, 1093 DSI_DISP1_PFORMAT) | 1094 DSI_DISP1_ENABLE); 1095 1096 /* Ungate the block. */ 1097 if (dsi->variant->port == 0) 1098 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0); 1099 else 1100 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN); 1101 1102 /* Bring AFE out of reset. */ 1103 DSI_PORT_WRITE(PHY_AFEC0, 1104 DSI_PORT_READ(PHY_AFEC0) & 1105 ~DSI_PORT_BIT(PHY_AFEC0_RESET)); 1106 1107 vc4_dsi_ulps(dsi, false); 1108 1109 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) { 1110 if (iter->funcs->pre_enable) 1111 iter->funcs->pre_enable(iter); 1112 } 1113 1114 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 1115 DSI_PORT_WRITE(DISP0_CTRL, 1116 VC4_SET_FIELD(dsi->divider, 1117 DSI_DISP0_PIX_CLK_DIV) | 1118 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) | 1119 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME, 1120 DSI_DISP0_LP_STOP_CTRL) | 1121 DSI_DISP0_ST_END | 1122 DSI_DISP0_ENABLE); 1123 } else { 1124 DSI_PORT_WRITE(DISP0_CTRL, 1125 DSI_DISP0_COMMAND_MODE | 1126 DSI_DISP0_ENABLE); 1127 } 1128 1129 list_for_each_entry(iter, &dsi->bridge_chain, chain_node) { 1130 if (iter->funcs->enable) 1131 iter->funcs->enable(iter); 1132 } 1133 1134 if (debug_dump_regs) { 1135 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 1136 dev_info(&dsi->pdev->dev, "DSI regs after:\n"); 1137 drm_print_regset32(&p, &dsi->regset); 1138 } 1139 } 1140 1141 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host, 1142 const struct mipi_dsi_msg *msg) 1143 { 1144 struct vc4_dsi *dsi = host_to_dsi(host); 1145 struct mipi_dsi_packet packet; 1146 u32 pkth = 0, pktc = 0; 1147 int i, ret; 1148 bool is_long = mipi_dsi_packet_format_is_long(msg->type); 1149 u32 cmd_fifo_len = 0, pix_fifo_len = 0; 1150 1151 mipi_dsi_create_packet(&packet, msg); 1152 1153 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT); 1154 pkth |= VC4_SET_FIELD(packet.header[1] | 1155 (packet.header[2] << 8), 1156 DSI_TXPKT1H_BC_PARAM); 1157 if (is_long) { 1158 /* Divide data across the various FIFOs we have available. 1159 * The command FIFO takes byte-oriented data, but is of 1160 * limited size. The pixel FIFO (never actually used for 1161 * pixel data in reality) is word oriented, and substantially 1162 * larger. So, we use the pixel FIFO for most of the data, 1163 * sending the residual bytes in the command FIFO at the start. 1164 * 1165 * With this arrangement, the command FIFO will never get full. 1166 */ 1167 if (packet.payload_length <= 16) { 1168 cmd_fifo_len = packet.payload_length; 1169 pix_fifo_len = 0; 1170 } else { 1171 cmd_fifo_len = (packet.payload_length % 1172 DSI_PIX_FIFO_WIDTH); 1173 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) / 1174 DSI_PIX_FIFO_WIDTH); 1175 } 1176 1177 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH); 1178 1179 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO); 1180 } 1181 1182 if (msg->rx_len) { 1183 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX, 1184 DSI_TXPKT1C_CMD_CTRL); 1185 } else { 1186 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX, 1187 DSI_TXPKT1C_CMD_CTRL); 1188 } 1189 1190 for (i = 0; i < cmd_fifo_len; i++) 1191 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]); 1192 for (i = 0; i < pix_fifo_len; i++) { 1193 const u8 *pix = packet.payload + cmd_fifo_len + i * 4; 1194 1195 DSI_PORT_WRITE(TXPKT_PIX_FIFO, 1196 pix[0] | 1197 pix[1] << 8 | 1198 pix[2] << 16 | 1199 pix[3] << 24); 1200 } 1201 1202 if (msg->flags & MIPI_DSI_MSG_USE_LPM) 1203 pktc |= DSI_TXPKT1C_CMD_MODE_LP; 1204 if (is_long) 1205 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG; 1206 1207 /* Send one copy of the packet. Larger repeats are used for pixel 1208 * data in command mode. 1209 */ 1210 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT); 1211 1212 pktc |= DSI_TXPKT1C_CMD_EN; 1213 if (pix_fifo_len) { 1214 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY, 1215 DSI_TXPKT1C_DISPLAY_NO); 1216 } else { 1217 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT, 1218 DSI_TXPKT1C_DISPLAY_NO); 1219 } 1220 1221 /* Enable the appropriate interrupt for the transfer completion. */ 1222 dsi->xfer_result = 0; 1223 reinit_completion(&dsi->xfer_completion); 1224 if (dsi->variant->port == 0) { 1225 DSI_PORT_WRITE(INT_STAT, 1226 DSI0_INT_CMDC_DONE_MASK | DSI1_INT_PHY_DIR_RTF); 1227 if (msg->rx_len) { 1228 DSI_PORT_WRITE(INT_EN, (DSI0_INTERRUPTS_ALWAYS_ENABLED | 1229 DSI0_INT_PHY_DIR_RTF)); 1230 } else { 1231 DSI_PORT_WRITE(INT_EN, 1232 (DSI0_INTERRUPTS_ALWAYS_ENABLED | 1233 VC4_SET_FIELD(DSI0_INT_CMDC_DONE_NO_REPEAT, 1234 DSI0_INT_CMDC_DONE))); 1235 } 1236 } else { 1237 DSI_PORT_WRITE(INT_STAT, 1238 DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF); 1239 if (msg->rx_len) { 1240 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1241 DSI1_INT_PHY_DIR_RTF)); 1242 } else { 1243 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1244 DSI1_INT_TXPKT1_DONE)); 1245 } 1246 } 1247 1248 /* Send the packet. */ 1249 DSI_PORT_WRITE(TXPKT1H, pkth); 1250 DSI_PORT_WRITE(TXPKT1C, pktc); 1251 1252 if (!wait_for_completion_timeout(&dsi->xfer_completion, 1253 msecs_to_jiffies(1000))) { 1254 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout"); 1255 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n", 1256 DSI_PORT_READ(INT_STAT)); 1257 ret = -ETIMEDOUT; 1258 } else { 1259 ret = dsi->xfer_result; 1260 } 1261 1262 DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED)); 1263 1264 if (ret) 1265 goto reset_fifo_and_return; 1266 1267 if (ret == 0 && msg->rx_len) { 1268 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H); 1269 u8 *msg_rx = msg->rx_buf; 1270 1271 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) { 1272 u32 rxlen = VC4_GET_FIELD(rxpkt1h, 1273 DSI_RXPKT1H_BC_PARAM); 1274 1275 if (rxlen != msg->rx_len) { 1276 DRM_ERROR("DSI returned %db, expecting %db\n", 1277 rxlen, (int)msg->rx_len); 1278 ret = -ENXIO; 1279 goto reset_fifo_and_return; 1280 } 1281 1282 for (i = 0; i < msg->rx_len; i++) 1283 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO); 1284 } else { 1285 /* FINISHME: Handle AWER */ 1286 1287 msg_rx[0] = VC4_GET_FIELD(rxpkt1h, 1288 DSI_RXPKT1H_SHORT_0); 1289 if (msg->rx_len > 1) { 1290 msg_rx[1] = VC4_GET_FIELD(rxpkt1h, 1291 DSI_RXPKT1H_SHORT_1); 1292 } 1293 } 1294 } 1295 1296 return ret; 1297 1298 reset_fifo_and_return: 1299 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret); 1300 1301 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN); 1302 udelay(1); 1303 DSI_PORT_WRITE(CTRL, 1304 DSI_PORT_READ(CTRL) | 1305 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 1306 1307 DSI_PORT_WRITE(TXPKT1C, 0); 1308 DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED)); 1309 return ret; 1310 } 1311 1312 static const struct component_ops vc4_dsi_ops; 1313 static int vc4_dsi_host_attach(struct mipi_dsi_host *host, 1314 struct mipi_dsi_device *device) 1315 { 1316 struct vc4_dsi *dsi = host_to_dsi(host); 1317 1318 dsi->lanes = device->lanes; 1319 dsi->channel = device->channel; 1320 dsi->mode_flags = device->mode_flags; 1321 1322 switch (device->format) { 1323 case MIPI_DSI_FMT_RGB888: 1324 dsi->format = DSI_PFORMAT_RGB888; 1325 dsi->divider = 24 / dsi->lanes; 1326 break; 1327 case MIPI_DSI_FMT_RGB666: 1328 dsi->format = DSI_PFORMAT_RGB666; 1329 dsi->divider = 24 / dsi->lanes; 1330 break; 1331 case MIPI_DSI_FMT_RGB666_PACKED: 1332 dsi->format = DSI_PFORMAT_RGB666_PACKED; 1333 dsi->divider = 18 / dsi->lanes; 1334 break; 1335 case MIPI_DSI_FMT_RGB565: 1336 dsi->format = DSI_PFORMAT_RGB565; 1337 dsi->divider = 16 / dsi->lanes; 1338 break; 1339 default: 1340 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n", 1341 dsi->format); 1342 return 0; 1343 } 1344 1345 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) { 1346 dev_err(&dsi->pdev->dev, 1347 "Only VIDEO mode panels supported currently.\n"); 1348 return 0; 1349 } 1350 1351 return component_add(&dsi->pdev->dev, &vc4_dsi_ops); 1352 } 1353 1354 static int vc4_dsi_host_detach(struct mipi_dsi_host *host, 1355 struct mipi_dsi_device *device) 1356 { 1357 struct vc4_dsi *dsi = host_to_dsi(host); 1358 1359 component_del(&dsi->pdev->dev, &vc4_dsi_ops); 1360 return 0; 1361 } 1362 1363 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = { 1364 .attach = vc4_dsi_host_attach, 1365 .detach = vc4_dsi_host_detach, 1366 .transfer = vc4_dsi_host_transfer, 1367 }; 1368 1369 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = { 1370 .disable = vc4_dsi_encoder_disable, 1371 .enable = vc4_dsi_encoder_enable, 1372 .mode_fixup = vc4_dsi_encoder_mode_fixup, 1373 }; 1374 1375 static int vc4_dsi_late_register(struct drm_encoder *encoder) 1376 { 1377 struct drm_device *drm = encoder->dev; 1378 struct vc4_dsi *dsi = to_vc4_dsi(encoder); 1379 int ret; 1380 1381 ret = vc4_debugfs_add_regset32(drm->primary, dsi->variant->debugfs_name, 1382 &dsi->regset); 1383 if (ret) 1384 return ret; 1385 1386 return 0; 1387 } 1388 1389 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = { 1390 .late_register = vc4_dsi_late_register, 1391 }; 1392 1393 static const struct vc4_dsi_variant bcm2711_dsi1_variant = { 1394 .port = 1, 1395 .debugfs_name = "dsi1_regs", 1396 .regs = dsi1_regs, 1397 .nregs = ARRAY_SIZE(dsi1_regs), 1398 }; 1399 1400 static const struct vc4_dsi_variant bcm2835_dsi0_variant = { 1401 .port = 0, 1402 .debugfs_name = "dsi0_regs", 1403 .regs = dsi0_regs, 1404 .nregs = ARRAY_SIZE(dsi0_regs), 1405 }; 1406 1407 static const struct vc4_dsi_variant bcm2835_dsi1_variant = { 1408 .port = 1, 1409 .broken_axi_workaround = true, 1410 .debugfs_name = "dsi1_regs", 1411 .regs = dsi1_regs, 1412 .nregs = ARRAY_SIZE(dsi1_regs), 1413 }; 1414 1415 static const struct of_device_id vc4_dsi_dt_match[] = { 1416 { .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant }, 1417 { .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant }, 1418 { .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant }, 1419 {} 1420 }; 1421 1422 static void dsi_handle_error(struct vc4_dsi *dsi, 1423 irqreturn_t *ret, u32 stat, u32 bit, 1424 const char *type) 1425 { 1426 if (!(stat & bit)) 1427 return; 1428 1429 DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type); 1430 *ret = IRQ_HANDLED; 1431 } 1432 1433 /* 1434 * Initial handler for port 1 where we need the reg_dma workaround. 1435 * The register DMA writes sleep, so we can't do it in the top half. 1436 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the 1437 * parent interrupt contrller until our interrupt thread is done. 1438 */ 1439 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data) 1440 { 1441 struct vc4_dsi *dsi = data; 1442 u32 stat = DSI_PORT_READ(INT_STAT); 1443 1444 if (!stat) 1445 return IRQ_NONE; 1446 1447 return IRQ_WAKE_THREAD; 1448 } 1449 1450 /* 1451 * Normal IRQ handler for port 0, or the threaded IRQ handler for port 1452 * 1 where we need the reg_dma workaround. 1453 */ 1454 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data) 1455 { 1456 struct vc4_dsi *dsi = data; 1457 u32 stat = DSI_PORT_READ(INT_STAT); 1458 irqreturn_t ret = IRQ_NONE; 1459 1460 DSI_PORT_WRITE(INT_STAT, stat); 1461 1462 dsi_handle_error(dsi, &ret, stat, 1463 DSI_PORT_BIT(INT_ERR_SYNC_ESC), "LPDT sync"); 1464 dsi_handle_error(dsi, &ret, stat, 1465 DSI_PORT_BIT(INT_ERR_CONTROL), "data lane 0 sequence"); 1466 dsi_handle_error(dsi, &ret, stat, 1467 DSI_PORT_BIT(INT_ERR_CONT_LP0), "LP0 contention"); 1468 dsi_handle_error(dsi, &ret, stat, 1469 DSI_PORT_BIT(INT_ERR_CONT_LP1), "LP1 contention"); 1470 dsi_handle_error(dsi, &ret, stat, 1471 DSI_PORT_BIT(INT_HSTX_TO), "HSTX timeout"); 1472 dsi_handle_error(dsi, &ret, stat, 1473 DSI_PORT_BIT(INT_LPRX_TO), "LPRX timeout"); 1474 dsi_handle_error(dsi, &ret, stat, 1475 DSI_PORT_BIT(INT_TA_TO), "turnaround timeout"); 1476 dsi_handle_error(dsi, &ret, stat, 1477 DSI_PORT_BIT(INT_PR_TO), "peripheral reset timeout"); 1478 1479 if (stat & ((dsi->variant->port ? DSI1_INT_TXPKT1_DONE : 1480 DSI0_INT_CMDC_DONE_MASK) | 1481 DSI_PORT_BIT(INT_PHY_DIR_RTF))) { 1482 complete(&dsi->xfer_completion); 1483 ret = IRQ_HANDLED; 1484 } else if (stat & DSI_PORT_BIT(INT_HSTX_TO)) { 1485 complete(&dsi->xfer_completion); 1486 dsi->xfer_result = -ETIMEDOUT; 1487 ret = IRQ_HANDLED; 1488 } 1489 1490 return ret; 1491 } 1492 1493 /** 1494 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog 1495 * PHY that are consumed by CPRMAN (clk-bcm2835.c). 1496 * @dsi: DSI encoder 1497 */ 1498 static int 1499 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi) 1500 { 1501 struct device *dev = &dsi->pdev->dev; 1502 const char *parent_name = __clk_get_name(dsi->pll_phy_clock); 1503 static const struct { 1504 const char *name; 1505 int div; 1506 } phy_clocks[] = { 1507 { "byte", 8 }, 1508 { "ddr2", 4 }, 1509 { "ddr", 2 }, 1510 }; 1511 int i; 1512 1513 dsi->clk_onecell = devm_kzalloc(dev, 1514 sizeof(*dsi->clk_onecell) + 1515 ARRAY_SIZE(phy_clocks) * 1516 sizeof(struct clk_hw *), 1517 GFP_KERNEL); 1518 if (!dsi->clk_onecell) 1519 return -ENOMEM; 1520 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks); 1521 1522 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) { 1523 struct clk_fixed_factor *fix = &dsi->phy_clocks[i]; 1524 struct clk_init_data init; 1525 char clk_name[16]; 1526 int ret; 1527 1528 snprintf(clk_name, sizeof(clk_name), 1529 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name); 1530 1531 /* We just use core fixed factor clock ops for the PHY 1532 * clocks. The clocks are actually gated by the 1533 * PHY_AFEC0_DDRCLK_EN bits, which we should be 1534 * setting if we use the DDR/DDR2 clocks. However, 1535 * vc4_dsi_encoder_enable() is setting up both AFEC0, 1536 * setting both our parent DSI PLL's rate and this 1537 * clock's rate, so it knows if DDR/DDR2 are going to 1538 * be used and could enable the gates itself. 1539 */ 1540 fix->mult = 1; 1541 fix->div = phy_clocks[i].div; 1542 fix->hw.init = &init; 1543 1544 memset(&init, 0, sizeof(init)); 1545 init.parent_names = &parent_name; 1546 init.num_parents = 1; 1547 init.name = clk_name; 1548 init.ops = &clk_fixed_factor_ops; 1549 1550 ret = devm_clk_hw_register(dev, &fix->hw); 1551 if (ret) 1552 return ret; 1553 1554 dsi->clk_onecell->hws[i] = &fix->hw; 1555 } 1556 1557 return of_clk_add_hw_provider(dev->of_node, 1558 of_clk_hw_onecell_get, 1559 dsi->clk_onecell); 1560 } 1561 1562 static void vc4_dsi_dma_mem_release(void *ptr) 1563 { 1564 struct vc4_dsi *dsi = ptr; 1565 struct device *dev = &dsi->pdev->dev; 1566 1567 dma_free_coherent(dev, 4, dsi->reg_dma_mem, dsi->reg_dma_paddr); 1568 dsi->reg_dma_mem = NULL; 1569 } 1570 1571 static void vc4_dsi_dma_chan_release(void *ptr) 1572 { 1573 struct vc4_dsi *dsi = ptr; 1574 1575 dma_release_channel(dsi->reg_dma_chan); 1576 dsi->reg_dma_chan = NULL; 1577 } 1578 1579 static void vc4_dsi_release(struct kref *kref) 1580 { 1581 struct vc4_dsi *dsi = 1582 container_of(kref, struct vc4_dsi, kref); 1583 1584 kfree(dsi); 1585 } 1586 1587 static void vc4_dsi_get(struct vc4_dsi *dsi) 1588 { 1589 kref_get(&dsi->kref); 1590 } 1591 1592 static void vc4_dsi_put(struct vc4_dsi *dsi) 1593 { 1594 kref_put(&dsi->kref, &vc4_dsi_release); 1595 } 1596 1597 static void vc4_dsi_release_action(struct drm_device *drm, void *ptr) 1598 { 1599 struct vc4_dsi *dsi = ptr; 1600 1601 vc4_dsi_put(dsi); 1602 } 1603 1604 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data) 1605 { 1606 struct platform_device *pdev = to_platform_device(dev); 1607 struct drm_device *drm = dev_get_drvdata(master); 1608 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1609 struct drm_encoder *encoder = &dsi->encoder.base; 1610 int ret; 1611 1612 vc4_dsi_get(dsi); 1613 1614 ret = drmm_add_action_or_reset(drm, vc4_dsi_release_action, dsi); 1615 if (ret) 1616 return ret; 1617 1618 dsi->variant = of_device_get_match_data(dev); 1619 1620 INIT_LIST_HEAD(&dsi->bridge_chain); 1621 dsi->encoder.type = dsi->variant->port ? 1622 VC4_ENCODER_TYPE_DSI1 : VC4_ENCODER_TYPE_DSI0; 1623 1624 dsi->regs = vc4_ioremap_regs(pdev, 0); 1625 if (IS_ERR(dsi->regs)) 1626 return PTR_ERR(dsi->regs); 1627 1628 dsi->regset.base = dsi->regs; 1629 dsi->regset.regs = dsi->variant->regs; 1630 dsi->regset.nregs = dsi->variant->nregs; 1631 1632 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) { 1633 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n", 1634 DSI_PORT_READ(ID), DSI_ID_VALUE); 1635 return -ENODEV; 1636 } 1637 1638 /* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to 1639 * writes from the ARM. It does handle writes from the DMA engine, 1640 * so set up a channel for talking to it. 1641 */ 1642 if (dsi->variant->broken_axi_workaround) { 1643 dma_cap_mask_t dma_mask; 1644 1645 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4, 1646 &dsi->reg_dma_paddr, 1647 GFP_KERNEL); 1648 if (!dsi->reg_dma_mem) { 1649 DRM_ERROR("Failed to get DMA memory\n"); 1650 return -ENOMEM; 1651 } 1652 1653 ret = devm_add_action_or_reset(dev, vc4_dsi_dma_mem_release, dsi); 1654 if (ret) 1655 return ret; 1656 1657 dma_cap_zero(dma_mask); 1658 dma_cap_set(DMA_MEMCPY, dma_mask); 1659 1660 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask); 1661 if (IS_ERR(dsi->reg_dma_chan)) { 1662 ret = PTR_ERR(dsi->reg_dma_chan); 1663 if (ret != -EPROBE_DEFER) 1664 DRM_ERROR("Failed to get DMA channel: %d\n", 1665 ret); 1666 return ret; 1667 } 1668 1669 ret = devm_add_action_or_reset(dev, vc4_dsi_dma_chan_release, dsi); 1670 if (ret) 1671 return ret; 1672 1673 /* Get the physical address of the device's registers. The 1674 * struct resource for the regs gives us the bus address 1675 * instead. 1676 */ 1677 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node, 1678 0, NULL, NULL)); 1679 } 1680 1681 init_completion(&dsi->xfer_completion); 1682 /* At startup enable error-reporting interrupts and nothing else. */ 1683 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1684 /* Clear any existing interrupt state. */ 1685 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT)); 1686 1687 if (dsi->reg_dma_mem) 1688 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), 1689 vc4_dsi_irq_defer_to_thread_handler, 1690 vc4_dsi_irq_handler, 1691 IRQF_ONESHOT, 1692 "vc4 dsi", dsi); 1693 else 1694 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1695 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi); 1696 if (ret) { 1697 if (ret != -EPROBE_DEFER) 1698 dev_err(dev, "Failed to get interrupt: %d\n", ret); 1699 return ret; 1700 } 1701 1702 dsi->escape_clock = devm_clk_get(dev, "escape"); 1703 if (IS_ERR(dsi->escape_clock)) { 1704 ret = PTR_ERR(dsi->escape_clock); 1705 if (ret != -EPROBE_DEFER) 1706 dev_err(dev, "Failed to get escape clock: %d\n", ret); 1707 return ret; 1708 } 1709 1710 dsi->pll_phy_clock = devm_clk_get(dev, "phy"); 1711 if (IS_ERR(dsi->pll_phy_clock)) { 1712 ret = PTR_ERR(dsi->pll_phy_clock); 1713 if (ret != -EPROBE_DEFER) 1714 dev_err(dev, "Failed to get phy clock: %d\n", ret); 1715 return ret; 1716 } 1717 1718 dsi->pixel_clock = devm_clk_get(dev, "pixel"); 1719 if (IS_ERR(dsi->pixel_clock)) { 1720 ret = PTR_ERR(dsi->pixel_clock); 1721 if (ret != -EPROBE_DEFER) 1722 dev_err(dev, "Failed to get pixel clock: %d\n", ret); 1723 return ret; 1724 } 1725 1726 dsi->bridge = drmm_of_get_bridge(drm, dev->of_node, 0, 0); 1727 if (IS_ERR(dsi->bridge)) 1728 return PTR_ERR(dsi->bridge); 1729 1730 /* The esc clock rate is supposed to always be 100Mhz. */ 1731 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000); 1732 if (ret) { 1733 dev_err(dev, "Failed to set esc clock: %d\n", ret); 1734 return ret; 1735 } 1736 1737 ret = vc4_dsi_init_phy_clocks(dsi); 1738 if (ret) 1739 return ret; 1740 1741 ret = drmm_encoder_init(drm, encoder, 1742 &vc4_dsi_encoder_funcs, 1743 DRM_MODE_ENCODER_DSI, 1744 NULL); 1745 if (ret) 1746 return ret; 1747 1748 drm_encoder_helper_add(encoder, &vc4_dsi_encoder_helper_funcs); 1749 1750 ret = devm_pm_runtime_enable(dev); 1751 if (ret) 1752 return ret; 1753 1754 ret = drm_bridge_attach(encoder, dsi->bridge, NULL, 0); 1755 if (ret) 1756 return ret; 1757 /* Disable the atomic helper calls into the bridge. We 1758 * manually call the bridge pre_enable / enable / etc. calls 1759 * from our driver, since we need to sequence them within the 1760 * encoder's enable/disable paths. 1761 */ 1762 list_splice_init(&encoder->bridge_chain, &dsi->bridge_chain); 1763 1764 return 0; 1765 } 1766 1767 static void vc4_dsi_unbind(struct device *dev, struct device *master, 1768 void *data) 1769 { 1770 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1771 struct drm_encoder *encoder = &dsi->encoder.base; 1772 1773 /* 1774 * Restore the bridge_chain so the bridge detach procedure can happen 1775 * normally. 1776 */ 1777 list_splice_init(&dsi->bridge_chain, &encoder->bridge_chain); 1778 } 1779 1780 static const struct component_ops vc4_dsi_ops = { 1781 .bind = vc4_dsi_bind, 1782 .unbind = vc4_dsi_unbind, 1783 }; 1784 1785 static int vc4_dsi_dev_probe(struct platform_device *pdev) 1786 { 1787 struct device *dev = &pdev->dev; 1788 struct vc4_dsi *dsi; 1789 1790 dsi = kzalloc(sizeof(*dsi), GFP_KERNEL); 1791 if (!dsi) 1792 return -ENOMEM; 1793 dev_set_drvdata(dev, dsi); 1794 1795 kref_init(&dsi->kref); 1796 dsi->pdev = pdev; 1797 dsi->dsi_host.ops = &vc4_dsi_host_ops; 1798 dsi->dsi_host.dev = dev; 1799 mipi_dsi_host_register(&dsi->dsi_host); 1800 1801 return 0; 1802 } 1803 1804 static int vc4_dsi_dev_remove(struct platform_device *pdev) 1805 { 1806 struct device *dev = &pdev->dev; 1807 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1808 1809 mipi_dsi_host_unregister(&dsi->dsi_host); 1810 vc4_dsi_put(dsi); 1811 1812 return 0; 1813 } 1814 1815 struct platform_driver vc4_dsi_driver = { 1816 .probe = vc4_dsi_dev_probe, 1817 .remove = vc4_dsi_dev_remove, 1818 .driver = { 1819 .name = "vc4_dsi", 1820 .of_match_table = vc4_dsi_dt_match, 1821 }, 1822 }; 1823