1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 DSI0/DSI1 module 8 * 9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a 10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI 11 * controller. 12 * 13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector, 14 * while the compute module brings both DSI0 and DSI1 out. 15 * 16 * This driver has been tested for DSI1 video-mode display only 17 * currently, with most of the information necessary for DSI0 18 * hopefully present. 19 */ 20 21 #include <linux/clk-provider.h> 22 #include <linux/clk.h> 23 #include <linux/completion.h> 24 #include <linux/component.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/dmaengine.h> 27 #include <linux/i2c.h> 28 #include <linux/io.h> 29 #include <linux/of_address.h> 30 #include <linux/of_platform.h> 31 #include <linux/pm_runtime.h> 32 33 #include <drm/drm_atomic_helper.h> 34 #include <drm/drm_bridge.h> 35 #include <drm/drm_edid.h> 36 #include <drm/drm_mipi_dsi.h> 37 #include <drm/drm_of.h> 38 #include <drm/drm_panel.h> 39 #include <drm/drm_probe_helper.h> 40 41 #include "vc4_drv.h" 42 #include "vc4_regs.h" 43 44 #define DSI_CMD_FIFO_DEPTH 16 45 #define DSI_PIX_FIFO_DEPTH 256 46 #define DSI_PIX_FIFO_WIDTH 4 47 48 #define DSI0_CTRL 0x00 49 50 /* Command packet control. */ 51 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */ 52 #define DSI1_TXPKT1C 0x04 53 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24) 54 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24 55 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10) 56 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10 57 58 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8) 59 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8 60 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */ 61 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0 62 /* Primary display where cmdfifo provides part of the payload and 63 * pixelvalve the rest. 64 */ 65 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1 66 /* Secondary display where cmdfifo provides part of the payload and 67 * pixfifo the rest. 68 */ 69 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2 70 71 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6) 72 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6 73 74 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4) 75 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4 76 /* Command only. Uses TXPKT1H and DISPLAY_NO */ 77 # define DSI_TXPKT1C_CMD_CTRL_TX 0 78 /* Command with BTA for either ack or read data. */ 79 # define DSI_TXPKT1C_CMD_CTRL_RX 1 80 /* Trigger according to TRIG_CMD */ 81 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2 82 /* BTA alone for getting error status after a command, or a TE trigger 83 * without a previous command. 84 */ 85 # define DSI_TXPKT1C_CMD_CTRL_BTA 3 86 87 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3) 88 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2) 89 # define DSI_TXPKT1C_CMD_TE_EN BIT(1) 90 # define DSI_TXPKT1C_CMD_EN BIT(0) 91 92 /* Command packet header. */ 93 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */ 94 #define DSI1_TXPKT1H 0x08 95 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24) 96 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24 97 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 98 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8 99 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0) 100 # define DSI_TXPKT1H_BC_DT_SHIFT 0 101 102 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */ 103 #define DSI1_RXPKT1H 0x14 104 # define DSI_RXPKT1H_CRC_ERR BIT(31) 105 # define DSI_RXPKT1H_DET_ERR BIT(30) 106 # define DSI_RXPKT1H_ECC_ERR BIT(29) 107 # define DSI_RXPKT1H_COR_ERR BIT(28) 108 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 109 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24) 110 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */ 111 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 112 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 113 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */ 114 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16) 115 # define DSI_RXPKT1H_SHORT_1_SHIFT 16 116 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8) 117 # define DSI_RXPKT1H_SHORT_0_SHIFT 8 118 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0) 119 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0 120 121 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */ 122 #define DSI1_RXPKT2H 0x18 123 # define DSI_RXPKT1H_DET_ERR BIT(30) 124 # define DSI_RXPKT1H_ECC_ERR BIT(29) 125 # define DSI_RXPKT1H_COR_ERR BIT(28) 126 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 127 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 128 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 129 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0) 130 # define DSI_RXPKT1H_DT_SHIFT 0 131 132 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */ 133 #define DSI1_TXPKT_CMD_FIFO 0x1c 134 135 #define DSI0_DISP0_CTRL 0x18 136 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13) 137 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13 138 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11) 139 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11 140 # define DSI_DISP0_LP_STOP_DISABLE 0 141 # define DSI_DISP0_LP_STOP_PERLINE 1 142 # define DSI_DISP0_LP_STOP_PERFRAME 2 143 144 /* Transmit RGB pixels and null packets only during HACTIVE, instead 145 * of going to LP-STOP. 146 */ 147 # define DSI_DISP_HACTIVE_NULL BIT(10) 148 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */ 149 # define DSI_DISP_VBLP_CTRL BIT(9) 150 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */ 151 # define DSI_DISP_HFP_CTRL BIT(8) 152 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */ 153 # define DSI_DISP_HBP_CTRL BIT(7) 154 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5) 155 # define DSI_DISP0_CHANNEL_SHIFT 5 156 /* Enables end events for HSYNC/VSYNC, not just start events. */ 157 # define DSI_DISP0_ST_END BIT(4) 158 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2) 159 # define DSI_DISP0_PFORMAT_SHIFT 2 160 # define DSI_PFORMAT_RGB565 0 161 # define DSI_PFORMAT_RGB666_PACKED 1 162 # define DSI_PFORMAT_RGB666 2 163 # define DSI_PFORMAT_RGB888 3 164 /* Default is VIDEO mode. */ 165 # define DSI_DISP0_COMMAND_MODE BIT(1) 166 # define DSI_DISP0_ENABLE BIT(0) 167 168 #define DSI0_DISP1_CTRL 0x1c 169 #define DSI1_DISP1_CTRL 0x2c 170 /* Format of the data written to TXPKT_PIX_FIFO. */ 171 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1) 172 # define DSI_DISP1_PFORMAT_SHIFT 1 173 # define DSI_DISP1_PFORMAT_16BIT 0 174 # define DSI_DISP1_PFORMAT_24BIT 1 175 # define DSI_DISP1_PFORMAT_32BIT_LE 2 176 # define DSI_DISP1_PFORMAT_32BIT_BE 3 177 178 /* DISP1 is always command mode. */ 179 # define DSI_DISP1_ENABLE BIT(0) 180 181 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */ 182 183 #define DSI0_INT_STAT 0x24 184 #define DSI0_INT_EN 0x28 185 # define DSI1_INT_PHY_D3_ULPS BIT(30) 186 # define DSI1_INT_PHY_D3_STOP BIT(29) 187 # define DSI1_INT_PHY_D2_ULPS BIT(28) 188 # define DSI1_INT_PHY_D2_STOP BIT(27) 189 # define DSI1_INT_PHY_D1_ULPS BIT(26) 190 # define DSI1_INT_PHY_D1_STOP BIT(25) 191 # define DSI1_INT_PHY_D0_ULPS BIT(24) 192 # define DSI1_INT_PHY_D0_STOP BIT(23) 193 # define DSI1_INT_FIFO_ERR BIT(22) 194 # define DSI1_INT_PHY_DIR_RTF BIT(21) 195 # define DSI1_INT_PHY_RXLPDT BIT(20) 196 # define DSI1_INT_PHY_RXTRIG BIT(19) 197 # define DSI1_INT_PHY_D0_LPDT BIT(18) 198 # define DSI1_INT_PHY_DIR_FTR BIT(17) 199 200 /* Signaled when the clock lane enters the given state. */ 201 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16) 202 # define DSI1_INT_PHY_CLOCK_HS BIT(15) 203 # define DSI1_INT_PHY_CLOCK_STOP BIT(14) 204 205 /* Signaled on timeouts */ 206 # define DSI1_INT_PR_TO BIT(13) 207 # define DSI1_INT_TA_TO BIT(12) 208 # define DSI1_INT_LPRX_TO BIT(11) 209 # define DSI1_INT_HSTX_TO BIT(10) 210 211 /* Contention on a line when trying to drive the line low */ 212 # define DSI1_INT_ERR_CONT_LP1 BIT(9) 213 # define DSI1_INT_ERR_CONT_LP0 BIT(8) 214 215 /* Control error: incorrect line state sequence on data lane 0. */ 216 # define DSI1_INT_ERR_CONTROL BIT(7) 217 /* LPDT synchronization error (bits received not a multiple of 8. */ 218 219 # define DSI1_INT_ERR_SYNC_ESC BIT(6) 220 /* Signaled after receiving an error packet from the display in 221 * response to a read. 222 */ 223 # define DSI1_INT_RXPKT2 BIT(5) 224 /* Signaled after receiving a packet. The header and optional short 225 * response will be in RXPKT1H, and a long response will be in the 226 * RXPKT_FIFO. 227 */ 228 # define DSI1_INT_RXPKT1 BIT(4) 229 # define DSI1_INT_TXPKT2_DONE BIT(3) 230 # define DSI1_INT_TXPKT2_END BIT(2) 231 /* Signaled after all repeats of TXPKT1 are transferred. */ 232 # define DSI1_INT_TXPKT1_DONE BIT(1) 233 /* Signaled after each TXPKT1 repeat is scheduled. */ 234 # define DSI1_INT_TXPKT1_END BIT(0) 235 236 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \ 237 DSI1_INT_ERR_CONTROL | \ 238 DSI1_INT_ERR_CONT_LP0 | \ 239 DSI1_INT_ERR_CONT_LP1 | \ 240 DSI1_INT_HSTX_TO | \ 241 DSI1_INT_LPRX_TO | \ 242 DSI1_INT_TA_TO | \ 243 DSI1_INT_PR_TO) 244 245 #define DSI0_STAT 0x2c 246 #define DSI0_HSTX_TO_CNT 0x30 247 #define DSI0_LPRX_TO_CNT 0x34 248 #define DSI0_TA_TO_CNT 0x38 249 #define DSI0_PR_TO_CNT 0x3c 250 #define DSI0_PHYC 0x40 251 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20) 252 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20 253 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18) 254 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12) 255 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12 256 # define DSI1_PHYC_CLANE_ULPS BIT(17) 257 # define DSI1_PHYC_CLANE_ENABLE BIT(16) 258 # define DSI_PHYC_DLANE3_ULPS BIT(13) 259 # define DSI_PHYC_DLANE3_ENABLE BIT(12) 260 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10) 261 # define DSI0_PHYC_CLANE_ULPS BIT(9) 262 # define DSI_PHYC_DLANE2_ULPS BIT(9) 263 # define DSI0_PHYC_CLANE_ENABLE BIT(8) 264 # define DSI_PHYC_DLANE2_ENABLE BIT(8) 265 # define DSI_PHYC_DLANE1_ULPS BIT(5) 266 # define DSI_PHYC_DLANE1_ENABLE BIT(4) 267 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2) 268 # define DSI_PHYC_DLANE0_ULPS BIT(1) 269 # define DSI_PHYC_DLANE0_ENABLE BIT(0) 270 271 #define DSI0_HS_CLT0 0x44 272 #define DSI0_HS_CLT1 0x48 273 #define DSI0_HS_CLT2 0x4c 274 #define DSI0_HS_DLT3 0x50 275 #define DSI0_HS_DLT4 0x54 276 #define DSI0_HS_DLT5 0x58 277 #define DSI0_HS_DLT6 0x5c 278 #define DSI0_HS_DLT7 0x60 279 280 #define DSI0_PHY_AFEC0 0x64 281 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26) 282 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25) 283 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24) 284 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29) 285 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29 286 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26) 287 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26 288 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23) 289 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23 290 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20) 291 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20 292 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17) 293 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17 294 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20) 295 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20 296 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16) 297 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16 298 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12) 299 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12 300 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16) 301 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15) 302 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14) 303 # define DSI1_PHY_AFEC0_RESET BIT(13) 304 # define DSI1_PHY_AFEC0_PD BIT(12) 305 # define DSI0_PHY_AFEC0_RESET BIT(11) 306 # define DSI1_PHY_AFEC0_PD_BG BIT(11) 307 # define DSI0_PHY_AFEC0_PD BIT(10) 308 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10) 309 # define DSI0_PHY_AFEC0_PD_BG BIT(9) 310 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9) 311 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8) 312 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8) 313 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4) 314 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4 315 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0) 316 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0 317 318 #define DSI0_PHY_AFEC1 0x68 319 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8) 320 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8 321 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4) 322 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4 323 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0) 324 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0 325 326 #define DSI0_TST_SEL 0x6c 327 #define DSI0_TST_MON 0x70 328 #define DSI0_ID 0x74 329 # define DSI_ID_VALUE 0x00647369 330 331 #define DSI1_CTRL 0x00 332 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14) 333 # define DSI_CTRL_HS_CLKC_SHIFT 14 334 # define DSI_CTRL_HS_CLKC_BYTE 0 335 # define DSI_CTRL_HS_CLKC_DDR2 1 336 # define DSI_CTRL_HS_CLKC_DDR 2 337 338 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13) 339 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12) 340 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11) 341 # define DSI_CTRL_SOFT_RESET_CFG BIT(10) 342 # define DSI_CTRL_CAL_BYTE BIT(9) 343 # define DSI_CTRL_INV_BYTE BIT(8) 344 # define DSI_CTRL_CLR_LDF BIT(7) 345 # define DSI0_CTRL_CLR_PBCF BIT(6) 346 # define DSI1_CTRL_CLR_RXF BIT(6) 347 # define DSI0_CTRL_CLR_CPBCF BIT(5) 348 # define DSI1_CTRL_CLR_PDF BIT(5) 349 # define DSI0_CTRL_CLR_PDF BIT(4) 350 # define DSI1_CTRL_CLR_CDF BIT(4) 351 # define DSI0_CTRL_CLR_CDF BIT(3) 352 # define DSI0_CTRL_CTRL2 BIT(2) 353 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2) 354 # define DSI0_CTRL_CTRL1 BIT(1) 355 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1) 356 # define DSI0_CTRL_CTRL0 BIT(0) 357 # define DSI1_CTRL_EN BIT(0) 358 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 359 DSI0_CTRL_CLR_PBCF | \ 360 DSI0_CTRL_CLR_CPBCF | \ 361 DSI0_CTRL_CLR_PDF | \ 362 DSI0_CTRL_CLR_CDF) 363 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 364 DSI1_CTRL_CLR_RXF | \ 365 DSI1_CTRL_CLR_PDF | \ 366 DSI1_CTRL_CLR_CDF) 367 368 #define DSI1_TXPKT2C 0x0c 369 #define DSI1_TXPKT2H 0x10 370 #define DSI1_TXPKT_PIX_FIFO 0x20 371 #define DSI1_RXPKT_FIFO 0x24 372 #define DSI1_DISP0_CTRL 0x28 373 #define DSI1_INT_STAT 0x30 374 #define DSI1_INT_EN 0x34 375 /* State reporting bits. These mostly behave like INT_STAT, where 376 * writing a 1 clears the bit. 377 */ 378 #define DSI1_STAT 0x38 379 # define DSI1_STAT_PHY_D3_ULPS BIT(31) 380 # define DSI1_STAT_PHY_D3_STOP BIT(30) 381 # define DSI1_STAT_PHY_D2_ULPS BIT(29) 382 # define DSI1_STAT_PHY_D2_STOP BIT(28) 383 # define DSI1_STAT_PHY_D1_ULPS BIT(27) 384 # define DSI1_STAT_PHY_D1_STOP BIT(26) 385 # define DSI1_STAT_PHY_D0_ULPS BIT(25) 386 # define DSI1_STAT_PHY_D0_STOP BIT(24) 387 # define DSI1_STAT_FIFO_ERR BIT(23) 388 # define DSI1_STAT_PHY_RXLPDT BIT(22) 389 # define DSI1_STAT_PHY_RXTRIG BIT(21) 390 # define DSI1_STAT_PHY_D0_LPDT BIT(20) 391 /* Set when in forward direction */ 392 # define DSI1_STAT_PHY_DIR BIT(19) 393 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18) 394 # define DSI1_STAT_PHY_CLOCK_HS BIT(17) 395 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16) 396 # define DSI1_STAT_PR_TO BIT(15) 397 # define DSI1_STAT_TA_TO BIT(14) 398 # define DSI1_STAT_LPRX_TO BIT(13) 399 # define DSI1_STAT_HSTX_TO BIT(12) 400 # define DSI1_STAT_ERR_CONT_LP1 BIT(11) 401 # define DSI1_STAT_ERR_CONT_LP0 BIT(10) 402 # define DSI1_STAT_ERR_CONTROL BIT(9) 403 # define DSI1_STAT_ERR_SYNC_ESC BIT(8) 404 # define DSI1_STAT_RXPKT2 BIT(7) 405 # define DSI1_STAT_RXPKT1 BIT(6) 406 # define DSI1_STAT_TXPKT2_BUSY BIT(5) 407 # define DSI1_STAT_TXPKT2_DONE BIT(4) 408 # define DSI1_STAT_TXPKT2_END BIT(3) 409 # define DSI1_STAT_TXPKT1_BUSY BIT(2) 410 # define DSI1_STAT_TXPKT1_DONE BIT(1) 411 # define DSI1_STAT_TXPKT1_END BIT(0) 412 413 #define DSI1_HSTX_TO_CNT 0x3c 414 #define DSI1_LPRX_TO_CNT 0x40 415 #define DSI1_TA_TO_CNT 0x44 416 #define DSI1_PR_TO_CNT 0x48 417 #define DSI1_PHYC 0x4c 418 419 #define DSI1_HS_CLT0 0x50 420 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18) 421 # define DSI_HS_CLT0_CZERO_SHIFT 18 422 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9) 423 # define DSI_HS_CLT0_CPRE_SHIFT 9 424 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0) 425 # define DSI_HS_CLT0_CPREP_SHIFT 0 426 427 #define DSI1_HS_CLT1 0x54 428 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9) 429 # define DSI_HS_CLT1_CTRAIL_SHIFT 9 430 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0) 431 # define DSI_HS_CLT1_CPOST_SHIFT 0 432 433 #define DSI1_HS_CLT2 0x58 434 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0) 435 # define DSI_HS_CLT2_WUP_SHIFT 0 436 437 #define DSI1_HS_DLT3 0x5c 438 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18) 439 # define DSI_HS_DLT3_EXIT_SHIFT 18 440 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9) 441 # define DSI_HS_DLT3_ZERO_SHIFT 9 442 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0) 443 # define DSI_HS_DLT3_PRE_SHIFT 0 444 445 #define DSI1_HS_DLT4 0x60 446 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18) 447 # define DSI_HS_DLT4_ANLAT_SHIFT 18 448 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9) 449 # define DSI_HS_DLT4_TRAIL_SHIFT 9 450 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0) 451 # define DSI_HS_DLT4_LPX_SHIFT 0 452 453 #define DSI1_HS_DLT5 0x64 454 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0) 455 # define DSI_HS_DLT5_INIT_SHIFT 0 456 457 #define DSI1_HS_DLT6 0x68 458 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24) 459 # define DSI_HS_DLT6_TA_GET_SHIFT 24 460 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16) 461 # define DSI_HS_DLT6_TA_SURE_SHIFT 16 462 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8) 463 # define DSI_HS_DLT6_TA_GO_SHIFT 8 464 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0) 465 # define DSI_HS_DLT6_LP_LPX_SHIFT 0 466 467 #define DSI1_HS_DLT7 0x6c 468 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0) 469 # define DSI_HS_DLT7_LP_WUP_SHIFT 0 470 471 #define DSI1_PHY_AFEC0 0x70 472 473 #define DSI1_PHY_AFEC1 0x74 474 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16) 475 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16 476 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12) 477 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12 478 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8) 479 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8 480 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4) 481 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4 482 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0) 483 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0 484 485 #define DSI1_TST_SEL 0x78 486 #define DSI1_TST_MON 0x7c 487 #define DSI1_PHY_TST1 0x80 488 #define DSI1_PHY_TST2 0x84 489 #define DSI1_PHY_FIFO_STAT 0x88 490 /* Actually, all registers in the range that aren't otherwise claimed 491 * will return the ID. 492 */ 493 #define DSI1_ID 0x8c 494 495 /* General DSI hardware state. */ 496 struct vc4_dsi { 497 struct platform_device *pdev; 498 499 struct mipi_dsi_host dsi_host; 500 struct drm_encoder *encoder; 501 struct drm_bridge *bridge; 502 503 void __iomem *regs; 504 505 struct dma_chan *reg_dma_chan; 506 dma_addr_t reg_dma_paddr; 507 u32 *reg_dma_mem; 508 dma_addr_t reg_paddr; 509 510 /* Whether we're on bcm2835's DSI0 or DSI1. */ 511 int port; 512 513 /* DSI channel for the panel we're connected to. */ 514 u32 channel; 515 u32 lanes; 516 u32 format; 517 u32 divider; 518 u32 mode_flags; 519 520 /* Input clock from CPRMAN to the digital PHY, for the DSI 521 * escape clock. 522 */ 523 struct clk *escape_clock; 524 525 /* Input clock to the analog PHY, used to generate the DSI bit 526 * clock. 527 */ 528 struct clk *pll_phy_clock; 529 530 /* HS Clocks generated within the DSI analog PHY. */ 531 struct clk_fixed_factor phy_clocks[3]; 532 533 struct clk_hw_onecell_data *clk_onecell; 534 535 /* Pixel clock output to the pixelvalve, generated from the HS 536 * clock. 537 */ 538 struct clk *pixel_clock; 539 540 struct completion xfer_completion; 541 int xfer_result; 542 543 struct debugfs_regset32 regset; 544 }; 545 546 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host) 547 548 static inline void 549 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val) 550 { 551 struct dma_chan *chan = dsi->reg_dma_chan; 552 struct dma_async_tx_descriptor *tx; 553 dma_cookie_t cookie; 554 int ret; 555 556 /* DSI0 should be able to write normally. */ 557 if (!chan) { 558 writel(val, dsi->regs + offset); 559 return; 560 } 561 562 *dsi->reg_dma_mem = val; 563 564 tx = chan->device->device_prep_dma_memcpy(chan, 565 dsi->reg_paddr + offset, 566 dsi->reg_dma_paddr, 567 4, 0); 568 if (!tx) { 569 DRM_ERROR("Failed to set up DMA register write\n"); 570 return; 571 } 572 573 cookie = tx->tx_submit(tx); 574 ret = dma_submit_error(cookie); 575 if (ret) { 576 DRM_ERROR("Failed to submit DMA: %d\n", ret); 577 return; 578 } 579 ret = dma_sync_wait(chan, cookie); 580 if (ret) 581 DRM_ERROR("Failed to wait for DMA: %d\n", ret); 582 } 583 584 #define DSI_READ(offset) readl(dsi->regs + (offset)) 585 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val) 586 #define DSI_PORT_READ(offset) \ 587 DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset) 588 #define DSI_PORT_WRITE(offset, val) \ 589 DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val) 590 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit) 591 592 /* VC4 DSI encoder KMS struct */ 593 struct vc4_dsi_encoder { 594 struct vc4_encoder base; 595 struct vc4_dsi *dsi; 596 }; 597 598 static inline struct vc4_dsi_encoder * 599 to_vc4_dsi_encoder(struct drm_encoder *encoder) 600 { 601 return container_of(encoder, struct vc4_dsi_encoder, base.base); 602 } 603 604 static const struct debugfs_reg32 dsi0_regs[] = { 605 VC4_REG32(DSI0_CTRL), 606 VC4_REG32(DSI0_STAT), 607 VC4_REG32(DSI0_HSTX_TO_CNT), 608 VC4_REG32(DSI0_LPRX_TO_CNT), 609 VC4_REG32(DSI0_TA_TO_CNT), 610 VC4_REG32(DSI0_PR_TO_CNT), 611 VC4_REG32(DSI0_DISP0_CTRL), 612 VC4_REG32(DSI0_DISP1_CTRL), 613 VC4_REG32(DSI0_INT_STAT), 614 VC4_REG32(DSI0_INT_EN), 615 VC4_REG32(DSI0_PHYC), 616 VC4_REG32(DSI0_HS_CLT0), 617 VC4_REG32(DSI0_HS_CLT1), 618 VC4_REG32(DSI0_HS_CLT2), 619 VC4_REG32(DSI0_HS_DLT3), 620 VC4_REG32(DSI0_HS_DLT4), 621 VC4_REG32(DSI0_HS_DLT5), 622 VC4_REG32(DSI0_HS_DLT6), 623 VC4_REG32(DSI0_HS_DLT7), 624 VC4_REG32(DSI0_PHY_AFEC0), 625 VC4_REG32(DSI0_PHY_AFEC1), 626 VC4_REG32(DSI0_ID), 627 }; 628 629 static const struct debugfs_reg32 dsi1_regs[] = { 630 VC4_REG32(DSI1_CTRL), 631 VC4_REG32(DSI1_STAT), 632 VC4_REG32(DSI1_HSTX_TO_CNT), 633 VC4_REG32(DSI1_LPRX_TO_CNT), 634 VC4_REG32(DSI1_TA_TO_CNT), 635 VC4_REG32(DSI1_PR_TO_CNT), 636 VC4_REG32(DSI1_DISP0_CTRL), 637 VC4_REG32(DSI1_DISP1_CTRL), 638 VC4_REG32(DSI1_INT_STAT), 639 VC4_REG32(DSI1_INT_EN), 640 VC4_REG32(DSI1_PHYC), 641 VC4_REG32(DSI1_HS_CLT0), 642 VC4_REG32(DSI1_HS_CLT1), 643 VC4_REG32(DSI1_HS_CLT2), 644 VC4_REG32(DSI1_HS_DLT3), 645 VC4_REG32(DSI1_HS_DLT4), 646 VC4_REG32(DSI1_HS_DLT5), 647 VC4_REG32(DSI1_HS_DLT6), 648 VC4_REG32(DSI1_HS_DLT7), 649 VC4_REG32(DSI1_PHY_AFEC0), 650 VC4_REG32(DSI1_PHY_AFEC1), 651 VC4_REG32(DSI1_ID), 652 }; 653 654 static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder) 655 { 656 drm_encoder_cleanup(encoder); 657 } 658 659 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = { 660 .destroy = vc4_dsi_encoder_destroy, 661 }; 662 663 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch) 664 { 665 u32 afec0 = DSI_PORT_READ(PHY_AFEC0); 666 667 if (latch) 668 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 669 else 670 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 671 672 DSI_PORT_WRITE(PHY_AFEC0, afec0); 673 } 674 675 /* Enters or exits Ultra Low Power State. */ 676 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps) 677 { 678 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS; 679 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) | 680 DSI_PHYC_DLANE0_ULPS | 681 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) | 682 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) | 683 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0)); 684 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) | 685 DSI1_STAT_PHY_D0_ULPS | 686 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) | 687 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) | 688 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0)); 689 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) | 690 DSI1_STAT_PHY_D0_STOP | 691 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) | 692 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) | 693 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0)); 694 int ret; 695 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) & 696 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS)); 697 698 if (ulps == ulps_currently_enabled) 699 return; 700 701 DSI_PORT_WRITE(STAT, stat_ulps); 702 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps); 703 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200); 704 if (ret) { 705 dev_warn(&dsi->pdev->dev, 706 "Timeout waiting for DSI ULPS entry: STAT 0x%08x", 707 DSI_PORT_READ(STAT)); 708 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 709 vc4_dsi_latch_ulps(dsi, false); 710 return; 711 } 712 713 /* The DSI module can't be disabled while the module is 714 * generating ULPS state. So, to be able to disable the 715 * module, we have the AFE latch the ULPS state and continue 716 * on to having the module enter STOP. 717 */ 718 vc4_dsi_latch_ulps(dsi, ulps); 719 720 DSI_PORT_WRITE(STAT, stat_stop); 721 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 722 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200); 723 if (ret) { 724 dev_warn(&dsi->pdev->dev, 725 "Timeout waiting for DSI STOP entry: STAT 0x%08x", 726 DSI_PORT_READ(STAT)); 727 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 728 return; 729 } 730 } 731 732 static u32 733 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui) 734 { 735 /* The HS timings have to be rounded up to a multiple of 8 736 * because we're using the byte clock. 737 */ 738 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8); 739 } 740 741 /* ESC always runs at 100Mhz. */ 742 #define ESC_TIME_NS 10 743 744 static u32 745 dsi_esc_timing(u32 ns) 746 { 747 return DIV_ROUND_UP(ns, ESC_TIME_NS); 748 } 749 750 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder) 751 { 752 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 753 struct vc4_dsi *dsi = vc4_encoder->dsi; 754 struct device *dev = &dsi->pdev->dev; 755 756 drm_bridge_disable(dsi->bridge); 757 vc4_dsi_ulps(dsi, true); 758 drm_bridge_post_disable(dsi->bridge); 759 760 clk_disable_unprepare(dsi->pll_phy_clock); 761 clk_disable_unprepare(dsi->escape_clock); 762 clk_disable_unprepare(dsi->pixel_clock); 763 764 pm_runtime_put(dev); 765 } 766 767 /* Extends the mode's blank intervals to handle BCM2835's integer-only 768 * DSI PLL divider. 769 * 770 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display 771 * driver since most peripherals are hanging off of the PLLD_PER 772 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore 773 * the pixel clock), only has an integer divider off of DSI. 774 * 775 * To get our panel mode to refresh at the expected 60Hz, we need to 776 * extend the horizontal blank time. This means we drive a 777 * higher-than-expected clock rate to the panel, but that's what the 778 * firmware does too. 779 */ 780 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder, 781 const struct drm_display_mode *mode, 782 struct drm_display_mode *adjusted_mode) 783 { 784 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 785 struct vc4_dsi *dsi = vc4_encoder->dsi; 786 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock); 787 unsigned long parent_rate = clk_get_rate(phy_parent); 788 unsigned long pixel_clock_hz = mode->clock * 1000; 789 unsigned long pll_clock = pixel_clock_hz * dsi->divider; 790 int divider; 791 792 /* Find what divider gets us a faster clock than the requested 793 * pixel clock. 794 */ 795 for (divider = 1; divider < 8; divider++) { 796 if (parent_rate / divider < pll_clock) { 797 divider--; 798 break; 799 } 800 } 801 802 /* Now that we've picked a PLL divider, calculate back to its 803 * pixel clock. 804 */ 805 pll_clock = parent_rate / divider; 806 pixel_clock_hz = pll_clock / dsi->divider; 807 808 adjusted_mode->clock = pixel_clock_hz / 1000; 809 810 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */ 811 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal / 812 mode->clock; 813 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal; 814 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal; 815 816 return true; 817 } 818 819 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder) 820 { 821 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; 822 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 823 struct vc4_dsi *dsi = vc4_encoder->dsi; 824 struct device *dev = &dsi->pdev->dev; 825 bool debug_dump_regs = false; 826 unsigned long hs_clock; 827 u32 ui_ns; 828 /* Minimum LP state duration in escape clock cycles. */ 829 u32 lpx = dsi_esc_timing(60); 830 unsigned long pixel_clock_hz = mode->clock * 1000; 831 unsigned long dsip_clock; 832 unsigned long phy_clock; 833 int ret; 834 835 ret = pm_runtime_get_sync(dev); 836 if (ret) { 837 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port); 838 return; 839 } 840 841 if (debug_dump_regs) { 842 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 843 dev_info(&dsi->pdev->dev, "DSI regs before:\n"); 844 drm_print_regset32(&p, &dsi->regset); 845 } 846 847 /* Round up the clk_set_rate() request slightly, since 848 * PLLD_DSI1 is an integer divider and its rate selection will 849 * never round up. 850 */ 851 phy_clock = (pixel_clock_hz + 1000) * dsi->divider; 852 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock); 853 if (ret) { 854 dev_err(&dsi->pdev->dev, 855 "Failed to set phy clock to %ld: %d\n", phy_clock, ret); 856 } 857 858 /* Reset the DSI and all its fifos. */ 859 DSI_PORT_WRITE(CTRL, 860 DSI_CTRL_SOFT_RESET_CFG | 861 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 862 863 DSI_PORT_WRITE(CTRL, 864 DSI_CTRL_HSDT_EOT_DISABLE | 865 DSI_CTRL_RX_LPDT_EOT_DISABLE); 866 867 /* Clear all stat bits so we see what has happened during enable. */ 868 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT)); 869 870 /* Set AFE CTR00/CTR1 to release powerdown of analog. */ 871 if (dsi->port == 0) { 872 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 873 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ)); 874 875 if (dsi->lanes < 2) 876 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1; 877 878 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) 879 afec0 |= DSI0_PHY_AFEC0_RESET; 880 881 DSI_PORT_WRITE(PHY_AFEC0, afec0); 882 883 DSI_PORT_WRITE(PHY_AFEC1, 884 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) | 885 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) | 886 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE)); 887 } else { 888 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 889 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) | 890 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) | 891 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) | 892 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) | 893 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) | 894 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3)); 895 896 if (dsi->lanes < 4) 897 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3; 898 if (dsi->lanes < 3) 899 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2; 900 if (dsi->lanes < 2) 901 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1; 902 903 afec0 |= DSI1_PHY_AFEC0_RESET; 904 905 DSI_PORT_WRITE(PHY_AFEC0, afec0); 906 907 DSI_PORT_WRITE(PHY_AFEC1, 0); 908 909 /* AFEC reset hold time */ 910 mdelay(1); 911 } 912 913 ret = clk_prepare_enable(dsi->escape_clock); 914 if (ret) { 915 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret); 916 return; 917 } 918 919 ret = clk_prepare_enable(dsi->pll_phy_clock); 920 if (ret) { 921 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret); 922 return; 923 } 924 925 hs_clock = clk_get_rate(dsi->pll_phy_clock); 926 927 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate, 928 * not the pixel clock rate. DSIxP take from the APHY's byte, 929 * DDR2, or DDR4 clock (we use byte) and feed into the PV at 930 * that rate. Separately, a value derived from PIX_CLK_DIV 931 * and HS_CLKC is fed into the PV to divide down to the actual 932 * pixel clock for pushing pixels into DSI. 933 */ 934 dsip_clock = phy_clock / 8; 935 ret = clk_set_rate(dsi->pixel_clock, dsip_clock); 936 if (ret) { 937 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n", 938 dsip_clock, ret); 939 } 940 941 ret = clk_prepare_enable(dsi->pixel_clock); 942 if (ret) { 943 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret); 944 return; 945 } 946 947 /* How many ns one DSI unit interval is. Note that the clock 948 * is DDR, so there's an extra divide by 2. 949 */ 950 ui_ns = DIV_ROUND_UP(500000000, hs_clock); 951 952 DSI_PORT_WRITE(HS_CLT0, 953 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0), 954 DSI_HS_CLT0_CZERO) | 955 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8), 956 DSI_HS_CLT0_CPRE) | 957 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0), 958 DSI_HS_CLT0_CPREP)); 959 960 DSI_PORT_WRITE(HS_CLT1, 961 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0), 962 DSI_HS_CLT1_CTRAIL) | 963 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52), 964 DSI_HS_CLT1_CPOST)); 965 966 DSI_PORT_WRITE(HS_CLT2, 967 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0), 968 DSI_HS_CLT2_WUP)); 969 970 DSI_PORT_WRITE(HS_DLT3, 971 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0), 972 DSI_HS_DLT3_EXIT) | 973 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6), 974 DSI_HS_DLT3_ZERO) | 975 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4), 976 DSI_HS_DLT3_PRE)); 977 978 DSI_PORT_WRITE(HS_DLT4, 979 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0), 980 DSI_HS_DLT4_LPX) | 981 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8), 982 dsi_hs_timing(ui_ns, 60, 4)), 983 DSI_HS_DLT4_TRAIL) | 984 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT)); 985 986 /* T_INIT is how long STOP is driven after power-up to 987 * indicate to the slave (also coming out of power-up) that 988 * master init is complete, and should be greater than the 989 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The 990 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and 991 * T_INIT,SLAVE, while allowing protocols on top of it to give 992 * greater minimums. The vc4 firmware uses an extremely 993 * conservative 5ms, and we maintain that here. 994 */ 995 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 996 5 * 1000 * 1000, 0), 997 DSI_HS_DLT5_INIT)); 998 999 DSI_PORT_WRITE(HS_DLT6, 1000 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) | 1001 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) | 1002 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) | 1003 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX)); 1004 1005 DSI_PORT_WRITE(HS_DLT7, 1006 VC4_SET_FIELD(dsi_esc_timing(1000000), 1007 DSI_HS_DLT7_LP_WUP)); 1008 1009 DSI_PORT_WRITE(PHYC, 1010 DSI_PHYC_DLANE0_ENABLE | 1011 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) | 1012 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) | 1013 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) | 1014 DSI_PORT_BIT(PHYC_CLANE_ENABLE) | 1015 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ? 1016 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) | 1017 (dsi->port == 0 ? 1018 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) : 1019 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT))); 1020 1021 DSI_PORT_WRITE(CTRL, 1022 DSI_PORT_READ(CTRL) | 1023 DSI_CTRL_CAL_BYTE); 1024 1025 /* HS timeout in HS clock cycles: disabled. */ 1026 DSI_PORT_WRITE(HSTX_TO_CNT, 0); 1027 /* LP receive timeout in HS clocks. */ 1028 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff); 1029 /* Bus turnaround timeout */ 1030 DSI_PORT_WRITE(TA_TO_CNT, 100000); 1031 /* Display reset sequence timeout */ 1032 DSI_PORT_WRITE(PR_TO_CNT, 100000); 1033 1034 /* Set up DISP1 for transferring long command payloads through 1035 * the pixfifo. 1036 */ 1037 DSI_PORT_WRITE(DISP1_CTRL, 1038 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE, 1039 DSI_DISP1_PFORMAT) | 1040 DSI_DISP1_ENABLE); 1041 1042 /* Ungate the block. */ 1043 if (dsi->port == 0) 1044 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0); 1045 else 1046 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN); 1047 1048 /* Bring AFE out of reset. */ 1049 if (dsi->port == 0) { 1050 } else { 1051 DSI_PORT_WRITE(PHY_AFEC0, 1052 DSI_PORT_READ(PHY_AFEC0) & 1053 ~DSI1_PHY_AFEC0_RESET); 1054 } 1055 1056 vc4_dsi_ulps(dsi, false); 1057 1058 drm_bridge_pre_enable(dsi->bridge); 1059 1060 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 1061 DSI_PORT_WRITE(DISP0_CTRL, 1062 VC4_SET_FIELD(dsi->divider, 1063 DSI_DISP0_PIX_CLK_DIV) | 1064 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) | 1065 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME, 1066 DSI_DISP0_LP_STOP_CTRL) | 1067 DSI_DISP0_ST_END | 1068 DSI_DISP0_ENABLE); 1069 } else { 1070 DSI_PORT_WRITE(DISP0_CTRL, 1071 DSI_DISP0_COMMAND_MODE | 1072 DSI_DISP0_ENABLE); 1073 } 1074 1075 drm_bridge_enable(dsi->bridge); 1076 1077 if (debug_dump_regs) { 1078 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 1079 dev_info(&dsi->pdev->dev, "DSI regs after:\n"); 1080 drm_print_regset32(&p, &dsi->regset); 1081 } 1082 } 1083 1084 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host, 1085 const struct mipi_dsi_msg *msg) 1086 { 1087 struct vc4_dsi *dsi = host_to_dsi(host); 1088 struct mipi_dsi_packet packet; 1089 u32 pkth = 0, pktc = 0; 1090 int i, ret; 1091 bool is_long = mipi_dsi_packet_format_is_long(msg->type); 1092 u32 cmd_fifo_len = 0, pix_fifo_len = 0; 1093 1094 mipi_dsi_create_packet(&packet, msg); 1095 1096 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT); 1097 pkth |= VC4_SET_FIELD(packet.header[1] | 1098 (packet.header[2] << 8), 1099 DSI_TXPKT1H_BC_PARAM); 1100 if (is_long) { 1101 /* Divide data across the various FIFOs we have available. 1102 * The command FIFO takes byte-oriented data, but is of 1103 * limited size. The pixel FIFO (never actually used for 1104 * pixel data in reality) is word oriented, and substantially 1105 * larger. So, we use the pixel FIFO for most of the data, 1106 * sending the residual bytes in the command FIFO at the start. 1107 * 1108 * With this arrangement, the command FIFO will never get full. 1109 */ 1110 if (packet.payload_length <= 16) { 1111 cmd_fifo_len = packet.payload_length; 1112 pix_fifo_len = 0; 1113 } else { 1114 cmd_fifo_len = (packet.payload_length % 1115 DSI_PIX_FIFO_WIDTH); 1116 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) / 1117 DSI_PIX_FIFO_WIDTH); 1118 } 1119 1120 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH); 1121 1122 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO); 1123 } 1124 1125 if (msg->rx_len) { 1126 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX, 1127 DSI_TXPKT1C_CMD_CTRL); 1128 } else { 1129 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX, 1130 DSI_TXPKT1C_CMD_CTRL); 1131 } 1132 1133 for (i = 0; i < cmd_fifo_len; i++) 1134 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]); 1135 for (i = 0; i < pix_fifo_len; i++) { 1136 const u8 *pix = packet.payload + cmd_fifo_len + i * 4; 1137 1138 DSI_PORT_WRITE(TXPKT_PIX_FIFO, 1139 pix[0] | 1140 pix[1] << 8 | 1141 pix[2] << 16 | 1142 pix[3] << 24); 1143 } 1144 1145 if (msg->flags & MIPI_DSI_MSG_USE_LPM) 1146 pktc |= DSI_TXPKT1C_CMD_MODE_LP; 1147 if (is_long) 1148 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG; 1149 1150 /* Send one copy of the packet. Larger repeats are used for pixel 1151 * data in command mode. 1152 */ 1153 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT); 1154 1155 pktc |= DSI_TXPKT1C_CMD_EN; 1156 if (pix_fifo_len) { 1157 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY, 1158 DSI_TXPKT1C_DISPLAY_NO); 1159 } else { 1160 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT, 1161 DSI_TXPKT1C_DISPLAY_NO); 1162 } 1163 1164 /* Enable the appropriate interrupt for the transfer completion. */ 1165 dsi->xfer_result = 0; 1166 reinit_completion(&dsi->xfer_completion); 1167 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF); 1168 if (msg->rx_len) { 1169 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1170 DSI1_INT_PHY_DIR_RTF)); 1171 } else { 1172 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1173 DSI1_INT_TXPKT1_DONE)); 1174 } 1175 1176 /* Send the packet. */ 1177 DSI_PORT_WRITE(TXPKT1H, pkth); 1178 DSI_PORT_WRITE(TXPKT1C, pktc); 1179 1180 if (!wait_for_completion_timeout(&dsi->xfer_completion, 1181 msecs_to_jiffies(1000))) { 1182 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout"); 1183 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n", 1184 DSI_PORT_READ(INT_STAT)); 1185 ret = -ETIMEDOUT; 1186 } else { 1187 ret = dsi->xfer_result; 1188 } 1189 1190 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1191 1192 if (ret) 1193 goto reset_fifo_and_return; 1194 1195 if (ret == 0 && msg->rx_len) { 1196 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H); 1197 u8 *msg_rx = msg->rx_buf; 1198 1199 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) { 1200 u32 rxlen = VC4_GET_FIELD(rxpkt1h, 1201 DSI_RXPKT1H_BC_PARAM); 1202 1203 if (rxlen != msg->rx_len) { 1204 DRM_ERROR("DSI returned %db, expecting %db\n", 1205 rxlen, (int)msg->rx_len); 1206 ret = -ENXIO; 1207 goto reset_fifo_and_return; 1208 } 1209 1210 for (i = 0; i < msg->rx_len; i++) 1211 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO); 1212 } else { 1213 /* FINISHME: Handle AWER */ 1214 1215 msg_rx[0] = VC4_GET_FIELD(rxpkt1h, 1216 DSI_RXPKT1H_SHORT_0); 1217 if (msg->rx_len > 1) { 1218 msg_rx[1] = VC4_GET_FIELD(rxpkt1h, 1219 DSI_RXPKT1H_SHORT_1); 1220 } 1221 } 1222 } 1223 1224 return ret; 1225 1226 reset_fifo_and_return: 1227 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret); 1228 1229 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN); 1230 udelay(1); 1231 DSI_PORT_WRITE(CTRL, 1232 DSI_PORT_READ(CTRL) | 1233 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 1234 1235 DSI_PORT_WRITE(TXPKT1C, 0); 1236 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1237 return ret; 1238 } 1239 1240 static int vc4_dsi_host_attach(struct mipi_dsi_host *host, 1241 struct mipi_dsi_device *device) 1242 { 1243 struct vc4_dsi *dsi = host_to_dsi(host); 1244 1245 dsi->lanes = device->lanes; 1246 dsi->channel = device->channel; 1247 dsi->mode_flags = device->mode_flags; 1248 1249 switch (device->format) { 1250 case MIPI_DSI_FMT_RGB888: 1251 dsi->format = DSI_PFORMAT_RGB888; 1252 dsi->divider = 24 / dsi->lanes; 1253 break; 1254 case MIPI_DSI_FMT_RGB666: 1255 dsi->format = DSI_PFORMAT_RGB666; 1256 dsi->divider = 24 / dsi->lanes; 1257 break; 1258 case MIPI_DSI_FMT_RGB666_PACKED: 1259 dsi->format = DSI_PFORMAT_RGB666_PACKED; 1260 dsi->divider = 18 / dsi->lanes; 1261 break; 1262 case MIPI_DSI_FMT_RGB565: 1263 dsi->format = DSI_PFORMAT_RGB565; 1264 dsi->divider = 16 / dsi->lanes; 1265 break; 1266 default: 1267 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n", 1268 dsi->format); 1269 return 0; 1270 } 1271 1272 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) { 1273 dev_err(&dsi->pdev->dev, 1274 "Only VIDEO mode panels supported currently.\n"); 1275 return 0; 1276 } 1277 1278 return 0; 1279 } 1280 1281 static int vc4_dsi_host_detach(struct mipi_dsi_host *host, 1282 struct mipi_dsi_device *device) 1283 { 1284 return 0; 1285 } 1286 1287 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = { 1288 .attach = vc4_dsi_host_attach, 1289 .detach = vc4_dsi_host_detach, 1290 .transfer = vc4_dsi_host_transfer, 1291 }; 1292 1293 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = { 1294 .disable = vc4_dsi_encoder_disable, 1295 .enable = vc4_dsi_encoder_enable, 1296 .mode_fixup = vc4_dsi_encoder_mode_fixup, 1297 }; 1298 1299 static const struct of_device_id vc4_dsi_dt_match[] = { 1300 { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 }, 1301 {} 1302 }; 1303 1304 static void dsi_handle_error(struct vc4_dsi *dsi, 1305 irqreturn_t *ret, u32 stat, u32 bit, 1306 const char *type) 1307 { 1308 if (!(stat & bit)) 1309 return; 1310 1311 DRM_ERROR("DSI%d: %s error\n", dsi->port, type); 1312 *ret = IRQ_HANDLED; 1313 } 1314 1315 /* 1316 * Initial handler for port 1 where we need the reg_dma workaround. 1317 * The register DMA writes sleep, so we can't do it in the top half. 1318 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the 1319 * parent interrupt contrller until our interrupt thread is done. 1320 */ 1321 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data) 1322 { 1323 struct vc4_dsi *dsi = data; 1324 u32 stat = DSI_PORT_READ(INT_STAT); 1325 1326 if (!stat) 1327 return IRQ_NONE; 1328 1329 return IRQ_WAKE_THREAD; 1330 } 1331 1332 /* 1333 * Normal IRQ handler for port 0, or the threaded IRQ handler for port 1334 * 1 where we need the reg_dma workaround. 1335 */ 1336 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data) 1337 { 1338 struct vc4_dsi *dsi = data; 1339 u32 stat = DSI_PORT_READ(INT_STAT); 1340 irqreturn_t ret = IRQ_NONE; 1341 1342 DSI_PORT_WRITE(INT_STAT, stat); 1343 1344 dsi_handle_error(dsi, &ret, stat, 1345 DSI1_INT_ERR_SYNC_ESC, "LPDT sync"); 1346 dsi_handle_error(dsi, &ret, stat, 1347 DSI1_INT_ERR_CONTROL, "data lane 0 sequence"); 1348 dsi_handle_error(dsi, &ret, stat, 1349 DSI1_INT_ERR_CONT_LP0, "LP0 contention"); 1350 dsi_handle_error(dsi, &ret, stat, 1351 DSI1_INT_ERR_CONT_LP1, "LP1 contention"); 1352 dsi_handle_error(dsi, &ret, stat, 1353 DSI1_INT_HSTX_TO, "HSTX timeout"); 1354 dsi_handle_error(dsi, &ret, stat, 1355 DSI1_INT_LPRX_TO, "LPRX timeout"); 1356 dsi_handle_error(dsi, &ret, stat, 1357 DSI1_INT_TA_TO, "turnaround timeout"); 1358 dsi_handle_error(dsi, &ret, stat, 1359 DSI1_INT_PR_TO, "peripheral reset timeout"); 1360 1361 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) { 1362 complete(&dsi->xfer_completion); 1363 ret = IRQ_HANDLED; 1364 } else if (stat & DSI1_INT_HSTX_TO) { 1365 complete(&dsi->xfer_completion); 1366 dsi->xfer_result = -ETIMEDOUT; 1367 ret = IRQ_HANDLED; 1368 } 1369 1370 return ret; 1371 } 1372 1373 /** 1374 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog 1375 * PHY that are consumed by CPRMAN (clk-bcm2835.c). 1376 * @dsi: DSI encoder 1377 */ 1378 static int 1379 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi) 1380 { 1381 struct device *dev = &dsi->pdev->dev; 1382 const char *parent_name = __clk_get_name(dsi->pll_phy_clock); 1383 static const struct { 1384 const char *dsi0_name, *dsi1_name; 1385 int div; 1386 } phy_clocks[] = { 1387 { "dsi0_byte", "dsi1_byte", 8 }, 1388 { "dsi0_ddr2", "dsi1_ddr2", 4 }, 1389 { "dsi0_ddr", "dsi1_ddr", 2 }, 1390 }; 1391 int i; 1392 1393 dsi->clk_onecell = devm_kzalloc(dev, 1394 sizeof(*dsi->clk_onecell) + 1395 ARRAY_SIZE(phy_clocks) * 1396 sizeof(struct clk_hw *), 1397 GFP_KERNEL); 1398 if (!dsi->clk_onecell) 1399 return -ENOMEM; 1400 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks); 1401 1402 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) { 1403 struct clk_fixed_factor *fix = &dsi->phy_clocks[i]; 1404 struct clk_init_data init; 1405 int ret; 1406 1407 /* We just use core fixed factor clock ops for the PHY 1408 * clocks. The clocks are actually gated by the 1409 * PHY_AFEC0_DDRCLK_EN bits, which we should be 1410 * setting if we use the DDR/DDR2 clocks. However, 1411 * vc4_dsi_encoder_enable() is setting up both AFEC0, 1412 * setting both our parent DSI PLL's rate and this 1413 * clock's rate, so it knows if DDR/DDR2 are going to 1414 * be used and could enable the gates itself. 1415 */ 1416 fix->mult = 1; 1417 fix->div = phy_clocks[i].div; 1418 fix->hw.init = &init; 1419 1420 memset(&init, 0, sizeof(init)); 1421 init.parent_names = &parent_name; 1422 init.num_parents = 1; 1423 if (dsi->port == 1) 1424 init.name = phy_clocks[i].dsi1_name; 1425 else 1426 init.name = phy_clocks[i].dsi0_name; 1427 init.ops = &clk_fixed_factor_ops; 1428 1429 ret = devm_clk_hw_register(dev, &fix->hw); 1430 if (ret) 1431 return ret; 1432 1433 dsi->clk_onecell->hws[i] = &fix->hw; 1434 } 1435 1436 return of_clk_add_hw_provider(dev->of_node, 1437 of_clk_hw_onecell_get, 1438 dsi->clk_onecell); 1439 } 1440 1441 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data) 1442 { 1443 struct platform_device *pdev = to_platform_device(dev); 1444 struct drm_device *drm = dev_get_drvdata(master); 1445 struct vc4_dev *vc4 = to_vc4_dev(drm); 1446 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1447 struct vc4_dsi_encoder *vc4_dsi_encoder; 1448 struct drm_panel *panel; 1449 const struct of_device_id *match; 1450 dma_cap_mask_t dma_mask; 1451 int ret; 1452 1453 match = of_match_device(vc4_dsi_dt_match, dev); 1454 if (!match) 1455 return -ENODEV; 1456 1457 dsi->port = (uintptr_t)match->data; 1458 1459 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder), 1460 GFP_KERNEL); 1461 if (!vc4_dsi_encoder) 1462 return -ENOMEM; 1463 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1; 1464 vc4_dsi_encoder->dsi = dsi; 1465 dsi->encoder = &vc4_dsi_encoder->base.base; 1466 1467 dsi->regs = vc4_ioremap_regs(pdev, 0); 1468 if (IS_ERR(dsi->regs)) 1469 return PTR_ERR(dsi->regs); 1470 1471 dsi->regset.base = dsi->regs; 1472 if (dsi->port == 0) { 1473 dsi->regset.regs = dsi0_regs; 1474 dsi->regset.nregs = ARRAY_SIZE(dsi0_regs); 1475 } else { 1476 dsi->regset.regs = dsi1_regs; 1477 dsi->regset.nregs = ARRAY_SIZE(dsi1_regs); 1478 } 1479 1480 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) { 1481 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n", 1482 DSI_PORT_READ(ID), DSI_ID_VALUE); 1483 return -ENODEV; 1484 } 1485 1486 /* DSI1 has a broken AXI slave that doesn't respond to writes 1487 * from the ARM. It does handle writes from the DMA engine, 1488 * so set up a channel for talking to it. 1489 */ 1490 if (dsi->port == 1) { 1491 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4, 1492 &dsi->reg_dma_paddr, 1493 GFP_KERNEL); 1494 if (!dsi->reg_dma_mem) { 1495 DRM_ERROR("Failed to get DMA memory\n"); 1496 return -ENOMEM; 1497 } 1498 1499 dma_cap_zero(dma_mask); 1500 dma_cap_set(DMA_MEMCPY, dma_mask); 1501 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask); 1502 if (IS_ERR(dsi->reg_dma_chan)) { 1503 ret = PTR_ERR(dsi->reg_dma_chan); 1504 if (ret != -EPROBE_DEFER) 1505 DRM_ERROR("Failed to get DMA channel: %d\n", 1506 ret); 1507 return ret; 1508 } 1509 1510 /* Get the physical address of the device's registers. The 1511 * struct resource for the regs gives us the bus address 1512 * instead. 1513 */ 1514 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node, 1515 0, NULL, NULL)); 1516 } 1517 1518 init_completion(&dsi->xfer_completion); 1519 /* At startup enable error-reporting interrupts and nothing else. */ 1520 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1521 /* Clear any existing interrupt state. */ 1522 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT)); 1523 1524 if (dsi->reg_dma_mem) 1525 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), 1526 vc4_dsi_irq_defer_to_thread_handler, 1527 vc4_dsi_irq_handler, 1528 IRQF_ONESHOT, 1529 "vc4 dsi", dsi); 1530 else 1531 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1532 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi); 1533 if (ret) { 1534 if (ret != -EPROBE_DEFER) 1535 dev_err(dev, "Failed to get interrupt: %d\n", ret); 1536 return ret; 1537 } 1538 1539 dsi->escape_clock = devm_clk_get(dev, "escape"); 1540 if (IS_ERR(dsi->escape_clock)) { 1541 ret = PTR_ERR(dsi->escape_clock); 1542 if (ret != -EPROBE_DEFER) 1543 dev_err(dev, "Failed to get escape clock: %d\n", ret); 1544 return ret; 1545 } 1546 1547 dsi->pll_phy_clock = devm_clk_get(dev, "phy"); 1548 if (IS_ERR(dsi->pll_phy_clock)) { 1549 ret = PTR_ERR(dsi->pll_phy_clock); 1550 if (ret != -EPROBE_DEFER) 1551 dev_err(dev, "Failed to get phy clock: %d\n", ret); 1552 return ret; 1553 } 1554 1555 dsi->pixel_clock = devm_clk_get(dev, "pixel"); 1556 if (IS_ERR(dsi->pixel_clock)) { 1557 ret = PTR_ERR(dsi->pixel_clock); 1558 if (ret != -EPROBE_DEFER) 1559 dev_err(dev, "Failed to get pixel clock: %d\n", ret); 1560 return ret; 1561 } 1562 1563 ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0, 1564 &panel, &dsi->bridge); 1565 if (ret) { 1566 /* If the bridge or panel pointed by dev->of_node is not 1567 * enabled, just return 0 here so that we don't prevent the DRM 1568 * dev from being registered. Of course that means the DSI 1569 * encoder won't be exposed, but that's not a problem since 1570 * nothing is connected to it. 1571 */ 1572 if (ret == -ENODEV) 1573 return 0; 1574 1575 return ret; 1576 } 1577 1578 if (panel) { 1579 dsi->bridge = devm_drm_panel_bridge_add_typed(dev, panel, 1580 DRM_MODE_CONNECTOR_DSI); 1581 if (IS_ERR(dsi->bridge)) 1582 return PTR_ERR(dsi->bridge); 1583 } 1584 1585 /* The esc clock rate is supposed to always be 100Mhz. */ 1586 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000); 1587 if (ret) { 1588 dev_err(dev, "Failed to set esc clock: %d\n", ret); 1589 return ret; 1590 } 1591 1592 ret = vc4_dsi_init_phy_clocks(dsi); 1593 if (ret) 1594 return ret; 1595 1596 if (dsi->port == 1) 1597 vc4->dsi1 = dsi; 1598 1599 drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs, 1600 DRM_MODE_ENCODER_DSI, NULL); 1601 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs); 1602 1603 ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL); 1604 if (ret) { 1605 dev_err(dev, "bridge attach failed: %d\n", ret); 1606 return ret; 1607 } 1608 /* Disable the atomic helper calls into the bridge. We 1609 * manually call the bridge pre_enable / enable / etc. calls 1610 * from our driver, since we need to sequence them within the 1611 * encoder's enable/disable paths. 1612 */ 1613 dsi->encoder->bridge = NULL; 1614 1615 if (dsi->port == 0) 1616 vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset); 1617 else 1618 vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset); 1619 1620 pm_runtime_enable(dev); 1621 1622 return 0; 1623 } 1624 1625 static void vc4_dsi_unbind(struct device *dev, struct device *master, 1626 void *data) 1627 { 1628 struct drm_device *drm = dev_get_drvdata(master); 1629 struct vc4_dev *vc4 = to_vc4_dev(drm); 1630 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1631 1632 if (dsi->bridge) 1633 pm_runtime_disable(dev); 1634 1635 vc4_dsi_encoder_destroy(dsi->encoder); 1636 1637 if (dsi->port == 1) 1638 vc4->dsi1 = NULL; 1639 } 1640 1641 static const struct component_ops vc4_dsi_ops = { 1642 .bind = vc4_dsi_bind, 1643 .unbind = vc4_dsi_unbind, 1644 }; 1645 1646 static int vc4_dsi_dev_probe(struct platform_device *pdev) 1647 { 1648 struct device *dev = &pdev->dev; 1649 struct vc4_dsi *dsi; 1650 int ret; 1651 1652 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); 1653 if (!dsi) 1654 return -ENOMEM; 1655 dev_set_drvdata(dev, dsi); 1656 1657 dsi->pdev = pdev; 1658 1659 /* Note, the initialization sequence for DSI and panels is 1660 * tricky. The component bind above won't get past its 1661 * -EPROBE_DEFER until the panel/bridge probes. The 1662 * panel/bridge will return -EPROBE_DEFER until it has a 1663 * mipi_dsi_host to register its device to. So, we register 1664 * the host during pdev probe time, so vc4 as a whole can then 1665 * -EPROBE_DEFER its component bind process until the panel 1666 * successfully attaches. 1667 */ 1668 dsi->dsi_host.ops = &vc4_dsi_host_ops; 1669 dsi->dsi_host.dev = dev; 1670 mipi_dsi_host_register(&dsi->dsi_host); 1671 1672 ret = component_add(&pdev->dev, &vc4_dsi_ops); 1673 if (ret) { 1674 mipi_dsi_host_unregister(&dsi->dsi_host); 1675 return ret; 1676 } 1677 1678 return 0; 1679 } 1680 1681 static int vc4_dsi_dev_remove(struct platform_device *pdev) 1682 { 1683 struct device *dev = &pdev->dev; 1684 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1685 1686 component_del(&pdev->dev, &vc4_dsi_ops); 1687 mipi_dsi_host_unregister(&dsi->dsi_host); 1688 1689 return 0; 1690 } 1691 1692 struct platform_driver vc4_dsi_driver = { 1693 .probe = vc4_dsi_dev_probe, 1694 .remove = vc4_dsi_dev_remove, 1695 .driver = { 1696 .name = "vc4_dsi", 1697 .of_match_table = vc4_dsi_dt_match, 1698 }, 1699 }; 1700